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Abstract
We report on an experimental study of recoil-induced resonances as a
method of velocimetry for cold atomic samples. We present a refined
experimental method that greatly improves the sensitivity of the
measurement over previous experiments. Using frequency-modulation (FM)
spectroscopy techniques we achieve a sensitivity that approaches the shot
noise limit. In addition, we present a novel approach to deriving the line
shape of the observed signal, based on the concept of quantum transport and
tunnelling in motional Bloch bands.
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1. Introduction

The system of ultra-cold atoms in external potentials has
become a model system in an increasing number of disciplines,
such as condensed matter physics and nonlinear dynamics.
Studying the evolution of the spatial and momentum
distribution of an atomic ensemble can reveal information
about many aspects of the system. In situ, non-destructive
methods are desired in order to follow the evolution of
the distributions without severely perturbing the sample.
Spatial information can be obtained in such a way by
dispersive imaging of the atomic ensemble [1]. Momentum
distributions are commonly recorded using time-of-flight or
ballistic expansion methods. A more complicated high-
resolution method by measurement of the spatial correlation
function has been demonstrated recently [2]. A common
drawback of these measurement techniques is the alteration
of the spatial distribution due to ballistic expansion of the
atoms. Momentum distributions have also been recorded using
velocity selective Raman transitions between internal atomic
states [3]. During this measurement a part of the momentum
distribution is selectively transferred to a different atomic
state and detected destructively. All of these measurement
techniques preclude a repeated measurement of the dynamics
of an atomic sample without destroying it.

The method of recoil-induced resonances (RIR) as a
means of measuring the momentum distribution has been
proposed and treated theoretically in [4, 5]. This method is
based on stimulated photon scattering by atoms in an optical

lattice. An atom, changing its momentum due to the interaction
with the optical lattice, will cause a corresponding change of
the number of photons in the constituent light beams. One
can measure this change of optical power in order to obtain
information about the momentum distribution of the atoms.

RIR measurements of the momentum distribution have
been reported in cold samples of alkali atoms [6–9]. However,
these experiments were performed close to atomic resonance,
resulting in a large distortion due to spontaneous scattering.
The atomic cloud was pushed away entirely during the
interaction and for a subsequent measurement the sample
had to be prepared again. In response to this limitation,
we have developed a refined method that greatly improves
the sensitivity of the measurement. This method employs
frequency-modulation (FM) spectroscopy techniques and is
ultimately limited by intrinsic shot noise in the interaction
probe beams.

The paper is organized as follows. In section 2 we briefly
review the fundamental properties of RIR in the quantum
optics picture. We derive in section 3 the properties of RIR
based on the framework of quantum transport and tunnelling
in motional Bloch bands. In section 4 we describe the
experimental apparatus, focusing on the implementation of
the FM technique. Finally, in section 5 we discuss the
experimental results and point out the fundamental limitations
of the method.
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Figure 1. (a) Sketch of the beam arrangement for the recoil-induced
resonance experiments. (b) Stimulated Raman transition between
motional states of an atom. For a given frequency difference
between the beams two velocity classes are coupled by the Raman
process. The resonant velocity classes are determined by energy and
momentum conservation laws.

2. Quantum optics approach

Our system consists of cold atoms illuminated by two far-
detuned laser beams. The beams intersect at the position of
the atomic cloud with a small enclosed angle � as indicated
in figure 1(a). An atom can undergo a stimulated Raman
transition between motional states, as illustrated in figure 1(b),
during which it transfers a photon from one light beam to the
other. If the detuning �L of the beams from atomic resonance
is sufficiently large, the probability of spontaneous scattering
is negligible.

For the transfer of a photon between the beams,
momentum conservation leads to a change in atomic
momentum of

�p = pfinal − pinitial = h̄k2 − h̄k1 ≡ h̄q, (1)

where ki denotes the wave vector of the travelling light waves
with k2 ≈ k1 ≡ kL. For small angles the absolute value of the
momentum difference h̄q can be significantly smaller than the
single photon recoil momentum h̄kL. The condition for energy
conservation reads

�E = p2
final

2M
− p2

initial

2M
= h̄δ, (2)

where δ = ω2 − ω1 is the frequency difference between the
two beams. We assume that the beams propagate in the x-z
plane, as indicated in figure 1(a). The momentum difference
q is then

q = qx = 2kL sin
�

2
. (3)

Combining equations (1) and (2) results in

v · q = vxq = δ − h̄q2

2M
. (4)

For small angles we neglect terms of second order in q

δ = pxq

M
. (5)

This equation constitutes a resonance condition for the
stimulated Raman process. By choosing δ appropriately, we

can select a subset of the atomic ensemble with momentum
px that will undergo a stimulated Raman transition. From
equation (4) it is apparent that only the velocity component
along the x-direction is relevant, therefore, we will restrict our
analysis to one dimension.

2.1. Quasi-static solution

For a given frequency difference δ, atoms can change their
momentum resonantly from px to px +h̄q. During this process
one photon is transferred from the pump beam (frequency ω1)
to the probe beam (ω2). The reverse process can also occur,
where a photon is transferred from the probe to the pump beam.
Depending on the initial population of the two momentum
states px and px + h̄q, a net gain or loss in the probe beam
results.

Integrating over a distribution of particles that transfer
momentum, a scattering rate of photons W between the beams
can be calculated as [4, 5]

W = N
π

2
�2

R h̄M
∂�

∂p

∣∣∣∣
p=Mδ

q

, (6)

assuming a momentum distribution function �(p). In this
equation N is the number of atoms, each having mass M , and
�R is given by

�R = �1�2

2�L
, (7)

where �i = d · Ei/h̄ is the resonant Rabi frequency for each
beam.

2.2. Extension for changing frequency

The derivation of equation (6) assumed that the frequency
difference δ between the beams is not changing with time.
In the experiment we linearly chirp δ in order to sweep the
resonance condition for the Raman process through the entire
distribution. We can estimate conditions for the chirp rate
under which the result in equation (6) is still applicable.

In order to resolve a resonance of width�ω with a chirped
frequency probe, the time during which the frequency has to
hover in the range of the Raman resonance needs to be larger
than �t = 2π/�ω. During a linear scan δ = rt the frequency
stays in the range�ω for a time of τ = �ω/r . Setting τ = �t

gives an expression for the maximum scan rate rmax = 1
2π �ω2

which scales as the square of the Raman resonance width to
be resolved. Utilizing equation (5), the maximum scan rate to
resolve a momentum distribution of width �p is therefore

rmax ≈ 1

2π

(
q�p

M

)2

. (8)

It is clear from this scaling that for the measurement of
distributions with decreasing widths, increased measurement
times must be accepted, even though the range of momenta
to be sampled is decreasing. For scan rates much faster than
rmax the rate equation approximation made in the derivation of
equation (6) no longer holds, and very complicated coherent
dynamics of the system are to be expected.

Very small scan rates violate another approximation that
is used in the derivation leading to equation (6). It was
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assumed that the measurement process does not change the
given momentum distribution function�(p). Even though the
change in momentum for each photon transfer is very small for
a small angle between the beams, it is always present. The time
scale over which the population of coupled momentum states
changes is the inverse Rabi frequency�−1

R . If, during the scan,
the frequency remains in the vicinity of the Raman resonance
much longer than the inverse Rabi frequency, a substantial
alteration of the momentum distribution is to be expected. The
width of the resonance can be estimated to be the frequency
difference between two successive resonant Raman transitions.
Setting �p = h̄q in equation (5) yields a width of

�δ = �p
q

M
= h̄q2

M
. (9)

The time �t during which the frequency hovers in this range
should be much less than the inverse resonant Rabi frequency.
A linear scan in frequency δ = rt therefore leads to a condition
for the minimum scan rate

rmin ≈ h̄q2

M
�R. (10)

For scan rates much slower than rmin the momentum
distribution will be dynamically changed during the
measurement to such an extent as to change the outcome of
the measurement itself. This is not to be confused with the
heating of the atomic sample due to spontaneous scattering.
The change of the momentum distribution described here is
inherent to the measurement process and will occur even in
the absence of spontaneous scattering.

3. Quantum transport approach

It is instructive to derive equation (6) using the framework of
tunnelling between motional Bloch bands. A recent review
of the analogies of our system to the system of electrons in a
crystal lattice is given in [10].

To begin the analysis, we consider the interaction beams
to form an interference pattern in the crossing region leading to
an optical potential of the form h̄�R cos(qx−δt). The lattice is
turned on at a large negative velocity and is decelerated during
the frequency scan towards the Raman resonance condition
for p = 0 at zero velocity. Then it is accelerated to a positive
velocity as the scan continues. A sketch of the atomic motion
through reciprocal space in the accelerated frame of reference
is shown in figure 2. At the time the optical potential is turned
on, the atoms have a large velocity compared to the well.
They are therefore projected into bands with high band indices.
The initial deceleration of the potential well moves the atomic
distribution through reciprocal space towards lower energy (i.e.
lower band indices). In doing so the atoms must tunnel through
many band gaps. For the parameters used in the experiment,
the higher band gaps are so small that the probability for
tunnelling is essentially unity. During the tunnelling no photon
transfer occurs between the beams. However, as the atoms
approach the lowest band they can undergo Bragg reflection
at the first band gap. In this case the atom removes a photon
from one beam and transfers it into the other upon entering the
first Brillouin zone. As the optical potential crosses the point

k

E
Π(k)
~

0- q/2  q/2

Figure 2. Sketch of the dynamics of the atomic motion through
reciprocal space. The atomic ensemble starts out in high bands and
approaches the lowest band. At the first band gap there is a small
probability of undergoing a Bragg reflection, resulting in a change
of momentum of +h̄q. Most of the atoms, however, tunnel through
the gap and transit the Brillouin zone in the lowest band. Upon
exiting the zone they can Bragg reflect again back into the first band,
changing their momentum by −h̄q. The remaining atoms then
continue their path towards higher band indices.

of zero velocity the atoms get transported back to higher band
indices.

To simplify the analysis we assume that the majority of
atoms tunnel through the lowest band gap and only few undergo
a Bragg reflection. This assumption is justified for a large
enough acceleration and a small enough well depth. The
probability of tunnelling from the second into the first band
upon entering the first Brillouin zone is equal to the probability
of tunnelling back into the second band when leaving the
Brillouin zone. Therefore only few atoms will Bragg reflect
back into the first band after traversing the Brillouin zone.
Extended Bloch oscillations of the atoms within the lowest
band can be neglected due to the small reflection probability
at the first band gap. This condition also ensures that the
momentum distribution is not changed significantly during the
interaction. The Bragg scattering process transfers a photon in
opposite directions for scattering into and out of the first band.
The total photon transfer rate is therefore the difference in the
rate of scattering at the edges of the first Brillouin zone.

Let �(p) denote the normalized momentum distribution
of the atomic ensemble. As we know from the semi-
classical equations of motion of a particle moving in a periodic
potential [11], the quasi-momentum k varies linearly in time
under the influence of a constant acceleration

k(t) = k0 − 1

h̄
Mat. (11)

Transforming the stationary momentum distribution�(p) into
the quasi-momentum distribution in the accelerated frame
�̃(k, t) yields

�̃(k, t) = h̄ �(h̄k + h̄k(t)) = h̄ �(h̄k + [p0 − Mat]) , (12)

with the normalization
∫
�̃(k, t)dk = ∫

�(p)dp = 1. The
quantity we need to calculate is the number of particles per unit
time undergoing a Bragg reflection at the first band gap. The
rate of Bragg scattering upon entering the first Brillouin zone
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n− is given by the rate of particles approaching that region
multiplied by the probability to follow the band adiabatically
instead of tunnelling through the gap. If we let P be the
probability of tunnelling, then the probability of following the
band adiabatically is 1 − P . The scattering rate n− is then

n− = N �̃
(
−q

2
, t
) dk

dt
· (1 − P), (13)

where the quasi-momentum distribution is evaluated at the
left edge of the Brillouin zone, and N is the total number of
atoms participating. The Landau–Zener expression for the
probability of tunnelling P is given by [12]

P = e−ac/a, (14)

where the critical acceleration ac for the first band gap is
[13, 14]

ac = π

4

E2
gap

h̄2kL sin �
2

. (15)

The factor of sin(�/2) takes into account the angled beam
configuration, as opposed to the case of counterpropagating
beams. The width of the first band gap Egap is, to first
order, [13]

Egap = h̄�R, (16)

which gives for the critical acceleration

ac = π

2

�2
R

q
. (17)

For large acceleration we can write

n− = N �̃
(
−q

2
, t
) dk

dt
· (1 − e−ac/a) (18)

= N
π

2

M

q
�2

R �

(
− h̄q

2
+ p0 − Mat

)
, (19)

where we approximated 1 − e−ac/a as ac/a. Since each atom
undergoing Bragg reflection at the first band gap transfers one
photon, the photon scattering rate W− is equal to the atomic
Bragg scattering rate n−. The total photon transfer rate W is
the difference in the rate of scattering at the left (W−) and the
right (W +) edge of the first Brillouin zone. Evaluating W + in
a similar manner we arrive at the expression

W = W + − W− (20)

= N
π

2
h̄M�2

R
∂�

∂p

∣∣∣∣
p=p0−Mat

. (21)

In the last equation we approximated the difference term by
a derivative, since for small angles the unit of momentum
h̄q is much smaller than the typical scale of variation of
the momentum distribution. We can express the resonant
momentum p in terms of the frequency difference between
the beams, making use of the relation a = r/q:

p = p0 − Mat = M

q
(δ0 − rt) = Mδ

q
. (22)

This finally leads us to

W = N
π

2
h̄M�2

R
∂�

∂p

∣∣∣∣
p=Mδ

q

, (23)

which is identical to equation (6) derived in the framework of
Raman transitions.

4. Experimental realization

All experiments on recoil-induced resonances performed to
date measured the momentum distribution of an atomic cloud
by directly measuring the gain or absorption of one of the
beams interacting with the cloud [6–9]. For this purpose the
power P of the probe beam passing through the sample was
recorded with a photodiode. The absorption coefficient

g ≡ P − P0

P0
(24)

was then determined by subtracting the value P0 for
the impinging power from the signal and by subsequent
normalization with P0. Low-frequency noise and incomplete
subtraction of the signals typically limit the resolution for the
absorption coefficient of this set-up to about 10−3. This forced
the experimenters to choose a small value for the detuning of
the interaction beams from resonance in order to enhance the
strength of the interaction. However, the drawback of doing
so was a substantial number of spontaneous emissions.

4.1. Frequency-modulation spectroscopy

In order to enhance the sensitivity of the detection we
used a frequency modulation set-up as sketched in figure 3.
This method is commonly employed in high resolution
spectroscopy [15]. The probe beam is phase modulated at
a frequency ωm. The central frequency is chosen such that
the frequency difference δ between the first lower-frequency
modulation sideband and the unmodulated pump beam is
small. The amplitude Ei and intensity Ii of the incident probe
beam are changed by the interaction with the atoms to

Ef = t (δ) Ei (25)

If = T (δ) Ii . (26)

These transmission coefficients are related to the gain
coefficient by

T = t2 = 1 + g. (27)

Let us assume the momentum distribution to be measured
has a width of order �p. According to equation (5)
the corresponding width of the distribution of resonance
frequencies is �ωres = (q/M)�p. If the phase-modulation
frequency ωm is chosen much larger than �ωres then all but
the first lower-frequency sideband of the probe beam are too
far from the Raman resonance to be affected by the distribution.
To analyse the resulting change of amplitude we can write the
electric field of the incident modulated probe beam as

Ei = E0 ei(ω0t+m sin(ωm t)) (28)

= E0 eiω0t
∞∑

n=−∞
Jn(m)einωm t , (29)

where m is the modulation amplitude and Jn is the
Bessel function of order n. Each frequency component
is now amplified or attenuated according to the amplitude
transmission coefficient t to form the final amplitude

Ef = E0 eiω0t
∞∑

n=−∞
t (ω0 + nωm)Jn(m)einωm t . (30)
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Figure 3. Sketch of the frequency modulation set-up to increase the
detection efficiency. The probe beam is phase modulated at a
frequency of ωm. The lower sideband has a frequency difference of
δ with respect to the pump beam. By linearly ramping the frequency
of the pump beam, δ is swept through the Raman resonance
condition for atoms within the distribution. Frequency dependent
absorption of the probe beam passing through the atoms causes an
imbalance of the sideband intensities. The resulting intensity
variations at the modulation frequency are detected by mixing the
photodetector signal with the modulation drive.

The resulting intensity for the outgoing probe beam is

If = 1
2cε0

∣∣Ef

∣∣2 . (31)

In the absence of the atoms, the transmission coefficient
is unity independent of the frequency, and the incident
beam is unchanged (If = Ii). If atoms are present, the
transmission coefficients will lead to variations in the signal
at the modulation frequency ωm and higher harmonics. The
signal at the fundamental frequency ωm is given by

Iωm = 2Ii
∑
k

t (ω0 + kωm) t (ω0 + [k − 1]ωm)JkJk−1. (32)

The value for t (ω0 + kωm) is only appreciably different from
unity if the frequency ω0 + kωm is close to the frequency of
the pump beam. As discussed above, only the first sideband
fulfills this condition, so that t (δ) = t (ω0 − ωm) �= 1 is the
only term different from unity. Most terms in the sum cancel
due to the property J−n = (−1)nJn and the remaining terms
leave us with

Iωm = 2Ii [1 − t (δ)] (J0J1 + J1J2) (33)

= 2Ii [1 − t (δ)] 2
m
J 2

1 . (34)

The factor (2/m)J 2
1 (m) has its global maximum of 0.42 at

m = 1.36.
The change of power in the probe beam due to gain or

absorption in the atomic sample is given by

�Pprobe = h̄ω0W = gPprobe. (35)

This gives an expression for the absorption coefficient g

g = h̄ω0

Pprobe
W. (36)

For small values of g we see from equation (27) that 1 − t ≈
−g/2. The maximum change in the integrated power in the
probe beam at the modulation frequency ωm is then

�Pωm = 0.42 · 2Pprobe [1 − t (δ)] ≈ −0.42 gPprobe (37)

The maximum amplitude of the photocurrent signal
corresponding to this change in power is

Isig = R�Pωm = 0.42 Rh̄ω0W, (38)

where R is the photodiode responsivity.

4.2. Experimental set-up

In our experiment we started by trapping and cooling 106

sodium atoms in a magneto-optical trap (MOT). The atomic
distribution was approximately Gaussian, with a width of
σx = 0.35 mm in position and σp = 8 h̄kL in momentum.
At this point all the trapping and cooling fields were turned off
and the interaction beams were introduced. The optical poten-
tial was turned on with a velocity corresponding to a value far
outside the velocity distribution of the atomic ensemble. The
frequency difference was then swept symmetrically through
the resonance at a fixed rate, using an acousto-optic modulator
(AOM).

As can be seen in figure 4, the frequency scanning arm
of the set-up provided the pump beam. The centre frequency
of the double pass AOM2 was 37.5 MHz and the scan range
was typically ±450 kHz. The beam was aligned through the
position of the atomic cloud overlapping with the probe beam.

The fixed frequency arm of the set-up (probe beam) was
phase modulated with an electro-optic modulator (EOM). The
EOM operated at the optimum modulation index of m = 1.36,
with a modulation frequency of 20 MHz. Because the first
lower-frequency sideband was to be Raman-resonant with the
atomic ensemble, the AOM in this path (AOM1) was operated
at a frequency of 95 MHz. The optical axis of the EOM
was aligned to minimize residual amplitude modulation (AM).
After passing through the EOM the beam was aligned through
the position of the atomic cloud overlapping with the pump
beam. The angle between the beams was measured to be
� = 6.3◦ and was dictated mainly by constraints of the vacuum
chamber. After leaving the chamber the beam was focused
onto a photodetector. As discussed previously, absorption or
gain in the atomic sample leads to a signal component at the
frequency of modulation ωm. In order to obtain a high signal-
to-noise ratio the frequency dependent noise power density at
the value for ωm should be as small as possible. The value
ωm = 20 MHz was chosen outside the range of significant
electronic 1/f -noise contributions while avoiding regions of
increased noise due to other high frequency sources. Because
the frequency of the signal to be recorded coincided with the
frequency of the residual AM, a further reduction of this effect
was necessary. For this purpose half of the power was split
from the probe beam before entering the interaction region and
both beams were directed onto the input ports of a balanced
photoreceiver. Care was taken to equalize the beam intensities
and the optical pathlength of both beams. The subtraction
of the signals in the photodetector further reduced the AM
contribution by 20 dB, suppressing it below the noise level.
Noise measurements on the photodetector indicated that, at
the maximum incident light power, the largest contribution to
the noise is due to the shot noise of the incident light.

After being recorded by the photoreceiver, an RF mixer
multiplied the amplified signal with a phase-shifted portion of
the reference signal. The output was a DC level proportional
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Figure 4. Sketch of the interaction beam set-up for the recoil induced resonance experiments. The frequency of the pump beam is adjusted
by double-passing it through an acousto-optic modulator. An electro-optic modulator provides phase modulation sidebands on the probe
beam. To cancel residual amplitude modulation, a balanced photoreceiver is used for detection. The recoil-induced resonance signal at the
modulation frequency is extracted and captured on a digitizing oscilloscope for further analysis.

to the amplitude of the signal at the modulation frequency.
Higher harmonics were eliminated by a low-pass filter with
a cut-off frequency of 200 kHz. After a final amplification
stage the signal was captured by a digitizing oscilloscope and
transferred to the control computer for analysis.

5. Momentum measurements

Figure 5 shows an example of a single-shot, recoil-induced
resonance trace. In this experiment an integrated power of
Ppump = 5 mW in the pump beam was focused onto the atoms.
The spot size at the position of the atomic cloud was wpump =
340 µm. The corresponding values for the probe beam were
Pprobe = 0.72 mW and wprobe = 220 µm. The detuning from
atomic resonance was�L/2π = 1 GHz. The frequency differ-
ence of the two beams was scanned over 900 kHz in 200 µs.

We can now compare the acquired signal to the theoret-
ical approximation derived earlier. The initial condition of
the atomic cloud before the RIR interaction was a Gaussian

distribution of momenta,

�(p) = 1√
2πσp

exp

(
− p2

2σ 2
p

)
, (39)

with σp = 8 h̄kL. This distribution had a size of roughly
σx = 0.35 mm and contained about 1.5 · 106 atoms. The
expression for the RIR signal in equation (6) is

W = N

√
π

8
�2

R
1

8ω2
r sin(�/2)

δ

n3
rec

× exp

(
−1

2

(
δ

4nωr sin(�/2)

)2
)
, (40)

where we expressed the width of the momentum distribution
as σp = nrech̄kL and h̄ωr is the single photon recoil energy.
The maximum value Wmax for the scattering rate in equa-
tion (40) occurs when the frequency difference has a value
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Figure 5. An example of a single-shot, recoil-induced resonance
trace of the atomic distribution after being released from the MOT.
Indicated also is a best fit of a derivative of a Gaussian curve to the
experimental data. The fitted value for the width of the momentum
distribution is σp = 10 h̄kL.

of δ = qσp/M , resulting in

Wmax = N

√
π

8
e−1/2 �2

R
1

2n2
recωr

. (41)

To optimize the RIR signal the interaction beam size should
be comparable to the size of the atomic distribution. For much
smaller beams only a fraction of the atoms interact with the
light. Integration over the momentum distribution of width
σx , taking into account the Gaussian profile of the beam inten-
sity, decreases the maximum scattering signal by a factor

ηGauss =
(

1 +
4σ 2

x

w2
probe

+
4σ 2

x

w2
pump

)−1

. (42)

Using equation (38) for the amplitude of the photocurrent sig-
nal at the modulation frequency yields

Imax,rms = 0.42
1√
2

√
π

8
e−1/2NηGauss R h̄ω0 �

2
R

1

2n2
recωr

. (43)

The photodiode used had a responsivity of R = 0.4 A W−1 and
a transimpedance gain of 700 V A−1. Tracing the electronic
gain of the signal through the set-up resulted in a voltage gain
of Voutput/Vmax,rms ≈ 1900. Combining equation (43) with the
values for the experimental parameters yields an expected max-
imum change of power in the probe beam of�Pprobe = 0.4µW
and a corresponding signal ofVoutput = 60 mV. The experimen-
tal trace has a maximum value of roughly Voutput = 30 mV.
Considering the difficult calibration of the system and the
strong dependence of the signal on the optical alignment the
theoretical approximation agrees quite well with the experi-
ment.

We can also obtain a theoretical value for the signal-to-
noise ratio. The dominant noise source for the signal is the
inherent fluctuation of the number of photons in the probe beam
(shot noise). The noise current of the photodiode integrated
over a bandwidth B is given by

Inoise =
√

2eIdcB, (44)

where e is the electron charge and Idc = RPprobe is the DC
photocurrent. The integration bandwidth is determined by
the low-pass filter in the electronic set-up and was set to
B = 200 kHz. Comparing Inoise to the value for the signal
photo current in equation (43) leads to a signal-to-noise ratio
of S/N ≈ 15, which is not too far from the signal-to-noise ratio
of the trace in figure 5.

Also indicated in figure 5 is a least-squares fit of a curve,
as given in equation (40), to the experimental data. The
best-fit value for the temperature of the atomic cloud was
σp = 10 h̄kL. This value is slightly higher than the value
σp = 8 h̄kL measured with the ballistic-expansion method. We
attribute this to the measurement-induced heating described
earlier.

To investigate this heating effect further we acquired RIR
signals for various detunings of the interaction beams from
resonance. Figure 6(a) shows the fitted value of σp in units
of the single photon recoil momentum. For comparison,
the horizontal line indicates the measurement of the initial
temperature using the ballistic-expansion method. Part (b) of
the same figure shows the fitted value for the amplitude of the
RIR signal and the amplitude predicted from the theoretical
approximation using equation (43).

It is important to note that for the RIR scans from which
the data in figure 6 were obtained, the repump beam was left on
during the interaction. For beam frequencies that were close to
resonance for a particular hyperfine level of the ground state,
the absence of the repump beam allowed the atoms to fall into
the other hyperfine-ground state, for which the light was much
further detuned. For detunings larger than roughly 1 GHz the
presence of the repump beam did not change the RIR signal
shape.

The dominant heating effect present in the experiments
on RIR performed previously was the large number of
spontaneous emissions during the interaction. In our
experiment a ballistic-expansion measurement in the direction
in which the RIR measurement was performed was not possible
due to limited optical access for the imaging camera. To
quantitatively study the amount of heating due to spontaneous
emission, we determined the momentum that the atomic cloud
acquired during the push. For this purpose we placed the
imaging camera so that it was able to record the displacement
of the atomic cloud in the direction of the interaction beams
after a time of free expansion. The measurement of the mean
acquired momentum in this direction enabled us to estimate
the number of spontaneous emissions. Each absorbed photon
leads to a momentum kick of h̄kL given to the atom. When
an atom decays into the lower hyperfine ground state, it will
immediately be pumped back to the excited state by the repump
light. Since the repump beams illuminate the atomic sample
from all directions, the absorption of photons from these
beams does not lead to an average displacement of the cloud.
However, this process will contribute to the heating of the
sample. Assuming an isotropic emission we can then estimate
the temperature increase due to the random-recoil momentum
kicks. The temperature one could expect caused solely by
this heating effect is indicated as a solid line in figure 6(a).
One can see that the measured temperature increase can not be
accounted for by spontaneous emission alone.

A few simple arguments can give us an estimate for the size
of the heating effects. First we consider the heating inherent to
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Figure 6. Dependence of the RIR signal parameters on the detuning
of the interaction beams relative to the transition
(S1/2, F = 2) → (P3/2, F

′ = 3). The data points in part (a) show
the fitted value of nrec (σp in units of the single photon recoil
momentum). As a comparison the horizontal dotted line indicates
the value for nrec obtained with the method of ballistic expansion.
The solid line indicates the momentum variance of the cloud that
one could expect for the cloud being heated due to spontaneous
emission alone. The data points in (b) show the fitted value of the
amplitude. Indicated as a solid line is the dependence predicted
from the theoretical approximation.

the measurement. The energy transferred to the atom during a
single Raman transition is E = h̄δ. Integrating over the whole
sweep duration yields the average energy transferred per atom:

Einc,measure =
∫

W(δ)dt = 1

r

∫
W(δ)dδ (45)

= 4π

r
�2

R h̄ωr sin2(�/2) . (46)

This energy transfer leads to an increase in the momentum
variance as

σ 2
p,final = σ 2

p,initial + 2MEinc,measure. (47)

The heating due to spontaneous emissions can be estimated
by determining the spread in momentum caused by random
emission of photons. Since we are only interested in the
spread in one dimension, the increase in the variance after
nsc scattering events is [7]

σinc,spont = 2
5

√
nsc h̄kL. (48)

The number of scattered photons can be estimated as

nsc = 2 ·
(
1

2

)
S

1 + S + 4(�L/1)2
· τint, (49)

where τint is the duration of the interaction, 1 the excited state
linewidth, and S the saturation parameter. The first factor of
two in this equation accounts for the fact that photons can reach
the lower hyperfine ground state. From there they are removed
immediately by the repump beam, adding to the number of
spontaneously scattered photons. For the parameters used
to obtain the data in figure 6, the energy increase due to the
measurement is about three times larger than the increase due
to spontaneous emission for the range of detunings measured.

To test the limits of the semiclassical derivation given in
section 2.2 we changed the scan rate of the frequency difference
over a wide range. Experimental traces for the RIR signals for
various scan rates are displayed in the left panel of figure 7.
For all traces the scan direction was from negative to positive
detunings. The estimates for the maximum and minimum scan
rates as given by equations (8) and (10) for the parameters used
in the experiments give rmin ≈ rmax ≈ (2π) ·10 GHz s−1. This
indicates a small range of scan rates for which the expression
for the RIR signal is applicable.

For the top panel in figure 7, the scan rate was chosen much
smaller than rmin. The trace shows a strong asymmetry in the
shape. The first (positive) peak is large and localized whereas
the second (negative) peak after the centre of the resonance
is small and returns to zero very slowly with a long tail. The
exchange of momentum within the atomic cloud always tends
to increase the momentum spread of the distribution. At the
start of the frequency scan the momentum is transferred from
the central regions towards the wing in the direction opposite
to the scan direction. For small scan rates the light interacts
with a given velocity class for a long enough time to alter
the distribution significantly. Off-resonant interactions let the
atoms transfer momentum even before the light reaches the
corresponding Raman resonance condition. This transfers
most of the atoms prior to the frequency difference reaching
zero for a resonance at p = 0. Past this point the momentum
transfer occurs in the direction of the scan direction. The atoms
which have not been transferred too far out of resonance can
be ‘dragged’ along in the scan direction to very high momenta,
explaining the long tail in the RIR signal trace. For the case
of a fast scan (bottom panel) no such simple explanation
could be found. The frequency is broadened substantially
and the light is interacting with a large part of the ensemble
simultaneously. The RIR traces show an oscillatory behaviour
after the frequency passes through the resonance.

For illustrative purposes we compared the shape of the
RIR signals to numerical quantum mechanical simulations.
For the case of small angles in the RIR set-up the momentum
quantization unit h̄q was much smaller than the width in
momentum of the real atomic sample. Therefore, numerical
simulations with actual experimental parameters required
the solution of a set of ordinary differential equations of
prohibitively large dimension. Since we were not intending
to extract quantitative information from the simulations, we
restricted the simulation runs to distributions much narrower
than the experimental ones. Because the scaling arguments
for the scan rates involve the width of the distribution, the scan
rates for the simulation had to be adjusted to reproduce the line
shape observed in the experimental traces.
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Figure 7. The left panel (a) shows experimental RIR traces for different scan rates. Each trace is an average over 20 acquisitions. The scan
direction was from negative to positive detunings. The frequency range of the scan was held constant at δν = 900 kHz, but the scan time
was changed to produce the given scan rate. The right panel (b) shows quantum numerical simulations for scan rates that are smaller (top),
within (middle) or outside (bottom) of the range [rmin, rmax]. It is important to point out that the parameters for the experimental runs and the
numerical simulations are not the same, but illustrate qualitative agreement.

6. Conclusions

We have described an experimental set-up using frequency-
modulation techniques that greatly enhances the sensitivity
of the recoil-induced resonance method over previous
experiments. We performed measurements that were limited
by shot noise in the probe light. Heating due to spontaneous
scattering was reduced below the level of the intrinsic
measurement-induced heating. As a demonstration of this
technique we extracted the temperature of an atomic sample
from the signal line shape, but this technique can be used
to characterize arbitrary momentum distributions. Due to its
small perturbing effect on the atomic ensemble this technique
can be used in applications where conventional (destructive)
measurements cannot be applied.
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