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Short timescale Brownian motion and applications

Publication No.

Jianyong Mo, Ph.D.

The University of Texas at Austin, 2015

Supervisor: Mark G. Raizen

This dissertation details our experiments and numerical calculations on

short timescale Brownian motion and its applications. We test the Maxwell-

Boltzmann distribution using micrometer-sized spheres in liquids at room tem-

perature. In addition to that, we use Brownian particles as probes to study

boundary effects imposed by a solid wall, viscoelasticities of complex fluids,

slippage at solid-fluid interfaces, and fluid compressibility.

The experiments presented in this dissertation relies on the use of tight-

ly focused laser beams to both contain and probe the Brownian motion of mi-

crospheres in fluids. A dielectric sphere near the focus of a laser beam scatters

some of the incident photons in a direction which depends on the particle’s

position. Changes in the particle’s position are encoded in the spatial distri-

bution of the scattered beam, which can be measured with high sensitivity.

It is important to emphasize that the Brownian motion in this dissertation is

exclusive for translational Brownian motion.
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We have reported shot-noise limited measurements of the instantaneous

velocity distribution of a Brownian particle. Our system consists of a single

micron-sized glass sphere held in an optical tweezer in a liquid in equilibrium

at room temperature. We provide a direct verification of a modified Maxwell-

Boltzmann velocity distribution and a modified energy equipartition theorem

that account for the kinetic energy of the liquid displaced by the particle. Our

measurements confirm the distribution over a dynamic range of more than six

orders of magnitude in count-rate and five standard deviations in velocity.

We have reported high-bandwidth, comprehensive measurements of

Brownian motion of an optically trapped micrometer-sized silica sphere in wa-

ter near an approximately flat wall. At short distances, we observe anisotropic

Brownian motion with respect to the wall. We find that surface confinement

not only occurs in the long time scale diffusive regime but also in the short

time scale ballistic regime, and the velocity autocorrelation function of the

Brownian particle decays faster than that of particle in a bulk fluid. Further-

more, at low frequencies the thermal force loses its color due to the reflected

flow from the no-slip boundary. The power spectrum of the thermal force on

the particle near a no-slip boundary becomes flat at low frequencies.

We have numerically studied Brownian motion of a microsphere in com-

plex fluids. We show that Brownian motion of immersed particles can be dra-

matically affected by the viscoelastic properties of the host fluids. Thus, this

fact can be used to extract the properties of complex fluids via observing the

motion of the embedded particles. This will be followed by two experimental
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demonstrations of obtaining the viscosities of water and acetone.

We also study Brownian motion with partial and full slip boundary

conditions both on the surface of a sphere and a boundary. We show that the

motion of particles can be significantly altered by the boundary condition of

fluid flow on a solid surface. We suggest that this fact can be used to measure

the slippage, namely the slip length.

Lastly, I will discuss the efforts to study fluid compressibility and non-

equilibrium physics using a short duration pulsed laser. We expect to increase

the postion sensitivity from current 10−15 m/
√

Hz to about 10−19 m/
√

Hz by

using a pulsed laser with a peak power of 108 W. With such a high position

sensitivity, we expect to be able to resolve the compressibility of fluids. We

will also discuss a few future experiments studying non-equilibrium physics.
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Chapter 1

Introduction

1.1 History of Brownian motion

Brownian motion is the random movement of particles agitated by the

thermal motion of the molecules in a fluid. The observation of Brownian

motion was first reported in 1785 by Jan Ingenhausz [1]. He described the

irregular movement of coal dust on the surface of alcohol. The Brownian

motion of a particle in bulk fluids was first discovered by Robert Brown in

1827 [2]. He observed the irregular motion of pollen as well as inorganic

matter like wood, and nickel dust in water using a simple microscope. Today,

this motion is known as Brownian motion.

In 1905, Albert Einstein explained in precise detail how a microscopic

particle is agitated by the thermal motion of fluid molecules. This explana-

tion of Brownian motion served as a definitive confirmation that atoms and

molecules actually exist [3]. Einstein’s prediction for the mean squared dis-

placement (MSD) of a free spherical particle in a fluid in one dimension is

〈∆x2(t)〉 = 〈[x(t+ τ)− x(τ)]2〉 = 2Dt (1.1)

where D = RT
NA6πηa

is the diffusion constant and involves Avogadro’s constant

NA, R is the gas constant, T is the absolute temperature, η is the viscosity of
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the fluid and a is the radius of the sphere. M. von Smoluchowski also derived

the expression of MSD in Eq. (1.1) independently in 1906 [4], but his result

was off by a factor of 2. This result was confirmed experimentally by Jean

Perrin in 1909 [5], which led to the measurements of Avogadro’s number and

thus proof of the existence of atoms and molecules. Because of this work,

Perrin was awarded the Nobel Prize in Physics in 1926.

The result in Eq. (1.1) is correct only for Brownian motion on long time

scales (typically ≥ 1 ms), conventionally called diffusive Brownian motion.

Long time trajectories of Brownian particles are classic examples of fractals

that are continuous everywhere but not differentiable anywhere [6]. Therefore,

there is no definition for instantaneous velocity in this theory, as the root mean

square velocity
√
〈v2〉 =

√
〈∆x2(t)〉

∆t
=
√

2D
∆t

diverges when ∆t → 0. Einstein

knew his diffusive Brownian motion theory [3] would break down at short time

scales. In 1907, he gave the theory [7] that considers the instantaneous velocity

of a Brownian particle, in which he gave the time scales at which thermal

energy is exchanged between the particle and the fluid and the displacements

of the particle during those time scales.

In 1908, Paul Langevin proposed a stochastic differential equation, the

Langevin equation, which was quite different from Einstein’s approach and

“infinitely more simple” according to him, to describe Brownian motion [8,9].

This was the first mathematical description of the motion of particle in a fluid

over the entire time domain. In Langevin’s description, the force on the particle

exerted by the fluid is separated into two components, the fluctuation force
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(also called the thermal force) and the friction force. Both of them are due to

the same physical mechanism, the collisions between the particle and the fluid

molecules. They are related by the fluctuation-dissipation theorem [10]. Since

then, the Langevin model has found broad applications in many fields [11].

1.2 Brief description of Brownian motion

In this section, we will consider a 3 µm diameter silica sphere (with

density ρp = 2×103 kg/m3) in water (ρf = 103 kg/m3 and viscosity η =

0.9×10−3 Pa·s) at room temperature as an example to briefly discuss Brownian

motion. Water is a strongly correlated medium with a mean free path of about

3 Å, the average distance water molecules can travel between collisions [12].

The collision rate between the microsphere with surrounding water molecules is

about 1020 Hz1. If one could resolve the motion of the particle at single collision

level, Brownian motion would not be stochastic as conventionally considered

anymore, but deterministic governed by Newton’s laws. However, this would

be extremely hard to do in practice. Instead, most successful theories [3, 4, 8]

begin from a statistical point of view by averaging many collisions in a clever

way. A similar situation happens in solid state physics when considering the

interaction between a crystal containing Avogadro’s number of atoms and

electromagnetic waves. Instead of tackling this problem at single atom level,

people treat the crystal as a collective entity of many atoms, forming energy

1This is assuming purely two-body collisions and ignoring the cluster formation of water
molecules. In reality, many-body collisions might not be negligible since water is a strongly
correlated system. Therefore, it might be better to treat water as a continuum.
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bands, refractive index and so on.

Because of the huge difference in mass between the microsphere (3 ×

10−14 kg) and a water molecule (3× 10−26 kg), the motion of the microsphere

can only be changed significantly by a large number of collisions. Therefore,

it is natural to study Brownian motion in an averaged manner, averaging

on the order of 1012 collisions. One of the key questions to correctly study

Brownian motion is how long should people average the collisions without

losing information. Obviously, people want to average the collisions for a

longer time to reduce the difficulty of describing Brownian motion. However

in Einstein’s 1905 work [3], he averaged too many collisions, resulting in only

being correct on long time scales.

There are two important time scales setting limits on the longest time

scale one can average the collisions to correctly describe Brownian motion.

One of them is τp = mp/(6πηa) = (2ρpa
2)/(9η), known as the momentum

relaxation time of the particle [3, 4, 8, 13], where ρp is the density of the par-

ticle. It indicates how long the particle takes to lose its momentum to the

surrounding fluid. τp increases with the size and density of the particle and

decreases with the viscosity of the fluid. The other one is τf = ρfa
2/η, the

time for vorticity in the fluid to travel one microsphere radius a, where ρf is

the density of the fluid. This directly relates to the hydrodynamic memory

effects [14, 15]. For 3 µm diameter silica sphere in water, these two time s-

cales are comparable, τp = 1 µs and τf = 2.25 µs, during which about 1014

collisions occur. The averaging time interval should be shorter than both τp
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and τf to fully resolve the momentum relaxation. Thus, the averaged number

of collisions should be fewer than 1014, indicating that the mass ratio (1012)

between the sphere and a water molecule is a good estimation for the optimal

averaging collision number.

In spite of many successful studies of Brownian motion on long time

scales, experimental measurements of the velocity and thus kinetic energy

of the thermal motion of microscopic particles was not possible until recent-

ly [16–18], after many failed attempts [19, 20]. This is because it requires

extreme resolutions of both time and position. As mentioned above, for a 3

µm diameter silica microsphere in water, the temporal resolution should be

shorter than both τp and τf . With 2% uncertainty, the temporal resolution

needs to be 20 ns. The corresponding spatial resolution is determined by the

average displacement, due to Brownian motion, of the microsphere during that

20 ns. At room temperature, the average thermal velocity of the microsphere

is about 400 µm/s, resulting in an 8×10−12 m average displacement. With

2% uncertainty in the position measurements, the position resolution must be

at least 1.6× 10−13 m in 20 ns, corresponding to 2×10−17 m/
√

Hz in position

sensitivity. The position resolution of our experiments is on the level of 10−15

m/
√

Hz, as shown in Chapter 4. Therefore, with current resolution, we can

not resolve the instantaneous velocity of a 3 µm diameter silica microsphere

in water with 2% uncertainty.

However, this requirement is reduced to 10−15 m/
√

Hz for a 5 µm bari-

um titanate (BaTiO3, n = 2.1, ρB = 4.2 ×103 kg/m3) microsphere in acetone
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(n = 1.35, ρf = 789 kg/m3 and η = 3.1 × 10−4 Pa·s). This is because of two

improvements: first, slowing down the dynamics by using acetone (lower vis-

cosity compared to water) and BaTiO3 microspheres (higher density compared

to silica); and second, improving signal-to-noise by using BaTiO3 microspheres

(higher refractive index compared to silica improves the scattering efficiency).

Therefore, instantaneous velocity measurements were made possible as dis-

cussed in detail in Chapter 4.

1.3 Testing the Maxwell-Boltzmann distribution

The one dimensional Maxwell-Boltzmann distribution (MBD) for the

velocities of molecules in an ideal gas in thermal equilibrium is [21]

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
(1.2)

where m is mass, kB is Boltzmann’s constant and v is the velocity. The energy

equipartition theorem, 1
2
m〈v2〉 = 1

2
kBT , can be derived from the MBD. The

actual velocity distribution in certain systems has been predicted to deviate

from the standard MBD, for example, due to particle-particle interactions or

relativistic effects [22–25]. A simple thought experiment showing a change in

the velocity distribution by adding an arbitrary potential was proposed by

Lord Kelvin in 1892 [22]. Additional deviations from the MBD have been

predicted for low density plasmas [23], interstellar molecular hydrogen [24],

and in the solar plasma by measuring neutrino flux [25]. In spite of predicted

deviations, the MBD still holds as a remarkably robust approximation for most

physical systems.
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Previous work has reported an experimental verification of the MBD

and energy equipartition theorem for a microsphere in air [16]. This result is to

be expected, since the interaction of a particle with the surrounding air is fairly

weak. In the case of a particle in a liquid, it is not so clear whether the MBD

and energy equipartition theorem still hold, due to the strong hydrodynamic

coupling.

We have reported an accurate test of the Maxwell-Boltzmann distri-

bution and the energy equipartition theorem using a barium titanate glass

(BaTiO3) microsphere in acetone [18]. We find that the velocity distribution

follows a modified Maxwell-Boltzmann distribution

f(v) =

√
m∗

2πkBT
exp

(
−m

∗v2

2kBT

)
(1.3)

where m∗ is the effective mass of the microsphere in liquid which is the sum of

the mass of the microsphere mp and half of the mass of the displaced liquid mf ,

m∗ = mp + 1
2
mf [26]. The liquid adds a virtual mass 1

2
mf to the microsphere,

since accelerating the microsphere requires a force both on the microsphere

and the surrounding liquid. As a result, the energy equipartition theorem also

needs to be modified to 1
2
m∗〈(v∗)2〉 = 1

2
kBT .

The apparent conflict between our observation and the equipartition

theorem can be resolved by considering the effects of compressibility of the

liquid [26]. Below timescales on the order of τc = a/c, where c is the speed of

sound in the liquid and a is the radius of the microsphere, the compressibility

of the liquid cannot be neglected and the velocity variance will approach the
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energy equipartition theorem. This will be discussed in detail in Chapter 9.

1.4 Brownian motion near a boundary

When a particle approaches a boundary, its dynamics will be altered

in a way that contains the information about the boundary. Brownian motion

of particles near boundaries is relevant to many scientific fields. For instance,

in microfluidics, the channel is so narrow that the influence of boundaries is

inevitable. Many biological experiments are performed near a plane surface,

namely, a glass coverslip. Understanding the influence of boundaries on parti-

cle dynamics is of great significance, from both a fundamental and an applied

point of view.

It is well-known that the mobility of particles decreases as they ap-

proach boundaries at which the fluid does not slip. This effect of “surface

confinement” was predicted by Lorentz in 1907 [27]. The increase of the drag

force is attributed to the alteration of the hydrodynamic interaction between

the particle and the fluid generated by the no-slip boundaries. The motion

of the particle becomes anisotropic because the drag force parallel to the wall

is typically less than that perpendicular to the wall. This effect is significant

when the dimensions of the confining geometry and the suspended particles

are comparable.

Despite many years of experiments on Brownian motion, the effects

of boundaries over a wide range of time scales are still not well understood.

Our experiments provide the first comprehensive study of boundary effects on
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Brownian motion over a wide range of time scales. We report the observation

of surprising and qualitatively new phenomena, such as fast memory loss of

the particle’s velocity near the boundary, and a flattening in the thermal force

spectrum. This detailed understanding of boundary effects might enable the

development of a new 3D microscope with a fast remote sensor to map out

boundary contours.

1.5 Brownian motion in complex fluids

Brownian motion of a particle is caused by the constant collisions be-

tween the particle and the fluid molecules. Therefore, Brownian motion con-

tains some information about the host medium.

Newtonian fluids can be characterized by a single coefficient of viscosity,

which depends on temperature but does not change with the strain rate. Only

a small group of fluids exhibit such constant viscosity. The large class of

fluids, whose viscosity changes with the strain rate, are called non-Newtonian

fluids (or complex fluids). Such materials are viscoelastic, exhibiting both a

viscous and an elastic response. The study of the deformation and flow of such

complex fluids is called rheology.

A new approach, called optical microrheology, using micron-sized im-

mersed particles as probes to investigate the viscoelastic behavior of complex

fluids is pioneered by Mason and Weitz [28]. Unlike traditional rheology, which

requires a bulk of fluid, microrheology only requires micro- or even nano-liters

of fluids. Therefore, unlike traditional rheology, which only gives averaged

9



properties, microrheology gives the local properties of the fluids with a spatial

resolution of micrometers or even nanometers. This is especially valuable for

studying highly non-homogeneous complex materials. Furthermore, microrhe-

ology typically has a higher bandwidth than the conventional bulk rheometry.

In the first part of Chapter 7, we will give the predictions of Brownian

motion of a sphere in complex fluids with their properties known. We then

present the procedure to measure the viscoelasticity of unknown fluids based

on the measurements of Brownian motion of an embedded particle. This will

be followed by two experimental demonstrations of obtaining the viscosities of

water and acetone.

1.6 Brownian motion with slip boundary conditions

The boundary condition for the flow velocity of a viscous fluid at the

solid-fluid interface is conventionally considered as no-slip, meaning the fluid

molecules at the solid surface stick to the solid perfectly and have no relative

velocity with the solid. Our experiments in Chapter 4 and 6 have shown that

this is a good assumption for the interfaces between water and glass, as well

as acetone and glass.

The slippage of a fluid on a solid surface can be characterized by the

slip length δ or the contact angle θc, which are generally related through

δ = δ0(1 + cos(θc))
−2. δ0 is an empirical quasi-universal length scale. When

δ is much smaller than the dimensions of interest, the fluid flow boundary

condition can be safely assumed to be no-slip. The contact angle between
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water and glass typically lies in the range from 25◦ to 29◦ [29], resulting in a

slip length of 0.1 nm. Therefore, the interface between water and micron-sized

glass particles satisfies the no-slip boundary condition since the particle’s size

is 104 times larger than the slip length.

However, the no-slip boundary condition assumption has failed in many

situations [30–34]. Partial-slip boundary conditions must be used when the slip

length δ is comparable to the dimensions of interest. The effective slip length

can be increased by microscopic structures on the surface of the solid [31,32].

In the first part of Chapter 8, we will discuss the Brownian motion of

a free particle with no-slip, partial-slip and perfect-slip boundary conditions.

We will show that it is much easier to measure the instantaneous velocity of

a microsphere with a perfect-slip boundary than that of a particle with a no-

slip boundary condition. Secondly, we will discuss the dynamic motion of a

microsphere with a no-slip boundary condition near a flat infinite wall with a

perfect-slip boundary condition.

1.7 Brownian motion in compressible fluids and non-
equilibrium physics study

We have observed that the velocity distribution of a microsphere in a

liquid follows modified versions of the Maxwell Boltzmann distribution and the

energy equipartition theorem in Chapter 4. As discussed before, this is because

the current temporal resolution, which is limited by the position sensitivity

and ultimately by the shot noise of the detection beam, is not able to resolve
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the compressibility of the fluids. We have achieved a position sensitivity of

2×10−15 m/
√

Hz with 150 mW detection power as discussed in Chapter 4,

which limits the temporal resolution to about 100 ns. One can increase the

position sensitivity to about 10−19 m/
√

Hz using a pulsed laser with a peak

power of 108 W. This leads to a temporal resolution of 0.1 ns, which is much

shorter than typical τc (∼ ns); thus, one can resolve the compressibility of

fluids. In the first part of Chapter 9, we will present the efforts that have been

made to resolve the compressibility of fluids. We will also briefly discuss the

possible future studies on non-equilibrium physics.

1.8 Contents of this dissertation

Chapter 2 provides the details of optical trapping and a balanced beam

detection system. Chapter 3 introduces the theory of Brownian motion in

incompressible Newtonian fluids. Chapter 4 provides the details of the exper-

iments testing the Maxwell-Boltzmann distribution and the energy equiparti-

tion theorem. Chapter 5 gives the theory for Brownian motion of a microsphere

near a flat infinite wall with a no-slip boundary condition. Chapter 6 provides

the details of the experiments studying Brownian motion with boundary ef-

fects. Chapter 7 studies the viscoelastic properties of complex fluids using an

immersed Brownian particle as a probe. Chapter 8 studies the slippage effects

on Brownian motion. Chapter 9 presents the efforts to resolve the compress-

ibility of a fluids using a pulsed laser and discusses non-equilibrium physics

using a “pump-probe” scheme.
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Chapter 2

Optical trapping and balanced beam detection

In this chapter, we will discuss the two main techniques used in our

experiments: optical trapping and a balanced detection system. Trapping

of particles (atoms, molecules, ions, nano-particles, micro-particles, biological

cells and so on) is a powerful tool and has revolutionized many fields of science.

In our experiments, particles are confined in a certain detection region by an

optical trap created by tightly focused laser beams. The trapping beam also

can serve as a detection beam used in a balanced beam detection system. In

a balanced beam detection system, the detection beam is typically split into

two roughly equal halves. A high gain balanced detector is typically used to

amplify the power difference in the two branches, which is often directly related

to essential physical quantities of the experiments. Thus, the common-mode

noise in the laser beam can be substantially cancelled out. In our case, the

power difference in the two branches has a linear dependence on the position

of the trapped particles. Our balanced beam detection system provides us

unprecedented bandwidth and precision in measuring Brownian motion at a

tabletop scale.
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2.1 Optical trapping

Optical trapping relies on momentum exchange between particles and

photons. Photons, the particle aspect of the wave-particle duality of elec-

tromagnetic radiation, have momentum p = h/λ. The momentum of a single

photon is very tiny. A 1064 nm photon has a momentum of 6.2×10−28 kg·m/s.

The concept of radiation pressure was proposed by Johannes Kepler back in

1619 to explain the observation that a tail of a comet always points away from

the Sun. The radiation pressure of light was first deduced theoretically by J.

C. Maxwell in 1873 based on his electromagnetic theory [35] and measured

experimentally by P. N. Lebedev [36], and E. F. Nichols and G. F. Hull in

1901 [37].

The invention of lasers made it possible to make use of the momentum

of photons effectively, even a single photon provides a tiny momentum. 1 W

of 1064 nm light, containing about 5× 1018 photons per second, exerts about

7 nN on a totally reflecting mirror with perpendicular incidence. In contrast

to classical light sources, a laser beam can be tightly focused onto a small

particle with a diameter on the order of 1 µm. The radiation force on a 1 µm

diameter silica sphere exerted by a 1 W focused laser beam can be 104 times

greater than the gravitational force (3× 10−13 N). Therefore, the optical trap

can have huge effects on the motion of the particle. In fact, the gravitation

force often can be neglected in most optical-tweezer experiments.

Shortly after the first laser was invented, Arthur Ashkin working in Bell

labs, demonstrated that one could use focused laser beams to accelerate and
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trap micrometer-sized transparent particles [38]. Ashkin and his coworkers also

have shown that oil droplets and glass microspheres can be optically levitated

in air [39] and vacuum [40]. In 1986, Ashkin along with Steven Chu, who

won the 1997 Nobel Prize in Physics for using radiation pressure to cool and

trap neutral atoms, observed stable trapping of dielectric particles with the

gradient force of a strongly focused laser beam [41]. By then, a powerful

tool was completely developed (mainly by Ashkin) to trap and manipulate

microscopic particles using a tightly focused beam of light, now known as

an optical tweezer. This technique soon became a standard tool in many

fields [42–44].

The radiation pressure had a huge impact in atomic, molecular and

optical physics as well, and led to the realization of Bose-Einstein condensation

[45], degenerate Fermi gas [46], atomic clocks [47] and so on. Started in the

1970s, after the first observation of radiation pressure on microscopic particles,

laser radiation pressure was soon used to manipulate a variety of atoms [48–51].

In 1986, cold sodium atoms (∼ 1 mK) were optically trapped for the first

time [52]. After that, neutral atoms were commonly trapped by a tightly

focused laser beam, now known as an optical dipole trap. The basic forces of

radiation pressure on atoms are conceptually similar to those on microscopic

particles [53].

The radiation pressure exerted by a laser on a particle can be split into

two components: the gradient force and the scattering force. The gradient

force is a conservative force, which provides the trapping mechanism, whereas
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the scattering force is a nonconservative force, which tends to push the particle

out of the trap. The total force on the particle is ~F (~r) = ~Fscat(~r) + ~Fgrad(~r).

The scattering force typically only exists in the axial direction of the laser beam

and causes in a shift of the minimum of the trapping potential in the laser

propagation direction, whereas the gradient force acts in all three dimensions.

Thus, there is always a restoring force in the radial direction by a focused beam.

In order to form a potential minimum in 3D, the total force on the particle

in the axial direction Fz = F scat
z + F grad

z must change sign. Equivalently, the

minimum force in the axial direction Fmin
z = min (Fz(~r)) must be negative if

we denote the magnitude of the scattering force as positive.

In summary, there are two requirements to stably trap particles. One

is the formation of a trap, which requires Fmin
z to be negative. Second is that

the trap depth has to be deep enough to withstand thermal fluctuations. The

trap depth typically needs to be 10 times greater than the averaged kinetic

energy of the particle. This is due to the fact that the kinetic energy of a

particle follows the Maxwell-Boltzmann distribution at thermal equilibrium.

The particle has a significant probability for its instantaneous kinetic energy

to be much higher than its average kinetic energy.

Depending on the ratio between the particle size and trapping laser

beam wavelength, the interaction between a microscopic particle and a laser

beam is commonly divided into three regimes: Ray optics regime [54](D �

λ0, where D is the diameter of the particle and λ0 is the wavelength of the

laser in vacuum), Lorentz-Mie regime [55](D ∼ λ0) and Rayleigh regime [56]
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(D � λ0). In this section, we will first explain the principle of optical trapping

in the ray optics regime. This will be followed by theoretical calculations of

the optical forces on a particle with the Rayleigh approximation and with the

generalized Lorentz-Mie theory.

2.1.1 Ray optics approximation

When the size of a particle is much larger than the wavelength of the

trapping laser (usually D > 10λ0), the optical forces on the particle can be

calculated with the ray optics approximation [54].

In the ray optics regime (also called geometrical optics regime), diffrac-

tive effects typically can be neglected and the total light beam can be de-

composed into individual rays, each with appropriate intensity, direction, and

state of polarization, which propagate in straight lines in media of uniform re-

fractive index. Each ray has the characteristics of a plane wave; thus, Fresnel

formulas can be used to solve for light propagation. Each ray, reflected, re-

fracted or absorbed by an object, transfers its momentum to the object, which

is a microsphere in our case. The photons that are reflected and absorbed

(absorption can be neglected in our experiments) by a microsphere exert the

scattering force on the microsphere. The photons refracted by the microsphere

exert the gradient force on the microsphere. The force from a laser beam can

be calculated by splitting the beam as a collection of rays and summing the

force from each one. The average force on the sphere is F = (Pnf/c) sin θ,

where P is the power of the ray, nf is the index of refraction of the medium,
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c is the speed of light in vacuum, and θ is the angle of deflection.

It is probably the most intuitive to explain optical trapping principles

in this regime. Let’s neglect the scattering force and just focus on the gradient

force for a moment. A qualitative view of optical trapping of microspheres

in the ray optics regime is shown in Fig. 2.1 [41, 54], illustrating that a dis-

placement of the sphere in any direction from the focus of the laser results in

a restoring force. If we neglect surface reflection from the microsphere, then

the microsphere will be trapped at the focus of the laser beam as shown in

Fig. 2.1(B). If the microsphere moves to the left of the focus (Fig. 2.1(A)),

it will deflect the laser beam to the left and thus increase the momentum of

photons to the left. The counter force from the deflected photons will push the

(A) (B) (C)

Figure 2.1: Qualitative view of optical trapping of a dielectric sphere. (A)
displays the force on the particle when the particle is displaced laterally from
the focus; (B) shows that there is no net force on the particle when the particle
is trapped at the focus; and (C) displays the force on the particle when the
particle is positioned above the focus. The scattering force is neglected here.
(Figure courtesy of Dr. Tongcang Li.)
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microsphere to the right, i.e. back to the focus of the laser beam. If the micro-

sphere moves along the propagation direction of the laser beam (Fig. 2.1(C)),

it will focus the laser more strongly and thus increase the momentum of pho-

tons along the propagation direction. The counter force from the deflected

photons will push the microsphere back to the focus of the laser beam. The

same thing will happen if the microsphere moves away from the focus in other

directions. Thus a focused laser beam forms a stable optical trap in 3D.

In reality, one has to consider the scattering force. In order to form a

trap in 3D, the gradient force has to be larger than the scattering force in the

axial direction. The photons reflected back by the surface of a microsphere

will push the microsphere forward. It has been reported that particles with

a larger index mismatch are more difficult to trap [57]. In water (n = 1.33),

it is more difficult to trap barium titanate microspheres (BaTiO3, n = 2.1,

corresponding to a refractive index mismatch m = np/nf = 1.58) than sili-

ca microspheres (n = 1.46, corresponding to m = 1.1). A dual-beam trap,

with two counter-propagating laser beams cancelling the scattering force and

doubling the gradient force, is necessary to trap BaTiO3 microspheres in both

water and acetone (n = 1.35), as demonstrated in Chapter 4.

The strength of both the gradient force and the scattering force linearly

depends on the laser power, so increasing the trapping beam power will not

make the Fz change sign. However, trap depth can be increased by increasing

the trapping power provided a trap is formed. For fixed laser power, the

gradient force in the axial direction |F grad
z | increases with increasing numerical
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aperture (NA ≡ nf sin θ, where θ is the 1/e2 half-angle of convergence of the

trapping beam), while both the gradient force in the radial direction |F grad
r |

and the scattering force |F scat
z | are maximized when NA → 0, assuming that

all the light is incident on the particle. Therefore, the laser beam should be

tightly focused by a high NA objective lens to increase the gradient force and

decrease the scattering force in the axial direction.

2.1.2 Rayleigh approximation

If the size of a microscopic particle is much smaller than the wave-

length of the trapping laser beam (usually D < λ0/10), the electric filed of

the laser beam is uniform over the entire particle. Therefore, the particle can

be approximated as a point dipole (a Rayleigh scatterer). In this regime, the

optical force on the particle can be calculated analytically with the Rayleigh

scattering theory [41,56].

As the electric field oscillates in time, it induces a dipole moment, whose

oscillations follow that of the electric field. The oscillating dipole radiates a

secondary, or scattered field, in all directions. The momentum flux of the

resulting field is nonzero; some of it is transferred to the dipole in the form

of the scattering force. The second component of radiation pressure is due to

the Lorenz force exerted by the optical field on the induced dipole, which is

proportional to the gradient of the laser field.

In the Rayleigh approximation, for a sphere (a nanosphere for example)

with radius a in a fluid with refractive index nf , the dipole moment ~P induced
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by an electric field ~E is given by [56].

~P (~r, t) = 4πn2
fε0a

3m
2 − 1

m2 + 2
~E (2.1)

where ε0 is the vacuum permittivity.

The scattering force of the laser on a sphere in a fluid with the Rayleigh

approximation is [56]:

~Fscat(~r) = ẑ(
nf
c

)CscatI(~r) = ẑ
128π5a6

3cλ4
0

(
m2 − 1

m2 + 2

)2

n5
f I(~r), (2.2)

where c is the speed of light in vacuum, Cscat is the scattering cross section and

m = np/nf , where np is the refractive index of the microsphere. Because of the

larger relative refractive index m, the scattering force on a BaTiO3 nanosphere

in water is about 5.2 times greater than the scattering force on the same size

silica nanosphere in water with the same laser intensity.

The gradient force on a sphere in the Rayleigh regime is [56]:

~Fgrad(~r) = [~P (~r, t) · 5] ~E(~r, t) =
2πnfa

3

c

(
m2 − 1

m2 + 2

)
5 I(~r), (2.3)

The gradient force forms a trapping potential:

V (~r) = −2πnfa
3

c

(
m2 − 1

m2 + 2

)
I(~r). (2.4)

which is proportional to laser intensity.

Because the scattering force is proportional to a6 while the gradient

force is proportional to a3, the scattering force decreases much faster than

the gradient force with decreasing size of the nanosphere. Thus it is easier
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to achieve a negative Fmin
z (forming a trap) for small particles than large

particles. However, the depth of the trap decreases as the size of the particle

decreases, whereas the average thermal energy is independent on particle size

due to the energy equipartition theorem. Therefore, if the particle is too small,

the trap lifetime will be very short, despite of the fact that the trap indeed is

formed. As discussed above, in order to trap a nanosphere stably, as a rule

of thumb, the trap depth should be at least 10 times larger than the average

kinetic energy of the particle.

In many experiments, the laser beam is a linearly polarized Gaussian

beam (TEM00) with beam waist radius ω0 at the focus. The intensity distri-

bution of a Gaussian beam is

I(x, y, z) =
2P

πω2(z)
e−2(x2+y2)/ω2(z), (2.5)

where ω(z) = ω0

[
1 +

(
λf z

πω2
0

)2
]1/2

, λf = λ0/nf is the wavelength of the laser

in the fluid and P is the power of the laser beam.

To estimate the trap depth and stiffness, we neglect the scattering force

here. By combining Eq. (2.4) and Eq. (2.5), the trapping potential formed by

a Gaussian beam can be obtained as

V (~r) = −2πnfa
3

c

(
m2 − 1

m2 + 2

)
2P

πω2(z)
e−2(x2+y2)/ω2(z). (2.6)

The trap depth is given by

V0 = −2πnfa
3

c

(
m2 − 1

m2 + 2

)
I(0). (2.7)
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where I(0) = 2P/πw2
0 is the peak laser intensity. For displacements much

smaller than w0, to first order, the potential is harmonic. The transverse trap

stiffness is

Kr =
16nfa

3

cπw4
0

(
m2 − 1

m2 + 2

)
P. (2.8)

And the axial trap stiffness is

Kz =
8a3nfλ

2
f

cπ2w6
0

(
m2 − 1

m2 + 2

)
P. (2.9)

The ratio between the radial trap stiffness and the axial trap stiffness is

Kr

Kz

=
2πn2

fw
2
0

λ2
0

, (2.10)

which is about 10 with our experimental conditions.

The strength of the gradient force can be increased relatively to the

scattering force by decreasing the waist of the focus, w0, which requires a larger

NA. For a 50 nm silica sphere in water trapped by a 1 W 1064 nm laser beam

with a beam waist of 1 µm, the trap depth is 1.4× 10−19 J, corresponding to

22 times larger than the average kinetic energy (3
2
kBT ) at room temperature.

Therefore, the trap should be stable in this case. The trap stiffnesses are

180 nN/m and 18 nN/m in the radial and axial directions respectively. The

scattering force will slightly shift the trap center, resulting in a shallower and

less stiff trap.

2.1.3 Generalized Lorentz-Mie theory

In most optical-tweezer experiments, the sizes of the dielectric particles

of interest are comparable with the wavelength of the trapping laser (D ∼ λ0).
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For instance, in our experiments, the trapping laser beam wavelength is 1064

nm, and the diameters of the microspheres we used typically are between 3

µm and 6 µm.

In this case, neither ray optics nor the Rayleigh approximation is appro-

priate. Instead, the electromagnetic theory of light has to be used. For optical

trapping of homogeneous and isotropic microspheres, one can use the gener-

alized Lorenz-Mie theory. The mathematical calculation of the generalized

Lorenz-Mie theory is quite complex. Here we will only use the computation-

al toolbox developed by T. A. Nieminen et al. [55] to obtain some numerical

results of the optical forces on a microsphere. This computational tool uses

spherical partial wave expansion to characterize scattering fields.

Figure 2.2: Optical forces exerted by a 400 mW, 1064 nm laser beam on a
3 µm diameter silica microsphere in water with different NAs. (A) In the
axial direction, trapping strongly depends on NA. (B) In the radial direction,
trapping weakly depends on NA.
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The calculated total optical forces on a 3 µm diameter silica micro-

sphere in water both in the axial and radial directions exerted by a 1064 nm,

400 mW laser beam focused by objective lenses with three different NAs (NA

= 0.8, 1.0, 1.2) are shown in Fig. 2.2. A trap is formed for all three NAs,

since the total forces change sign in both the axial and radial directions. The

optical forces along the radial direction are similar for all three NA as shown

in Fig. 2.2(B). On the other hand, the optical forces along the axial direction

depend on the NA, as shown in Fig. 2.2(A). This is because the scattering

force is only along the axial direction. The scattering force shifts the trapping

center position in the laser beam propagation direction. It is worth noting

that the trap depth and stiffness increase with increasing NA.

Fig. 2.3 shows the calculated total optical forces on silica microspheres

Figure 2.3: Optical forces exerted by a 400 mW, 1064 nm laser beam silica
microspheres with different sizes in water with NA = 1.0. (A) In the axial
direction. (B) In the radial direction.
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with three different sizes in water both in the axial and radial directions exerted

by a 400 mW, 1064 nm laser beam focused by an objective lens with NA = 1.0.

The optical forces in the axial and radial directions have a similar dependence

on the size of microspheres. These calculations show that the larger size of

microsphere, the deeper the trap. However, it is worth noting that this is not

always true, as shown in Fig. 2.4. It is interesting that the trap stiffness does

not have a monotonic dependence on the size of microspheres.

The minimum axial forces Fmin
z on a silica microsphere in water as a

function of the size of the microsphere are shown in Fig. 2.4. Fmin
z oscillates as

the diameter of the microsphere changes. This is because of the interference

Figure 2.4: The minimum axial forces Fmin
z on silica microspheres of different

sizes in water exerted by a 400 mW, 1064 nm laser beam focused with different
NAs (NA = 0.4, 0.5, 1.0).
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between the scattered light and unscattered light. The oscillation period is

about half the wavelength of the laser inside of the microsphere, which is

λ0/(2np) = 364 nm [58]. As discussed before, a trap can only be formed if

Fmin
z is negative. With NA = 1.0, microspheres with diameters up to at least

8 µm can be trapped because Fmin
z is negative. However, with smaller NAs

(NA = 0.4, 0.5), the trap can only be formed with certain size microspheres.

This feature may be used as a selection process to sort microspheres.

2.1.4 Predictions of trapping with experimental conditions

In this section, we will give our predictions of optical trapping with the

experimental conditions discussed in Chapter 4 and 6. We study three systems:

a silica glass microsphere in water, a silica glass microsphere in acetone and a

BaTiO3 microsphere in acetone. The trapping laser beam has a wavelength of

1064 nm and a power of 400 mW focused by an objective with NA = 1.0.

Fig. 2.5 shows the calculated total optical forces on a 3 µm silica mi-

crosphere in water both in the axial and radial directions. The trap stiffnesses

are predicted to be 42 µN/m and 150 µN/m in the axial and radial direc-

tions respectively, which are very good predictions as discussed in Chapter

4. In thermal equilibrium, the root mean square of the displacement of the

particle can be obtained through xrms =
√
kBT/K. With this, the average

displacements of the silica microsphere are predicted to be about 5 nm and

10 nm in the radial and axial directions respectively. The trap depth can be

estimated to be a factor of 105 greater than the particle’s averaged kinetic
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Figure 2.5: Optical forces exerted by a 400 mW, 1064 nm laser beam on a 3
µm diameter silica microsphere (n = 1.46) in water (n = 1.33) with NA = 1.0.
(A) In the axial direction with a predicted trap stiffness of 42 µN/m. (B) In
the radial direction with a predicted trap stiffness of 150 µN/m.

energy, indicating an ultra-stable trap. The trap can be approximated as a

harmonic trap up to 500 nm away from the trap center, which is much larger

than the root mean square of the displacement of the particle. Therefore, the

trapping force on the particle can be approximated as a harmonic force in

typical optical-tweezer experiments.

Fig. 2.6 shows the calculated total optical forces on a 3 µm silica mi-

crosphere in acetone (n = 1.35) both in the axial and radial directions. This

optical trap is similar to the one shown in Fig. 2.5. The smaller relative refrac-

tive index of a silica microsphere in acetone (m = 1.08), as compared to that of

a silica microsphere in water (m = 1.10), results in slightly less trap stiffness,

32 µN/m and 120 µN/m in the axial and radial directions respectively. It is
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Figure 2.6: Optical forces exerted by a 400 mW, 1064 nm laser beam on a 3
µm diameter silica microsphere (n = 1.46) in acetone (n = 1.35) with NA =
1.0. (A) In the axial direction with a predicted trap stiffness of 32 µN/m. (B)
In the radial direction with a predicted trap stiffness of 120 µN/m.

worth noting that the experimental trapping strength discussed in Chapter 4

is weaker than the predictions here. This is because that the focusing lens

used in the experiments is a water immersion objective, resulting in a larger

aberration in acetone as compared to that in water.

The calculated total optical forces on a 3 µm BaTiO3 microsphere in

acetone both in the axial and radial directions are shown in Fig. 2.7. The laser

does provide strong confinement in the radial direction. However, the much

larger relative refractive index between a BaTiO3 microsphere and acetone

(m = 1.58), as compared to that between a silica microsphere and water (m

= 1.10), results in an overwhelming scattering force. As a result, the Fmin
z

is positive, indicating that no trap is formed. Therefore, one has to use two

counter-propagating laser beams to cancel the scattering forces while doubling
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Figure 2.7: Optical forces exerted by a 400 mW 1064 nm laser beam on a 3
µm diameter BaTiO3 microsphere (n = 2.1) in acetone (n = 1.35) with NA =
1.0. (A) In the axial direction (B) In the radial direction with a predicted trap
stiffness of 500 µN/m. Obviously, particles can not be trapped in 3D since
there is no potential minimum in the axial direction.

the gradient force. This prediction is confirmed by the experiments discussed

in Chapter 4.

2.2 Balanced beam detection system

A position sensitive detection system is needed to measure Brownian

motion of particles. As discussed in Chapter 1, the temporal resolution re-

quired is determined by the particle momentum relaxation time τp, which is

about 1 µs for a 3 µm diameter silica microsphere in water. The spatial resolu-

tion is determined by the displacement of the particle during time τp, which is

sub-nanometer. In this section, we will briefly discuss and compare the main

techniques developed for studying Brownian motion.
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Video microscopy probably is the most common and intuitive technique

to observe particles’ motion. In video microscopy, successive images of one or

more particles are taken using cameras, and centroid fitting algorithms are

applied to track the particle’s position with nanometer resolution, which is

much higher than the resolution of the optical microscope itself [59]. The

bandwidth of video microscopy detection is limited by the frame rate of the

camera, which is typically between 10 Hz and 100 kHz.

Dynamic light-scattering (DLS) and diffusing wave spectroscopy (D-

WS) are typical for measurements of an ensemble of free Brownian particles.

Particles’ motion is encoded in multiply scattered light, which can be resolved

by intensity autocorrelation interferometry. These two techniques can have a

temporal resolution on the order of nanoseconds and a spatial resolution of

sub-nanometers [60–62]. However, one can only get ensemble averaged results

using these techniques; thus, they can not be used to measure the instanta-

neous velocity of a single Brownian particle.

Total internal reflection microscopy is another optical technique can be

used to study Brownian motion. An evanescent wave is generated by a total

internal reflection in a plate. A Brownian particle, located near the plate, scat-

ters the evanescent wave differently with different distances to the plate. By

measuring the light scattered by the particle, the separation between particle

and plate can be determined. Often, the plate is fixed, thus the position of the

particle in the perpendicular direction can be measured. The technique relies

on the rapid exponential-decay evanescent wave, and achieves ∼ 1 nm spatial
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resolution and up to ∼ 1 µs temporal resolution [63]. In addition, this tech-

nique is only sensitive to particle’s motion in the perpendicular direction to

the plate since the evanescent wave is roughly homogeneous in the transverse

direction.

Since 1990s, balanced beam detection, often also called back-focal-plane

interferometry, became the standard tool to measure positions of microscopic

particles [15, 64–68]. Typically, in this detection system, a dielectric particle

(often a sphere) is trapped by a focused laser beam, and scatters some of

the incident photons in a direction which depends on the particle’s position.

Changes in the particles’ position are encoded in the spatial distribution of

the scattered beam. The scattered and unscattered light forms the detection

beam, which is split into two roughly equal halves. The difference between

these two halves is directly related to the position of the particle. This small

difference in the two halves can be amplified with a high gain, resulting in a

high resolution in the position measurement of the particle. In addition, the

common-mode noise, such as laser intensity noise, is substantially suppressed

because it contributes equally to both halves.

The conventional way to split the detection beam and amplify the d-

ifference between halves is using a quadrant detector. We will discuss the

limitations in this approach and present an improved version of the balanced

beam detection system.
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2.2.1 Balanced beam detection with quadrant detectors

As shown in Fig. 2.8, a microsphere is trapped by a focused laser beam.

We refer the laser beam after the particle as the detection beam, which is re-

collimated by a second lens. The movement of the particle results in changes

in the scattering light, which is measured by a quadrant detector. A quad-

rant detector has four identical separated photodiodes (a, b, c, d as shown in

Fig. 2.8), with approximately 100 µm gaps (dead zones) between them. The

balanced beam detection requires that the detection beam to be incident in

the center of the quadrant detector, shining the four photodiodes about equal-

ly. Thus, the four photodiodes generate nearly the same photocurrents that

can be amplified with similar gains. Changes in the scattering light, thus the

displacement of the particle, can be measured by linear combinations of the

four photodiodes’ outputs. The horizontal displacement of the particle can be

obtained from the difference between the left and right sides of the quadrant

detector, Va + Vc − Vb − Vd; whereas, the vertical displacement of the particle

is proportional to difference between the up and down sides of the quadrant

detector, Va + Vb − Vc − Vd.

Figure 2.8: Illustration of a balanced detection system with a quadrant detec-
tor. A microsphere is trapped by a focused laser beam, which is re-collimated
by a second lens and incident on a quadrant detector.
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Despite of the fact that the balanced beam detection system with quad-

rant detectors had great success in many experiments [14, 15, 64–73], it has

several limitations. First of all, the bandwidth of quadrant detector is limited

to ∼10 kHz to 1 MHz by the large capacitance of the photodiodes. This can

be solved by reducing the area of the photodiode. For instance, a quadrant

detector (Hamamastu, G6849-01) has a bandwidth of 120 MHz. However, an

transimpedance amplifier operating at such high frequencies with a reasonable

gain has never been achieved [74]. Second, crosstalk between 4 quadrants dom-

inates the signals at high frequencies. This is unavoidable since the detector

needs to be closely-packed to spatially split the light beam into four parts for

differential detection.

2.2.2 Balanced beam detection: an improved version

The key problem of a quadrant detector in this system is that it does

both jobs: balancing the detection beam and amplifying the photocurrent and

these two can not compromise with each other well. An improved version of

balanced detection system was developed [75], separating the spatial splitting

and detection of the light. In this new system, the detection beam is split

into halves by a fiber-optic bundle, and focused by two lens onto two photo-

diodes of a balanced detector (Thorlabs, PDB120C). The photodiodes in the

balanced photodetector can be physically separated, and have much small-

er area than those used in a quadrant detector because the split beams can

be focused without having to maintain the beam profile. Therefore, unlike
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quadrant detectors, crosstalk between two photodiodes is negligible and the

capacitance of the photodiodes can be reduced down to ∼ 10 pF. Furthermore,

the photocurrent from each diode is amplified individually before subtraction

in a typical quadrant detector. While, in a balanced detector, it is possible

to wire the photodiodes in a “push-pull” configuration and only the difference

in photocurrent is amplified. This allows much higher gain, higher bandwidth

and lower noise.

A simpler and better way of splitting the detection beam is illustrated

in Fig. 2.9. The spatial splitting of the detection beam is performed using a

mirror with a sharp edge, which was not commercially available at the time

when the work [75] was done. Half of the beam is reflected by the mirror while

the other half is not. Each half is then focused onto one of the two inputs of a

fast balanced detector. A low noise and high gain transimpedance amplifier is

used to convert the difference in the photocurrents of the two photodiodes to a

voltage signal. When the microsphere is displaced from the center of the trap,

Figure 2.9: Illustration of the balanced detection system. The trapping beam is
re-collimated by a second objective and split into two roughly equal halves by a
cut mirror. Then, the two branches are focused onto two identical photodiodes
by two lenses.
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the beam is deflected, changing the power ratio of the two split beams. For

small displacements, the detector output linearly depends on the displacement

of the microsphere.

The output voltage signal V of the balanced detector is proportional

to the displacement ∆ of the microsphere. The relationship can be written as:

V = ΓPχZ∆, (2.11)

where P is the detection beam power, Z is the detector transimpedance gain of

the detector (volts/amp), χ is the responsivity of the photodiode (amps/Watt),

and Γ is the optical gain of a particular system, which has a dimension of

inverse length and has been discussed in the ray optics regime [76]. Based

on this, the position sensitivity can be improved by increasing the optical

gain, detection power, photodoides’ responsivity, and transimpedance gain. It

is worth noting that the detector bandwidth is inversely proportional to the

transimpedance gain; thus, they should compromise with each other [77].

This method has been extended to 3D to cool microspheres to mK

in vacuum [78]. When studying Brownian motion in fluids, one-dimensional

detection is sufficient because the equation of motion has no coupling terms

and can be separated into three independent equations of motion, one for each

Cartesian coordinate.

Noise in the Brownian motion measurements includes classical noise

(mechanical vibration of the trapping and detection optics, laser intensity

noise, laser pointing noise, electronic noise from the balanced photodetector
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and acquisition card circuits) and quantum fluctuation noise (shot noise of the

laser beam). Our experiments, discussed in detail in Chapter 4 and 6, are

limited by classical noise at low frequencies and quantum shot noise at high

frequencies.

One of the beauties of balanced beam detection is that the laser in-

tensity noise, which is the major classical noise source in many experiments,

is substantially cancelled out because it affects both balanced halves equally.

Laser pointing noise can be significantly reduced by fiber coupling the laser

into a single mode fiber. Noise caused by vibration of the optics can be min-

imized by mounting all the optics on a gas-bearing optical table. The laser

pointing noise and noise caused by mechanical vibration can cause imbalance

in two original balanced halves, which increases the leakage of laser intensity

noise. Therefore, it is critical to align the cut mirror. Electronic noise can

be reduced with our state-of-art detector design, which will be discussed in

Chapter 4.

The fundamental limitation in our experiments is shot noise, the quan-

tum fluctuations in the photon number arrives at the balanced detector. Pho-

ton number in a laser beam arrives the detector in a certain time interval obeys

the Poisson statistics,

p(n) =
µ−ne−µ

n!
(2.12)

with a expected value of µ and a standard deviation of
√
µ. A 1064 nm laser

beam with a power of 100 mW provides 5×1017 photons per second on average.

Poisson statistics says we only know the photon flux per second within 7×108.
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Another great feature of balanced beam detection is that it is immune to phase

fluctuation, which is about 1.3× 10−9 radian in this example.

The absolute photon shot noise scales with
√
P , but the signal scales

linearly with P , thus the noise floor in the position signal decreases as 1/
√
P .

Therefore, the signal-to-noise ratio can be improved by increasing the detection

beam power. The maximum power can be limited by technical constraints of

generating and detecting a high power laser beam, and by absorption and

heating of the trapped particle or fluid.

38



Chapter 3

Theory for Brownian motion of a free sphere

in a Newtonian fluid

The perpetual stochastic Brownian motion of particles in fluids is a

result of fluctuations in the collisions with their surrounding fluid molecules.

The fluid is often treated as a hydrodynamic continuum because the size of

the particles of interest is much larger than that of the fluid molecules and the

number of collisions averaged is huge during the time of interest.

The equation of motion for a particle exhibiting Brownian motion in a

fluid can be described by the Langevin equation

mẍ = Ffr + Fth + Fext (3.1)

where Fext is any possible external force, which often refers to a harmonic opti-

cal trapping force Fext = −Kx. The gravitational force is often not considered

in typical experiments. This is because the effect of the gravitational force is

compromised by the optical trapping force, only resulting in a slight shift of

the center of the trap. Ffr is the friction force, which is a function of the

particle’s velocity ẋ. Whereas, the randomly fluctuating thermal forces Fth is

assumed to be independent of velocity and varies extremely rapidly compared

to the variations of velocity [74,79]. The sum of Ffr and Fth is the total force
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acting on the particle exerted by the fluid. Ffr and Fth are related through

the fluctuation-dissipation theorem [10,80] as

SF (ω) = 4kBT<[γ(ω)] (3.2)

where < means the real part, SF (ω) is the one-sided thermal force power

spectral density and γ(ω) is the drag coefficient in frequency domain, which

is related to the friction force as Ffr(ω) = −γ(ω)v(ω). The motion of the

particle can be predicted by solving the Langevin equation [13,14,26,81–85].

A more general and systematic approach to study Brownian motion

is to utilize the Kubo-Green formula from the classical linear response theo-

ry [10, 80, 86–89], combined with the Wiener-Khinchin theorem [80]. In this

chapter, we will give the frame work in terms of how to relate Brownian mo-

tion of a particle to its admittance, a generalized susceptibility. We will give

a procedure of obtaining the position power spectral density (PPSD), velocity

power spectral density (VPSD), mean square displacement (MSD), velocity

autocorrelation function (VACF) and thermal force power spectral density (F-

PSD) from the admittance. With this, the task turns to find the admittance

for a specific system, which can be obtained based on the Langevin model.

This approach will be used in this entire dissertation.

After establishing this general procedure, we will give the admittances

in different systems: a free microsphere in a dilute fluid (air), a free microsphere

in a dense liquid (water), an optically trapped microsphere in a dilute fluid and

an optically trapped microsphere in a dense liquid, as well as the predictions
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of Brownian motion in each system. In the end of this chapter, we will discuss

the implications of the position and velocity measurements.

3.1 Linear response theory: Kubo-Green formula

Linear response theory describes how a system reacts to small magni-

tude external influences, which can be electromagnetic fields, forces, or tem-

perature gradients and so on. Because of the small magnitude of the applied

external influences, the response has a linear dependence on the external influ-

ences. For example, the response of a Newtonian fluid1 to a small-magnitude

external shear stress is to move with a shear rate of ε̇ = σ/η, whose magnitude

is determined by the viscosity η. This response does not depend on when the

shear stress is applied, thus it is time-invariant.

Behaviors of linear time-invariant (LTI) systems can be described by

linear response theory. What is a LTI system? For simplicity, we assume a

LTI system only has one input x(t) and one output y(t), as shown in Fig. 3.1.

If y1(t) and y2(t) are the two output signals corresponding to the two input

signals x1(t) and x2(t) respectively, linearity of the system implies that the

output of the system to input signal α1x1(t) + α2x2(t) is α1y1(t) + α2y2(t),

where α1 and α2 are constants. Time-invariance requires that for any τ , y(t+τ)

should be the output with input signal x(t + τ) if y(t) is the output to the

input x(t), meaning the output of the system does not change with the same

1Newtonian fluids are characterized by a single coefficient of viscosity, which depends on
temperature but not on strain rate, as discussed in detail in Chapter 7.
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Figure 3.1: The response function of a linear time invariant system. (A) in
time domain, (B) in frequency domain.

input applied at a different time.

The output of a LTI system can be obtained by the convolution of the

input signal and its impulse response.

y(t) =

∫ ∞
−∞

x(τ)R(t− τ)dτ. (3.3)

where R(t) is the impulse response function of the system, which is the output

of the system to a delta function impulse input. Because of the convolution

theorem2, the output in the frequency domain can be written as

ỹ(ω) = T (ω)x̃(ω). (3.4)

where x̃(ω) and ỹ(ω) are the Fourier transforms of the input and output sig-

nals respectively, and T (ω) is frequency response function, which is the Fourier

transform of the impulse response R(t). This frequency response function has

many alternative names, such as susceptibility, admittance, mobility, transfer

function and impedance, because of its many applications in physics, engineer-

ing and information theory.

2The Fourier transform of a convolution in the time domain equals the product of the
Fourier transforms of each function in the frequency domain.

42



In this dissertation, we consider a micrometer-sized spherical particle in

a liquid exhibiting Brownian motion at room temperature. We focus on the ve-

locity response v(t) of a Brownian particle to a small magnitude external force

E(t) exerted on the particle. Because the velocity of the microspheres is only

on the order of 100 µm/s, the Reynolds number Re = 10−4 ∼ 10−3. Thus, we

can describe the fluid motion by the linearized time-dependent Navier-Stokes

equation and the motion of the particle by the Langevin equation, which is a

stochastic linear differential equation. Therefore, this system is linear. In ad-

dition, the response of the particle to the external force is independent of when

the force is applied. Therefore, a particle undergoing Brownian motion is a

linear time-invariant system. The corresponding frequency response function,

exclusively called admittance in this dissertation, is defined as

Y(ω) =
ṽ(ω)

F̃(ω)
(3.5)

where ṽ(ω) and F̃(ω) are the Fourier transforms of the velocity of the particle

and the applied force in frequency respectively.

The Kubo-Green formula [10, 80, 86–89], sometimes is also called the

first fluctuation-dissipation theorem, connects the dynamic admittance to the

Fourier-Laplace transform of the velocity autocorrelation function by

Y(ω) =
1

kBT

∫ ∞
0

eiωtCv(t)dt, (3.6)

where Cv(t) = 〈v(t0)v(t0 + t)〉 is the velocity autocorrelation function. As an

example, the derivation of this relation for a Brownian particle described by
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the Einstein-Ornstein-Uhlenbeck model [13, 81] is given in Appendix 1. Since

the velocity autocorrelation function Cv(t) is a real function, the admittance

has a property,

Y(−ω) = Y∗(ω) (3.7)

for all real ω, where Y∗(ω) is the complex conjugate of Y(ω).

3.2 The Wiener-Khinchin theorem

The Wiener-Khinchin theorem [80] states that the power spectrum

Sε(ω) of a stationary random process ε(t) and its autocorrelation function

are Fourier transform pairs3,

Sε(ω) =

∫ ∞
−∞

eiωt〈ε(0)ε(t)〉dt, (3.8)

Here, we replace the arbitrary physical variable ε with the velocity of

the particle,

Sv(ω) =

∫ ∞
−∞

eiωt〈v(0)v(t)〉dt, (3.9)

We can get the velocity power spectral density Sv(ω) from the admittance

Y(ω) using Eq. (3.6) and Eq. (3.9).

Sv(ω) = 2kBT<[Y(ω)] (3.10)

where <[Y(ω)] means the real part of the admittance. This can be obtained

simply by summing Eq. (3.6) and its complex conjugate and use the fact that

3The convention of the Fourier transform used in this dissertation is non-unitary, angular
frequency.
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the velocity autocorrelation function is even. The position power spectral

density can be obtained from the velocity power spectral density

Sx(ω) =
Sv(ω)

ω2
=

2kBT<[Y(ω)]

ω2
(3.11)

Through the Wiener-Khinchin theorem, the velocity autocorrelation

function Cv(t) and position autocorrelation function Cx(t) = 〈x(t0)x(t0 + t)〉

can be obtained from their corresponding power spectra.

Cv(t) =

∫ ∞
−∞

e−iωtSv(ω)dω = 2kBT

∫ ∞
−∞

e−iωt<[Y(ω)]dω (3.12)

Cx(t) =

∫ ∞
−∞

e−iωtSx(ω)dω = 2kBT

∫ ∞
−∞

e−iωt
<[Y(ω)]

ω2
dω (3.13)

Furthermore, the mean square displacement (MSD) of the particle can

be found from the position autocorrelation function Cx(t) via this identity,

〈∆x2(t)〉 = 〈[x(t0 + t)− x(t0)]2〉 = 2〈x(t)2〉 − 2Cx(t) (3.14)

Later, it will be shown in detail that the drag coefficient γ(ω) is directly

related to the admittance. The thermal force power spectral density (FPSD,

one-sided) acting on the particle can be obtained as,

SF (ω) = 4πkBT<[γ(ω)]. (3.15)

If the admittance of the particle’s velocity Y(ω) and the drag coefficient

γ(ω) in the system of interest are known, the statistical functions, such as

MSD, PPSD, VPSD, VACF and FPSD, can be at least numerically obtained
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from Eq. (3.10) to Eq. (3.15). Analytic solutions for these quantities might

exist, however they are difficult to derive. The task in the next section will

focus on obtaining an expression for the admittance in each different system.

3.3 Brownian motion in a Newtonian incompressible
fluid

In this section, we will give the admittances for some systems and

the corresponding predictions of Brownian motion. The fluid discussed in

this section is incompressible and Newtonian, meaning its viscosity does not

depend on frequency. It is necessary to note that we will only study Brownian

motion in one dimension, which is sufficient since the Langevin equation has

no coupling terms and can be decomposed into three independent equations

of motion.

3.3.1 A free particle in a Newtonian incompressible fluid

The motion of a free particle in a fluid can be described by the Langevin

equation,

mpẍ(t) + γ(t)ẋ(t) = Fth(t). (3.16)

where mp and x(t) are the mass and position of the particle respectively,

−γ(t)ẋ(t) and Fth(t) are the drag force and thermal force on the particle

respectively. To obtain the admittance, we replace x(t) with v(t) = ẋ(t)

mpv̇(t) + γ(t)v(t) = Fth(t), (3.17)
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and take the Fourier transform the above equation

− iωmv(ω) + γ(ω)v(ω) = Fth(ω). (3.18)

By definition, Eq. (3.5), the admittance of a free particle in a fluid is

Y(ω) =
1

−iωm+ γ(ω)
. (3.19)

It is easy to verify the property of the admittance as given in Eq. (3.7).

3.3.1.1 A free particle in air

In a dilute fluid (whose density is much lower than that of a particle),

such as gas, the friction force on a particle moving at velocity v is given by

Stokes law Ffr = −γsv, where γs = 6πηa is the Stokes drag coefficient, η is

the viscosity of the air and a is the radius of the sphere. The drag coefficient

is independent of frequency due to the fact that the density and viscosity of

air are so small. Therefore, the admittance of a particle in air is

Y(ω) =
1

−iωm+ γs
(3.20)

According to Eq. (3.10), the velocity power spectral density of a free particle

in air is

Sv(ω) =
2kBTγs
γ2
s +m2ω2

(3.21)

Applying Eq. (3.11), the position power spectrum of a free particle in air is

Sx(ω) =
2kBTγs

γ2
sω

2 +m2ω4
(3.22)
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Furthermore, using Eq. (3.12), the velocity autocorrelation function of a free

particle in air is

Cv(t) =

∫ ∞
−∞

e−iωtSv(ω)dω =
kBT

m
e−

γs
m
|t| (3.23)

Finally, according to Eq. (3.13), the position autocorrelation function of a free

particle in air is

Cx(t) =
kBT

γs
t+

mkBT

γ2
s

− mkBT

γ2
s

e−
γs
m
t (3.24)

The mean square displacement of the particle at thermal equilibrium with the

air is [13]:

〈∆x2(t)〉 =
2mkBT

γ2
s

(
γs
m
t− 1 + e−

γs
m
t). (3.25)

At long time scales, the MSD 〈∆x2(t)〉 given here is the same as the prediction

of Einstein’s theory:

〈∆x2(t)〉 = 2Dt for t� τp (3.26)

where τp = mp/(6πηa) = 2
9
a2ρp/η is the momentum relaxation time of the

particle. At very short time scales, the motion of the particle becomes ballistic

and the MSD is

〈∆x2(t)〉 =
kBT

m
t2 for t� τp (3.27)

There is no definition for the instantaneous velocity in the diffusive

regime, whereas the instantaneous velocity is defined at very short time scales

and can be measured as v = ∆x(∆t)/∆t, when ∆t � τp [13, 16]. The one
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dimensional velocity distribution of the particle in air at thermal equilibrium

can be described by the Maxwell-Boltzmann distribution

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
. (3.28)

This has been experimentally verified recently [16].

Based on the fluctuation-dissipation theorem, the thermal force power

spectrum (one-sided) is

Sth(ω) = 4kBT<[γ] = 4kBTγs. (3.29)

The thermal force spectral density is flat, independent of frequency. The

thermal force is completely random, and is often referred to as “white noise”,

meaning the thermal force is delta correlated. Often, this system is referred

to as the Einstein-Ornstein-Uhlenbeck model [13, 76,81].

3.3.1.2 A free particle in liquid

The motion of a particle in a dense and viscous fluid is more complicate

than that in air as hydrodynamic effects begin to manifest. The friction force

on the particle at any instant depends on the history of the particle’s motion,

not just the particle’s velocity at that instant, which is often called hydrody-

namic memory effect. The expression for the friction force at time t0, exerted

on a sphere with arbitrary velocity v(t) defined in the interval −∞ < t < t0,

is [90]:

Ffr(t0) = −γsv(t0)−mav̇(t0)− γs
√
τf
π

∫ t0

−∞

v̇(t)√
t0 − t

dt (3.30)
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The first term on the right hand side is the Stokes friction force, and the second

term is associated with the inertia of the co-moving fluid, where ma = 1
2
mf =

2
3
πa3ρf , which often called the added mass, where ρf is the fluid density. The

third term describes the hydrodynamic memory effect associated with the

particle’s acceleration history in a viscous unsteady flow. And τf =
ρfa

2

η
is the

time for the vorticity in the fluid to travel one microsphere radius [15]. This

leads to frequency dependent drag coefficient

γ(ω) = γs(1 +
√
−iωτf )−

iωmf

2
= γs(1 + α̃ +

1

9
α̃2) (3.31)

where α̃ =
√
−iωτf . Compared to the Stokes drag coefficient γs in air, γ(ω)

here has two more terms. The term, − iωmf
2

, leads to the effective mass of the

microsphere in fluid which is the sum of the mass of the microsphere and half

of the mass of the displaced fluid [26]:

m∗ = mp +
1

2
mf , (3.32)

The term, γs
√
−iωτf , gives the memory kernel, which leads to the Basset

force [91]

FBasset = −6a2√πρfη
∫ t

−∞

v̇(t′)√
t− t′

dt′ (3.33)

The Langevin equation for a spherical particle in a liquid can be written as

m∗ẍ(t) + 6πηaẋ(t) + 6a2√πρfη
∫ t

−∞

v̇(t′)√
t− t′

dt′ = Fth(t) (3.34)

Strictly speaking, hydrodynamic effects exist in air as well. However

they are roughly 103 times smaller than those in liquids and occur at time
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scales 103 times shorter than the time scales of Brownian motion in air, namely

τf = 10−3τp.

By plugging Eq. (3.31) into Eq. (3.19), the admittance of a free particle

in a liquid can be obtained as

Y(ω) =
1

−iωm+ γs(1 +
√
−iωτf )− iωmf

2

(3.35)

Following the procedure laid out early this chapter, Eq. (3.10) yields the ve-

locity power spectrum of a free particle in a liquid as

Sv(ω) =
2kBTγs(1 +

√
1
2
ωτf )

γ2
s (1 +

√
1
2
ωτf )2 + (m∗ω + γs

√
1
2
ωτf )2

(3.36)

Next, according to Eq. (3.11), the position power spectrum of a free particle

in a liquid is

Sx(ω) =
2kBTγs(1 +

√
1
2
ωτf )

ω2γ2
s (1 +

√
1
2
ωτf )2 + ω2(m∗ω + γs

√
1
2
ωτf )2

(3.37)

Finally, according to Eq. (3.12), the velocity autocorrelation function of a free

particle in a liquid can be analytically solved [82,83]

Cv(t) =
kBT

m∗
α+e

α2
+terfc(α+

√
t)− α−eα

2
−terfc(α−

√
t)

α+ − α−
, (3.38)

where

α± =
3

2
· 3± (5− 36τp/τf )

1/2

τ
1/2
f (1 + 9τp/τf )

. (3.39)

At long time scales, the velocity autocorrelation function Cv(t) approaches the

famous t−3/2 long time tail

Cv(t) ∝
kBT

m∗
1

t3/2
for t→∞. (3.40)
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This power law decay of the velocity autocorrelation function, which is normal-

ly referred to as long time tail and was first discovered by numerical simulations

in late 1960s [92,93], is drastically different from the exponential decay in the

Stokes limit case, shown in Eq. (3.23). This prolonged correlation is due to the

propagation of flow patterns within the fluid, which preserve the information

of the particle’s past motion.

At short time scales, the velocity autocorrelation function Cv(t) ap-

proaches [17]

Cv(t) ∝
kBT

m∗
(1−

√
t/τv) for t� τv, (3.41)

where

τv =
π

4
·
τ 2
p

τf
.

At very short time scales, the velocity autocorrelation function Cv(t) decreases

faster as
√
t, rather than t in air due to the hydrodynamic effects.

The mean square displacement of a free microsphere in a liquid is [14,85]

〈∆x2(t)〉 = 2Dt

[
1− 2

√
1

π

τf
t

+
8

9

τf
t
− τp

t
+ Ξ(

τp
τf
,
t

τf
)

]
, (3.42)

where D = kBT/(6πηa) is the diffusion coefficient and the term Ξ( τp
τf
, t
τf

) is

Ξ(
τp
τf
,
t

τf
) =

3

t(5τf − 36τp)1/2

(
1

α3
+

eα
2
+terfc(α+

√
t)− 1

α3
−
eα

2
−terfc(α−

√
t)

)
.

(3.43)

At long time scales, the MSD produces the same prediction as Einstein’s the-

ory:

〈∆x2(t)〉 = 2Dt for t� τp, τf . (3.44)
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At very short time scales, the Brownian motion becomes ballistic and the MSD

reduces to

〈∆x2(t)〉 =
kBT

m∗
t2 for t� τp (3.45)

Based on the fluctuation-dissipation theorem, the thermal force power

spectrum (one-sided) is

Sth(ω) = 4kBT<[γ(ω)] = 4kBTγs

(
1 +

√
1

2
ωτf

)
(3.46)

Because of the hydrodynamic effects, the thermal force spectral density is not

flat anymore, but depends on frequency. The thermal force spectrum is not

white anymore, instead it becomes colored. This means that the thermal force

is not completely random. The thermal force autocorrelation function is

CFth(t) = 4γskBT

[
δ(t)− 1

2

√
τf
π
t−3/2

]
. (3.47)

The liquid adds a virtual mass 1
2
mf to the microsphere, since accel-

erating the microsphere requires a force both on the microsphere and the

surrounding liquid. Therefore, the Maxwell-Boltzmann distribution needs to

be changed to

f(v) =

√
m∗

2πkBT
exp

(
−m

∗v2

2kBT

)
, (3.48)

and the energy equipartition theorem need to be correspondingly modified as

well to

1

2
m∗〈v2〉 =

1

2
kBT (3.49)
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where v is the velocity of the microsphere in one dimension. Thus the rms

velocity is vrms =
√
kBT/m∗. This has been experimentally verified recently

[18], and will be discussed in detail in Chapter 4.

This result apparently conflict with the equipartition theorem. The

discrepancy can be resolved by considering the effects of compressibility of the

liquid [94]. Below timescales on the order of τc = a/c, where c is the speed

of sound in the liquid, the compressibility of the liquid cannot be neglected.

The particle will decouple from the surrounding liquid and the effective mass

of the particle is just the bare mass of the particle.

3.3.2 An optically trapped microsphere in a Newtonian incom-
pressible fluid

Experiments often require some sort of confinement of the particles to

keep them in the detectable region. Often, the confinement is provided by an

optical tweezer as discussed in Chapter 2, which provides a harmonic trapping

force Ftrap = −Kx on the microsphere. This is true when the displacement of

the microsphere is much smaller than 500 nm as discussed in Section 2.1.4.

The optical trap will change the admittance of the particle. Therefore,

the MSD, PPSD, VPSD, XACF and VACF will change correspondingly. It is

worth noting that the effective mass and thermal force spectrum are indepen-

dent of optical trapping.

The motion of an optically trapped particle can be described by the
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Langevin equation with a trapping term as

mẍ(t) + γ(t)ẋ(t) +Kx(t) = Fth(t). (3.50)

The admittance can be obtained by replacing x(t) with v(t) = ẋ(t) and Fourier

transform that equation

− iωmv(ω) + γ(ω)v(ω) +
Kv(ω)

−iω
= Fth(ω). (3.51)

So by definition, the admittance is

Y(ω) =
1

−iωm+ γ(ω) + K
−iω

. (3.52)

3.3.2.1 An optically trapped particle in air

As discussed before, the drag coefficient for a sphere in air is γ(ω) = γs.

Therefore, the Langevin equation simplifies to

mẍ(t) + γsẋ(t) +Kx(t) = Fth(t). (3.53)

The cyclic frequency of the damped oscillator is ω1 =
√
ω2

0 − (2τp)−2, where

τp = m/γs as defined before and ω0 =
√
m/K is the trapping frequency.

The system is underdamped when ω1 is real (ω0 > 1
2τp

), critically damped

when ω1 = 0 and overdamped when ω1 is imaginary (ω0 <
1

2τp
). The motion

of the particle behaves differently depending on whether the system is an

underdamped or an overdamped system. Typical systems of a particle in air

are underdamped due to strong trapping and low viscosity of air.
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The admittance of an optically trapped particle in air is

Y(ω) =
−iω

mp(ω2
0 − ω2)− iωγs

(3.54)

According to Eq. (3.11), the position power spectrum of an optical trapped

particle in air is [81]

Sx(ω) =
2kBTγs

m2
p(ω

2
0 − ω2)2 + ω2γ2

s

(3.55)

According to Eq. (3.10), the velocity power spectrum of an optical trapped

particle in air is

Sv(ω) =
2kBTω

2γs
m2
p(ω

2
0 − ω2)2 + ω2γ2

s

(3.56)

The position autocorrelation function and velocity autocorrelation func-

tion in underdamped systems (in air) are [81]

Cx(t) =
A

2γsmω2
0

(
cosω1t+

sinω1t

2ω1τp

)
e−t/2τp (3.57)

and

Cv(t) =
A

2γsm

(
cosω1t−

sinω1t

2ω1τp

)
e−t/2τp (3.58)

The mean square displacement of an optically trapped particle at ther-

mal equilibrium with the air is

〈∆x2(t)〉 =
2kBT

mω2
0

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
. (3.59)

At short times, the MSD has the same limit as that of the free particle, since

for short intervals the trap appears as a constant force, whose time average is

zero.

〈∆x2(t)〉 =
kBT

m
t2 for t� τp (3.60)
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The long time MSD of a trapped particle is very different from that of a free

particle. Due to the confinement provided by the trap, the MSD reduces to a

constant, which depends on trap strength and temperature

〈∆x2(t)〉 =
2kBT

mω2
0

(3.61)

The optical trap does not alter the velocity distribution of the particle

and the thermal force spectral density on the particle. So they remain the

unchanged.

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
(3.62)

Sth(ω) = 4kBT<[γ(ω)] = 4kBTγs (3.63)

In overdamped case, the position autocorrelation function of an opti-

cally trapped particle is [95]

Cx(t) =
2γskBT

2m2

[
eit/τ−

τ−1
− (τ−2

+ − τ−2
− )
− eit/τ+

τ−1
+ (τ−2

+ − τ−2
− )

]
(3.64)

where

τ± =
2τp

1± 2τpω1

(3.65)

and the velocity autocorrelation function of an optically trapped particle is

Cv(t) =
2γskBT

2m2

[
e−t/τ+

τ+(τ−2
+ − τ−2

− )
− e−t/τ−

τ−(τ−2
+ − τ−2

− )

]
(3.66)

3.3.2.2 An optically trapped particle in liquid

The Langevin equation for an optically trapped spherical particle in a

liquid can be written as

m∗ẍ(t) + 6πηaẋ(t) + 6a2√πρfη
∫ t

−∞

v̇(t′)√
t− t′

dt′ +Kx(t) = Fth(t) (3.67)
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The admittance of an optically trapped particle in a liquid is

Y(ω) =
1

−iωm+ γs(1 +
√
−iωτf )− iωmf

2
+ K
−iω

(3.68)

According to Eq. (3.10), the velocity power spectrum of an optically trapped

particle in a liquid is

Sv(ω) =
2kBTω

2γs(1 +
√

1
2
ωτf )

(m∗(ω2
0 − ω2)− ωγs

√
1
2
ωτf )2 + ω2γ2

s (1 +
√

1
2
ωτf )2

(3.69)

According to Eq. (3.11), the position power spectrum of an optically trapped

particle in a liquid is [85,96]

Sx(ω) =
2kBTγs(1 +

√
1
2
ωτf )

(m∗(ω2
0 − ω2)− ωγs

√
1
2
ωτf )2 + ω2γ2

s (1 +
√

1
2
ωτf )2

(3.70)

As ω → 0, the position power spectral density approaches

Sx(ω → 0) =
2kBTγs
K2

. (3.71)

According to Eq. (3.12), the velocity autocorrelation function of a trapped

microsphere in a liquid is [83,85]

Cv(t) =
kBT

m∗

[
z3

1 e
z21t erfc(z1

√
t)

(z1 − z2)(z1 − z3)(z1 − z4)
+

z3
2 e

z22t erfc(z2

√
t)

(z2 − z1)(z2 − z3)(z2 − z4)

+
z3

3 e
z23t erfc(z3

√
t)

(z3 − z1)(z3 − z2)(z3 − z4)
+

z3
4 e

z24t erfc(z4

√
t)

(z4 − z1)(z4 − z2)(z4 − z3)

]
(3.72)

where erfc(z) is the complementary error function, and the coefficients z1, z2,

z3, and z4 are the four roots of the equation [85],(
τp +

1

9
τf

)
z4 −√τfz3 + z2 +

1

τk
= 0, (3.73)
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where τk = γs/K, and the coefficient of the z3 term should be −√τf , instead

of
√
τf listed in [85]. The short time limit is the same as that of a free particle

Cv(t→ 0) =
kBT

m∗
(3.74)

At long time scales, the famous t−3/2 long time tail in the velocity autocorre-

lation function is replaced by a more rapid decay [74,97]

Cv(t→∞) ∝ 1

t7/2
(3.75)

The mean square displacement of a trapped microsphere in a liquid

is [83, 85]

〈∆x2(t)〉 =
2kBT

K
+

2kBT

m∗

[
ez

2
1t erfc(z1

√
t)

z1(z1 − z2)(z1 − z3)(z1 − z4)

+
ez

2
2t erfc(z2

√
t)

z2(z2 − z1)(z2 − z3)(z2 − z4)
+

ez
2
3t erfc(z3

√
t)

z3(z3 − z1)(z3 − z2)(z3 − z4)

+
ez

2
4t erfc(z4

√
t)

z4(z4 − z1)(z4 − z2)(z4 − z3)

]
(3.76)

At short times, it has the same limit as the free particle shown in Eq. (3.45),

〈∆x2(t)〉 =
kBT

m∗
t2 for t� τp (3.77)

At long time scales, the optical trapping causes the MSD to plateau due to

confinement

〈∆x2(t)〉 =
2kBT

K
=

2kBT

mω2
0

(3.78)

The optical trap does not alter the velocity distribution of the particle

nor the thermal force properties on the particle. So they remain the same as
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those of a free particle,

f(v) =

√
m∗

2πkBT
exp

(
−m

∗v2

2kBT

)
, (3.79)

Sth(ω) = 4kBT<[γ(ω)] = 4kBTγs

(
1 +

√
1

2
ωτf

)
, (3.80)

CFth(t) = 4γskBT

[
δ(t)− 1

2

√
τf
π
t−3/2

]
. (3.81)

3.4 Implications for position and velocity measurement

Am I really measuring this quantity correctly and precisely? This is

probably one of the most frequent questions every experimentalist asks them-

selves. Every measurement system has noise, which sets a limit on the accuracy

of the results. For example, one can not hear clearly on the phone in a noisy

environment. To hear better, one can reduce the noise by blocking the other

ear. Furthermore, one can not resolve a 1 MHz fluctuation in a voltage signal

using a conventional multi-meter, because the multimeter, whose bandwidth

is typically only around 10 kHz, simply cannot response that fast. To be able

to measure some quantities precisely, the detection systems have to have high

enough bandwidth and low enough noise level. The bandwidth is ultimately

limited by the noise level. It is perhaps easier to interpret these systems in

the frequency domain.

In this section, we will discuss the requirements (thus possible improve-

ments) to measure the particle’s position and instantaneous velocity precisely.
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We consider a 3 µm diameter silica microsphere optically trapped (with s-

tiffness K = 150 µN/m) in water and a 5 µm diameter BaTiO3 microsphere

optically trapped (with stiffness K = 150 µN/m) in acetone as two examples to

understand the role of noise plays in our experiments. As discussed in Chapter

2, shot noise of the detection laser beam is the dominant noise source at high

frequencies in our experiments, which is around 10−15 m/
√

Hz. In addition,

shot noise is a “white” noise in position measurements, meaning it has a flat

power spectrum in position.

3.4.1 Position measurement

The predictions of the position power spectral density Sx for the two

systems are shown in Fig. 3.2. At low frequencies, the Sx in the two sys-

tems saturate at different levels due to the different particle sizes and fluid

viscosities. Additionally, the signal dominates the shot noise in this range,

and the area of the signal spectrum is larger than that of the noise. In the

limit of large ω, the Sx in both systems decay with a slope of −3.5 on the

log-log plot. Shot noise of three different levels (10−16 m/
√

Hz, 10−15 m/
√

Hz,

10−14 m/
√

Hz) are shown as the dashed lines and set a limit on the detection

bandwidth. At high frequencies, the signal is overwhelmed by shot noise. The

lower the shot noise is, the higher the detection bandwidth is. The detection

bandwidth is around 1.5 MHz, 6 MHz and 20 MHz (the frequencies where the

Sx is equal to the shot noise) for the silica-water system with the three differ-

ent shot noise levels respectively. As a comparison, the response bandwidth
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of the detector used in this experiment is 58 MHz (Section 4.1.5), which is

larger than the detection bandwidth set by the shot noise. For a fixed shot

noise, the detection bandwidth is higher in the silica-water system than that

in the BaTiO3-acetone system. However, this does not necessary mean one

can measure the position more accurately in the silica-water system than in

the BaTiO3-acetone system. What matters is the ratio of the area under the

Sx within the bandwidth to the area under the Sx with infinite bandwidth,

which gives the mean square value of the position signal. The mean square

value of the position of the particles is directly related to the average kinetic

Figure 3.2: Comparison of position PSDs predicted for the two systems with
different shot noise levels. The red solid line represents the silica-water system,
the blue solid line is for the BaTiO3-acetone system, and the dashed lines
represent shot noise with three different levels (10−16 m/

√
Hz, 10−15 m/

√
Hz,

10−14 m/
√

Hz).
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Figure 3.3: Cumulative position power spectra (normalized to 〈x2
rms〉) for the

two systems. The red solid line represents the silica-water system, the blue
solid line is for the BaTiO3-acetone system, and the dashed lines represent
the shot noise with three different levels (10−16 m/

√
Hz, 10−15 m/

√
Hz, 10−14

m/
√

Hz).

energy through the energy equipartition theorem, 〈x2
rms〉 = kBT/K.

A better way to interpret this is to calculate the cumulative position

power spectrum (the area under the Sx for a given bandwidth), denoted as

CSx. The cumulative position power spectra (normalized to the position mean

square value 〈x2
rms〉) for the two systems are shown in Fig. 3.3. For both

systems, the CSx almost exactly reach the position variance 〈x2
rms〉 well before

the shot noise becomes dominant. Therefore, we can measure the position

quite precisely in both systems.

63



3.4.2 Instantaneous velocity measurement

Being able to measure the position accurately does not guarantee being

able to measure the instantaneous velocity, because velocity measurement is

much more vulnerable to high frequency noise. For a fixed magnitude noise in

position, the higher the frequency of the noise is, the higher noise magnitude

is in velocity.

Fig. 3.4 shows the predictions of the velocity power spectral densities,

Sv, for the two systems. The velocity PSD can be obtained from position

PSD through Sv = ω2Sx. The flat shot noise in the position spectrum results

in ‘violet’ noise4 in the velocity spectrum, with slope 2 on a log-log plot, as

represented by the dashed lines. At low frequencies, the signal is much higher

than the shot noise. Whereas at high frequencies, the shot noise dominates.

In velocity PSD, the frequency range over which noise dominates the signal

is the same as that in position PSD, but the shot noise impact on velocity

measurements is much more significant than that on position measurements.

The cumulative velocity power spectra CSv (normalized to the position

variance 〈v2
rms = kBT/m

∗〉) for the two systems are shown in Fig. 3.5. Unlike

the case of position measurements shown in Fig. 3.3, the shot noise becomes

important before CSv reaches the velocity mean square value 〈v2
rms〉. The CSv

in the BaTiO3-acetone system reaches its 〈v2
rms〉 earlier than that in the silica-

water system. Therefore, for a fixed shot noise level, one can measure the

4It is also known as differentiated white noise, due to its being the result of the differen-
tiation of a white noise signal.
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Figure 3.4: Velocity power spectra (normalized to 〈x2
rms〉) of the two systems

with different shot noise levels. The red solid line represents the silica-water
system, the blue solid line is for the BaTiO3-acetone system, and the dashed
lines represent the shot noise with three different levels (10−16 m/

√
Hz, 10−15

m/
√

Hz, 10−14 m/
√

Hz).

instantaneous velocity in the BaTiO3-acetone system more accurately than in

the silica-water system. For instance, with a shot noise level of 10−15 m/
√

Hz,

one can measure 98% of the kinetic energy of the particle in the BaTiO3-

acetone system and only 89% of that in the silica-water system. It is worth

noting that the contribution to the velocity from a frequency range from DC

to 1 kHz is negligible, as shown in Fig. 3.5. Therefore the high pass filter (with

a 3 dB cut-off frequency of 1 kHz) in the detector, will be discussed in Chapter

4, does not affect the instantaneous velocity measurements.
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Figure 3.5: Cumulative velocity power spectra (normalized to 〈v2
rms〉) for the

two systems. The red solid represent the silica-water system, the blue solid
line is for the BaTiO3-acetone system, and the dashed lines represent shot
noise with three different levels (10−16 m/

√
Hz, 10−15 m/

√
Hz, 10−14 m/

√
Hz).

The cyan dotted line is for guiding the eye to 1.

In summary, to be able to measure the instantaneous velocity precisely,

one needs to move the solid lines in Fig. 3.4 and 3.5 toward the left, namely,

to slow down the dynamics of the particles and move the dashed lines toward

the right, namely, to reduce the shot noise. To slow down the dynamics of a

particle in a fluid, the particle’s density needs to be high, the fluid’s density

needs to be low and the fluid’s viscosity needs to be low as well. To reduce

the shot noise level, the optical gain needs to be high, which can be optimized

by optical alignments, and the detection beam power needs to be high.
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3.4.3 Shot noise estimation

Our resolution of tracking a particle’s motion is limited by the shot noise

of the detection beam, which is the fundamental limitation in typical optical

tweezer experiments. It is not trivial to predict the shot noise level, especially

when the size of the microsphere is on the same order as the wavelength of

the laser. Here we only discuss a simple estimation. The shot noise limited

position sensitivity is estimated to be [98]

Sshot ≈ 5× 10−16G

(
a

1µm

)(
100mW

P

)1/2(
1µm

λ

)1/2

m/
√

Hz, (3.82)

where a is the particle’s radius, λ is the wavelength of the laser in vaccum, P

is the power of the detection beam and G is a geometrical factor that depends

on a/λ and a/w0, where w0 is the waist of the focused laser beam.

With our experimental conditions, the wavelength of the laser is 1.064

µm, the detection power is around 150 mW and a is 1.5 µm, thus Eq. (3.82)

can be reduced to

Sshot ≈ 3G× 10−15m/
√

Hz, (3.83)

Combining this and our experimental results on shot noise, the geometrical

factor G is around 1 in our system.
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Chapter 4

Testing the Maxwell-Boltzmann distribution

using Brownian particles

As discussed in Section 3.4, a combination of high density microspheres,

low density fluid, less viscous fluid, high refractive index mismatch, high op-

tical gain, and high detection power is necessary to reach high signal-to-noise

ratio (SNR) measurement of the velocity of a Brownian particle in liquid. In

this chapter, we discuss the experiments measuring the instantaneous velocity

of microspheres in fluids in detail. We will show how we optimize each as-

pect of the experiments to be able to measure the instantaneous velocity of a

microsphere in liquid.

The exceptionally dense and high refractive index of BaTiO3 micro-

spheres in combination with acetone’s low density and low viscosity slow the

dynamic motion of the particle and improve our detection efficiency. Water-

immersion objectives were used for diffraction-limited focusing and detection.

A home made high power balanced detector was used to further improve the

SNR.

Once the instantaneous velocity measurement becomes a reality, we will

give the accurate test that we have done on the Maxwell-Boltzmann distribu-
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tion and the energy equipartition theorem. The one dimensional Maxwell-

Boltzmann distribution (MBD) for the velocities of molecules in an ideal gas

in thermal equilibrium is

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
(4.1)

where m is mass, kB is Boltzmann’s constant and v is the velocity. From the

MBD, we can derive the energy equipartition theorem 1
2
m〈v2〉 = 1

2
kBT . The

actual velocity distribution in certain systems has been predicted to deviate

from the standard MBD, for example, due to particle-particle interactions or

relativistic effects [22–25]. A simple thought experiment showing a change in

the velocity distribution by adding an arbitrary potential was proposed by

Lord Kelvin in 1892 [22]. Additional deviations from the MBD have been

predicted for low density plasmas [23], interstellar molecular hydrogen [24],

and in the solar plasma by measuring neutrino flux [25]. In spite of predicted

deviations, the MBD still holds as a remarkably robust approximation for most

physical systems.

Previous work has reported an experimental verification of the MBD

and energy equipartition theorem for a microsphere in air [16]. This result is to

be expected, since the interaction of a particle with the surrounding air is fairly

weak. In the case of a particle in a liquid, it is not so clear whether the MBD

and energy equipartition theorem still hold, due to the strong hydrodynamic

coupling. A measurement of the instantaneous velocity of a microsphere in

a liquid has been reported [17], however, the sample size (2 million velocity
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data points) was not sufficient to give a robust estimate of the distribution for

velocities beyond 3 standard deviations from the mean.

In this chapter, we will report a more accurate test of the MBD and

the energy equipartition theorem in three systems: a silica (SiO2) glass micro-

sphere in water, a silica glass microsphere in acetone and a barium titanate

glass (BaTiO3) microsphere in acetone. We find that the velocity distribution

follows a modified Maxwell-Boltzmann distribution [21]

f(v) =

√
m∗

2πkBT
exp

(
−m

∗v2

2kBT

)
(4.2)

where m∗ is the effective mass of the microsphere in liquid, which is the sum

of the mass of the microsphere mp and half of the mass of the displaced liquid

mf , m
∗ = mp + 1

2
mf [26]. As a result, the energy equipartition theorem also

needs to be modified to 1
2
m∗〈v2〉 = 1

2
kBT . The observation is based on a

substantially larger number of data points compared to previous work [17],

thus reducing the error in estimating the tails of the distribution.

These modifications to the Maxwell-Boltzmann distribution and the

energy equipartition theorem are unnecessary when considering the effects of

compressibility of the liquid [26]. At timescales below τc = a/c, where c is

the speed of sound in the liquid and a is the radius of the microsphere, the

compressibility of the liquid cannot be neglected and the mean square value

of velocity will approach the energy equipartition theorem. The effects of

compressibility in our three systems are well separated from the regime of

hydrodynamic Brownian motion and will be discussed in detail in Chapter 9.
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4.1 Experimental setup

A simplified schematic of our experimental setup for measuring the

instantaneous velocity of a Brownian particle in a liquid is shown in Fig. 4.1,

containing two main parts: optical trapping and a high-bandwidth balanced

detection which are discussed in detail in Chapter 2.

Figure 4.1: A simplified schematic of experimental setup for measuring the
instantaneous velocity of a microsphere trapped by counter-propagating 1064
nm and 532 nm laser beams focused by microscope objectives (OBJ) in liquid.
The 1064 nm laser is used to detect the horizontal motion of the particle using
a high-power, high bandwidth balanced detector. DM: dichroic mirror, CM:
D-shaped mirror.

As predicted in Section 2.1.4, we can use a single 1064 nm laser beam

to trap silica microspheres both in water and acetone, while a dual-beam trap

is required to trap BaTiO3 microspheres. In the case of silica microsphere

experiments, the microspheres are trapped by a single 1064 nm laser typically

with a power of about 400 mW, focused by a water-immersion objective (de-

noted as the trapping objective). The trapping beam after passing through

the trapped microsphere is re-collimated by an identical objective (denoted

as the condensing objective). Now we refer the laser beam as the detection

beam, which is split into two roughly equal halves before being focused onto a
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home made balanced detector. The microsphere is introduced via a flow cell.

In the case of BaTiO3 microsphere experiments, another green 532 nm laser

beam, focused by the condensing objective and counter-propagating with the

1064 nm laser beam, is used to cancel out the scattering force and double the

gradient force. The 532 nm laser beam is used only for the purpose of trapping

not for detection.

4.1.1 Optical setup

A detailed schematic of the optical setup is shown in Fig. 4.2. The red

line represents the optical path of the 1064 nm trapping and detection beam.

The green line represents the path of the 532 nm trapping beam. The 1064

nm trapping and detection beam is produced by an internally-stabilized non-

planar ring oscillator (NPRO) laser (Innolight, Mephisto), with a maximum

output power of 1.2 W. The 532 nm trapping beam is produced by a diode-

pumped solid state laser (Coherent, Verdi V-10), with a maximum output

power of 10 W. Both lasers are fiber coupled in order to reduce pointing noise

and have a good spatial mode, which is important for tight focusing and high

optical gain.

It is important that both lasers have low intensity fluctuations so as

not to perturb the trapped particle. Much more critically, the detection laser

has to have low intensity noise even with the significant suppression by the

balanced beam detection system as discussed in Section 2.2. A home-made

analog proportional-integral-derivative (PID) close loop controller [99] is used
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Figure 4.2: Schematic of optical setup for trapping and detection in liquids.
The red line represents the optical path of the 1064 nm trapping and detection
beam. The green line represents the path of the 532 nm trapping beam.
The black line represents the optical path of the illumination beam. (Figure
courtesy of Dr. Simon Kheifets.)
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to both set the power and suppress the intensity noise for the 532 nm laser

beam. The set point for the PID is generated by an analog-voltage-output

board controlled by a LabVIEW control program, which will be discussed in

Section 4.1.8. The output of the PID is fed into an acousto-optic modulator

(AOM) controller which controls the radiofrequency (RF) power into an AOM,

thus the optical power. The measurement point fed into the PID is provided

by a photodiode collecting light leaked through mirror M4 downstream (∼ 1

%) of the fiber output, as shown in Fig. 4.2. It is important to place the AOM

before the fiber input coupler since AOM typically degrades the beam profile

and in some cases imparts pointing noise to the transmitted beam [100]. The

resulting pointing noise can be eliminated by the fiber, resulting in intensity

fluctuations that can be suppressed by the PID loop.

The power of the 1064 nm laser beam is controlled by a waveplate

and a polarizing beam splitter (PBS) mounted before the fiber input coupler.

Polarization of the laser beam, thus the transmission rate after the PBS, can be

changed by rotating the waveplate. The waveplate is mounted on a motorized

rotary mount which is controlled by the LabVIEW program to set the desired

laser power. It is worth noting that we only set the 1064 nm beam to a certain

power and do not use a PID-like close loop to stabilize the power since laser

already has a built-in “noise eater”. In fact, we tried to do so and ended

up producing more noise at certain frequencies. Because our 1064 nm laser

beam has much less noise than the 532 nm laser beam does, it was used as the

detection beam.
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Two identical finite-conjugate (160 mm) water-immersion microscope

objectives (LOMO, OM-25), with nominal NA 1.23, focal length 2.5 mm, and

working distance 140 µm, are used in our experiments. Because the objectives

are designed for visible light with a wavelength range from 400 nm to 700 nm,

there was slight chromatic aberration for the 1064 nm laser beam, resulting

in a slightly larger working distance and focal length than the numbers listed

above. The cover-glass-correction-collar adjustment ring is set to its lowest

setting, 0.1 mm, on both objectives. Because the objectives are designed for

visible light, the transmission at 1064 nm is only 60%, which was estimated

by measuring the transmission through the two lenses with the flow cell in

between. Water immersion objectives are a better choice over oil immersion

objectives as the fluids we use, water and acetone, more closely match water

than typically used oils. Water-index-matching oil (n = 1.33, Carl Zeiss),

instead of water, is used between the flow cell and each objective due to its

low evaporation rate.

Both of the trapping lasers emerge from their fiber output couplers as

collimated beams, with 1/e2 waists of 1.5 mm. Since the objectives are finite

conjugate (160 mm), a lens is used to focus each beam 160 mm away from

the objective: L1 for the 1064 nm beam and L3 for the 532 nm beam. These

shall be referred to as the conjugate lenses. The 1064 nm beam is focused by

L1, then reflected by DM1 and focused by OBJ1. It was then re-collimated by

OBJ2, and reflected by DM1 to be used for detection. The 532 nm beam is

focused by L3, reflected by M5, transmitted through DM2, focused by OBJ2,
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re-collimated by OBJ1, transmitted through DM1 and reflected by M6 into a

beam dump. DM1 and DM2 are dichroic mirrors with high transmission for

532 nm and high reflectivity for 1064 nm.

Although our 1064 nm laser has a maximum power of 1 W, the max-

imum power for trapping and detection are around 400 mW and 150 mW

respectively after various losses from fiber coupling, the objectives, and s-

cattering from a trapped particle. 150 mW detection power is close to the

detector’s damage threshold.

In the case of experiments with BaTiO3 microspheres, the 532 nm laser

is used to form a counter-propagation trapping configuration with the 1064

nm laser beam. This is necessary to cancel out the strong scattering force

thus form a stable trap for BaTiO3 microspheres. Although our 532 nm laser

can easily produce more than 1 W power after the fiber, the best power ratio

between the 1064 nm and 532 nm beams is around 1.5 to balance the scattering

forces from two beams. This optimal power ratio depends on the alignment

detail of the two trapping beams.

There are two reasons why we did not split our 1064 nm laser beam into

two halves to form counter-propagation trapping configuration. One is if we

do that the position sensitivity will be decreased since the maximum detector

beam power will be cut in half. The other is that much effort is required to

avoid forming interference between the two trapping beams, like shifting the

laser frequencies by an AOM.

76



4.1.2 Microspheres and fluids

Experiments in this dissertation are performed using silica microspheres

(n = 1.46, ρ = 2.0 g/cm3, Bangs Laboratories) and BaTiO3 microspheres (n

= 1.9, ρ= 4.2 g/cm3, Mo-Sci L.L.C) in either HPLC-grade water (n = 1.33, ρf

= 0.998 g/cm3, η = 0.9× 10−3 Pa·s) or acetone (n = 1.35, ρf = 0.789 g/cm3,

η = 3.17 ×10−4 Pa·s) at 22 ± 1 ◦C.

High sphericity of the microspheres is necessary to eliminate the rota-

tional motion contribution due to asymmetry of the microspheres, and this was

confirmed by scanning electron microscope images (FEI Quanta 650 SEM) as

shown in Fig. 4.3. The microspheres were spattered with about 10 nm Au/Pd

(with 60/40 ratio) before taking images. The silica microspheres have a much

narrower size distribution than the BaTiO3 microspheres do. We further inves-

tigate the size distribution of the microspheres used in this experiment using

an optical microscope. The samples were prepared between two coverslips in

a water solution and examined under an optical microscope (OMAX). Typical

Figure 4.3: Scanning electron microscope images of the microspheres (sput-
tered with about 10 nm Au/Pd with 60/40 ratio) demonstrate high spherici-
ty. A: The widely-dispersed (0.1-10 µm) BaTiO3 glass microspheres; B: The
mono-dispersed silica glass microspheres.
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Figure 4.4: Optical microscope images of microspheres. (A), Silica micro-
spheres have a uniform size (around 3 µm). (B), BaTiO3 microspheres have a
wide range of size (1 to 15 µm).

optical microscope images, shown in Fig. 4.4, are analyzed using ImageJ, an

image processing program.

The procedure to measure particle size using ImageJ is first to convert

images to monochrome and then set the contrast at the threshold such that on

only the particle can be recognized, as shown in Fig. 4.5. Then the reticles in

the raw images are used to calibrate the image magnification. ImageJ provides

a way to eliminate black spots shown in in Fig. 4.5(B) with sphericity below

a certain threshold and calculate the area of individual black spots, thus the

diameter of the particles.

We took about a thousand such images to achieve good statistics. As

shown in Fig. 4.6, the silica microspheres have a much narrower size distribu-

tion, with a diameter of 3.22 ± 0.12 µm, corresponding to a 4% coefficient of

variation (defined as the ratio of the standard deviation to the mean). While
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Figure 4.5: Illustration of a measurement of particle size using ImageJ. (A),
The raw image of silica microspheres. The reticle is used to calibrate the image
magnification. (B), The processed image of silica microspheres.

BaTiO3 microspheres have a diameter of 10.6 ± 2.7 µm, corresponding to a

25% coefficient of variation.

Figure 4.6: The size distribution of the microspheres used in the experiments.
(A), Silica microspheres have a pretty uniform size, 3.22 ± 0.12 µm. (B),
BaTiO3 microspheres shows much broader size distribution, 10.6 ± 2.7 µm.
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Figure 4.7: Schematic of the flow cell shape with cliff, mounting geometry,and
fluid connections. (Figure courtesy of Dr. Simon Kheifets.)

4.1.3 Flow cell

The microspheres and fluids are introduced via a microfluidic flow cell

to the optical trapping region, which is closely based on a design from the

Minitweezers project in Dr. Bustamante’s lab1. An illustration of the chamber,

mounting and plumbing connections is shown in Fig. 4.7. Once a particle is

trapped, a pure solution is gently flowed through the cell to clear out stray

microspheres and other contaminants.

The fluid chamber was constructed within a layer of thermoplastic

nescofilm2 (Bando Chemical Ind. LTD., 80 µm thickness) sandwiched be-

1 http://tweezerslab.unipr.it/cgi-bin/mt/home.pl [Online;accessed July 20, 2015]
2Nescofilm is obsolete as of July 2015. Meltonix and PEEK films might be suitable
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tween two number 0 microscope coverslips (Ted Pella, Gold Seal) with thick-

ness ∼100 µm. Therefore, the thickness of the flow cell is about 280 µm. The

inner dimension of flow cell is designed to be as wide as possible to avoid any

boundary effects. As discussed in Chapter 5 and 6, a rule of thumb is that the

sphere-wall distance needs to be 10 times larger than the microsphere radius.

The maximum allowable thickness of the flow cell is limited by the combined

working distance of the two objectives, which is roughly 300 µm (considering

the chromatic aberration for the 1064 nm beam). It is important to note that

the microspheres have to be confined by the optical trap in the center of the

flow cell, leaving about 40 µm distance on each side to the coverslip wall. The

microsphere can not be too large (D ≤ 8 µm), otherwise boundary effects are

inevitable with current flow cell design.

The coverslips have dimensions of 60 cm × 24 cm and one of the two

coverslips on each flow cell has a hole drilled in it with ∼1 mm diameter on

each side, which serve as the inlet and outlet of the flow cell. The holes were

made on a CNC milling machine in the Physics department machine shop.

The Nescofilm was cut with a “Z” shape removed slot that aligns with the

holes on the coverslip, as shown in Fig. 4.7. The cut slot in the Nescofilm

forms the fluid flow channel.

After careful holes-alignment, the “sandwich” was then placed on a

hotplate with temperature set to around 150 ◦ C for about 5 minutes, with an

alternatives.
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aluminium weight on top of it to apply pressure and distribute heat evenly.

During this process, the thermoplastic Nescofilm melts and adheres to the

coverslip firmly. The sealed flow cell was mounted to an aluminium bracket

using acrylic plates. The aluminium bracket has threaded holes which align

with the drilled holes in the coverslip. Silicone tubing was inserted inside a

drilled nylon setscrew. When the set screw was screwed into the aluminium

bracket, the tubing was pressed onto the coverslip and a pressure seal formed

around the drilled hole. PTFE tubing was used to connect the needle of a

syringe to the nylon tubing. The outside of the PTFE tubing was pressed into

the inside of the silicone tubing and held by friction.

The flow cell and bracket were placed between the two objectives by

a 3-axis translation stage. The translation stage provided adjustment of the

location of the optical trap within the trapping chamber.

Commercially available microspheres are typically in dry powder form,

which is quite convenient since we can dissolve them into any fluids of interest.

The solution with appropriate concentration was prepared by adding a small

quantity of the microsphere powder to a vial of high purity water or acetone.

Ultra-sonication was used to separate the microspheres and degas possible

micro-bubbles in the fluids. The sonicated solution was then transferred from

the vial to a 1 cc syringe, which was mounted in a syringe pump (NE-300).

The syringe pump allowed introduction of the solution into the flow cell at a

precisely controlled flow rate. The exit port of the flow cell was connected to

a waste collection vial mounted on the optical table below the flow cell.
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BaTiO3 microspheres are more difficult to trap than silica particles, s-

ince they have much faster terminal velocities than that of silica microspheres,

due to their higher densities. This is even more apparent when trapping

BaTiO3 microspheres in acetone as compared to trapping silica microspheres

in water due to acetone’s low viscosity. The terminal velocity of a 6 µm di-

ameter BaTiO3 microsphere in acetone can reach ∼ 100 µm/s. As shown in

Section 4.1.4, the imaging view is only about 50 µm, saying the BaTiO3 mi-

crospheres only spend maximum 0.5 s in the view. It is worth noting that it

was not possible to pick up a sunken microsphere at the bottom of the flow

cell due to strong distortion in the trapping by the Nescofilm. The flow cell

was designed to have a “cliff”, where the Nescofilm was over-cut at an angle

so that falling microspheres fell away from the Nescofilm edge, as shown in

Fig. 4.7. BaTiO3 microspheres can be caught near the cliff region. Once a

particle is trapped, the flow cell is translated to move the trap away from the

cliff area to avoid boundary effects and reduce the odds of interference from

stray particles.

4.1.4 Imaging

Optical imaging of the trapping region is necessary to make it easier

to align optics, trap particle and detect stray particles in the trap. It also

provided information about the size and type of trapped microspheres. We

save the image of the trapping region for each experimental run.

The optical imaging, as shown in Fig. 4.2 (black optical path), is con-
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structed under a bright-field imaging configuration (also known as Köhler illu-

mination), in which the rays from any point of the light source in the specimen

plane are parallel. The light source used for optical imaging is a ∼ 100 mW

red LED with a 15 degree angle of divergence. A red LED was used for the

light source rather than a white one because much of the spectrum of the light

emitted by a white LED would be blocked by the dichroic mirrors DM2 and

M5. A short focal length lens (25 mm) near the LED was used to focus the

LED light through a pinhole to achieve a better spatial mode.

The image of the microsphere will is located 160 mm away from the

objective OBJ1. This virtual image plane is imaged onto a CCD camera using

a single achromatic lens, M6. The CCD camera was installed on a translational

stage to be able to adjustment of location of the image plane with a range up

to 8 cm. This was necessary because the trap minimum was not necessarily

at the beam focus due to shift in trap center caused by the scattering force,

as discussed in Chapter 2.

Two typical images of trapped microspheres are shown Fig. 4.8. The

image of a BaTiO3 microsphere in acetone has a much sharper interference

pattern due to high refractive index of BaTiO3 microspheres. These images

provide us a convenient estimate of the size of the trapped particles, the num-

ber of particles trapped and detection stray trapped particles. They were also

useful in aligning optics.
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Figure 4.8: Typical images of trapped microspheres. (A), a silica microsphere
in water; (B), a BaTiO3 microsphere in acetone, which has a much sharp-
er interference pattern due to high refractive index of BaTiO3 microspheres.
(Green spots are dead pixels in the camera.)

4.1.5 Balanced beam detection system

The 1064 nm beam after the objective OBJ2, referred as the detection

beam, is reflected by a dichroic mirror DM2, and a mirror with a specific

coating for 1064 nm, M3 before re-collimated by lens L2. This was followed by

a half waveplate and PBS, which were used to adjust the power to the detector.

A beam splitter (BS1) was used to reflect a small portion of the detection beam

(5%) for monitoring, which was split again with a 50/50 beam splitter between

a photodiode and a CCD camera. The photodiode was used to monitor the

power to the detector, which is based on the power ratio between the light on

the photodiode and the balanced detector is fixed. The CCD camera was used

to monitor the beam profile, which contained information about the location

(or absence) of the trapped microspheres within the trapping beam. It was also

used to investigate the dependence of the optical gain on the optical alignment,
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as shown Fig. 4.10.

The remaining light (95%) was split into roughly equal halves by a cut

mirror CM before shining on a home-made, high power, AC-coupled balanced

detector, which is one of key improvements to increase the position sensitivity

to 2×10−15 m/
√

Hz and resolved the instantaneous velocity of microspheres

in liquids. The home-made detector has a much higher operating power (up

to 100 mW per photodiode) than commercially available detectors (Thorlabs

balanced detectors, 5 mW per photodiode). The main limitation to the max-

imum operating power is thermal damage to the photodiodes, which can be

increased by using larger area photodiodes and a lower bias voltage. However,

both of them increase the detector’s capacitance Cp, thus decrease the band-

width of a transimpedance amplifier as the bandwidth goes with
√

1/Cp [77].

The photodiodes (Excelitas, C30641) used in our detector have a 1 mm diam-

eter, a responsivity of 0.75 A/W at 1064 nm, and a capacitance of less than

50 pF with a more than 5 V reverse bias. The detail of the electronic circuits

has been already presented [76].

The bandwidth of the detector can be increased by reducing the gain, as

the bandwidth is reversely proportional to gain [77]. The high detection pow-

er, thus high photocurrents made this possible. The gain of our home-made

detector is around 1 kV/A, while commercially available balanced detectors

have gains on the order of 105 V/A. With a 75 mW beam incident on each

photodiode, 56 mA photocurrents are created per photodiode. In our exper-

iments, the imbalance between two balanced beam halves is about 0.5% due
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to Brownian motion of microspheres. Therefore, a 280 µA photocurrent im-

balance is amplified by the transimpedance amplifier with a gain of about 1

kV/A, resulting in a 280 mV output.

However, the low frequency noise, particularly noise caused by vibra-

tions and the harmonics of the 60 Hz AC power line, would create a large

imbalance in the photocurrent, which can saturate the op-amp in the tran-

simpedance amplifier and the digitizer. A high pass filter, with a -3 dB cutoff

frequency at ∼ 1 kHz, is placed before the transimpedance amplifier to over-

come this potential problem. As discuss in Section 3.4, this high pass filter

does not affect the instantaneous velocity measurements since the contribution

from frequency range between DC and 1 kHz is negligible.

Although high pass filtering did not significantly affect velocity mea-

surement, it increased the complexity of data analysis. The detail of the

transfer function of the detection system, combination of the balanced detec-

tor and digitizer board, is needed to correctly analyze the data. This transfer

function was measured using a high-speed function generator (6060B, Fluke)

and a 1300 nm wavelength telecommunications LED (HFBR-1119TZ, Avago

Technologies) with a flat response function from DC up to as 500 MHz, as a

variable frequency input source. The detection system has a flat band from 1

kHz to 58 MHz (at -3 dB points), as shown in Fig. 4.9 [17, 76]. The fall-off

at high frequencies is not only due to the detector bandwidth but also the

bandwidth of the digitizer, which is 125 MHz.

In summary, there are three main advantages of our home-made de-
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Figure 4.9: Measured AC detector transfer function and its fit. The green
dots show the amplitude of the response function recorded through a 125
MHz bandwidth digitizer. The black line shows a fit. The resonant peak near
30 MHz is due to the digitizer [17].

tector as compared to commercially available detectors: larger photodiodes

enables higher damage threshold, lower transimpedance gain enables larger

bandwidth, and AC coupling before the transimpedance amplifier avoids sat-

uration in op-amp and digitizer.

4.1.6 Optical alignment procedure

In this section, we will list the procedure to align the optics to achieve

stable trapping and high optical gain.

To align the 1064 nm trapping beam, the conjugate lens L1 was re-

moved and mirrors M1 and DM1 were used to align the 1064 nm beam such

that it was perpendicular to and centered on the fixed objective OBJ1. The

back-reflections from the multiple internal surfaces OBJ1, transmitted through
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dichroic mirrors DM1 and M6, were incident on the imaging CCD camera.

During this process, the 1064 nm filter was removed to let 1064 nm back-

reflections pass through. The two mirrors M1 and DM1 were used to adjust

the beam angle and position until the back reflections were symmetric and

concentric.

Then both objectives were temporarily removed, and the path of the

collimated beam marked with two irises to define the optical axis on the de-

tection side of the trap. Both objectives were then installed, along with the

flow cell. The conjugate lens L1 was replaced, and its position was adjusted

until the back reflections on the CCD were again symmetric and concentric.

OBJ2 was aligned so that the transmitted beam was collimated and centered

on both irises.

The signal-to-noise ratio (SNR) is extremely sensitive to the axial po-

sition of the condensing objective, as shown in Fig. 4.10. The condensing

objective was moved along a range of about 60 µm, showing there was a po-

sition with minimum SNR, which is obtained by comparing the mean square

displacement at long time scales with and without a silica microsphere. The

correlation between SNR and detection beam profile made it easy to optimize

the SNR.

In the case of experiments with BaTiO3 microspheres, counter-propagating

dual-beam optical traps are particularly sensitive to misalignment, which can

create artificial heating through non-conservative trajectories. We make use

of the stable trapping of silica microspheres to align the dual beam trap.
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With a silica microsphere trapped in the 1064 nm tweezer, conjugate

lens L3 was removed, and M4 and M5 were used to align the 532 nm trapping

beam to be symmetric and concentric around the trapped silica microsphere,

observing from the image camera. Then the conjugate lens L3 was placed in a

position where it focused the 532 nm beam at roughly 160 mm away from the

condensing objective. With the 1064 nm beam aligned using the procedure

given above, the 532 nm beam can be precisely aligned by minimizing the

change in position when blocking one of these two laser beams, which was

physically realized by moving the conjugate lens L3. This alignment method

is based on the fact that silica microspheres can be trapped in both single 1064

nm and 532 nm beams. If the green beam was misaligned, the position of the

Figure 4.10: Dependence of signal to noise ratio and detection beam profile
on the camera on axial position of the condensing objective. Z is micrometer
reading of the position of the condensing objective.
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trapped silica microsphere would shift. It is worth noting that the optimal

power ratio between the 1064 nm and 532 nm beams is around 1.5.

4.1.7 Cut mirror and detector alignment

As discussed before, it is critical to balance the two detection beam

halves. This requires near perfect alignment of the cut mirror. With a DC

coupled detector, the cut mirror can be aligned by zeroing the output of the

detector. To align the cut mirror for an AC coupled detector, we applied a 2

MHz (at which, the classical noise is negligible) intensity modulation on the

1064 nm laser. The cut mirror can be aligned by minimizing a 2 MHz intensity

modulation in the output of the detector, if misaligned, the 2 MHz signal is

visible. When the cut mirror is perfectly aligned, this intensity modulation

will vanish. The 2 MHz intensity modulation on the 1064 nm is generated by

applying an oscillating voltage signal to an electro-optic modulator (EOM) on

1064 nm optical path between the waveplate and PBS, as discussed in Section

4.1.1. The polarization of the 1064 nm laser beam, as well as the transmission

power after the PBS, can be altered by changing the voltage to the EOM. This

allowed for precise alignment of the cut mirror. The amplitude modulation

was switched off during acquisition of Brownian motion data.

In order to automatically align the cut mirror, we installed it on a

motorized stage (Thorlabs, MT1-Z8), which can be controlled by a motor

controller (Thorlabs, TDC001). The LabVIEW program recorded the 2 MHz

modulation signal from the balanced detector and has an algorithm to decide
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which way to move the cut mirror to minimize the 2 MHz modulation signal.

This automation makes it possible to take huge amount of data, which is

necessary to test the Maxwell Boltzmann distribution with a high statistical

precision.

As shown in Fig. 4.2, the split beams were guided by mirrors M8, M9

and M10 to the AC-coupled detector. This alignment was optimized for each

photodiode with the LabVIEW program in alignment mode, which is discussed

in detail in Section 4.1.8. The detection power was typically set to 10 mW with

the 2 MHz modulation on, and the cut mirror was placed in a position that the

detection beam was completely guided to one or the other photodiode. The

alignment for each photodiode was done by maximizing the 2 MHz modulation

signal. The strength of the 2 MHz signal of the two branches with the same

modulation strength was roughly the same, indicating that the gains in the

two branches were similar. This is necessary to eliminate the common mode

noise.

4.1.8 LabVIEW control and data acquisition system

The whole experiment was controlled by a home written LabVIEW pro-

gram, which can be operated in three modes: experimental conditions setting

mode, alignment mode and data saving mode. In the experimental conditions

setting mode, the power of both the 1064 nm and 532 nm laser beams can

be remotely set by this program. In the alignment mode, the 2 MHz modula-

tion signal is turned on automatically for aligning the cut mirror and the AC
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detector. In the data saving mode, the 2 MHz modulation signal is turned

off automatically and program acquires the signal from the balanced detector

and saves it in binary files. Along with the data from the detector, with each

acquisition the control program also save images from the optical imaging and

beam profile monitoring cameras, the powers of the trapping beams, and the

power of the beam entering the detectors.

The outputs of the balanced detector were digitized using a high band-

width, ultra low noise board (GaGe, Razor 1622 Express CompuScope). The

board had two channels, 16 bits of resolution, a maximum sampling rate of

200 Ms/s, and a maximum sample length of 227 consecutive samples, which

enables about 1 s of continuous recording for one continuous trajectory at

maximum sampling rate.

4.2 Methods for data analysis

The voltage signal recorded by the digitizer is, to a very good approx-

imation, proportional to the displacement of the particle in the trap. We first

compute the voltage power spectral density (voltage PSD) by means of a Fast

Fourier Transform (FFT) of the voltage signal, followed by taking the mag-

nitude squared and appropriately scaling it [96]. The measured magnitude of

the transfer function of the detection system is then squared and divided out

of this voltage PSD. We also calculate the PSD of velocity fluctuations (ve-

locity PSD) by applying a discrete derivative operator appropriately (in the

frequency domain) on the position PSD.
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The Wiener-Khinchin theorem [80] states that for wide-sense stationary

random processes, the power spectral density and auto-correlation of a physical

quantity are Fourier transform pairs. We make use of this to calculate the

position auto-correlation function (PACF), up to a calibration constant, by

FFT of the voltage PSD. In doing so, we discard data points at frequencies

much lower than the trap frequency (∼ 1 kHz), which are plagued by low-

frequency noise in the system, and assume that the power spectrum is flat in

this region. We then calculate the MSD from the PACF.

A least squares fit of the experimental MSD to the theory is then used

to extract three parameters: the calibration factor that converts the voltage

to length scales, the particle’s diameter and the trapping constant. We use

the velocity PSD to compute the VACF, again by use of the Wiener-Khinchin

theorem.

The stochastic thermal force PSD is calculated from the position PS-

D using the Green’s function obtained from using the hydrodynamic drag

coefficient in the Langevin equation, but without assuming the fluctuation-

dissipation theorem. The Green’s function for the Langevin equation may be

written as [15],

Ĝ(ω) =
1

−ω2mp − iωγ(ω) +K
(4.3)

The position is related to the driving thermal force through

x̂(ω) = Ĝ(ω)F̂th(ω) (4.4)
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Thus, having numerically calculated the position PSD from experimen-

tal data, the thermal force PSD can be calculated from it through

SF (ω) = |Ĝ(ω)|−2Sx(ω) (4.5)

4.3 Experimental results and discussion

This section describes the results of our analysis of Brownian motion

trajectories acquired from the digitizer. We took many trajectories of the

same microsphere in the three systems: a silica microsphere in water (677

trajectories), a silica microsphere in acetone (143 trajectories) and a BaTiO3

microsphere in acetone (43 trajectories). The number of trajectories was lim-

ited by the maximum time for which the particles could be trapped without

contamination. Each trajectory contains 227 position data points, correspond-

ing to ∼ 1 s, recorded at the digitizer’s maximum sampling rate of 200 MSa/s.

The data was acquired with the digitizer’s 25 MHz anti-aliasing filter enabled.

4.3.1 Mean square displacement

The voltage to position conversion factor C, trapping strength K as

well as particle diameter d were obtained by a least-squares fit of the measured

MSD to the hydrodynamic prediction, given by Eq. (3.76). The experimental

and theoretical MSDs for each system are shown in Fig. 4.11. For the silica

microsphere in water, fitting gives a diameter of d = 3.06±0.05 µm and a trap

strength of K = 188± 15 µN/m. For the silica microsphere in acetone, fitting

gives a diameter of d = 3.98 ± 0.06 µm and a trap strength of K = 50 ± 8
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µN/m. For the BaTiO3 microsphere in acetone, fitting gives a diameter of

d = 5.36 ± 0.06 µm, and a trap strength of K = 342 ± 13 µN/m. The

uncertainty of each fit parameter is determined from the variance in the results

of independent MSD fits of all measured trajectories for each system. It is

worth noting that the measured trapping stiffness in the case of silica in water is

pretty close the trapping stiffness prediction calculated by generalized Lorentz-

Mie scattering as discussed in Section 2.1.4. Whereas the measured trapping

stiffness in the case of silica in acetone is much lower than the prediction, which

is due to non-diffraction limited focusing caused by the larger aberration in

Figure 4.11: Double logarithmic plot of the experimental and theoretical MSDs
of a typical 1-s trajectory for a trapped microsphere in liquid in three systems.
Red dashed lines indicate the MSD of a particle moving at constant velocity
v∗rms =

√
kBT/m∗; black lines are theoretical MSDs; magenta diamonds rep-

resent silica in water data; green squares represent silica in acetone data; blue
circles represent BaTiO3 in acetone data.
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acetone using a water immersion objective.

The optical trapping causes the MSD to plateau around τk = γs/K,

the time scale during which the particle experiences a drift back towards the

trap center, before the purely diffusive regime is reached. The red dotted lines

in Fig. 4.11 represent the MSD of a microsphere moving at a constant velocity

of v∗rms =
√
kBT/m∗, as the modified equipartition predictions predicts. The

predicted v∗rms are 327 µm/s, 227 µm/s and 104 µm/s for systems with the silica

microsphere in water, silica microsphere in acetone, and BaTiO3 microsphere

in acetone respectively. At short timescales, the measured MSDs overlap with

the red dash-dot lines, a signature that the motion of the particles is well into

the ballistic regime.

4.3.2 Position power spectral density

The position power spectral densities for the three systems are shown

in Fig. 4.12. At high frequencies, the signal is dominated by photon shot

noise of the detection beam. As a result, the position PSD flattens at high

frequencies. The level of shot noise was obtained by a least-squares fit of

the measured position PSD to the sum of the theoretical position PSD and

a constant noise level. The position PSD flattens at high frequencies due to

shot noise of the detection beam at 2.4 × 10−15 m/
√

Hz, 9.1 × 10−15 m/
√

Hz

and 1.8× 10−15 m/
√

Hz for a silica microsphere in water, a silica microsphere

in acetone and a BaTiO3 microsphere in acetone respectively. The detection

beam power was maximized to reduce the relative shot noise. The system with
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Figure 4.12: The position power spectra of the same trajectories as shown in
Fig. 4.11. The position PSD flattens at high frequencies due to shot noise
of the detection beam at 2.4 × 10−15 m/

√
Hz, 9.1 × 10−15 m/

√
Hz and 1.8 ×

10−15 m/
√

Hz for a silica microsphere in water, a silica microsphere in acetone
and a BaTiO3 microsphere in acetone respectively. Black lines are the sum
of theoretical position PSD and a constant shot noise; magenta diamonds
represent silica in water data; green squares represent silica in acetone data;
blue circles represent BaTiO3 in acetone data.

a silica microsphere in acetone has less refractive index mismatch compare

to the system with a silica microsphere in water, which results in a lower

position sensitivity. Due to the high refractive index of BaTiO3 microspheres,

the system with a BaTiO3 microsphere in acetone has the highest position

sensitivity.
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Figure 4.13: Semi-logarithmic plot of the experimental and theoretical velocity
autocorrelation functions Cv(t) for the same trajectories as shown in Fig. 4.11.
The Cv(t) are normalized by 〈(v∗rms)2〉 for each system. Black lines correspond
to the full hydrodynamic theory [83]; magenta diamonds represent silica in
water data; green squares represent silica in acetone data; blue circles represent
BaTiO3 in acetone data.

4.3.3 Velocity autocorrelation function

The velocity autocorrelation function Cv(t) (normalized by 〈(v∗rms)2〉)

for the three systems are shown in Fig. 4.13. The experimentally resolved

maximum normalized VACF values are 0.75, 0.85 and 0.95 for three systems:

a silica microsphere in water, a silica microsphere in acetone and a BaTiO3

microsphere in acetone respectively. The VACF of the silica microsphere in

acetone decays slower than the one in water, which is because of the lower

viscosity of acetone as compared to water. The VACF of the BaTiO3 micro-

sphere in acetone decays slower than that of the silica microsphere in acetone,
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which is because of the higher density of the BaTiO3 microsphere as compared

to that of the silica microsphere. Therefore, the use of BaTiO3 microspheres

and acetone facilitates instantaneous velocity measurement. The oscillation in

the VACF observed in the BaTiO3 microsphere in acetone system is due to

the strong optical trapping. In fact, the oscillation also exists in the other two

systems as well, however this is not obvious in a log-linear plot.

4.3.4 Instantaneous velocity measurements and Maxwell-Boltzmann
distribution testing

In this section, we will show that our detection bandwidth is not limited

by the time response of the detection system, rather than being limited by the

noise, particularly the shot noise in the detection beam, as discussed in Section

3.4. We then illustrate the improvements we made to achieve instantaneous

velocity measurements in the frequency domain.

The velocity power spectral density (velocity PSD) and cumulative ve-

locity PSD (normalized to kBT/m
∗) for the three systems for the same data

as in Fig.4.11 are shown in Fig. 4.14, 4.15 and 4.16. The velocity PSD rep-

resents how the power of the velocity of the microspheres is distributed over

the different frequencies. The cumulative velocity PSD shows the fraction of

velocity signal contained in a frequency from DC to a given frequency, and can

be interpreted as showing the minimum measurement bandwidth necessary to

measure the average kinetic energy within a given uncertainty. Magenta lines

in Fig. 4.14 represent the shot noise contribution as calculated using the re-
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Figure 4.14: The velocity PSD (A) and normalized cumulative velocity PS-
D (B, normalized to kBT/m

∗) of a silica microsphere in water for the same
trajectories as in Fig. 4.11 in the system with a silica microsphere in water.
In both plots: green squares represent the measurements with trapped par-
ticles; blue diamonds represent the noise measured without particles present
but with the same detection power; red circles represent the net measurement
with noise subtracted; black lines are the theoretical prediction; magenta lines
are the shot noise using the results shown in Fig.4.12, indicating that it is the
dominant noise source.

sults shown in Fig. 4.11. The blue diamonds represent the noise measured

without particles present but with the same detection power. The agreement

between the magenta lines and blue diamonds in each system indicates that

it is indeed the dominant source of noise. The velocity PSD of the shot noise

is proportional to ω2, while the cumulative velocity PSD of the shot noise is

proportional to ω3, which set a sharp bandwidth limit, as shown in Fig. 4.14,

above which the signal is dominated by the noise. The useful bandwidth is not

directly limited by the detection system response time but by the quantum

noise of the detection beam.

To be able to measure the instantaneous velocity, we need increase the
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Figure 4.15: The velocity PSD (A) and normalized cumulative velocity PSD
(B, normalized to kBT/m

∗) of a silica microsphere in acetone for the same
trajectories as in Fig. 4.11 in the systems with a silica microsphere in acetone.
In both plots: green squares represent the measurements with trapped par-
ticles; blue diamonds represent the noise measured without particles present
but with the same detection power; red circles represent the net measurement
with noise subtracted; black lines are the theoretical prediction; magenta lines
are the shot noise using the results shown in Fig. 4.12, indicating that it is the
dominant noise source.

area under velocity PSD (namely, a larger cumulative velocity PSD) before it

is dominated by the shot noise by moving the velocity PSD of the microsphere

(the black lines in Fig. 4.14, 4.15 and 4.16) towards the left (equivalently, s-

lowing down the dynamics of the microsphere) and (or) moving the shot noise

curve (the magenta lines in Fig. 4.14, 4.15 and 4.16) towards the right (equiv-

alently, reducing shot noise and increasing position sensitivity). As compared

to the system of a silica microsphere in water, by using the system of a sili-

ca microsphere in acetone, we can move the velocity PSD of the microsphere

towards the left (due to less viscosity of acetone) but we move the shot noise

curve towards the left as well (due to a less refractive index mismatch, thus a
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Figure 4.16: The velocity PSD (A) and normalized cumulative velocity PS-
D (B, normalized to kBT/m

∗) of a BaTiO3 microsphere in acetone for the
same trajectories as in Fig. 4.11 in the systems with a BaTiO3 microsphere
in acetone. In both plots: green squares represent the measurements with
trapped particles; blue diamonds represent the noise measured without parti-
cles present but with the same detection power; red circles represent the net
measurement with noise subtracted; black lines are the theoretical prediction;
magenta lines are the shot noise using the results shown in Fig.4.12, indicating
that it is the dominant noise source.

lower optical gain). As a result, the improvement was marginal. Instead, by

using the system of a BaTiO3 microsphere in acetone, we can not only move

the velocity PSD of the microsphere towards the left but also move the shot

noise towards the right, resulting a much bigger improvement.

The velocity distributions for the three systems, calculated from 3.6

billion, 200 million and 144 million velocity points, are shown in Fig. 4.17,

4.18 and 4.19. Blue lines (overlapping almost perfectly with the black line in

Fig. 4.19) are Gaussian fits of the measurements, from which the fraction of

the mean kinetic energy observed was determined. We observed 78%, 83%
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Figure 4.17: The normalized velocity distribution of a silica microsphere in
water (v∗rms = 327 µm/s), calculated from 3.6 billion data points. The his-
togram bin size for each velocity distribution was set to the rms magnitude of
the corresponding noise. Red circles represent the measurements with trapped
microspheres; green diamonds represent the measurements acquired without
particles present, but with matching detection power; black line is the mod-
ified MBD prediction; blue line is a Gaussian fit of the measurements, from
which the fraction of the mean kinetic energy observed was determined.

and 100% of the mean kinetic energy predicted by the modified energy e-

quipartition theorem, to which the noise contributes about 4%, for the three

systems respectively. The three systems give a trend of approaching the in-

stantaneous velocity measurement, showing the importance of using BaTiO3

microspheres and acetone. It is worth emphasizing that the instantaneous

velocity measurement was made possible by two improvements: first, slow-

ing down the dynamics by using acetone (lower viscosity compared to water)

and BaTiO3 microspheres (higher density compared to silica); and second,
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Figure 4.18: The normalized velocity distribution of a silica microsphere in
acetone (v∗rms= 227 µm/s), calculated from 200 million data points. The his-
togram bin size for each velocity distribution was set to the rms magnitude of
the corresponding noise. Red circles represent the measurements with trapped
microspheres; green diamonds represent the measurements acquired without
particles present, but with matching detection power; black line is the mod-
ified MBD prediction; blue line is a Gaussian fit of the measurements, from
which the fraction of the mean kinetic energy observed was determined.

improving signal-to-noise by increasing the detected beam power and using

BaTiO3 microspheres (higher refractive index compared to silica improves the

scattering efficiency).

The instantaneous velocity of the microspheres was calculated by a

numerical derivative of the position data, which is averaged using binning. A

shorter averaging time would increase the fraction of kinetic energy observed
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Figure 4.19: The normalized velocity distribution of a BaTiO3 microsphere in
acetone (v∗rms= 104 µm/s), calculated from 144 million data points. The his-
togram bin size for each velocity distribution was set to the rms magnitude of
the corresponding noise. For all plots: red circles represent the measurements
with trapped microspheres; green diamonds represent the measurements ac-
quired without particles present, but with matching detection power; black
line is the modified MBD prediction.

but at the cost of a lower signal-to-noise ratio (SNR), which is defined as

SNR = 10 log10

(
〈v2〉
〈n2〉

)
(4.6)

where 〈v2〉 and 〈n2〉 are the mean square values of the velocity and noise

measurements respectively. We choose bin size n = 25, 85 and 40 for the three

systems respectively with SNR ≈ 14 dB for each system.

The detailed experimental conditions and results are listed in Table 1

for all the three systems. The instantaneous velocity of a microsphere in a
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liquid follows the modified MBD (and thus, the modified energy equipartition

theorem) over a dynamic range of more than six orders of magnitude in count-

rate and five standard deviations in velocity, as shown in Fig. 4.19. Assuming

ergodicity [21], the same conclusion should also be true for an ensemble of

identical particles.

Systems Silica in water Silica in acetone BaTiO3 in acetone
d (µm) 3.06±0.05 3.98±0.06 5.36±0.06

P (mW) 144± 6 144± 6 135± 6
K (µN/m) 188±15 50±8 342±13

C (mV/nm) 25.3±0.5 6.3±0.3 31.8±0.6

SN (fm/
√

Hz) 2.3±0.1 8.9±0.4 1.7±0.1
Velocity points 3.6 billion 200 million 144 million

Bandwidth 8 MHz 2.4 MHz 5 MHz
Ekinetic 78% 83% 100%

Table 4.1: The summary of the results for the three systems. d is the sphere
diameter, P is the detection power, K is the trap stiffness, C is the volts-per-
meter calibration factor, SN is the position shot noise and Ekinetic is measured
kinetic energy in percentage.

To measure the actual instantaneous velocity in liquid as predicted by

the equipartition theorem, the temporal resolution must be shorter than the

time scales of acoustic damping, which are 1.0 ns, 1.7 ns and 2.3 ns for three

systems: a silica microsphere in water, a silica microsphere in acetone and a

BaTiO3 microsphere in acetone respectively. By using a pulsed laser as the

detection beam, one can significantly reduce the shot noise and it may be pos-

sible to measure the true instantaneous velocity, which will be discussed more

in Chapter 9. Our setup can also be used to measure the velocity distribution
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of a particle in non-Newtonian fluids [101], where deviations from the modified

MBD may result from the viscoelasticity of the complex fluid.

4.3.5 Measurements of the thermal force

As discussed in Chapter 3, the dynamics of the Brownian particle may

be modeled using a Generalized Langevin equation with a stochastic driving

force that captures the effect of the thermal fluctuations in the fluid acting

on the particle. In the Einstein-Ornstein-Uhlenbeck model [13], which is valid

only when the inertia of the fluid is negligible, the thermal force exerted on

Brownian particles is assumed to be spectrally white, meaning it is delta cor-

related and has a flat power spectral density SFth = 4kBTγs. Addition of the

Basset force to the Einstein-Ornstein-Uhlenbeck model results in the colored

thermal force spectral density SFth = 4kBTγs(1 +
√
ωτf/2) [83] acting on a

particle in an unbounded fluid.

The color of the thermal force emerges as a resonance in the position

PSD, which has been suggested [102] and verified recently [15, 103]. A very

strong trap is necessary to explore this resonance. The equation of motion for

a trapped particle doing Brownian motion in a fluid can be described by the

Langevin equation

mẍ = Ffr + Fth −Kx (4.7)

At low frequencies (long time scales), the optical trapping force dominates

over the inertia of the particle and the friction force. Thus, the Langevin

equation can be reduced to Fth = Kx. The stronger the trap is the larger
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frequency range in which the reduced Langevin equation holds. Consequently,

the thermal force PSD can be obtained as

SFth = K2Sx. (4.8)

Because of the color of the thermal force, SFth = 4kBTγs(1 +
√
ωτf/2),

the position PSD increases with increasing frequency up to the corner frequen-

cy fc = K/(2πγs). As the frequency increases more than fc, the friction force

and the inertia of the particle become increasingly important, resulting in a

corresponding decrease in the position PSD. Therefore, a resonance arises in

the position PSD. Among the three systems, the BaTiO3 in acetone system

has a trapping strength to be able to observe such a resonance at fc = 3.5 kHz.

Figure 4.20: Log-linear plot of the position PSD of a trapped BaTiO3 micro-
sphere in acetone, reflecting the color of the thermal force. This is re-plotting
the BaTiO3-acetone data shown in Fig. 4.12.
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The position PSD (normalized by Sx(0), averaged over all 43 trajectories) for

the BaTiO3 in acetone system is shown in Fig. 4.20, which is re-plotting the

BaTiO3 in acetone data in Fig. 4.12 on a log-linear plot. This arising resonance

is remarkable, since a microsphere in a liquid is conventionally considered as

an overdamped system.

Figure 4.21: Double logarithmic plot of the colored thermal force in the three
systems for the same data as shown in Fig. 4.11. Black lines are the theoretical
predictions of the thermal force PSD for the three systems. Magenta diamonds
represent silica in water data; green squares represent silica in acetone data;
blue circles represent BaTiO3 in acetone data. The deviation from the theory
around 2 MHz for the system of a BaTiO3 microsphere in acetone is due to the
laser intensity noise leakage caused by slight misalignment of the cut mirror.

In addition to the above indirect way of studying the color of the ther-

mal force, the thermal force spectral densities for the three systems can be

directly calculated from position PSD using Eq. (4.5), as shown in Fig. 4.21.
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The DC values of the SFth in the three systems are different due to different

sizes of the particles and different viscosities of the liquids. Where as at high

frequencies, they all increase with a
√
ω dependence, with a slop of 0.5 on a

log-log plot. The deviation from the theory around 2 MHz for the system of

a BaTiO3 microsphere in acetone is due to the laser intensity noise leakage

caused by a slight misalignment of the cut mirror.
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Chapter 5

Theory for Brownian motion with boundary

effects

Understanding the influence of boundaries on particle dynamics is of

great significance, from both a fundamental and an applied point of view. For

example, blood cells moving in vessels, particles migrating in porous media,

and macromolecules diffusing in membranes are all affected by the presence of

boundaries. Because of this, the Brownian motion of particles near a boundary

is more complicate and interesting than that in bulk.

It is well-known that the mobility of particles decreases as they ap-

proach boundaries at which the fluid does not slip. This effect of “surface

confinement” was predicted by Lorentz in 1907 [27]. The increase of the drag

force is attributed to the alteration of the hydrodynamic interaction between

the particle and the fluid generated by the no-slip boundaries. The motion

of the particle becomes anisotropic because the drag force parallel to the wall

is typically less than that perpendicular to the wall. This effect is significant

when the dimensions of the confining geometry and suspended particles are

comparable.

Surface confinement has conventionally been considered one of many
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boundary effects which will influence Brownian motion in the long time scale

diffusive regime. We pointed out that this effect can also occur in the short

time scale ballistic regime [104]. In addition to that, there are many other

boundary effects that occur in the ballistic regime as well. In the short time

scale ballistic regime, the velocity autocorrelation function of the Brownian

particle decays faster than that of particle in a bulk fluid. Furthermore, at low

frequencies the thermal force loses its color due to the reflected flow from the

no-slip boundary. The power spectrum of the thermal force on the particle

near a no-slip boundary becomes flat at low frequencies.

In this chapter, we will first give the theory for boundary effects on

Brownian motion in the diffusive regime, namely the predictions of diffusion

coefficients near a boundary as a function of sphere-wall separation. We con-

sider two systems: a microsphere near a flat infinite wall and a microsphere

outside a cylindrical wall. This will be followed by the theory for boundary

effects on Brownian motion over the entire time scales. Furthermore, we will

give numerical predictions of a variety of statistical properties of Brownian

motion using the conditions in our experiments. These numerical results serve

as a guide for our experiments. It is important noting that in this chapter,

the fluid flow has no-slip boundary conditions both at the surface of the walls

and the particle. We also would like to emphasize again that the particle only

has translational motion and does not rotate.

113



5.1 Anisotropic and hindered diffusion of a microsphere
near a wall

The fluid drag force on a particle with radius a, moving freely at velocity

v in a fluid with viscosity η, i.e., far from any borders, in the case of the low

Reynolds number, is simply described by the Stokes law [105]

F = 6πηav. (5.1)

The corresponding diffusion coefficient can be obtained through Stokes-Einstein

relation

D0 =
kBT

6πηa
. (5.2)

A particle diffusing close to a no-slip wall will experience increased vis-

cous drag compared with its motion in the bulk. The motion of the particle

also becomes anisotropic due to the hydrodynamic interactions between the

particle and the nearby wall, which depends on the particle’s shape, orienta-

tion, relative position to the wall, the shape of the wall as well as the fluid

flow boundary conditions both at surface of the particle and the wall.

In this section, we will first give the diffusion coefficients of a particle

near a flat wall. This is followed by the theoretical predictions of diffusion

coefficients near a cylindrical wall, which is the actual experimental system

discussed in Chapter 6.
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5.1.1 Diffusion of a microsphere near a flat wall

The system of a spherical particle moving near an infinite flat wall

has cylindrical axial symmetry, with an axis in the normal direction to wall

through the center of the spherical particle. Therefore, the particle’s motion

can be decomposed into parallel and perpendicular directions. The drag force

on a spherical particle in both parallel and perpendicular directions has been

given using method of reflection [106]. The method of reflections is an iterative

series solution technique that decomposes the velocity and the pressure fields

into a linear superposition of terms of successively higher order in the number

of wall and sphere boundary interactions. The terms in the expansion are

constrained to alternately satisfy the boundary conditions on the sphere and

on the confining walls.

The anisotropic and hindered diffusion coefficients of the particle in

parallel and perpendicular directions are [106]

D‖(h)

D0

= 1− 9

16
ξ +

1

8
ξ3 − 45

256
ξ4 − 1

16
ξ5 (5.3)

D0

D⊥(h)
=

4

3
sinh(β)

∞∑
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
(5.4)

×

[
2 sinh((2n+ 1)β) + (2n+ 1) sinh(2β)

4 sinh2((n+ 1/2)β)− (2n+ 1)2 sinh2 β
− 1

]
where D0 is the diffusion coefficient of a free sphere with the same size in

the same fluid at the same temperature, ξ = a
h

and β = cosh−1(h
a
), h is the

distance between the center of the sphere and the surface of the wall, denoted

as sphere-wall separation. It is worth noting that boundary effects imposed
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by a flat wall on diffusion at the same position always satisfy D⊥ < D‖.

5.1.2 Diffusion of a microsphere near a cylindrical wall

Since the experiments as discussed in Chapter 6 on boundary effects is

actually performed near a cylindrical wall. Unlike the case with a sphere near

a flat wall, this system no longer has cylindrical axial symmetry. The motion

of the particle behaves differently in all three directions r̂, ẑ and θ̂.

We here give the predictions of the anisotropic and hindered diffusion of

a point-like sphere outside a cylinder, which has been studied previously [107].

We can get a better approximation by adding a geometric series summation

for higher order reflections, as suggested by Happel and Brenner [106]

Dr̂ =D0(1− rnΓr̂) (5.5)

Dẑ =D0(1− rnΓẑ) (5.6)

Dθ̂ =D0(1− rnΓθ̂) (5.7)

where D0 is the diffusion coefficient of a free sphere with the same size in the

same fluid at the same temperature, rn is radius of the particle normalized by
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the radius of the cylinder, and

Γr̂ =
3

2π
Σ̂

[
Hn −

1

4
(Ln−1 + Ln+1 − 2r0Ln)

×
(
Ln−1 + Ln+1 − (L′n−1 + L′n+1)r0 + 2L′n

)
/En

]

Γẑ =
3

2π
Σ̂

[
Hn +

(
λ
∂Ln
∂λ

)(
Ln −

1

2
(Ln−1 + Ln+1)r0

)
/En

]

Γθ̂ =
3

2π

[
Hn −

1

4
Σ̂
(
Ln−1 − Ln+1

)(2nLn
r0

− (n− 2)Ln−1 − (n+ 2)Ln+1

)
/En

]

Hn = In(λ)
K2
n(λr0)

Kn(λ)
;Ln =

Kn(λr0)

Kn(λ)
;L′n =

λK ′n(λr0)

Kn(λ)

En = 1 + χ′n(1)− 1

2

(
χ′n−1(1) + χ′n+1(1)

)
χ′n(1) =

λK ′n(λ)

Kn(λ)
; Σ̂ =

∫ ∞
0

∞∑
n=−∞

dλ

where In, Kn are modified Bessel functions and r0 is the distance from the

center of the sphere to the center of the cylinder normalized by the radius of

the cylinder.

These results are true only when the radius of the cylinder is much

bigger than both the radius of the particle and sphere-cylinder separation (the

distance between the center of sphere and the surface of the cylinder). When

the particle is very close to the cylinder, within the point particle approxi-

mation, the curvature of the boundary can be neglected. Thus, the diffusion

coefficients can be calculated using Eq. (5.3) and Eq. (5.4), Dr̂ ∼ D⊥ and

Dẑ ∼ Dθ̂ ∼ D‖. It is worth noting that the boundary effects imposed by the

cylindrical wall on diffusion for the same position always satisfyDr̂ < Dẑ < Dθ̂.
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Dr̂ is less than both Dẑ and Dθ̂ is consistent with the flat wall case (D⊥ < D‖).

Dẑ < Dθ̂ is due to the orientation of the curvature of the cylindrical bound-

ary. If the particle is inside of a cylinder, this relation should be modified to

Dẑ > Dθ̂. Because of the curvature of the cylindrical boundary, with the same

sphere-wall separation, these relations, D⊥ < Dr̂ and D‖ < Dr̂ < Dθ̂, always

hold, as discussed more in Chapter 6.

5.2 Boundary effects on unsteady Brownian motion

The effect of a plane wall on the unsteady motion of a sphere in a viscous

fluid in the parallel direction to the wall has been studied by Wakiya [108] and

in the perpendicular direction by Gotoh et al. [109]. These authors showed

that the famous long-time tail of the velocity autocorrelation function in bulk

is obliterated by the wall. The first complete theory on boundary effects

imposed by a flat wall on Brownian motion over the entire time scales was not

available until recently [110]. However, this work seems inconsistent, and we

have proposed a correction. The modifications to Felderhof’s theory will be

justified and discussed in detail in a future publication [111].

In this section, we review briefly Felderhof’s theory, including our pro-

posed modifications, for boundary effects on the Brownian motion of a spher-

ical particle in an incompressible fluid near a flat and infinite no-slip wall. We

consider a spherical particle of radius a and mass mp, immersed in a viscous

incompressible fluid with shear viscosity η and mass density ρf near a flat and

infinite wall. The fluid does not slip both the surface the boundary and the
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sphere. The sphere-wall separation is h, defined as the distance between the

center of the sphere and the surface of the wall.

5.2.1 Linear hydrodynamics

For small magnitude motion of the sphere, the fluid velocity and pres-

sure field are governed by the linearized Navier-Stokes equations

ρf
∂v

∂t
= η52 v −5p, (5.8)

5 · v = 0. (5.9)

The pressure field is determined by the condition of incompressibility. More

conveniently, the linearized Navier-Stokes equations can be written in the fre-

quency domain as

η52 vω − iωρfvω = −5 p, (5.10)

5 · vω = 0. (5.11)

The equation of motion for the sphere is governed by Newton’s law

− iωmpUω = Eω + Kω (5.12)

where Uω is the Fourier transform of the particle velocity, Kω is the Fourier

transform of the force on the particle exerted by the fluid, namely the drag

force, and Eω is the Fourier transform of the time dependent external force

acting on the sphere, which can be the optical trapping force or the thermal

force in the Langevin model.
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The location of the sphere itself shall be assumed to have negligible

motion, so that the boundary may be assumed to be stationary. In other words,

the boundary is fixed but the velocity conditions at the boundary are changing

all the time. The force on the sphere exerted by the fluid Kω in the presence of

an incident flow v′(ω) that satisfies the linearized incompressible Navier-Stokes

equations can be obtained through the generalized Faxén theorem [112,113].

Kω = −γ0(ω)U(ω) + 6πηa

[
(1 + α̃)v̄′S(ω) +

1

3
α̃2v̄′V (ω)

]
, (5.13)

where v̄′S and v̄′V denote the averages of the incident flow v′(ω) on the surface

and volume of the sphere respectively. γ0(ω) is the free-space drag coefficient

γ0(ω) = 6πηa
(
1 + α̃ + 1

9
α̃2
)
, where α̃ =

√
−iωρfa2/η.

The boundary effects imposed by the wall can be treated as the change

in the incident flow v′(r0, ω). In Felderhof’s frame work [110], the flow reflected

from the wall is treated as the incident flow to calculate the drag on a sphere

near a wall. The reflected flow is calculated by assuming that the force on the

fluid exerted by the spherical particle may be approximated by an appropriate

point force Fω. And the the incident flow can be calculated via v′(r0, ω) =

R(r0, ω) · Fω, where R(r0, ω) is the reaction field tensor discussed later in

detail in Section 5.2.2.

Within the point particle approximation [110], the inhomogeneities of

flow over the small size of the sphere are neglected, and we replace the surface

and volume averages in the generalized Faxén theorem simply with the flow

generated by the incident flow at the particle’s position v̄′S = v̄′V = v′(r0, ω) =
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R(r0, ω) ·Fω. Thus, the drag force with point approximation becomes

Kω = −γ0(ω)Uω + 6πηa
[
(1 + αa+ α2a2/3)R(r0, ω) ·F(ω)

]
. (5.14)

Felderhof simply uses the external for Eω acting on the particle as the

point force Fω. Therefore, the drag force calculated in [110] is

Kω = −γ0(ω)Uω + 6πηa
[
(1 + α̃ + α̃2/3)R(r0, ω) ·Eω

]
, (5.15)

which we believe is incomplete. The correct expression for Kω using Faxén

theorem is given by [111]

Kω = −γ0(ω)Uω + γs
[
(1 + α̃ + α̃2/3)R(r0, ω) ·

(
Eω + iω(mp −mf )Uω

)]
.

(5.16)

The key idea is that the point force F(ω) must reproduce the momentum flux

through the surface of the sphere between two situations: one is an immersed

point particle exerted by an external force Eω and the other is the region

occupied by the sphere is filled with fluid (particle is removed), and the point

force Fω acted at the center of this spherical region. The net force exerted by

the sphere on the fluid is given by −Kω = Eω + iωmpUω (Eq. (5.12)). To

produce the same net force on the boundary, we must have a point force of

value Fω = −Kω − iωmfUω acting on the fluid at position r0, since some of

the momentum from this force will go toward accelerating the fluid. Thus, in

the case of unsteady Stokes flow, it is only for neutrally buoyant particles that

the induced force Fω is the same as the external force Eω.
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Combining Eq. (5.12) and Eq. (5.16) and with the definition Uω =

YωEω, the admittance tensor of a sphere in fluid near a flat infinite no-slip

boundary can be written as

Yω =
I + γs(1 + α̃ + α̃2/3)R(r0, ω)

(γ0(ω)− iωmp)I + iω(mf −mp)γs(1 + α̃ + α̃2/3)R(r0, ω)
, (5.17)

where I is the identity matrix.

Combining Eq. (5.12) and Eq. (5.16) and with the definition K(ω) =

−γ(ω)U(ω), the drag-coefficient tensor of a sphere in fluid near a flat infinite

no-slip boundary can be written as

γ(ω) =
γ0(ω) + iωmfγs(1 + α̃ + α̃2/3)R(r0, ω)

I + γs(1 + α̃ + α̃2/3)R(r0, ω)
. (5.18)

As compared to a particle undergoing Brownian motion far away from any

boundaries, the admittance and drag coefficient now become much more com-

plicated. Both of them depend on the detail boundary geometry and in general

are anisotropic, namely become a tensor.

5.2.2 Reaction field tensor

The reaction field tensor as defined by Felderhof is the difference, as r→

r0, between the Green’s function of the unsteady Stokes equations G(r|r0;ω)

that respects no-slip boundary conditions on the wall, and G0(r − r0;ω) the

free-space Green’s function, i.e.

R(r0, ω) = lim
r→r0

[G(r|r0;ω)−G0(r− r0;ω)] . (5.19)
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Here, r0 denotes the location of the point force, which is the same as that of

the point particle.

Within the point approximation, the non-diagonal elements of the re-

action field tensor Rxy(r0, ω), Ryx(r0, ω), Rxz(r0, ω), Rzx(r0, ω), Ryz(r0, ω)

and Rzy(r0, ω) vanish by axial symmetry. And only the diagonal elements

of the reaction field tensor Rxx(r0, ω), Ryy(r0, ω) and Rzz(r0, ω) are nonzero.

By the same symmetry, Rxx(r0, ω) equals Ryy(r0, ω). We denote R‖(r0, ω) =

Rxx(r0, ω) =Ryy(r0, ω) and R⊥(r0, ω) = Rzz(r0, ω). Therefore, the reaction

field tensor in this limit is a diagonalized tensor, meaning the motion in the

parallel and perpendicular is uncoupled.

The reaction field tensor element R‖(r0, ω) is given by [110]

R‖(r0, ω) =
−1

192πηhν4

[
36 + 27ν + 6ν2 + 6(6 + 12ν + 11ν2 + 6ν3 + 4ν4)e−2ν

−(144 + 144ν + 72ν2 + 24ν3 − 6ν4 + 2ν5 − ν6 + ν7)e−ν

+6πν3
(

2ν
(
Y−2(2ν)−H−2(2ν)

)
+ 3(Y−3(2ν)−H−3(2ν)

))
+ν8E1(ν) + 12ν3

(
2νK2(2ν) + 3K3(2ν)

)]
(5.20)

And the perpendicular element R⊥(r0, ω) is given by [114]

R⊥(r0, ω) =
−1

96πηhν4

[
36 + 6ν2 + 48ν3 + 6(6 + 12ν + 9ν2 + 2ν3)e−2ν

−(144 + 144ν + 48ν2 − 6ν4 + 10ν5 + ν6 − ν7)e−ν

+6πν
(

2ν(3− ν2)
(
Y0(2ν)−H0(2ν)

)
− (6− 5ν2)

(
Y1(2ν)−H1(2ν)

))
+ν6(12− ν2)E1(ν) + 72ν2K0(2ν) + 36ν(2 + ν2)K1(2ν)

]
(5.21)
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where ν =
√
−iωρfh2/η =

√
−iωτw, τw is the time taken for vorticity in

the fluid to traverse the distance from the wall to the sphere. Yn(2ν) is the

Bessel function, Kn(2ν) is the modified Bessel function, E1(ν) is the exponen-

tial integral function, Hn(2ν) is the Struve function. We have verified these

sophisticated calculations.

Until now, we can give the admittance of particle in the parallel direc-

tion

Y⊥ω =
1 + γs(1 + α̃ + α̃2/3)R⊥(r0, ω)

(γ0(ω)− iωmp) + iω(mf −mp)γs(1 + α̃ + α̃2/3)R⊥(r0, ω)
, (5.22)

and in the parallel direction

Y‖ω =
1 + γs(1 + α̃ + α̃2/3)R‖(r0, ω)

(γ0(ω)− iωmp) + iω(mf −mp)γs(1 + α̃ + α̃2/3)R‖(r0, ω)
. (5.23)

With these, the dynamics of the particle can be at least numerically calculated,

although the analytic expressions remain unknown.

The low-frequency expansion of the reaction field tensor elementsR⊥(r0, ω)

and R‖(r0, ω) are given [110]

R⊥(r0, ω) ∼ 1

6πηh

(
− 9

8
+ ν − 3

8
ν2 +

19

192
ν4)
)

R‖(r0, ω) ∼ 1

6πηh

(
− 9

16
+ ν − 9

8
ν2 + ν3 +

3

16
ν4log(ν)

)
. (5.24)

Thus, the zero-frequency mobility in the two directions are

µ⊥ = Y⊥(ω = 0) =
1− 9a

8h

6πηa
(5.25)

µ‖ = Y‖(ω = 0) =
1− 9a

16h

6πηa
. (5.26)
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These expressions lead to the diffusion coefficients with first order of a
h

in the

two directions via Einstein-Smoluchowski relation D = µkBT,

D‖ =
kBT

6πηa

(
1− 9a

16h

)
(5.27)

D⊥ =
kBT

6πηa

(
1− 9a

8h

)
(5.28)

In the parallel direction, Eq. (5.27) obviously is Eq. (5.3) with up to the first

order. In the perpendicular direction, this is not so obvious as comparing

Eq. (5.28) to Eq. (5.4).

5.2.3 Effective mass with boundary effects

As discussed in Section 3.3.1.2, in an unbounded fluid, the effective

inertial mass (which accounts for the inertia of the entrained fluid) of a spher-

ical particle is given by the mass iof the particle mp, plus an added mass of

ma = mf/2, namely m∗ = mp + mf/2, where mf is the mass of the liquid

displaced by the particle [26].

The presence of the boundary alters this effective mass, which becomes

anisotropic and also depends on the distance to the wall. The effective mass

can be obtained from mean square of the velocity since 〈(v∗)2〉 = kBT/m
∗, as

the modified equipartition-theorem predicts. The mean square of the velocity

can be obtained from Kubo-Green formula Eq. (3.6) using the initial value
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theorem1 [115]

C⊥(0) =
kBT

mp + 1
2
mf

(
1 + 3

8

(
a
h

)3
)

C‖(0) =
kBT

mp + 1
2
mf

(
1 + 3

16

(
a
h

)3
) . (5.29)

Therefore, the effective masses of the particle near a no-slip wall in

perpendicular and parallel directions become

m∗⊥ = mp +
1

2
mf

(
1 +

3

8

(a
h

)3
)

(5.30)

m∗‖ = mp +
1

2
mf

(
1 +

3

16

(a
h

)3
)
. (5.31)

These results are consistent with many authors [105,116]. However, Felderhof’s

framework produces the spurious results:

m∗⊥,F =
mp + 1

2
mf

1− 1
8

(
a
h

)3 (5.32)

m∗‖,F =
mp + 1

2
mf

1− 1
16

(
a
h

)3 . (5.33)

The modification due to boundary effects on the effective mass only applies to

the added mass, whereas the bare mass of the particle remains unchanged.

According to modified energy equipartition theorem [26], the velocity

variance becomes anisotropic as well and is

〈(v∗‖)2〉 = kBT
m∗‖

(5.34)

〈(v∗⊥)2〉 = kBT
m∗⊥

(5.35)

1With F (s) =
∫∞
0

f(t)e−stdt, one can get lim
t→0

f(t) = lim
s→∞

sF (s)
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in the parallel and perpendicular directions respectively.

5.2.4 The flattening in the thermal force power spectral density

The thermal force power spectral density in the perpendicular direction

is given by

SF,⊥(ω) = 4kBT<[γ⊥ω ] (5.36)

and in the parallel direction is given by

SF,‖(ω) = 4kBT<[γ‖ω] (5.37)

where < means real part, and γ⊥(ω) and γ‖(ω) are

γ⊥(ω) =
γ0(ω) + iωmfγs(1 + α̃ + α̃2/3)R⊥(r0, ω)

1 + γs(1 + α̃ + α̃2/3)R⊥(r0, ω)
, (5.38)

γ‖(ω) =
γ0(ω) + iωmfγs(1 + α̃ + α̃2/3)R‖(r0, ω)

1 + γs(1 + α̃ + α̃2/3)R‖(r0, ω)
. (5.39)

The thermal force (and the drag coefficients) on the particle should not depend

on the mass mp or the density of the particle, as derived here. However,

Felderhof’s results spuriously does. The the drag coefficients derived from

Felderhof’s theory [110] are

γ⊥(ω) =
γ0(ω)− iωmp

1 + γs(1 + α̃ + α̃2/3)R⊥(r0, ω)
+ iωmp, (5.40)

γ‖(ω) =
γ0(ω)− iωmp

1 + γs(1 + α̃ + α̃2/3)R‖(r0, ω)
+ iωmp. (5.41)

In the Einstein-Ornstein-Uhlenbeck model [13] of Brownian motion,

which is valid only when the inertia of the fluid is negligible, the corresponding
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thermal force is white noise, with the flat (one-sided) spectrum SF = 4kBTγs.

Addition of the Basset force to the Einstein-Ornstein-Uhlenbeck model results

in the colored thermal force spectral density SF = 4kBTγs(1 +
√
ωτf/2) on

a particle in an unbounded fluid [83]. This has been experimentally verified

[15,17].

Surprisingly, the thermal force loses its color at low frequencies in the

presence of a boundary. The thermal force power spectral density (FPSD) on

the particle near a no-slip wall becomes flat at low frequencies (ωτf � 1 and

ωτw � 1). The low frequency asymptotic behavior of the thermal force PSD

on a particle near a flat wall is found by expanding the reaction field tensor

and the expression for the drag coefficient to lowest few orders in ω. We find as

ω → 0, the asymptotic form of the (one-sided) thermal force power spectrum

on the particle in the parallel direction near a no-slip flat wall is given by

SF,⊥(ω) = 4kBTγs

(
1

1− 9a
8h

− 32
√

2h2

3(8h− 9a)2
(ωτf )

3
2

)
, (5.42)

and the parallel direction is given by

SF,‖(ω) = 4kBTγs

(
1

1− 9a
16h

+
128
√

2(3h4 − a2h2)

3a2(16h− 9a)2
(ωτf )

3
2

)
. (5.43)

In contrast, the (one-sided) PSD of the thermal force on the sphere in bulk is

given by

SF,0(ω) = 4kBT<[γ0(ω)] = 4kBTγs

(
1 +

√
ωτf
2

)
. (5.44)

The DC values of SF,‖ and SF,⊥ increase to 4kBTγs
1

1− 9a
16h

and 4kBTγs
1

1− 9a
8h

from

the bulk value of 4kBTγs respectively. The increase in the thermal force is con-
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sistent with the increase in the drag force, in accordance with the fluctuation-

dissipation theorem [10].

The enhanced flatness of the thermal force PSD observed in the p-

resence of a no-slip plane wall, which can be understood as resulting from

destructive interference of the reflected flow, is seen in the above expressions

through the lack of
√
ωτf and ωτf terms. In contrast, this effect is not seen in

the parallel direction in the case of a perfect slip plane wall, presumably due

to constructive interference from the reflected flow. However, in the perpen-

dicular direction to a perfect slip wall, the flatness is still seen, presumably

due to the no penetration boundary condition keeping the reflected flow out

of phase. This will be discussed in detail in Section 8.2.

A good analogy to this destructive interference interpretation is the

reflection from a fixed (and a loose) end rope. The fixed end boundary con-

dition for the rope is similar to the no-slip boundary condition for the fluid,

while the loose end boundary condition for the rope is similar to the perfect

slip boundary condition. It is well known that the reflection from a fix end

rope is out of phase with the incident wave, therefore resulting in a destruc-

tive interference, while the reflection from loose end rope is in phase with the

incident wave, resulting constructive interference. We believe the destructive

interference leads the lacking of
√
ωτf and ωτf terms and flattening in the

thermal force power spectrum, although further studies are needed.
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5.2.5 Boundary effects on Brownian motion of a trapped particle

In our experiments studying the boundary effects, the particle was con-

fined by an optical tweezer. The theory on boundary effects including optical

trapping has been proposed recently [97].

The equation of motion of an optically trapped sphere is

− iω(mp −mf )Uω = Eω − Fω −KXω (5.45)

where −KXω is the harmonic force provided by the optical trap. The admit-

tance in the perpendicular direction can be written as [97]

Yt⊥(ω) =
−iωY⊥(ω)

−iω +KY⊥(ω)
, (5.46)

and in the parallel direction as

Yt‖(ω) =
−iωY‖(ω)

−iω +KY‖(ω)
. (5.47)

It is worth noting that the optical trap does not change the effective

mass and thermal force properties. With this, the entire dynamics of Brow-

nian motion of a trapped sphere near a flat infinite wall is known at least

numerically.

It is much harder to obtain the theory of unsteady Brownian motion

of a sphere outside of a cylindrical wall over the entire time scales due to the

complications caused by the curvature of cylinder. Efforts are currently being

undertaken to pursue this.
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5.3 Numerical predictions on boundary effects with ex-
perimental conditions

In this section, we give the numerical predictions of a variety of statis-

tical quantities for our experiments. We consider a 3 µm silica sphere (n =

1.46, ρ = 2.0 g/cm3) in water (n = 1.33, ρf = 1 g/cm3, η = 0.9×10−3 Pa·s)

near an infinite flat no-slip wall. A trap stiffness of 150 µN/m is used, which

is the typical value in our experiments.

5.3.1 Position power spectral density

The position power spectral density predictions of a microsphere near

a flat no-slip wall with three different sphere-wall separations (h = 2.5 µm,

Figure 5.1: Boundary effects on the position power spectra of a 3 µm diameter
silica in water with three sphere-wall separations (h = 2.5 µm, 5 µm, and 30
µm). The trap stiffness is 150 µN/m. (A), In the parallel direction. (B), In
the perpendicular direction.
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5 µm, and 30 µm) in both parallel and perpendicular directions are shown

in Fig. 5.1. At high frequencies, the boundary effects are negligible in both

directions. In both directions, the smaller the sphere-wall separation is the

bigger the boundary effects on the sphere become. Interestingly, as compare

to the free particle case, position PSD with boundary effects is enhanced at low

frequencies due to boundary effects and suppressed at intermediate frequencies,

thus keeping the area under the curve to 〈x2〉 = kBT
K

. The boundary effects are

more pronounced in the perpendicular direction that in the parallel direction.

As show in Fig. 5.1, the boundary effects are negligible with a large sphere-wall

separation (h = 30 µm) in both directions.

5.3.2 Velocity power spectral density

The velocity power spectral density predictions of a microsphere near

a flat no-slip wall with three different sphere-wall separations (h = 2.5 µm, 5

µm, and 30 µm) are shown in Fig. 5.2. Boundary effects on velocity PSD is

very similar to that on position PSD. An increased flatness of the velocity PSD

due to boundary effects is consistent with the reduced correlation seen in the

VACF as discussed in more detail later. The suppression of the velocity PSD

from the free-space theory seen at these scales is complemented by an increase

in the velocity PSD at short time scales, thus keeping the area under the curve

to 〈(v∗‖)2〉 and 〈(v∗⊥)2〉 in parallel and perpendicular directions respectively.
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Figure 5.2: Boundary effects on the position power spectra of a 3 µm diameter
silica in water with three sphere-wall separations (h = 2.5 µm, 5 µm, and 30
µm). The trap stiffness is 150 µN/m. The black line is the theory without
boundary effects. (A), In the parallel direction. (B), In the perpendicular
direction.

5.3.3 Mean square displacement

The mean square displacement predictions of a microsphere near a flat

no-slip wall with three different sphere-wall separations (h = 2.5 µm, 5 µm,

and 30 µm) are shown in Fig. 5.3. Optical trapping causes the MSD to plateau

around τk=γs/K, the time scale during which the particle experiences a drift

back towards the trap center, before the purely diffusive regime is reached. As

shown in Fig. 5.3, the “surface confinement” occurs not only in the long time

scales diffusive regime but also in the ballistic regime for small sphere-wall

separations. The closer to the wall, the more suppression in the MSD.
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Figure 5.3: Boundary effects on the mean squared displacement (MSD) of a 3
µm diameter silica in water with three sphere-wall separations (h = 2.5 µm, 5
µm, and 30 µm). The trap stiffness is 150 µN/m. (A), In the parallel direction.
(B), In the perpendicular direction.

5.3.4 Velocity autocorrelation function

The predictions of the velocity autocorrelation function of a micro-

sphere near a flat no-slip wall with three different sphere-wall separations (h

= 3 µm, 5 µm, and 30 µm) are shown in Fig. 5.4. The VACF of the particle

near a boundary decreases faster as the sphere-wall separation decreases. The

long time tail of the VACF in the bulk case is largely cancelled by reflected flow

from the wall, resulting in a more quickly decaying VACF. This rapid decay

of the relaxation function reflects the loss of fluid momentum at the no-slip

boundary, which is consistent with numerical simulations in Section 5.4.
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Figure 5.4: Boundary effects on velocity autocorrelation function (VACF) of
a 3 µm diameter silica in water with three sphere-wall separations (h = 3
µm, 5 µm, and 30 µm). The trap stiffness is 150 µN/m. (A), In the parallel
direction. (B), In the perpendicular direction.

5.3.5 Thermal force power spectral density

The predictions of the thermal force spectrum of a microsphere near

a flat no-slip wall with three different sphere-wall separations (h = 3 µm, 5

µm, and 30 µm) are shown in Fig. 5.5. As discussed in Section 5.2.4, it is

very surprising that the thermal force loses its color at low frequencies in the

presence of a boundary. The thermal force power spectral density (FPSD)

acting on the particle near a no-slip wall becomes flat at low frequencies. This

is believed to be a result of destructive interference between the incident and

reflected flows. The smaller sphere-wall separation is, the larger flattening

frequency range.
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Figure 5.5: Boundary effects on the thermal force power spectra of a 3 µm
diameter silica in water with three sphere-wall separations (h = 3 µm, 5 µm,
and 30 µm). The trap stiffness is 150 µN/m. (A), In the parallel direction.
(B), In the perpendicular direction.

In summary, the boundary effects on Brownian motion are anisotropic,

they are more pronounced in the perpendicular direction than in the parallel

direction. In both directions, the closer to the wall, the bigger boundary effects

are, the earlier boundary effects occur in timewise.

5.4 Fluid dynamics simulation on boundary effects

We study the fluid dynamics around a sphere both in free-space and

near a no-slip wall numerically using COMSOL Multiphysics with a 2D axial

symmetrical configuration [117,118]. The fluid in this simulation has the same

properties as water and the diameter of the sphere is 3 µm.
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Fig. 5.6 shows the longitudinal section of Stokes flow field around a

moving sphere both in an unbounded and bounded fluid. The white half circle

represents the sphere, which is moving downwards at 1 µm/s. The pressure

field, shear stress magnitude field, velocity magnitude field and vorticity field

(azimuthal component) are plotted in a 20 µm by 20 µm view. The left-edge

represents the axis of cylindrical symmetry. The fields around the free-space

sphere have up-down symmetry, while the wall (purple solid line) breaks this

symmetry. In the bounded case, the sphere-wall separation h is 3 µm. The

fields above the sphere both in the bounded case and unbounded case are

similar. The fields below the sphere are significantly altered by the wall. The

Figure 5.6: The fluid fields of steady Stokes flow near a sphere both in free
space and bounded fluid (a), pressure field. (b), shear stress magnitude field.
(c), velocity magnitude field. (d), vorticity field (azimuthal component). The
top four figures are for unbounded case and the bottom four figures are for
bounded case. The white half circle represents the sphere (3 µm diameter)
and the left boundary corresponds to the axis of cylindrical symmetry. The
purple solid lines represent the no-slip wall and all other boundaries are open
boundaries. The sphere is moving downwards at 1 µm/s. In the bounded case,
the sphere is at position with a sphere-wall separation of 3 µm.
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fluid builds up much higher pressure and shear stress, which is responsible for

the faster-decay VACF of a bounded sphere. The same conclusion has been

drawn for a sphere in a confined fluid between two flat walls by numerical

simulation [119]. The fluid creates a significant transverse flow parallel to the

wall due to the presence of the no-slip boundary. Vorticity is generated not

only on the surface of the sphere but also on the surface of the wall but with

a opposite sign.

Figure 5.7: A study of the onset of boundary effects by observing the vorticity
field (azimuthal component). The sphere (purple half circle, 3 µm diameter),
initially at rest, receives a 1-s impulse and at position in the downward direc-
tion, with an acceleration of 2 m/s2 in the first 0.5 µs and a deceleration of
2 m/s2 in the second 0.5 µs. Unbounded case (a), vorticity field at t = 1 µs.
(b), vorticity field at t = 5 µs. (c), vorticity field at t = 10 µs. (d), vorticity
field at t = 20 µs. Bounded case with the sphere initially at a sphere-wall
separation of 6 µm. (e), vorticity field at t = 1 µs. (f), vorticity field at t =
5 µs. (g), vorticity field at t = 10 µs. (h), vorticity field at t = 35 µs. The
left edge is the axis of cylindrical symmetry and top and right boundaries are
open boundaries. The white areas are out-of-range clippings: the white areas
should be redder than their surrounding color. The bottom edge is an open
boundary in the unbounded case and a no-slip boundary in the bounded case.
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Conventionally, the boundary effects are assumed to start becoming

important around τw = ρfh
2/η, which is the time scale over which the vorticity

generated on the surface of the sphere (or the wall) propagates across the

sphere-wall separation. It turns out that τw is just a rough estimation. As

discussed in Chapter 6, our data (both in VACF and MSD) starts to deviate

from the free-space theory well before τw. We study the onset of boundary

effects by observing the dynamics of the vorticity field (azimuthal component),

as shown in Fig. 5.7. Initially, both the 3 µm diameter sphere and fluid are at

rest. At t = 0 the sphere receives a 1-µs downwards impulse accelerating with a

constant acceleration of 2 m/s2 for 0.5 µs and then decelerates with a constant

deceleration of 2 m/s2 to a stop in another 0.5 µs. The vorticity field (40 µm

by 40 µm) shows up-down symmetry in the unbounded case, which is plotted

in the top half (Fig. 5.7(a-d)). In the bounded case (Fig. 5.7(e-h)), the sphere

moves in the same way except near a no-slip wall with a sphere-wall separation

6 µm. The wall starts to break the vorticity field symmetry in a visible way

around 5 µs, which is well before τw = 36 µs. It must be noted that in addition

to vorticity diffusion, there are inertial effects of the boundary at much shorter

time-scales due to the propagation of sound waves. To the approximation

that the fluid is incompressible, these effects occur almost instantaneously.

However, these effects are difficult to discern in our experimental work.
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Chapter 6

Observation of broadband boundary effects on

Brownian motion

There have been many experiments verifying the surface confinement

effect in the diffusive regime, mainly focusing on measuring the changes in

the diffusion coefficient of micron-sized particles near surfaces using dynamic

light scattering [120, 121], video microscopy [72, 122], total internal reflection

microscopy [63,123] or oscillating optical tweezers [73,124].

In addition to surface confinement, it has been reported that the p-

resence of a no-slip boundary also affects the velocity autocorrelation func-

tion [97, 125]. The long time tail of the VACF in the bulk case is largely

cancelled by reflected flow from the wall, resulting in a more quickly decaying

VACF. Boundary effects on the position power spectral density in a limited

frequency window have been reported [15, 103]. These experiments have ob-

served a resonance in the position PSD caused by the color of the thermal

force, which we have observed as well and is shown in Section 4.3.5. They

also observed a suppression of this resonance caused boundary effects as the

sphere-wall separation decreases.

A broadband, comprehensive experimental study of effects of the bound-
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ary via hydrodynamic interaction on Brownian motion was still lacking until

recently [104], in spite of the previous work on boundary effects mentioned

above [15,63,73,97,103,120,122,125] and the fact that Brownian motion of a

sphere in bulk has been well studied [15–18,126].

In this chapter, we investigate the effects of a boundary on the Brown-

ian motion of a sphere in water both in the diffusive and ballistic regime. We

report high-bandwidth, comprehensive measurements of Brownian motion of

an optically trapped micrometer-sized silica sphere in water near an approxi-

mately flat wall. At short distances we observe anisotropic Brownian motion

with respect to the wall. We find that surface confinement not only occurs

in the long time scale diffusive regime but also in the short time scale ballis-

tic regime, and the velocity autocorrelation function of the Brownian particle

decays faster than that of particle in a bulk fluid. Furthermore, at low fre-

quencies the thermal force loses its color due to the reflected flow from the

no-slip boundary. The power spectrum of the thermal force on the particle

near a no-slip boundary becomes flat at low frequencies.

It is important to note that the boundary effects in this article occur

only through hydrodynamic interaction. Other close-range forces between par-

ticles and boundary, like the electrostatic force [127], van der Waals force [128],

and Casimir force [70] can be neglected because we keep the sphere-wall sep-

aration (h ≥ 3 µm) much larger than the length scales at which those forces

become relevant.
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6.1 Experimental setup

Since most of the setup has been discussed in detail in Chapter 4,

this chapter only emphasizes the modifications specifically made for studying

Brownian motion with boundary effects in detail.

A simplified schematic of our experimental setup for measuring the

Brownian motion of a micrometer-sized silica sphere in water near an approx-

imately flat wall, both in perpendicular and parallel directions, is shown in

Fig. 6.1. An approximately 3 µm diameter silica glass microsphere is trapped

by a 1064 nm laser focused by the same water-immersion microscope objective

as in Chapter 4. The trapping laser beam also serves as the detection beam,

which is collected by an identical objective and then split into two roughly e-

qual halves in the horizontal direction in the lab frame. The same home-made

balanced detector as in Chapter 4 was used to amplify the power difference

between the halves, which depends linearly on the position of the trapped

particle, as shown in Fig. 6.1(A). A fluid chamber, containing two 80 ± 1 µm

diameter cylindrical glass fibers with their axes in the vertical and horizontal

directions respectively, is used to introduce the microspheres to the trap, as

shown in Fig. 6.1(B). The fibers provide well-defined cylindrical boundaries

with no-slip boundary conditions. The geometry of the sphere and cylindrical

boundary is shown to scale in Fig. 6.1(C).
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Figure 6.1: Schematic of Brownian motion of an optically trapped glass mi-
crosphere in water near a boundary. (A), Simplified schematic showing a glass
microsphere (3 µm diameter) trapped at the focus of a 1064 nm optical tweezer
near a boundary. The trapping beam is used to detect the horizontal motion
of the particle using a high bandwidth balanced detection system. (B), Two
80±1 µm diameter cylindrical fibers are sealed in the chamber with their ax-
es in the vertical and horizontal directions respectively, providing well-defined
no-slip cylindrical boundaries. (C), The geometry of the sphere and cylindrical
boundary to scale. The sphere-wall separation refers to the distance between
the center of the sphere and the surface of the boundary.

6.1.1 Optical setup

The trapping 1064 nm laser beam (Mephisto, Innolight) is introduced

by a polarization-maintaining single mode fiber (Thorlabs, P3-1064PM-FC-

5) and focused by a water-immersion microscope objective (LOMO, OM-25).

The trapping laser beam also serves as the detection beam, which is collected
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by an identical objective and then split into two roughly equal halves in the

horizontal direction using a D-shaped mirror (Thorlabs, BBD05-E03). The

same AC-coupled detector discussed in Chapter 4 is used to amplify the power

difference between the halves, which depends linearly on the position of the

trapped particle. The position of the D-shaped mirror is adjusted to balance

the laser power in the two halves. In this experiment, the trapping laser beam

power is around 400 mW and the detection beam power is set to approximately

150 mW. The detailed schematic of the optical setup is shown in Fig. 4.2.

6.1.2 Flow cell with fibers

The fluid flow cell is constructed in a similar way as in Section 4.1.3. It

is constructed within a layer of nescofilm (Bando Chemical Ind. LTD., 80 µm

thickness) sandwiched between two number 0 microscope coverslips (Ted Pella,

100 µm thickness). Two 80 ±1 µm diameter bare fibers (Thorlabs SM980G80,

with coating layer stripped by fiber stripping tool, Thorlabs T04S10) are heat-

sealed in the chamber with their axes in the vertical and horizontal directions

respectively, providing well-defined cylindrical no-slip boundaries. The length

of the bare fibers are typically around 3 cm. We sonicate and examine them

under an optical microscope to ensure the surface of the stripped fiber is

smooth. The schematic for the flow cell with embedded fibers is shown in

Fig. 6.2. We are able to measure the Brownian motion in perpendicular and

parallel directions to the wall independently with vertical and horizontal fibers

respectively since our detection system measures the horizontal motion of the
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Figure 6.2: The fluid flow cell with two cylindrical fiber embedded for studying
boundary effects.

microsphere.

The cylindrical boundary is chosen intentionally to avoid clipping the

laser beam with the boundary for small sphere-wall separations. In our setup,

the waist of the trapping beam is estimated to be around 1 µm, and as long

as the sphere-wall separation h is more than 3 µm, the clipping effect can

be neglected. We confirm the lack of clipping by monitoring the trapping

beam transmission rate through the chamber and by the stability of the fitting

parameters at different positions with various sphere-wall separation.

The optical trap confines the particle to the center of the chamber in the

beam propagation direction to minimize boundary effects on the motion of the

particle imposed by the coverslips. Therefore, coverslip boundary effects can be

neglected since the sphere-coverslip separation is 40 µm, which is considerably

145



larger than the size of the sphere.

6.1.3 Microspheres and fluids

Experiments are performed using silica microspheres (Bangs Laborato-

ries SS05N, n = 1.46, ρ = 2.0 g/cm3) in HPLC-grade water (n = 1.33, ρf = 1

g/cm3, η = 0.9×10−3 Pa·s) at 22 ± 1 ◦C. High sphericity of the microspheres

is necessary to eliminate the rotational motion contribution due to asymme-

try of the microspheres, and was confirmed by scanning electron microscope

images as shown in Chapter 4.

6.1.4 Relative position control with a piezo-stage

The whole chamber is mounted onto a piezo-stage, which is construct-

ed of two feedback piezo elements with differential micrometers (Thorlabs

DRV517), controlled by a piezo controller (Thorlabs, BPC301). The built

in strain gauge1 conveniently reads the absolute piezo length, namely the rel-

ative positions of fiber to the trapped microsphere, and displays it on a LCD

screen. With this, we have the ability to position the cylindrical fibers with a

precision of ∼10 nm and a range of up to 30 µm in two directions.

It was a surprising find that the close piezo-stage PID control loop

actually disturbed the fluid resulting in a non-equilibrium system. The close

1The metallic strain gauge consists of a very fine wire or metallic foil, arranged in a grid
pattern, which is bonded to the piezo. Therefore, any strain experienced by the piezo is
transferred directly to the strain gauge, which expands or contracts, causing a proportional
change in electrical resistance. Such small change in resistance is measured by a bridge
configuration, like Wheatstone bridge.
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PID loop constantly adjusts the voltage to the piezo trying to maintain the

constant strain, which stabilizes the piezo stain at long time scale but makes

it more noisy at high frequencies. Therefore, the piezo stage PID control loop

is kept open while taking data.

There are three main sources causing fluctuations in the sphere-wall

separation: relative vibrational motion between the fibers and laser trapping

focus, the thermal motion of the microsphere in the trap, and the drifting

in piezo length. The relative vibration is reduced to on the order of 10 nm

by using a gas floating optical table (TMC Vibration Control). The thermal

motion fluctuations in the trap can be reduced by increasing the trap strength,

resulting in
√

kBT
K
∼ 10 nm in our system. The piezo length drifting can be

minimized by waiting for a long time (a few minutes) after applying a certain

voltage to the piezo, which lengthens the amount of time required to take data.

6.1.5 Imaging

Two typical images of trapped microspheres near a fiber are shown

Fig. 6.3. These images provide us the convenience to estimate the sphere-

wall separation. Due to the strong interference patterns, this estimation is

limited with a uncertainty up to 1 µm. We developed two more precise ways

to calibrate the absolute distance between the sphere and wall, as discussed in

Section 6.2.6.
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Figure 6.3: Typical images of a trapped silica microsphere in water near a
glass cylindrical fiber. (A), a silica microsphere near a vertical fiber; (B), a
silica microsphere near a horizontal fiber. (Green spots are the dead pixels on
the camera.

6.1.6 Data acquisition

The voltage signal recorded by the same balanced detector as in Chap-

ter 4, is recorded by the same 16-bit digitizer (GaGe applied, CS1622) at a

sampling rate of 200 MSa/s. Each continuous trajectory contains 227 samples,

corresponding to about 0.7 s. We take at least 10 such measurements at each

position. The data was acquired with the digitizer’s 25 MHz anti-aliasing filter

enabled.

6.2 Experimental results and discussion

This section describes results of the boundary effects on a 3 µm silica

microsphere near a 80 µm diameter cylindrical glass fiber in water. It is

important to note that the cylindrical boundary can be approximated as a flat

wall with small sphere-wall separations (≤ ∼ 7 µm). Therefore, the theory for
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a flat infinite wall can be adapted to analyze the experimental data.

6.2.1 Mean square displacement

A least-squares fit of the mean square displacement (MSD) of the

recorded trajectories to the theory of Brownian motion near a no-slip flat

wall [97, 110] is used to determine the sphere diameter d, the trap stiffness

K, and the detector volts-per-meter calibration factor C. The MSDs at four

different positions (with sphere-wall separations of 30 µm, 6.1 µm, 4.6 µm and

3.1 µm) in the perpendicular direction to the wall are shown in Fig. 6.4. The

sphere diameter (d = 3.06 ± 0.19 µm), trap stiffness (K = 151 ± 31 µN/m)

and detector volts-per-meter calibration factor (C = 20.1 ± 2.0 mV/nm) are

similar at those four positions, which indicates that the laser is not clipped by

the cylindrical boundary. The uncertainty of each fit parameter is determined

from the variance in the results of independent MSD fits of 10 trajectories per

position.

At all four positions, the optical trapping causes the MSD to plateau

around τk = γs/K, the time scale during which the particle experiences a

drift back towards the trap center, where γs = 6πηa is the Stokes drag coeffi-

cient, before the purely diffusive regime is reached. The boundary effects are

negligible on MSD with a large sphere-wall separation, h = 30 µm, as shown

in Fig. 6.4(A). The experimental data agrees well with both free-space theory

and boundary theory. Fig. 6.4(B-D) shows that the surface confinement effects

appear on the time scale of τw = ρfh
2/η, which is the time taken for vorticity
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Figure 6.4: Experimental and theoretical mean square displacements at 4 po-
sitions in perpendicular direction with respect to the wall. (A), with a sphere-
wall separation of 30 µm (τw=0.9 ms). (B), with a sphere-wall separation of
6.1 µm (τw=37 µs). (C), with a sphere-wall separation of 4.6 µm (τw=21 µs).
(D), with a sphere-wall separation of 3.1 µm (τw=9.6 µs). The blue circles
are the experimental data (τp = 1 µs, τf = 2.3 µs, τK = 190 µs); the black
lines are the unbounded theoretical predictions [83] and the red dashed lines
correspond to the bounded theoretical predictions at various sphere-wall sep-
arations [111]. The MSD becomes suppressed as the sphere approaches the
wall. The insets show higher resolution of the suppression of the MSD.

to traverse the distance from the wall to the sphere [15, 110]. As discussed in

Section 5.4, τw is just a rough estimation. In fact, the boundary effects could
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occur a decade earlier than the prediction by τw. The MSD is suppressed as

the sphere-wall separation decreases. When τw is comparable to τp and τf , the

surface confinement on the motion of the particle due to boundaries not only

occurs in the diffusive regime, but also in the ballistic regime, as shown clearly

in Fig. 6.4(D).

6.2.2 Velocity autocorrelation function

The velocity autocorrelation functions, normalized to 〈(v∗⊥)2〉, in the

perpendicular direction to the wall, are shown in Fig. 6.5, for the same po-

sitions as in Fig. 6.4 (with h = 30 µm, 6.1 µm, 4.6 µm and 3.1 µm). The

boundary effects are negligible on VACF with a large sphere-wall separation h

= 30 µm, as shown in Fig. 6.5(A). Fig. 6.5(B-D) show that the VACF of a par-

ticle near a boundary decreases faster as the sphere-wall separation decreases.

The rapid decay of the relaxation function reflects the loss of fluid momentum

at the no-slip boundary, which is consistent with numerical simulations as dis-

cussed in Section 5.4. The time at which the VACF near a wall starts falling

remarkably below that in an unbounded fluid is related to the time scale τw. It

is worth to emphasize again that τw is just a rough estimation, as discussed in

Section 5.4. As shown here, the boundary effects could occur a decade earlier

than the predicted τw.

The VACF is very sensitive to the sphere-wall separation, and therefore

can be used to precisely measure this separation, which will be discussed in

detail in Section 6.2.6.

151



Figure 6.5: Experimental and theoretical velocity autocorrelation function
(VACF) at the same positions as in Fig. 6.4 in the perpendicular direction
with respect to the wall. The plots show the absolute value (normalized to
〈(v∗⊥)2〉) on a log-log scale. The sharp cusp-like features correspond to zero
crossings. (A), with a sphere-wall separation of 30 µm (τw = 0.9 ms). (B),
with a sphere-wall separation of 6.1 µm (τw = 37 µs). (C), with a sphere-wall
separation of 4.6 µm (τw = 21 µs). (D), with a sphere-wall separation of 3.1
µm (τw = 9.6 µs). The blue circles are the experimental data (τp = 1 µs,τf
= 2.3 µs, τK = 190 µs); the black lines are the theoretical predictions for an
unbounded particle [83] and the red dashed lines correspond to the bounded
theoretical predictions with various sphere-wall separations [111]. The VACF
decays faster as the sphere approaches the wall.
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6.2.3 Position power spectral density

Figure 6.6: Experimental and theoretical position power spectra at the same
positions as in Fig. 6.4 in the perpendicular direction to the wall. (A), h =
30 µm (Fw= 177 Hz). (B), h = 6.1 µm (Fw = 4.3 kHz). (C), h = 4.6 µm
(Fw = 7.5 kHz). (D), h = 3.1 µm (Fw = 16.6 kHz). The blue circles are
the experimental data (Fp = 153 kHz, Ff = 68 kHz, FK = 833 Hz); the black
lines are the sum of the unbounded theoretical predictions and a constant shot
noise and the red dashed lines correspond to the sum of the bounded theoretical
predictions at various sphere-wall separations [111] and a constant shot noise.
At high frequencies, the PSDs flatten at 3×10−15 m/

√
Hz, limited by the shot

noise of the detection beam [17, 18]. The insets show higher resolution of the
suppression of the position PSD at intermediate frequencies.
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The position PSD for motion perpendicular to the wall at four differ-

ent wall-to-sphere distances (with h = 30 µm, 6.1 µm, 4.6 µm and 3.1 µm)

is shown in Fig. 6.7 . The DC-value of the PSD increases as we go closer

to the wall, which was not evident in previous work [15, 103] due to normal-

ization. Observation of this in the experiment is obscured by low-frequency

noise. However, we have observed that the position PSD decays faster than

it would in free-space, which is corresponding to the increased flatness of the

thermal force near the wall. The frequency at which the position PSD near

a wall starts deviating remarkably from that in an unbounded fluid is related

to the frequency scale Fw = 1/(2πτw). It is worth noting that Fw is a rough

estimation as well. In reality, the boundary effects occur at frequencies one

decade higher than the predicted Fw. At larger sphere-wall separations (for

example, h = 30 µm), the boundary effects on position PSD are negligible. At

high frequencies, the PSDs flatten at around 3×10−15 m/
√

Hz, limited by the

shot noise of the detection beam [17,18].

6.2.4 Velocity power spectral density

The velocity power spectral density (velocity PSD) is the Fourier trans-

form of the VACF, and characterizes the distribution of power in the fluctu-

ations of the velocity at various frequencies. The velocity PSD for motion

perpendicular to the wall is shown in Fig. 6.7 with the same sphere-wall sep-

arations as in Fig. 6.4 (with h = 30 µm, 6.1 µm, 4.6 µm and 3.1 µm). The

reduced correlation seen in the VACF close to the wall is seen as an increased
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Figure 6.7: Experimental and theoretical velocity power spectra (velocity PS-
D) at the same positions as in Fig. 6.4 in perpendicular direction to the wall.
(A), h = 30 µm (Fw= 177 Hz). (B), h = 6.1 µm (Fw = 4.3 kHz). (C), h = 4.6
µm (Fw = 7.5 kHz). (D), h = 3.1 µm (Fw = 16.6 kHz). The blue circles are
the experimental data (Fp = 153 kHz, Ff = 68 kHz, FK = 833 Hz); the black
lines are the sum of the unbounded theoretical predictions and the red dashed
lines correspond to the bounded theoretical predictions at various sphere-wall
separations [111].

flatness of the velocity PSD at similar time-scales (or corresponding frequency-

scales). The frequency at which the velocity PSD near a wall starts to deviate

remarkably from that in an unbounded fluid is related to the frequency scale

Fw = 1/(2πτw). The suppression of the velocity PSD from the free-space the-
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ory seen at these scales is complemented by an increase in the velocity PSD

at short time scales, thus keeping the area under the curve to 〈(v∗⊥)2〉.

6.2.5 Thermal power spectral density

Figure 6.8: Experimental and theoretical thermal force power spectral density
(FPSD) at the same positions as in Fig. 6.4 in perpendicular direction to the
wall. ((A), h = 30 µm (Fw= 177 Hz). (B), h = 6.1 µm (Fw = 4.3 kHz). (C),
h = 4.6 µm (Fw = 7.5 kHz). (D), h = 3.1 µm (Fw = 16.6 kHz). The blue
circles are the experimental data (Fp = 153 kHz, Ff = 68 kHz, FK = 833 Hz);
the black lines are the unbounded theoretical predictions and the red dashed
lines correspond to the bounded theoretical predictions at various sphere-wall
separations [111].
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As discussed in Chapter 3, in the Einstein-Ornstein-Uhlenbeck mod-

el [13], which is valid only when the inertia of the fluid is negligible, the thermal

force exerted on Brownian particles is assumed to be spectrally “white,” mean-

ing it is delta correlated and has a flat power spectral density SFth = 4kBTγs.

Addition of the Basset force to the Einstein-Ornstein-Uhlenbeck model results

in the colored thermal force spectral density SFth = 4kBTγs

(
1 +

√
ωτf/2

)
[83].

This has recently been experimentally verified [15, 17, 103]. We have verified

this as well, as discussed in Section 4.3.5.

More interestingly, the thermal force loses its color at low frequencies

in the presence of a boundary. The thermal force power spectral density (F-

PSD) acting on the particle near a no-slip wall becomes flat at low frequencies

(ωτf �1 and ωτw �1). This is believed to be a result of destructive interfer-

ence between the incident and reflected flows, though more study is needed.

The FPSDs in the direction perpendicular to the wall are shown in Fig. 6.8, for

the same positions as in Fig. 6.4 (with h = 30 µm, 6.1 µm, 4.6 µm and 3.1 µm).

Fig. 6.8(A), which has a large sphere-wall separation of h = 30 µm, shows that

the boundary effects are negligible and verifies the colored thermal force spec-

tral density. Fig. 6.8(B-D) show that the FPSDs in the perpendicular direction

flatten at low frequencies and their DC values increase to 4kBTγs
1

(1− 9a
8h

)
from

the bulk value of 4kBTγs. The increase in the thermal force is consistent with

the increase in the drag force, in accordance with the fluctuation-dissipation

theorem [10].

It is worth noting that this flattening of the FPSD explains the un-
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explained suppression of a resonance in the position PSD of a particle near

a wall observed in previous experiments [15, 103]. The detailed origin of the

resonance in position PSD has been discussed in Section 4.3.5, which is due

to the color of the thermal force. The flattening in the thermal force PSD

at low frequencies, caused by boundary effects, fades the thermal force’s color

and thus results in the suppression of the resonance in the position PSD. With

small enough sphere-wall separations, this resonance would disappear.

All of the observed statistical properties, namely MSD, VACF, position

PSD, velocity PSD, thermal force PSD, in the presence of the wall approach

the corresponding free-space theories for time-scales much shorter than τw (or

frequency-scales much larger than Fw). This is expected, as the numerical

simulations, shown in Section 5.4, suggest that the vorticity from the wall

takes time on the order of τw to reach the sphere. The inertial effects due to

the boundary, which persist at high-frequencies in the form of an increased

effective mass, are too insignificant to discern.

6.2.6 The absolute sphere-wall separation calibration

The piezo-stage used in the experiment only gives us precise measure-

ments of the position of the particle relative to an arbitrary origin. The sphere-

wall separations shown sub-figures (B-D) in Fig. 6.4 to 6.8 have a relative dis-

tance of 1.5 µm from the piezo reading. We developed two precise ways to

calibrate the absolute distance between the particle and the wall, which will

be discussed in detail in this section. These two methods of calibration yield
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similar results.

6.2.6.1 The VACF calibration method

The absolute separation between the sphere and wall can be obtained

by a least-squares fit of the experimental VACF (or MSD, PSD, VPSD, FPSD)

to their corresponding boundary theory. It turns out that the fitting of VACF

gives the most reliable results.

Figure 6.9: The absolute sphere-wall separation measurements obtained from
fitting the data recorded by the AC-coupled detector to the no-slip flat-wall
theoretical VACF. The green squares with error bars represent the experimen-
tal data and statistical errors obtained by averaging from 10 measurements
at each position. The horizontal axis denotes the distance measured by the
strain gauge after subtraction of the fitted offset. The red line is the y = x line;
The VACF fitting gives reliable results as long as the sphere-wall separation
is smaller than 7 µm.
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The VACF is measured at multiple positions near the wall, whose rel-

ative separations are known by means of the piezo strain gauge. The VACF

fitting gives reliable results as long as the sphere-wall separation is smaller

than 7 µm. The VACF fitting results with sphere-wall separations larger than

about 7 µm suggest the curvature of the cylindrical fiber becomes important.

The boundary effects with sphere-wall separations larger than 10 µm become

so weak that the VACF fitting becomes unreliable. The piezo strain gauge

reading and the absolute positions h obtained by fitting the VACF to the the-

ory are fit to a straight line of unitary slope to determine the offset of the

origin of the piezo system from the wall. The absolute positions reported in

Fig. 6.4 to 6.8 are obtained using this method.

6.2.6.2 The diffusion calibration method

We also measure the absolute distance by the measurement of the d-

iffusion coefficients. The variation of the diffusion coefficient near a no-slip

wall has been well-studied by numerous experiments [63,72,73,120–124]. We

reduce the optical trap strength so as to permit the MSD to enter the diffu-

sive regime before flattening out, and acquire data with the same microsphere,

with which the AC data was recorded and is shown in Fig. 6.4 to 6.8, using a

DC-coupled detector. We then fit the measured hindered diffusion coefficients

at various distances to the theoretical prediction of a sphere near a no-slip flat

wall.

To measure the diffusion coefficient experimentally, we record the mo-
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tion of a trapped microsphere near the boundary at long time scales. In this

limit, the translational motion of a spherical particle in a liquid trapped by an

optical tweezer can be described as [129]

Kx(t) + γẋ(t) = Fth(t). (6.1)

The inertial force is neglected here because it is much smaller compared to the

viscous drag at long time scales, t� τf . The damping factor γ is approximate-

ly frequency independent but depends on the distance to nearby boundaries

h, which can be computed from the position autocorrelation function if the

trapping strength K is known [129],

Cx(t) = 〈x(τ)x(τ + t)〉 = 〈x2〉e−
K
γ(h)

t = 〈x2〉e−
t
τk (6.2)

where τk = γ(h)/K gives the time scale during which the particle experiences

a drift back toward the trap center. With the trapping strength K fixed and

a larger damping factor γ(h), the bead takes a longer time to drift back to

the center of the trap. The diffusion coefficient D can be obtained from the

damping factor γ using the Stokes-Einstein relation

D(h) =
kBT

γ(h)
(6.3)

where kB is the Boltzmann constant, T is the absolute temperature.

We reduce the trapping beam power from 400 mW to 50 mW to insure

that the diffusive regime can be reached. We redirect the detection laser beam

to a DC-coupled balanced detector (Thorlabs, PDB120C, with transimpedance
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gain 1.8×105 V/A) to amplify the power difference in the two branches of the

detection system. The detection power was only approximately 0.5 mW due

to the high gain of the detector. The data is recorded by the same digitizer

at a lower sampling rate of 5 MSa/s. Each continuous trajectory contains 225

samples, corresponding to about 7 s. We take 10 such measurements at each

position.

The voltage to position conversion factor C and trapping strength K as

well as particle radius a were obtained by a least-squares fit of the measured

mean square displacement (MSD), taken at h > 100µm, to free boundary

theoretical MSD [85]. The data taken far away from any boundary gives us

the experimental conditions: the diameter of the microsphere a = 2.98 ±

0.11 µm, the trapping strength K = 13.3 ± 0.6 µN/m and the volts-per-

meter calibration factor C = 16.9 ± 0.4 mV/nm. The uncertainty of each fit

parameter is determined from the variance in the results of independent MSD

fits of all measured trajectories.

Normalized position autocorrelation functions of the particle in the

perpendicular direction at four different sphere-surface separations h = 1.0

µm, 2.2 µm, 4.2 µm and 20 µm are shown in Fig. 6.10. The smaller sphere-

wall separation, the larger the drag force, thus the longer τk. It is worth noting

that the trapping strength is assumed to be constant at various sphere-wall

separations. This is valid as long as the clipping effect is negligible, which has

been verified by monitoring the trapping beam transmission rate through the

chamber and by the stability of the fitting parameters at different positions
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Figure 6.10: The position autocorrelation functions (normalized to kBT/K)
of the particle at four different sphere-wall separations h = 1.0 µm, 2.2 µm,
4.2 µm and 20 µm. The corresponding τk are 2.1 ms, 3.0 ms, 3.8 ms and 5.7
ms respectively.

with various sphere-wall separations.

The hindered diffusion coefficients of the particle in the perpendicular

direction (normalized to its bulk value D0 = 0.14 µm2/s) as a function of

sphere-wall separation from 2.5 µm to 30 µm are shown in Fig. 6.11. The data

suggests that the curvature of the cylindrical fiber becomes important when

sphere-wall separation is larger than ∼ 7 µm, which agrees with the VACF

fitting method. The rapid decrease at small sphere-wall separations makes

this calibration relatively reliable.

The discrepancy in the absolute offset determined by the two methods
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Figure 6.11: The absolute sphere-wall separation measurements obtained by
measuring the hindered diffusion coefficients (normalized to its bulk value D0

= 0.14 µm2/s) of a 3 µm silica microsphere using the DC-coupled detector
with a sphere-wall separation range from 2.5 µm to 30 µm. The red line is the
flat-wall theory Eq. (5.4). The blue dashed line is the modified cylindrical-wall
theory Eq. (5.5). The green squares with error bars represent the experimental
data and statistical errors obtained by averaging from 10 measurements at each
position.

is within 300 nm. It is worth noting that these two methods can be applied to

the calibration of the absolute sphere-wall separation calibration in the parallel

direction as well.

6.2.7 Boundary effects in the parallel direction

The presence of a no-slip boundary has similar effects on the dynamics

of the particle in the direction parallel to the boundary, except less pronounced.
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Figure 6.12: Experimental and theoretical Brownian dynamics in the parallel
direction with a sphere-wall separation of 2.9 µm. (A), MSD. (B), Velocity
PSD. (C), Absolute VACF (normalized to 〈(v∗‖)2〉). (D), Thermal force PSD.
The blue circles are the experimental data; the black lines are the unbounded
theoretical predictions and the red dashed lines correspond to the bounded
theoretical predictions [111].

Thus the motion of the sphere becomes anisotropic. For brevity, we show

boundary effects in the parallel direction only for a sphere-wall separation of

about 3 µm. We acquire and analyze the data in the parallel direction in the

same way as in the perpendicular direction. The MSD, VPSD, VACF and

FPSD on the parallel direction are shown in Fig. 6.12. It is noted that these
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boundary effects are expected to be different near a partial or full slip wall, as

discussed in Chapter 8.

6.3 Summary

A Brownian particle located near a flat wall provides a model system

to study the behavior of more complex systems whose boundaries can be mod-

eled as effective walls, such as blood vessels, cell membranes, and a variety of

microfluidic geometries. Our techniques will find broad applications in precise

biophysical measurements [130, 131], and in particular are capable of signifi-

cantly speeding up the technique of thermal noise imaging [69]. Using a micro-

or nano-sphere as a remote sensor to measure the distances to nearby bound-

aries in porous media can potentially map out boundary contours and build a

3D microscope.
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Chapter 7

Brownian motion in viscoelastic fluids

Solids are the materials that conserve their shapes indefinitely in the

absence of external forces. Solids deform under external forces. This deforma-

tion is small and reversible when the external force is moderate and disappears

once the stress is removed. In such cases, it is called elastic deformation, dur-

ing which dissipation is negligible. Elasticity is one of the defining properties

of solids. Fluids, on the other hand, do not conserve their shape, and always

end up taking the shapes of their container. This process can take a relatively

short time for some fluids, such as water; and longer time for more viscous

fluids, like honey.

A more systematic way to define solids and fluids is probably using

the strain-stress relation. Strain ε is a description of deformation in terms of

relative displacement of particles in the body. Stress σ is the force per unit

area. The stress in elastic solids is linearly proportional to strain, σ = Eε,

where E is the elastic modulus. While in fluids, the shear stress does not

depends on the strain itself, but depends on the strain rate σ = ηε̇, where η is

the dynamics viscosity.

Until the beginning of the 19th century, people contented themselves
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with classifying materials either in the family of elastic solids or Newtonian

viscous fluids. People then realized that solids are not purely elastic whereas

fluids are not purely viscous. To some degree, all materials are viscoelastic, can

act both like fluids and like solids, depending on the time scales of interest.

Even water, conventionally considered as a purely Newtonian viscous fluid,

exhibits elasticity at time scales below 10−12 s (with a viscosity 10−3 Pa·s and

the shear modulus G of (ice), 109 Pa) [132]. We will show that at time scales

below 10−12 s, water actually is a complex fluid, which can be described using

the Maxwell model, in section 7.2. On the other hand, solids can behave like

fluids at long time scales, for example the Earth’s mantle flow on time scales

larger than 1010 s [132]. A more common example is Silly Putty, containing

silicone polymers. When squeezed slowly, it deforms and flows like a liquid;

however, when thrown against a wall, it bounces like a rigid elastic solid.

The stress in viscoelastic materials depends on both strain and strain

rate. Therefore, it is convenient to use a complex elastic modulus G(ω) to

describe the material’s mechanical properties in frequency domain as σ(ω) =

G(ω)ε(ω). The complex elastic modulus can be decomposed into G(ω) =

G′(ω) − iG′′(ω), where the real part G′(ω) refers to the storage modulus and

the imaginary part G′′(ω) is the loss modulus. The corresponding frequency-

dependent complex dynamic viscosity is η(ω) = G(ω)/(−iω).

Rheology is the study of the flow and deformation of matter under the

influence of a mechanical force, nowadays is an interdisciplinary subject. Mi-

crorheology, a branch of rheology, studies viscoelasticity of complex fluids by
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measuring motion of immersed particles, and works at micron length scales

and with microliter sample volumes. Microrheology techniques can be clas-

sified as either passive or active, depending on whether the particles’ motion

is governed by the thermal fluctuations of the surrounding fluid’s molecules

or an external force exerted on the particles. Any deviation from the normal

diffusive behavior of the particle (in Newtonian fluids) is then interpreted as

a response to the material properties of its complex environment [133].

Optical microrheology is a subset of microrheology, which relies on op-

tical methods to measure motion of the immersed particles. This method was

first reported by Mason al et. in 1995 [28], and then has been intensively

used to study complex fluids [134–144]. However, the hydrodynamic effects

are neglected in this approach. Therefore, this method is not suitable for high

frequency rheology, in spite of the fact that viscoelasticity at high frequencies

has been reported to be important [145,146]. A theory including hydrodynam-

ics effects is proposed by Felderhof recently [147], which has been adapted to

measure high-frequency viscoelasticity of a worm-like micelles solution [148].

A particle exhibiting Brownian motion in a viscoelastic fluid can be

used as a probe to measure the properties of the host medium. This approach

has a much higher spatial resolution, which is limited by the size of the probe

particle, than conventional bulk rheometry. One assumption embedded in

this method is that probe particles have to be bigger than the host fluids’s

structural constituents [101].

In the first part of this chapter, we will discuss Brownian motion in
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two simple models of complex fluids, showing how the properties of the fluids

affect the dynamics motion of a particle immersed inside. Then, we will dis-

cuss the procedures to estimate the properties of an unknown complex fluid

by observing the Brownian motion of an immersed particle, followed by two

experimental demonstrations of obtaining the viscosities of water and acetone

with a high bandwidth.

7.1 Simple complex fluid models

There are many linear models describing the viscoelasticity of complex

fluids. The Maxwell model is the simplest one for describing the properties of

a viscoelastic liquid. The Kelvin-Voigt model is a better model for some vis-

coelastic solids. The Jeffreys model applies to systems composed of a solvent,

which can be considered as purely viscous, containing elastic macromolecules,

such as polymers [132].

Figure 7.1: Rheological schemes of three simple models. (A) the Maxwell mod-
el, (B) the Kelvin-Voigt model, (C) the Jeffreys model. The spring represents
the purely elasticity, whereas the dashpot means a purely viscous damper.
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7.1.1 A Maxwell fluid

The simplest approach to describe viscoelasticity, already proposed by

J. C. Maxwell in 1867, assumes that viscoelasticity can be represented by a

purely viscous damper and a purely elastic spring connected in series, as shown

in Fig. 7.1(A). So the stress-strain relation reads [101]

σ̇(t)

G∞
+
σ(t)

η0

= ε̇(t) (7.1)

In the frequency domain, a Maxwell fluid can be described by a single

characteristic time τM , called the viscoelastic time, which marks the transition

from a high-frequency elastic regime to a purely viscous fluid at low frequencies.

The frequency dependent shear modulus is

GM(ω) =
−iωτMG∞
1− iωτM

=
ω2τ 2

MG∞
1 + ω2τ 2

M

− i ωτMG∞
1 + ω2τ 2

M

(7.2)

and the frequency dependent shear viscosity is

ηM(ω) =
τMG∞

1− iωτM
(7.3)

ηM → 0 as ω → ∞, meaning there is no dissipation at high frequencies. It is

worth noting that there are only a few materials that obey this model strictly.

Silicone is among these few materials, and is highly transparent to radiation

in the visible range all the way down to UV, which is suitable for using optical

microrheology.

In reality, the constituent mesoscopic particles in a viscoelastic material

are immersed in a solvent giving rise to a background viscosity η(ω → ∞) =
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η∞. To account for the dissipation in the solvent, a generalized Maxwell model

is often used

ηGM(ω) = η∞ +
τMG∞

1− iωτM
(7.4)

This generalized Maxwell model was mistaken as the Jeffreys model [101]. The

Jeffreys model [149, 150] gives different frequency dependent shear viscosity,

as discussed below.

7.1.2 A Kelvin-Voigt fluid

A Kelvin-Voigt fluid assumes that viscoelasticity can be represented by

a purely viscous damper and a purely elastic spring connected in parallel, as

shown in Fig. 7.1(B). So the stress-strain relation reads

σ(t) = η0ε̇(t) +Gε(t) (7.5)

The frequency dependent shear modulus can be written as

GK(ω) = G0 − iωη0 (7.6)

7.1.3 A Jeffreys fluid

The Jeffreys model [149, 150], assumes that viscoelasticity can be rep-

resented by a purely viscous damper and a purely elastic spring connected in

series, connecting to another purely viscous damper in parallel as shown in

Fig. 7.1(C). So the stress-strain relation reads

σ̇(t)

G1

+
σ(t)

η1

=

(
1 +

η2

η1

)
ε̇(t) (7.7)
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The frequency dependent shear modulus can be written as

GJ(ω) =
−iωη1G1

(
1 + η2

η1

)
iωη1 +G1

(7.8)

7.2 Brownian motion in a complex fluid

In this section, we will describe Brownian motion in a viscoelastic fluid

with its properties known. We assume the fluid has a frequency dependent

viscosity η(ω). To the first order, the frequency dependent drag coefficient can

be written as [101]

γvs(ω) = 6πη(ω)a

(
1 +

√
−iωρfa2

η(ω)
− iωρfa

2

9η(ω)

)
(7.9)

The frequency dependence of the drag coefficient is due to two reasons: η(ω) is

frequency dependent, which is caused by viscoelasticity of fluids; the hydrody-

namics effects of the fluids. The admittance of the optically trapped particle

in such viscoelastic fluids can be obtained by

Ytvs(ω) =
−iω

−mω2 − iωγvs(ω) +K
(7.10)

Again, the numerical prediction for the Brownian motion of a particle in

a viscoelastic fluid can be easily obtained. Here, we consider a 3 µm diameter

silica microsphere both in a Maxwell fluid and in a generalized Maxwell fluid

with different properties, which can be characterized using two parameters τM

and G∞. The η∞ in the generalized Maxwell fluid case is the same as the

viscosity of water, 10−3 Pa·s. A trap stiffness of 150 µN/m is used in this
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Figure 7.2: The numerical predictions of position power spectral density (PPS-
D) of a 3 µm diameter silica in complex fluids with different properties. (A),
In Maxwell fluids. (B), In generalized Maxwell fluids.

numerical calculation. The frequency dependent viscosity η(ω) in Eq. (7.9)

should be replaced by Eq. (7.3) and Eq. (7.4).

Figure 7.3: The numerical predictions of velocity power spectral density (VPS-
D) of a 3 µm diameter silica in complex fluids with different properties. (A),
In Maxwell fluids. (B), In generalized Maxwell fluids.
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7.2.1 Position power spectral density

The position power spectral density predictions of a microsphere in a

Maxwell fluid are highly dependent on the properties of the Maxwell fluids, as

shown in Fig. 7.2(A). The black line is the prediction of the microsphere in pure

water. The red dashed line is the prediction of the particle in a Maxwell fluid

with τM = 10−12 s and G∞ = 109 Pa. The perfect agreement between them

proves that water can be modeled as a Maxwell fluid. Its elasticity becomes

important at time scales below 10−12 s though. The position power spectral

density predictions of a microsphere in a generalized Maxwell fluid also highly

depend on the properties of the Maxwell fluids, as shown in Fig. 7.2(B).

7.2.2 Velocity power spectral density

As shown in Fig. 7.3, the velocity PSD predictions of the microsphere

immersed in Maxwell fluids and generalized Maxwell fluids are highly depen-

dent on the properties of the fluids. At high frequencies, the Brownian motion

of a particle in the generalized Maxwell fluid is the same as that in water. This

is because the viscoelasticity of the generalized Maxwell fluid at high frequen-

cies is dominated by the background solvent viscosity, which is the same as

water in this case.

7.2.3 Mean square displacement

The mean square displacement predictions of the microsphere immersed

in Maxwell fluids and generalized Maxwell fluids are shown in Fig. 7.4. The
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Figure 7.4: The numerical predictions of mean square displacement (MSD)
of a 3 µm diameter silica in complex fluids with different properties. (A), In
Maxwell fluids. (B), In generalized Maxwell fluids.

optical trapping causes the MSD to plateau at 2kBT/K. Both model fluids

with certain viscoelastic properties can cause another plateau in MSD, which

is conventionally considered as one of the defining features of viscoelasticity.

7.2.4 Velocity autocorrelation function

As shown in Fig. 7.5, the normalized velocity autocorrelation function

predictions of the microsphere immersed in Maxwell fluids and generalized

Maxwell fluids differ drastically from the the simple behavior in pure water.

The elasticity of the complex fluid can cause oscillations in the VACF.

7.2.5 Thermal force power spectral density

The numerical predictions of thermal force power spectral densities ex-

erted on the microsphere immersed in Maxwell fluids and generalized Maxwell

fluids differ significantly from the the simple behavior in pure water, as shown

176



Figure 7.5: The numerical predictions of velocity autocorrelation function
(VACF) of a 3 µm diameter silica in complex fluids with different properties.
(A), In Maxwell fluids. (B), In generalized Maxwell fluids.

in Fig. 7.6. The FPSDs no longer monotonically increase with increasing fre-

quency. The FPSDs in the Maxwell model flattens at frequencies higher than

1/τM ,

SMF (ω � 1/τM) = 12
√

2π2a2kBT
√
ρfG∞ (7.11)

Surprisingly, this saturation level does not depend on the relaxation time scale

τM .

In summary, the viscoelasticity of a complex fluid can have dramatic

impacts on Brownian motion of an immersed particle. In return, this depen-

dence can be utilized to extract the properties of an unknown viscoelastic fluid,

which will be discussed in detail in Section 7.3. It is worth to emphasize that

the perfect agreement in Fig. 7.2(A), 7.3(A), 7.4(A), 7.5(A), 7.6(A) between

the black lines, which are the predictions of the microsphere in pure water and

the red dashed lines, which are the prediction of the particle in a Maxwell fluid
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Figure 7.6: The numerical predictions of thermal force power spectral density
(FPSD) of a 3 µm diameter silica in complex fluids with different properties.
(A), In Maxwell fluids. (B), In generalized Maxwell fluids.

with τM = 10−12 s and G∞ = 109 Pa, indicates that water is indeed a Maxwell

fluid at frequencies up to about 1 THz.

7.3 Methods of estimating viscoelasticity of a fluid by
measuring Brownian motion of an immersed parti-
cle

Last section we have discussed the Brownian motion in property-known

complex fluids, showing the properties of the fluid can dramatically change

the dynamics of the particle. Perhaps, it will be more interesting if one can

measure the properties of the complex fluids by studying Brownian motion of

a particle in such fluids.
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7.3.1 Mason-Weitz method (without hydrodynamic effects)

Mason and Weitz pioneered an approach that relies on detecting the dis-

placement of colloidal probe particles embedded in a complex fluid to extract

the viscoelastic properties of the fluid [28]. The frequency-dependent viscosity

of a medium can be estimated from the MSD of a free particle immersed in

the host medium as

η(s) =
kBT

3πas2〈∆x̂2(s)〉
− ms

6πa
(7.12)

where the first term reflects the viscoelasticity of the medium, the second

term is related to the inertia of the particle, s = −iω and 〈∆x̂2(s)〉 denotes

the Laplace transform of the MSD.

〈∆x̂2(s)〉 =

∫ ∞
0

e−st〈∆x2(s)〉dx (7.13)

The term representing the inertia of the particle typically can be neglected in

many experiments, in which the maximum accessible frequency is less than 1

MHz. Commonly, in optical microrheology experiments, the particle is trapped

by an optical tweezer. The frequency-dependent viscosity extracted from MSD

of an trapped particle is [138]

η(s) =
kBT

3πas2〈∆x̂2(s)〉
− ms

6πa
− K

6πas
(7.14)

In spite of the tremendous success in many experiments [28,135,136,139,141,

143,144], Mason’s method [28] typically is only correct at low frequencies (up

to ∼100 kHz). This is because it does not include hydrodynamic effects by

assuming the friction kernel γ(ω) = 6πη(ω)a.
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7.3.2 Felderhof method (with hydrodynamic effects)

The observation of viscoelasticity at short timescales, or equivalent-

ly at high frequencies, requires disentangling the frequency-dependent elastic

modulus and the hydrodynamic effects. The theory including hydrodynamic

effects has been proposed [147,151].

The dynamic viscosity of a complex fluid may be generalized as

η(ω) = η0Gr(ω) (7.15)

where Gr(ω = 0) = 1. The Kubo-Green formula relates the admittance and

the velocity autocorrelation Cv(t) as

Y(ω) =
1

kBT

∫ ∞
0

eiωtCv(t)dt, (7.16)

We consider a microsphere with a no-slip boundary condition on its surface

immersed in an incompressible fluid, within the linear hydrodynamics approx-

imation, the translational admittance is given by [83]

Y(ω) =
1

−iωm+ γ(ω) + K
−iω

. (7.17)

The correct friction kernel considered hydrodynamic effects should be

γ(ω) = 6πη(ω)a

(
1 +

√
−iωρfa2

η(ω)
− iωρfa

2

9η(ω)

)
, (7.18)

instead of γ(ω) = 6πη(ω)a in the Mason-Weitz method. By combining E-

q. (7.15) to 7.18, the frequency-dependent viscosity of the complex fluid can

be obtained from the VACF

η(ω) = η0

[√
kBT

6πη0aCv(ω)
+

1

iωτK
+ iω

(
τp −

5τf
36

)
− 1

2

√
−iωτf

]2

(7.19)
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where Ĉv(ω) =
∫∞

0
eiωtCv(t)dt, τK = 6πη0a/K, τp = 2ρpa

2/(9η0) and τf =

ρfa
2/η0.

We give the frequency-dependent viscosity in terms of the MSD instead

of the VACF, since the VACF has more noise than the MSD in typical optical

tweezer experiments due to the fact that VACF has zero crossing whereas MSD

does not. The VACF can be related to MSD via the identity [139]

Ĉv(ω) = −ω
2

2
∆x̂2(ω) (7.20)

where ∆x̂2(ω) =
∫∞

0
eiωt∆x2(t)dt. Therefore, the frequency-dependent viscos-

ity can be extracted from MSD as

η(ω) = η0

[√
− kBT

3πη0aω2∆x2(ω)
+

1

iωτk
+ iω

(
τp −

5τf
36

)
− 1

2

√
−iωτf

]2

(7.21)

It is worth noting that this result reduces to Mason-Weitz’s result Eq. (7.14)

as τf → 0, meaning hydrodynamic effects are negligible at all time scales.

This result will be used to extract the viscosity of fluids from experimental

Brownian motion data.

Numerically calculating the Laplace-Fourier transform of the MSD and

the VACF is not trivial. The Laplace-Fourier transform of any time dependent

function g(t) sampled at a finite set of data points (tn, g(tn)), where n =1,

2...N, is defined as ĝ(ω) =
∫∞

0
eiωtg(t)dt. An algebraic method of estimat-

ing this transform has been proposed [141, 152, 153], in which g(t) is linearly

interpolated between data points (tn, g(tn)). This transform can be simply ob-

tained by summing the Laplace-Fourier transform of each linear interpolated
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piece of g(t), which can be analytically calculated,

ĝ(ω) =
−1

ω2

[
−iωg(0)+(1−eiωt1)+ ġ∞e

iωtN +
N∑
n=2

(
gn − gn−1

tn − tn−1

)
(eiωtn−1−eiωtn)

]
(7.22)

where g(0) is the value of g(t) extrapolated to t = 0, ġ∞ is the gradient of g(t)

extrapolated to t = ∞. This method is used to calculate the Laplace-Fourier

transform of the MSD and the VACF.

7.3.3 Numerical testing of these two methods

Here, we give two examples for comparing the results obtained from

these two methods, as shown in Fig. 7.7. As it is well known, water and

acetone are purely viscous fluids at frequencies less than 1010 Hz. Water has

a viscosity of 0.9 × 10−3 Pa·s, while the viscosity of acetone is 3.1 × 10−4

Pa·s. The MSD and VACF used here are the theoretical predictions [83, 85].

At low frequencies, these two methods give the same results, which is to be

expected. However the Felderhof method gives much more reliable results than

the Mason-Weitz method at high frequencies. This is exactly due to the fact

that the Mason-Weitz method does not include hydrodynamic effects while

the Felderhof method does. In the Mason-Weitz method, the hydrodynamic

effects are mistaken as viscoelasticity of the fluid, which cause the deviation

at high frequencies.
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Figure 7.7: The viscoelasticity of water (A) and acetone (B) obtained by the
Mason-Weitz method and the Felderhof Method.

7.4 Measurements of viscoelastic properties of fluids

In this section, through two demonstrations, we will analyze the exper-

imental data to extract the viscosity of water and acetone using the Felderhof

method. The data used here is the same as the two systems in Chapter 4, a

silica microsphere in water and a silica microsphere in acetone.

Figure 7.8: Experimental results of the viscosities of water (A) and acetone
(B) obtained by the Felderhof Method.
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The viscosities of water and acetone in a frequency range of from 500

Hz to about 1 MHz (200 kHz in the acetone case) are shown in Fig. 7.8. The

minimum frequency is limited by the high pass filter in the AC detector, which

can be improved by using a DC detector. Whereas, the maximum frequency is

limited by noise, presumably the shot noise, in the experiments. As discussed

in Chapter 4, the shot noise in the silica-acetone system is higher than that

in the silica-water system. Thus, the frequency range in which the viscosity

of water can be extracted is larger than that in silica-acetone system. The

uncertainty of viscosity (the error-bar) is determined from the variance in

the results of 1100 and 143 independent measurements for water and acetone

respectively. Similar results on water have been reported recently [148,154].

Our setup can be easily adapted to measure the viscoelasticity of an

unknown complex fluid. Silicone oils are suggested to be Maxwell fluids [132].

Polystyrene (n = 1.58) and BaTiO3 (n = 2.1) microspheres might be better

options than silica microspheres for single beam trapping in silicone oils since

refractive index of silicone (n∼ 1.40) is too close to that of silica microspheres

(n = 1.46) to form a stable trap [155]. We are also planning to study the

viscoelasticity of polyacrylamide solutions [140,143,156,157], wormlike-micelle

solutions [136,158,159], and transient polymer networks [160,161].
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Chapter 8

Brownian motion with slip boundary condition

Fluid flow velocity conditions at solid surfaces can have a huge impact

on Brownian motion. For example, it is well known that the magnitude of

the steady Stokes drag force on a sphere moving at velocity v is reduced from

Fs = 6πηav in the conventional no-slip boundary condition case to Fs = 4πηav

if the sphere has a perfect-slip boundary condition [162–164]. Yet, the detail

of the effects of changing boundary conditions on the sphere and/or any other

bounding surfaces (different with the boundary effects discussed in Chapter 5

and 6) on Brownian motion over the entire time scales is not well studied. We

attempt to shed new light on these effects.

Slippage is usually quantified in terms of an extrapolation length, the

so-called slip length. The slip length δ is defined as the distance inside the

solid wall where the extrapolated fluid flow profile vanishes. The three bound-

ary conditions is illustrated in Fig. 8.1. In the case of the no-slip boundary

condition, δ = 0; for the partial-slip boundary condition δ is finite; and δ =∞

for the perfect-slip boundary condition. The slip boundary condition can also

be characterized by the contact angle θc, which in many cases is related to slip

length through δ = δ0(1 + cosθc)
−2 [33, 165]. δ0 is an empirical quasiuniversal
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length scale, typically obtained from experiments.

Figure 8.1: Fluid flow boundary conditions at solid-fluid interfaces: (A) no
slip, δ = 0 (B) partial slip, δ is finite (C) perfect slip, δ = ∞. The light blue
block represents the solid and the light green area indicates the fluid.

In fluid dynamics, the no-slip boundary condition is a conventional

assumption, although its microscopic mechanism is still under debate [166]. In

the no-slip condition, fluid particles along the plane of the fluid-solid surface

have zero velocity with respect to the interface. In other words, the outermost

molecules of fluid are stuck to the solid surface perfectly. At macroscopic

scales, the no-slip boundary condition is generally valid because in most cases

the adhesive forces between the fluid molecules and solid particles are greater

than the cohesive forces between the fluid molecules. This force imbalance

brings down the fluid velocity to zero relative to the solid surface.

As discussed in Chapter 4 and 6, we assumed the all the solid-fluid

interfaces (glass-water and glass-acetone) have no-slip boundary conditions.

The contact angle between water and glass typically lies in the range 25◦ to

29◦ [29], resulting a slip length of 0.1 nm [33, 165]. Because the particle’s
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diameter is 104 times larger than the slip length, the interface between water

and micron-sized glass particles can be approximated with no-slip boundary

condition. The contact angle of acetone on glass is typically smaller than that

of water on glass [167]. Hence, the interface between acetone and micron-sized

glass particles can be approximated with no-slip boundary condition as well.

However, if the slip length is comparable to the dimensions of interest,

the no-slip assumption is insufficient and the partial-slip boundary condition

must be used [30, 32–34, 168–175]. Slip lengths ranging from nanometers to

even micrometers have been reported [30, 168, 169]. In some experiments and

simulations, the slip length appears to be independent of shear rate [168,170],

whereas in others it depends upon shear rate [30,169].

In recent years, superhydrophobic surfaces with large slip lengths (large

contact angles θc ≥ 150 ◦C) have been extensively studied [31, 32, 176–178].

The two key features of superhydrophobic surface are low surface energy and

micro- or nano-roughness (typical with certain patterns), often called lotus leaf

structure. The combination of surface roughness and hydrophobicity can trap

an air layer in the depressions on the surface and result in the formation of

an air-water interface that is supported by the peaks in the surface roughness.

Therefore, the effective slip length can be increased.

In addition, the slip length of fluids on a glass surface can be increased

by coating a hydrophobic self-assembled monolayer [179]. Therefore, micro-

spheres with a partial-slip or even a near perfect-slip boundary condition can

be created. In this chapter, we will discuss the boundary-condition effects
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on Brownian motion for two systems: an unbounded particle with different

boundary conditions at its surface, and a no-slip particle near a flat wall with

different boundary conditions at the wall’s surface. We will first give the the-

ories and followed by numerical predictions with our experimental conditions

for each system. In the end, we propose that the boundary condition can be

extracted from the motion of a particle, which is similar to the approach of

extracting viscoelasticity of fluids from the motion of an immersed particle

discussed in Chapter 7.

8.1 Brownian motion of an unbounded microsphere with
partial-slip boundary condition

The theory for Brownian motion presented in Chapter 3 assumes the no-

slip boundary condition on the particle’s surface. In this section, we will study

the Brownian motion of an unbounded microsphere with different boundary

conditions at its surface, namely different slip lengths.

As discussed in Chapter 3, to study the Brownian motion we just need

to know the admittance of the system. The frequency-dependent friction co-

efficient of a microsphere in a liquid with a slip boundary condition has been

studied [164]:

γslip(ω) =
2πηa

3

(1 + 2δ̃)(9 + 9α̃ + α̃2) + δ̃α̃2(1 + α̃)

1 + (3 + α̃)δ̃
(8.1)

where the dimensionless quantities α̃ =
√
−iωτf , and δ̃ = δ/a. In the no-slip

limit, γ(ω) reduces to γ(ω) = γs(1 + α̃ + α̃2/9) as δ̃ = 0.
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In the perfect-slip limit, γslip(ω) reduces to

γp-s(ω) = 6πηa
2 + 2α̃ + α̃2/3 + α̃3/9

3 + α̃
(8.2)

The steady drag coefficient is γp-s(ω = 0) = 4πηa, as α̃→ 0.

The admittance of a microsphere in a liquid with a slip boundary con-

dition can be obtain from the frequency-dependent friction coefficient through

Yslip(ω) =
1

−iωm+ γslip(ω) + K
−iω

. (8.3)

With the admittance known, all the statistical quantities, such as MSD,

position PSD, velocity PSD and velocity autocorrelation function and thermal

force PSD, describing Brownian motion can be numerically calculated using

Eq. (3.11) to Eq. (3.15), although it might be not easy to obtain the analytic

solutions.

Here, we give the numerical predictions of a 3 µm diameter, optically

trapped microsphere (has the same density as silica, 2000 kg/m3) in water with

different boundary conditions, namely different slip lengths. A trap strength

of 150 µN/m is used in this numerical calculation.

8.1.1 Velocity autocorrelation function

The numerical prediction for velocity autocorrelation function Cv(t)

with different boundary conditions on sphere’s surface are shown in Fig. 8.2.

The red solid line represents the prediction of the VACF in the no-slip limit

and the green solid line predicts the VACF in the perfect-slip limit. The
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Figure 8.2: The numerical predictions of velocity autocorrelation function of
an unbounded microsphere with different boundary conditions. (A), on a log-
linear plot; (B), on a log-log plot with absolute value.

dashed lines are the predictions with partial-slip boundary conditions. In

particular, the agreement between the VACF with no-slip boundary condition

and VACF with a slip length of 0.1 nm (the cyan dashed line) indicates that

the interface between glass and water indeed can be assumed to be no-slip in

our experiments.

With our current time resolution on VACF (down to 50 ns), the max-

imum measurable normalized VACF value can be increased from 0.75 in the

no-slip case to 0.95 if the microsphere has perfect-slip boundary condition. As

shown in Chapter 4, this is similar to the results of a BaTiO3 microsphere

in acetone. Therefore, we can measure the instantaneous velocity of a 3 µm

silica microsphere in water with our existing setup if silica microspheres have

perfect-slip boundary conditions on their surface.
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Figure 8.3: The numerical predictions of the mean square displacements of an
unbounded microsphere with different boundary conditions.

8.1.2 Mean square displacement

The mean square displacement predictions with different boundary con-

ditions are shown in Fig. 8.3. The slippage on the particle surface results in

a less friction force on the particle. Therefore, the MSD increases with in-

creasing slip length. At long time scales, the optical trap confines the particle

and causes the MSD to plateau to the same value, which is due to the same

trapping strength and is independent of the slippage.

8.1.3 Position power spectral density

The position power spectral density predictions of the particle with dif-

ferent boundary conditions are shown in Fig. 8.4. Interestingly, with increasing
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Figure 8.4: The numerical predictions of the position power spectral densities
of an unbounded microsphere with different boundary conditions.

slip length, the position PSD is suppressed at low frequencies and high fre-

quencies while it is enhanced at intermediate frequencies. This ensure that

the total area under the PSD remains the same as the energy equipartition

theory predicts, 〈x2〉 = kBT/K. Overall, the power of the position signal is

redistributed towards low frequencies due to the slippage on the particle’s sur-

face. This is in favor of precisely measuring the position with a given detection

bandwidth.

8.1.4 Velocity power spectral density

The velocity power spectral density predictions with different bound-

ary conditions are shown in Fig. 8.5. The boundary-condition effects on the
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velocity PSD are very similar to those on the position PSD. With increasing

slip length, the power of the velocity is redistributed towards low frequencies,

which facilitates the precise measurements of the instantaneous velocity of a

particle with large slip lengths.

Figure 8.5: The numerical predictions of the velocity power spectral densities
of an unbounded microsphere with different boundary conditions.

8.1.5 Thermal force power spectral density

Fig. 8.6 shows the thermal force power spectral density predictions on

the sphere with different boundary conditions. The thermal force on the par-

ticle with partial (and perfect) slip boundary conditions becomes less colorful,

as the thermal force PSD tend to flatten with increasing slip length. Both

the DC values of the thermal force spectrum and the drag force decrease with
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Figure 8.6: The numerical predictions of the velocity power spectral density
of an unbounded microsphere with different boundary conditions.

increasing slip length, which is in accordance with the fluctuation-dissipation

theorem [10]. The high frequency behavior is significantly affected by the slip-

page on the particle’s surface. The thermal force spectrum with slip boundary

conditions no longer has a dependence of
√
ω and instead tends to a satura-

tion. In the perfect-slip limit, the thermal force at high frequencies saturates

at

SF (ω) = 48π2ηakBT (8.4)

which is 3 times of the corresponding DC value.

In summary, the boundary-condition can drastically affect Brownian

motion, which can be utilized to measure the slippage. In the mean time,
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these numerical calculations validate the assumption we made in Chapter 4

and 6, regarding the no-slip boundary condition at the glass surface in water

and acetone.

8.2 Brownian motion of a no-slip microsphere near a
perfect-slip wall

In Chapter 5 and 6, we have discussed the boundary effects on Brownian

motion of a microsphere with no-slip boundary condition imposed by a no-slip

infinite flat wall. In this section, we will discuss the boundary effects on

Brownian motion of a microsphere imposed by a perfect-slip infinite flat wall.

It is worth emphasizing that the sphere has the no-slip boundary condition.

The theory for Brownian motion in such system can be obtained simi-

larly to the one presented in Chapter 5. Whereas, the reaction field tenser in

this system is different than that for a no-slip boundary wall given in Eq. (5.20)

and Eq. (5.21), and has been given by Felderhof [180,181]. The reaction field

tensor element in the parallel direction is

Rslip
‖ (r0, ω) =

−1

32πηhν2

[
1− (1 + 2ν + 4ν2)e−2ν

]
(8.5)

and in the perpendicular direction is given by

Rslip
⊥ (r0, ω) =

−1

16πηhν2

[
1− (1 + 2ν)e−2ν

]
(8.6)

where ν =
√
−iωρfh2/η =

√
−iωτw, τw is the time taken for vorticity in the

fluid to traverse the distance from the wall to the sphere.
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Furthermore, we can give the admittance of particle for both directions

in such system as we did in Eq. (5.22) and Eq. (5.23)

Y⊥slip(ω) =
1 + γs(1 + α̃ + α̃2/3)Rslip

⊥ (r0, ω)

(γ0(ω)− iωmp) + iω(mf −mp)γs(1 + α̃ + α̃2/3)Rslip
⊥ (r0, ω)

, (8.7)

and in the parallel direction

Y
‖
slip(ω) =

1 + γs(1 + α̃ + α̃2/3)Rslip
‖ (r0, ω)

(γ0(ω)− iωmp) + iω(mf −mp)γs(1 + α̃ + α̃2/3)Rslip
‖ (r0, ω)

. (8.8)

With these, the complete dynamics of the particle can be at least nu-

merically calculated. For rest of the section, we will give the numerical predic-

tions of a variety of statistical quantities for the Brownian motion of no-slip

sphere in three cases: unbounded, near a no-slip flat infinite wall, and near

a perfect-slip flat infinite wall. These calculations will be used to study both

boundary effects and boundary-condition effects. The particle considered here

is a 3 µm diameter silica sphere (ρ = 2.0 g/cm3) trapped by an optical tweezer

with a trap stiffness of 150 µN/m, whereas the fluid is water (ρf = 1 g/cm3, η

= 0.9×10−3 Pa·s). In the bounded cases, the sphere-wall separation is set to

h = 3 µm. Since the boundary effects imposed by a no-slip wall have been in-

vestigated thoroughly Chapter 5 and 6, here we just use them as comparisons

to the boundary effects imposed by a perfect-slip flat wall.

8.2.1 Position power spectral density

The position power spectral density predictions of the sphere in those

three cases are shown in Fig. 8.7. At high frequencies (> Fw = 1/(2πτw)), the
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Figure 8.7: The numerical predictions of the position power spectral density
of a no-slip microsphere in three cases: unbounded, 3 µm away from a flat
infinite no-slip wall, and 3 µm away from a flat infinite perfect-slip wall. (A)
in the parallel direction; (B) in the perpendicular direction.

boundary effects imposed by both no-slip and perfect-slip walls are negligible.

In the perpendicular direction, shown in Fig. 8.7(B), the boundary effects

imposed by the perfect-slip wall are similar to those imposed by the no-slip

wall. However, they are qualitatively different in the parallel direction as

shown in Fig. 8.7(A). Unlike the no-slip wall case, the parallel position PSD

of the sphere near a perfect-slip wall is suppressed at low frequencies and

enhanced at intermediate frequencies.

8.2.2 Velocity power spectral density

Fig. 8.8 shows the velocity power spectral density predictions of the

sphere in those three cases. The boundary effects on velocity PSD imposed
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by both no-slip and perfect-slip walls are similar to those on the position PSD

imposed by the same wall.

Figure 8.8: The numerical predictions of the velocity power spectral density
of a no-slip microsphere in three cases: unbounded, 3 µm away from a flat
infinite no-slip wall, and 3 µm away from a flat infinite perfect-slip wall. (A)
in the parallel direction; (B) in the perpendicular direction.

8.2.3 Mean square displacement

The mean square displacement predictions of the sphere in the three

cases are shown in Fig. 8.9. At long time scales, the MSDs of each case in both

parallel and perpendicular directions plateau to the same value due to confine-

ment caused by the optical trap. As compared to the MSD of an unbounded

particle, the MSDs in the perpendicular direction of particle near both no-

slip and perfect-slip walls are suppressed (shown in Fig. 8.9(B)), meaning the

sphere experience a stronger drag force when move perpendicularly to a wall

regardless the boundary condition on the wall surface. However, the mag-
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Figure 8.9: The numerical predictions of the mean square displacements of a
no-slip microsphere in three cases: unbounded, 3 µm away from a flat infinite
no-slip wall, and 3 µm away from a flat infinite perfect-slip wall. (A) in the
parallel direction; (B) in the perpendicular direction.

nitude of the drag force depends on the boundary condition at the wall. In

addition to this quantitative dependence on boundary conditions, the drag

force on the sphere moving parallel to the wall has a qualitative dependence

on the boundary conditions. It is surprising that in the parallel direction, the

MSD of the sphere near the perfect-slip wall actually increases as compared

to that of an unbounded sphere, which means that the sphere experience less

drag force when moving in parallel to a perfect-slip wall as compared to that

of an unbounded sphere.

Here, we give the DC values of the drag coefficients of the sphere near

a perfect-slip wall in both directions

γ‖p-s = 6πηa
1

1 + 3a
8h

(8.9)
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γ⊥p-s = 6πηa
1

1− 3a
4h

(8.10)

With these, the diffusion coefficients with first order of a/h in the two direc-

tions can be given by Einstein-Stokes relation

D‖p-s =
kBT

6πηa

(
1 +

3a

8h

)
= D0

(
1 +

3a

8h

)
(8.11)

D⊥p-s =
kBT

6πηa

(
1− 3a

4h

)
= D0

(
1− 3a

4h

)
(8.12)

The diffusion coefficient D
‖
p-s is actually bigger than the one in bulk. This

has been experimentally demonstrated for a sphere moving near a fluid-air

interface, which can be considered to be perfect-slip [182].

8.2.4 Velocity autocorrelation function

The numerical prediction of the absolute velocity autocorrelation func-

tion Cv(t) (normalized to 〈(v∗‖)2〉 and 〈(v∗⊥)2〉 in the parallel and perpendicular

directions respectively) of the sphere in the three cases are shown in Fig. 8.10.

In the perpendicular direction, the boundary effects imposed by both no-slip

and perfect-slip walls cause a more rapid decay in VACF as compared to that

in bulk case. However, in the parallel direction, the VACF of a sphere near a

perfect-slip wall first decay faster than the one in bulk case followed by slower

decay at intermediate time scales.

8.2.5 Thermal force power spectral density

The thermal force power spectral density predictions in the three cases

are shown in Fig. 8.11. As discussed in Chapter 5 and 6, the thermal force
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Figure 8.10: The numerical predictions of the velocity autocorrelation function
of a no-slip microsphere in three cases: unbounded, 3 µm away from a flat
infinite no-slip wall, and 3 µm away from a flat infinite perfect-slip wall. (A)
in the parallel direction; (B) in the perpendicular direction.

loses its color at low frequency when approach to a no-slip wall. It is still the

case for a sphere moving perpendicularly near a perfect-slip wall. However,

it is qualitatively different in the parallel direction. The thermal force in the

parallel direction on a sphere near a perfect-slip wall does not lose its color.

The low frequency behaviors of the thermal force near a perfect-slip

wall can be understood by the asymptotic form of the thermal force PSD (one-

sided) exerted on the particle ω → 0, which is given in the parallel direction

by

Sp-s
F,‖(ω) = 4kBTγs

(
1

1 + 3a
8h

+
64
√

2h2

(8h+ 3a)2
(ωτf )

1
2

)
(8.13)
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and in the perpendicular direction by

Sp-s
F,⊥(ω) = 4kBTγs

(
1

1− 3a
4h

+
8
√

2(6h4 − 5a2h2)

15a2(4h− 3a)2
(ωτf )

3
2

)
(8.14)

The DC values of Sp-s
F,‖ and Sp-s

F,⊥ change to 4kBTγs
1

1+ 3a
8h

and 4kBTγs
1

1− 3a
4h

from

the bulk value of 4kBTγs respectively. The change in the thermal force is con-

sistent with the change in the drag force, in accordance with the fluctuation-

dissipation theorem [10].

The flatness of the thermal force PSD in the perpendicular direction

on a sphere near a perfect-slip flat wall can be understood in the same way

for the no-slip wall case. In contrast, this effect is not seen in the parallel

direction in the case of a perfect slip plane wall, mathematically seen as Sp-s
F,‖

Figure 8.11: The numerical predictions of the thermal force power spectra on a
no-slip microsphere in three cases: unbounded, 3 µm away from a flat infinite
no-slip wall, and 3 µm away from a flat infinite perfect-slip wall. (A) in the
parallel direction; (B) in the perpendicular direction.
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depends on
√
ωτf . We believe this to be due to constructive interference from

the reflected flow, as discussed in Section 5.2.4. More studies are needed to

completely understand this effect.

In summary, some conclusions drawn in the Chapter 5 and 6 still hold

for the case of a sphere near a perfect-slip wall. For instance, boundary effects

imposed by a perfect-slip flat wall occur at time scales shorter than τw and

frequency scales higher than Fw. In the perpendicular direction, the bound-

ary effects imposes by a perfect-slip wall is only quantitatively different with

those caused by a no-slip wall, which can be understood as the no penetration

boundary condition does not change for both cases. With the same sphere-

wall separation, the boundary effects near a perfect-slip wall are weaker than

those near a no-slip wall. However, in the parallel direction, the boundary

effects caused by two types of walls are qualitatively different. The boundary

effects imposed by a partial-slip flat wall will manifest as a hybrid of the effects

caused by a no-slip wall and a perfect-slip wall.

We present two economical methods of achieving partial-slip boundary

conditions both on the microspheres and boundaries, namely coverslips or glass

fibers. One is to coat the glass surface with a superhydrophobic structure with

nano-scale roughness1, which increases the effective slip length to the order of

100 nm. The other method is to coat the glass with a self-assembled monolayer

of phosphonates, whose thickness is typically only a few nanometers2. With

1For instance, HydroFoe coating, http://lotusleaf.octochemstore.com/
2For example, Aculon, http://www.aculon.com/samp-technology.php

203



this, we are expecting to achieve a slip length of ∼ 10 nm.
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Chapter 9

Brownian motion in compressible fluids and

non-equilibrium physics study

One has to modify the Maxwell Boltzmann distribution and the energy

equipartition theorem to explain the observation shown in Chapter 4, which

accounts for the inertia of the entrained fluid. These modifications are unnec-

essary if the effects of compressibility of the liquid is taken into account [26].

Below time scales on the order of τc = a/c, where c is the speed of sound in the

liquid and a is the radius of the microsphere, the compressibility of the liquid

cannot be neglected and the mean square value of the velocity will approach

the energy equipartition theorem 〈v2〉 = kBT/mp, rather than the modified

one 〈(v∗)2〉 = kBT/m
∗ observed in Chapter 4. The effective mass will be the

mass of particle mp alone. The time scale τc in our experiments is typically

around 1 ns, which is not accessible with our current experimental setup.

In this chapter, we will first present the efforts to resolve the compress-

ibility of fluid using a pulsed laser as the detection beam. It is important to

note that we assume a no-slip boundary condition in this chapter. In the sec-

ond part of the chapter, we will briefly discuss the possible further experiments

on studying non-equilibrium physics.
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9.1 Brownian motion in compressible fluids

As shown in Chapter 4, our current temporal resolution on velocity

measurement is around 100 ns (� τc), which is limited by the position sen-

sitivity and ultimately by the detection beam’s shot noise. This temporal

resolution does not allow us to resolve the compressibility of the fluids. The

absolute shot noise in the detection beam increases with power as
√
P , while

the position signal increases linearly with power P . Therefore, one can increase

the position sensitivity by increasing the detection power, which is limited by

three facts: the maximum power the detector can handle, the maximum laser

power available for detection, and the maximum power on the particles and

fluids without causing heating issue. The current commercially available bal-

anced detectors have a power limitation of 5 mW per photodiode (Thorlabs

PDB410C for instance). The home-made balanced detector can handle up to

100 mW per photodiode [17]. Continuous wave (CW) lasers typically can only

provide power up to ∼ 10 W, while a pulsed laser can easily provide much

higher peak power and much lower averaged power. The high peak power will

reduce the shot noise level thus increase the position sensitivity. The low av-

eraged power reduces heating on the microspheres and fluids and can be well

below the detector damage threshold.

For example, by using a 10−10 s duration pulsed laser with a peak power

of 108 W, one can increase the position sensitivity to about 10−19 m/
√

Hz.

This leads to a temporal resolution of 0.1 ns (see Section 3.4), which is much

shorter than τc, thus we can resolve the compressibility of fluids. Moreover,
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the average power of the pulsed laser is only 10 mW, which is well below our

detector’s damage threshold, and would not heat the particles and fluids. A

large particle combined with a low-sound-speed fluid, which result in a large τc,

are in favor of resolving the fluid’s compressibility. Perfluorohexane is probably

desired as it has low sound speed (479 m/s) in comparison with that of water

(1500 m/s). It is worth noting that the temporal resolution is also limited by

the duration of the pulsed laser; hence, a sub-ns pulsed laser is necessary.

9.1.1 Theory for Brownian motion of a microsphere in a compress-
ible fluid

The theory of hydrodynamic interaction presented in Chapter 3 does

not take into account the nonzero compressibility of the fluid. In this section,

we will give the theory of Brownian motion with compressible effects.

Unlike the theory for a Brownian particle in an incompressible fluid, the

theory for Brownian motion with compressible effects is not well developed.

Expressions for many statistical quantities of Brownian motion, like MSD,

position PSD, velocity PSD, and so on, have not been derived. The normalized

velocity autocorrelation function of a microsphere in a compressible fluid in

short time limit (� τc) can be approximated as [26]:

A(t) =
〈v(t)v(0)〉
kBT/m∗

= 1 +
mf

2mp

[
1

2
− im∗

(4m2
p −m2

f )
1/2

]
e−ix1t/τc (9.1)

+
mf

2mp

[
1

2
+

im∗

(4m2
p −m2

f )
1/2

]
e−ix2t/τc ,

207



where

x1 =− im
∗

mp

+ [1−
m2
f

4m2
p

]1/2,

x2 =− im
∗

mp

− [1−
m2
f

4m2
p

]1/2.

(9.2)

At very short time scales t � tc, Eq. (9.1) approaches A(0) = 1 +
mf
2mp

. The

short time limit A(0) 6= 1 because the normalization factor is kBT/m
∗, rather

than kBT/mp.

As discussed in Chapter 3, in order to get the comprehensive theory for

Brownian motion of a sphere in a compressible fluid, the admittance for such

system is needed and can be obtained from the frequency-dependent friction

coefficient, which has been studied [164]:

γcom(ω) =
4πηa

3

(1 + λ̃)(9 + 9α̃ + α̃2) + 2λ̃2(1 + α̃)

2(1 + λ̃) + (1 + α̃ + α̃2)λ̃2/α̃2
(9.3)

where the dimensionless quantities λ̃ = aω√
−c2+iω(ζ+4η/3)/ρf

, which contains the

information for the compressible effects, α̃ =
√
−iωτf , c is the speed of sound

in the fluid, η and ζ are the shear viscosity and bulk viscosity of the fluid

respectively.

In the incompressible limit, corresponding to λ̃→ 0 (because c→∞),

the drag coefficient γcom(ω) reduces to the one in an incompressible fluid

γs(1 + α̃ + α̃2/9), as in Eq. (3.31). The ratio between the two important

time scales τf and τc is
ρfac

η
, which is around 103 in our experiments, meaning

the hydrodynamic effects take place at time scales 103 longer that of the com-

pressible effects. At low frequencies ω � c/a, which leads |λ̃| � 1, thus the

compressible effects are negligible.
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The admittance of an optically trapped sphere in a compressible fluid

can be obtained from the frequency-dependent friction coefficient through

Ycom(ω) =
1

−iωm+ γcom(ω) + K
−iω

. (9.4)

With this, the complete theory of Brownian motion with compressible effects

is known at least numerically.

9.1.2 Numerical predictions of Brownian motion in compressible
fluids

In this section, we will give our predictions of Brownian motion of a

microsphere in a compressible fluid for two systems: a 3 µm diameter silica

microsphere in water (ζ = 2.4 × 10−3 Pa·s, c = 1500 m/s) [183] and a 6

µm diameter BaTiO3 microsphere in acetone (ζ = 1.4 × 10−3 Pa·s, c = 1174

m/s) [183]. The compressible effects time scales τc are 1 ns and 2.5 ns for

the two systems respectively. The trapping strength 150 µN/m is used in

the numerical calculation. This will serve as a guide for the experiments on

resolving the fluid’s compressibility.

The position power spectral density predictions of the two systems are

shown in Fig. 9.1. At low frequencies, the two theoretical predictions over-

lap nearly perfectly, proving that the compressible effects can be neglected at

frequency scales lower than Fc = 1/(2πτc). The PSDs enhance at frequencies

around Fc due to boundary effects. At frequencies much higher than Fc, these

two theories tend to agree with each other. The characteristic frequency scales

are Fc1 = 160 MHz and Fc2 = 60 MHz for the two systems: a 3 µm diameter
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Figure 9.1: The predictions of the position power spectral densities for the two
systems: a 3 µm diameter silica microsphere in water and a 6 µm diameter
BaTiO3 microsphere in acetone. Solid lines are the predictions for incom-
pressible fluids. Dashed lines are the predictions for compressible fluids. The
characteristic frequency scales are Fc1 = 160 MHz and Fc2 = 60 MHz for the
two systems respectively. The black dashed and dotted lines represent position
sensitivity with a level of 10−15 m/

√
Hz and 10−19 m/

√
Hz respectively.

silica microsphere in water and a 6 µm diameter BaTiO3 microsphere in ace-

tone respectively. The compressible features on position PSD are submersed in

our current shot noise (black dashed line, 10−15 m/
√

Hz). However, by using

the pulsed laser mentioned above, the compressible effects become resolvable

due to much lower noise level (black dotted line, 10−19 m/
√

Hz).

The velocity power spectral density predictions for the two systems are

shown in Fig. 9.2. The compressible effects on VPSD is similar to the ones on

PSD. The two theories give almost the same predictions except at frequencies
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Figure 9.2: The predictions of the velocity power spectral densities for the
two systems: a 3 µm diameter silica microsphere in water and a 6 µm di-
ameter BaTiO3 microsphere in acetone. Solid lines are the predictions for
incompressible fluids. Dashed lines are the predictions for compressible fluids.
The characteristic frequency scales are Fc1 = 160 MHz and Fc2 = 60 MHz
for the two systems respectively. The black dashed and dotted lines represent
the noise level with position sensitivities: 10−15 m/

√
Hz and 10−19 m/

√
Hz

respectively.

around Fc. Also, our current noise, represented by the black dashed line,

makes the compressible effects on velocity PSD elusive. However, these effects

can be resolvable with the pulsed laser.

The mean square displacement predictions for the two systems are

shown in Fig. 9.3. At time scales much larger than τc, the two predictions

agree well with each other, thus the compressible effects on MSD can be ne-

glected. At time scales shorter than τc, the compressibility of the fluid changes

the MSD slightly.
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Figure 9.3: The predictions of the mean square displacements for the two
systems: a 3 µm diameter silica microsphere in water and a 6 µm diameter
BaTiO3 microsphere in acetone. Solid lines are the predictions for incompress-
ible fluids. Dashed lines are the predictions for compressible fluids.

The velocity autocorrelation function predictions for the two systems,

normalized to kBT/m
∗, are shown in Fig. 9.4. At time scales longer than τc, the

two theoretical predictions are equivalent, indicating negligible compressible

effects, whereas at time scales shorter than τc, the two theoretical predictions

deviate from each other. The incompressible theory predicts the velocity vari-

ance Cv(0) = 1, which is consistent with the modified energy equipartition

theorem. In contrast, the compressible theory approaches Cv(0) = 1 +
mf
2mp

,

which is in accordance with the energy equipartition theorem. The short time

approximation for VACF predicted by Eq. (9.1), agrees well with the com-

pressible predictions at time scales much shorter than τc. The Cv(0) predicted

212



Figure 9.4: The predictions of the velocity autocorrelation functions (normal-
ized to kBT/m

∗) for the two systems: a 3 µm diameter silica microsphere in
water and a 6 µm diameter BaTiO3 microsphere in acetone. Solid lines are
the predictions for incompressible fluids. Dashed lines are the predictions for
compressible fluids. The thin black lines are the short time scales approxima-
tion for VACF as given in Eq. (9.1). The compressible time scales are τc1 = 1
ns and τc2 = 2.5 ns for the two systems respectively.

by the compressible theory is 1.1 and 1.25 for the two systems respectively.

Due to the compressibility of the fluids, an interesting feature emerging is that

the VACF does not monotonically decay. Instead, it oscillates at time scales

around τc.

The thermal force power spectral densities for the two systems are

shown in Fig. 9.5. Similarly to position PSD and velocity PSD, the compress-

ible effects only have impact on the thermal force PSD at frequencies around

Fc. At frequencies much lower and much higher than Fc, the compressible
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Figure 9.5: The predictions of the thermal force power spectral densities for
the two systems: a 3 µm diameter silica microsphere in water and a 6 µm
diameter BaTiO3 microsphere in acetone. Solid lines are the predictions for
incompressible fluids. Dashed lines are the predictions for compressible fluids.
The characteristic frequency scales are Fc1 = 160 MHz and Fc2 = 60 MHz for
the two systems respectively.

theory gives almost the same predictions as the incompressible theory does.

In summary, at frequencies lower than Fc (or time scales longer than τc),

the compressible effects on Brownian motion is negligible. Consequently, the

incompressible theories presented in Chapter 3 and 5 are good approximations.

With our current experimental setup, we are about one decade in both time

and frequency domains away from starting to resolve the compressibility, which

can be achieved by using a 10−10 s duration pulsed laser with a peak power

of 108 W. The measured velocity distribution and averaged kinetic energy

are expected to agree with the Maxwell Boltzmann distribution, and energy
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equipartition theorem. It is easier to resolve the compressible effects in the

system with 6 µm BaTiO3 microsphere in acetone due to its larger size of the

microsphere and lower sound speed in the fluid as compared to the system

with a 3 µm silica microsphere in water.

9.1.3 Experiments toward resolving compressibility of fluids

In this section, we will describe the experimental plans to study Brow-

nian motion with compressible effects in somewhat detail. The simplified

schematic of the experiment using pulse probes to resolve compressibility of

fluids is shown in Fig. 9.6. The detection laser pulse is split into two pulses by

polarization with controllable time delay τ0, which can be easily realized by

adjusting the difference in optical path length between pulse 1 and pulse 2. In

air, 1 ns optical delay time is corresponding to about 30 cm optical path dif-

ference. τ0, limited by the pulsed laser duration, is one of the limiting factors

on the experimental temporal resolution. Therefore τ0, as well as the pulse

duration, need to be shorter than τc. The two probe pulses pass through the

trapped particle by a CW beam that is not shown, with a time difference of τ0.

To cancel out the noise caused by vibration of the cut mirror, the two pulse

probes are balanced by the same cut mirror. Polarization is used to guide the

two probe pulse into two balanced detectors separately.

The positions of the particle x(t0) and x(t0 + τ0) can be obtained from

detector 1 and 2 respectively. With this, the position autocorrelation function

at τ0, Cx(τ0) = 〈x(t0)x(t0 + τ0)〉, can be obtained experimentally by averaging
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Figure 9.6: The simplified schematic for studying Brownian motion using pulse
probes. The laser pulse is split into two pulses, pulse 1 (pink) and pulse 2
(light blue), by polarization with a controllable delay τ0. The two pulses pass
through a trapped microsphere (by a CW beam which is not shown) with time
difference τ0 and incident onto two balanced detectors.

many measurements with a fixed time delay τ0. By changing the optical path

length difference thus τ0, one can get the Cx(τ0) over the entire time domain.

The instantaneous velocity of the particle can be estimated using v(t0) =(
x(t0 + τ0) − x(t0)

)
/τ0. The velocity autocorrelation function can also be

obtained by using four pulse probes instead of two.

Our pulsed laser (Concepts Research Corporation, TO3-1064-5-5) is a

passively Q-switched microchip laser with a central wavelength of 1064 nm, a

linewidth of 0.28 nm. The pulse duration length (full width at half maximum)

is 1.28 ns, measured by the intensity autocorrelation method [184]. The pulse

energy, around 5 µJ, results in a peak power of 3 kW. The position sensitivity

with this pulsed laser is expected to be around 10−17 m/
√

Hz, which may

still be possible to fully resolve the compressibility of fluids by using large
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microspheres and fluids with low sound speed. The pointing noise of this

laser, measured by a position sensing detector (Thorlabs, PDP90A), is less

than 50 micro-radians in each directions.

In the presence of detection noise, the measured position of the micro-

sphere by two detectors can be expressed as

x1,msr(t0) =x1,s(t0) + x1,n(t0),

x2,msr(t0 + τ0) =x2,s(t0 + τ0) + x2,n(t0 + τ0),
(9.5)

where x1,s(t0) and x1,n(t0) are the real position of the microsphere and the

noise in the detection system #1 at time t0 respectively, whereas x2,s(t0 + τ0)

and x2,n(t0 + τ0) are the real position of the microsphere and the noise in the

detection system #2 at time t0 + τ0 respectively. The instantaneous velocity

of the trapped Brownian particle at time t0 is:

vs(t0) =
x2,s(t0 + τ0)− x1,s(t0)

τ0

=
x2,msr(t0 + τ0)− x1,msr(t0)

τ0

− x2,n(t0 + τ0)− x1,n(t0)

τ0

(9.6)

In general, x1,n(t) and x2,n(t) should behave similarly but will not be

identical due to the two optical paths and the electronics in each system not

being exactly the same, which will cause error in the instantaneous veloci-

ty measurement. As a result, it is necessary to calibrate the two detection

systems.

As shown in Chapter 4 and 6, calibration is not needed in CW beam

detection systems. The time difference between two successive measurements
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is 5 ns, which is limited by sampling rate of the digitizer (maximum 200 MHz).

At such high frequency, the shot noise dominates the classical noise and the

instantaneous velocity measurement is immune to low frequency classical noise.

This is because the classical noise in a certain data point can be cancelled

by the previous data point (or the one followed by). Essentially, each data

point serves as a calibration automatically for the next data point, a passive

calibration, which can be explained as following. In the presence of detection

noise, the positions of the microsphere at at time t0 and t0 +δt (sampling time

interval) measured by the same detection system can be expressed as

xmsr(t0) =xs(t0) + xn(t0),

xmsr(t0 + δt) =xs(t0 + δt) + xn(t0 + δt),
(9.7)

The instantaneous velocity of the trapped Brownian particle at t0 time can be

estimated as:

vs(t0) =
xs(t0 + δt)− xs(t0)

δt
(9.8)

=
xmsr(t0 + δt)− xmsr(t0)

δt
− xn(t0 + δt)− xn(t0)

δt

xn(t0 + δt)− xn(t0) is small and dominated by the shot noise when δt is much

shorter than 1 µs in our experiments.

In summary, unlike the CW beam detection mode having the passive

calibration, one has to actively calibrate the two detection systems in pulsed

detection mode. Calibration can be done by introducing a calibration pulse

passing through the trapped particle and incident onto both detectors shortly
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Figure 9.7: The simplified schematic for instantaneous velocity measurements
of a Brownian particle using probe pulses with calibration. An unpolarized
calibration pulse passes though the trapped microsphere δt later than the pulse
1. One single mode optical fiber is used to assure the probe and calibration
pulses have the same optical path incident on the particle.

before (or after) the probe pulses. As shown in Fig. 9.7, the unpolarized cal-

ibration pulse (the blue pulse), after passing though the trapped microsphere

δt later than the pulse 1, is split into two sub-pulses after going through the

trapped microsphere. The two detection systems can be calibrated as the fol-

lowing. The measured position by the two detection systems can be expressed

as

x1,cali,msr(t0 + δt) = x1,s(t0 + δt) + x1,n(t0 + δt),

x2,cali,msr(t0 + δt) = x2,s(t0 + δt) + x2,n(t0 + δt).
(9.9)

Since the position of the Brownian particle measured by the two detection

systems at the same time t0 + δt should be the same, namely x1,s(t0 + δt) =

x2,s(t0 + δt), the relative noise difference between two detection systems at
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time t0 + δt can be calculated

x1,n(t0 + δt)− x2,n(t0 + δt) = x1,cali,msr(t0 + δt)− x2,cali,msr(t0 + δt) (9.10)

If both τ0 and δt is much shorter than 1 µs, the difference among x1,s(t0),

x1,s(t0 + τ0), x1,s(t0 + δt + τ0) and x2,s(t0), x2,s(t0 + τ0), x2,s(t0 + δt + τ0)

measured in each detection system are small and dominated by the shot noise.

The instantaneous velocity of the trapped Brownian particle at time t0 can be

estimated as:

vs(t0) =
x2,s(t0 + τ0)− x1,s(t0)

τ0

=
x2,msr(t0 + τ0)− x1,msr(t0)

τ0

− x2,n(t0 + τ0)− x1,n(t0)

τ0

=
x2,msr(t0 + τ0)− x1,msr(t0)

τ0

− x2,cali,msr(t0 + δt)− x1,cali,msr(t0 + δt)

τ0

(9.11)

Until now, we can measure the instantaneous velocity in the pulse-probe mode

since every term in the Eq. (9.11) is measurable. This calibration using a CW

laser beam can be understood in a similar way. For convenience, the calibration

pulse delay time δt needs to be around 10 ns, corresponding to an optical delay

path of 3 m. It is important noting that the probe pulses and calibration pulse

need to be temporally well resolved by the detectors. For this reason, balanced

detectors are necessary as the quadrant detectors are too slow. A single mode

fiber is needed to assure that the probe pulses and calibration pulse have same

optical path incident on the trapped particle.

There are a few potential limitations in the pulse probe method. The

pulse can not be too strong, otherwise the particle motion would be disturbed
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or even brought into deep non-equilibrium regime and the fluid would be broke

down. The high peak intensity on the photodiodes might cause saturation in

photocurrent production and dielectric breakdown of the fluids.

9.2 Non-equilibrium physics study

The ability to measure the instantaneous velocity will allow direct ac-

cess to statistics of the energy and entropy exchange between the microsphere

and the fluid both in equilibrium and non-equilibrium experiments. Brownian

motion, as a model tool, has been used to study nonequilibrium physics in

many studies [87, 185–194].

Trapped gold nano-spheres exhibit hot Brownian motion due to strong

absorption of laser beam [190, 192, 195]. Hot Brownian motion deviates from

the predictions of equilibrium Brownian motion because there is constant en-

ergy flow from the microsphere to the fluid [190, 196, 197]. It is much easier

to measure motion of a gold particle than that of a dielectric sphere of the

same size. This is because gold’s density is much higher, resulting in a longer

momentum relaxation time τp, as well as a gold nano-sphere has much stronger

scattering, resulting in higher optical gain, thus lower shot noise.

Another non-equilibrium situation can be created by moving hosting

fluids [193, 194], which could break the symmetry of the velocity distribution

and of the velocity dynamics. We can easily apply a known velocity fluid

flow using the syringe pump, while studying the motion of the trapped micro-

spheres. The maximum flow rate is limited by the trapping strength, which
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can be estimated as vmax = Ka/γs ∼ 10 mm/s with our experimental con-

ditions. The corresponding Reynolds number is about 10−2, thus linearized

Navier-Stokes equation is still a good approximation.

Perhaps a more systematic and controllable experiment is to use an

optical pushing force (exerted by a CW beam or a pulsed beam) to bring the

microspheres to non-equilibrium. A 71 nN (3 orders of magnitude larger than

typical trapping forces) optical kicking force on a microsphere exerted by a

pulsed laser has been measured [191]. They observed the particle displaced

208 nm on average before exponentially decaying back to the original position

due to optical trapping. However, their 1 ms temporal resolution is far from

being able to resolve how the velocity of the sphere decays after the kicking,

which requires a temporal resolution of less than τp. Interestingly, Felderhof

predicts that the velocity decays in a quantum-oscillation like way in short

times scales when compressibility of the fluids becomes important [198]. The

velocity does not decrease monotonically instead it oscillates, as shown in

the Fig. 9.4. If the fluid is sufficiently compressible and its bulk viscosity is

sufficiently smaller than its shear viscosity, then the velocity of the particle

after being kicked can even change its direction.

With a pump-probe scheme as shown in Fig. 9.8, we are likely to be

able to resolve these surprising effects. The kicking pulse is introduced from

the side by an optical fiber with a conical shape microlens on the tip1, whose

1We have 5 such fibers with a desired wavelength of 1064 nm from LaseOptics corporation
(Part number: LF-SM-SC-01-RC/HI-1060-FC/APC)
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Figure 9.8: The simplified schematic of a “pump-probe” experiment. Based
on the pulse probe experiment shown in Fig. 9.7, a kicking pulse is introduced
by an optical fiber with a microlens on its tip.

working distance is between 75 to 80 µm. The expected focus spot waist is

around 1.5 µm in water. This fiber has a outer diameter of 80 µm, which is

the same as the thickness of the flow cell chamber, thus can be sealed in flow

cell in the same way as discussed in Chapter 6.
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Appendix 1

Kubo-Green formula derivation

In this appendix, as an example, we will derive the Kubo-Green formula

[80] for a free particle described by the Einstein-Ornstein-Uhlenbeck model [13,

81]. The motion of a free particle in a fluid can be described by the Langevin

equation as discussed in Section 3.3.1.1,

mpv̇(t0 + t) + γsv(t0 + t) = Fth(t0 + t). (1.1)

By multiplying both sides of the Eq. (1.1) by v(t0) and taking ensemble average

of that, we get

mp〈v(t0)v̇(t0 + t)〉+ γs〈v(t0)v(t0 + t)〉 = 〈v(t0)Fth(t0 + t)〉. (1.2)

Due to causality and delta correlation of the thermal force 〈Fth(t1)Fth(t2)〉 =

δ(t1 − t2), one can get 〈v(t0)Fth(t0 + t)〉 = 01. Thus Eq. (1.2) reduces to

mp
d

dt
〈v(t0)v(t0 + t)〉+ γs〈v(t0)v(t0 + t)〉 = 0. (1.3)

1This is not universal. For example, this cross correlation for a particle in a liquid is
nonzero due to non-delta correlated thermal force, as has been experimentally observed [17].
It is worth noting that this does not violate the causality, which can be understand as the
following. v(t0) is correlated to the previous thermal force Fth(t0 − t), and Fth(t0 − t) is
correlated to Fth(t0 + t), thus v(t0) is correlated to Fth(t0 + t).
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We multiply both sides of the Eq. (1.3) by eiωt and integrate over t from 0 to

∞. The first term can be simplified by integration by parts. So we get

− kBT

mp

+ (
γs
mp

− iω)

∫ ∞
0

dteiωt〈v(t0)v(t0 + t)〉 = 0. (1.4)

This can be rewritten as

1

−iωmp + γs
=

1

kBT

∫ ∞
0

dteiωt〈v(t0)v(t0 + t)〉. (1.5)

The left side of the Eq. (1.4) is the admittance of this system, as shown in

Eq. (3.20) in Section 3.3.1.1. Therefore, we can get the Kubo-Green formula

Y(ω) =
1

kBT

∫ ∞
0

eiωtCv(t)dt. (1.6)

It is important to note that although this general formula is derived

within the Einstein-Ornstein-Uhlenbeck model, it can be applied to Brownian

motion in liquids and with optical trapping as well, which can not be described

by the Einstein-Ornstein-Uhlenbeck model. Furthermore, it is not restricted

to the Langevin model or any other specific model either. In fact, it follows

from linear response theory.
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Effects of a Small Brownian Particle Cause a Colored Power Spectral

Density of Thermal Noise. Physical Review Letters, 107(22):228301,

November 2011.

[104] Jianyong Mo, Akarsh Simha, and Mark G. Raizen. Broadband boundary

effects on brownian motion. submitted.

[105] Sir Horace Lamb. Hydrodynamics. University Press, 1916.

[106] John Happel and Howard Brenner. Low Reynolds Number hydrodynam-

ics with special applications to particulate media. Springer, 1983.

240



[107] Md Shamsul Alam, Katsuya Ishii, and Hidenori Hasimoto. Slow motion

of a small sphere outside of a circular cylinder, 1980.

[108] S Wakiya. Effect of a plane wall on the impulsive motion of a sphere in

a viscous fluid. Journal of the Physical Society of Japan, 1964.

[109] Toshiyuki Gotoh and Yukio Kaneda. Effect of an infinite plane wall on

the motion of a spherical. Journal of Chemical Physics, 76(6):15, 1981.

[110] B U Felderhof. Effect of the wall on the velocity autocorrelation func-

tion and long-time tail of Brownian motion. The journal of physical

chemistry. B, 109(45):21406–21412, November 2005.

[111] Akarsh Simha, Jianyong Mo, and P. J. Morrison. Under preparation.

[112] D. Bedeaux and P. Mazur. Brownian motion and fluctuating hydrody-

namics. Physica, 76(2):247–258, September 1974.

[113] B.U. Felderhof. Force density induced on a sphere in linear hydrodynam-

ics. Physica A: Statistical Mechanics and its Applications, 84(3):569–

576, January 1976.

[114] B.U. Felderhof. Corrections to “Effect of the Wall on the Velocity

Autocorrelation Function and Long-Time Tail of Brownian Motion”. J.

Phys. Chem. B, 110(26):63317, 2006.

[115] K.H. Lundberg, H.R. Miller, and R.L. Trumper. Initial conditions,

generalized functions, and the laplace transform troubles at the origin.

IEEE Control Systems Magazine, 27(1):22–35, February 2007.

241



[116] F. L. Yang. A formula for the wall-amplified added mass coefficient for

a solid sphere in normal approach to a wall and its application for such

motion at low Reynolds number. Physics of Fluids, 22(12), 2010.

[117] Sangjin Ryu and Paul Matsudaira. Unsteady motion, finite Reynolds

numbers, and wall effect on Vorticella convallaria contribute contraction

force greater than the stokes drag. Biophysical journal, 98(11):2574–

2581, June 2010.

[118] H. B. Eral, J. M. Oh, D. Van Den Ende, F. Mugele, and M. H G Duit-

s. Anisotropic and hindered diffusion of colloidal particles in a closed

cylinder. Langmuir, 26(25):16722–16729, 2010.

[119] Rei Tatsumi and Ryoichi Yamamoto. Velocity relaxation of a parti-

cle in a confined compressible fluid. The Journal of chemical physics,

138(18):184905, May 2013.

[120] Katsuhiro Ishii, Toshiaki Iwai, and Hui Xia. Hydrodynamic measure-

ment of Brownian particles at a liquid-solid interface by low-coherence

dynamic light scattering. Optics express, 18(7):7390–7396, 2010.
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