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Towards the creation of high-fidelity Fock states of neutral

atoms

David de Jesus Medellin Salas, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Mark G. Raizen

This dissertation presents the implementation of a technique to generate atomic

Fock states of Lithium 6 with ultra-high fidelity, called laser culling. Fock states, atomic

states with a definite number of particles, are a mandatory step for studying few-body

quantum phenomena such as quantum tunneling, quantum entanglement, and serve as

building blocks for quantum simulators. The creation of ultra-high fidelity Fock states

begins with a degenerate Fermi gas in an optical dipole trap. Being fermions, lithium-6

atoms fill the energy levels of the dipole trap with 2 atoms per energy level. Introducing

a magnetic field gradient creates a linear potential that tilts the potential produced by

the optical dipole trap. The initially bound energy levels become quasi-bound states,

each with a different lifetime. By exploiting the difference between these lifetimes, one

can generate a single pair of atoms in the ground state of the trap with fidelities that can

exceed 99.9%. This dissertation first presents the details of the design and construction

of an apparatus for laser culling, and then reports on the progress made towards the

creation of atomic Fock states with ultra-high fidelity.
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Chapter 1

Quantum Simulation

1.1 Introduction

In our quest to understand nature, we have invented physical theories that de-

scribe matter, energy, space, and time. Knowing these laws, however, does not always

allow us to make analytic predictions of the behavior of nature. In Newtonian mechan-

ics, for example, the three-body problem does not have a general analytic solution. The

solution must be either approximated or calculated numerically. Sometimes, even an

approximation is not possible, and the only option is a numerical calculation.

Just as we have built machines that do physical work, we have built machines

that can perform computations faster and with more precision than us. The most famous

ancient analog computer designed to calculate astronomical positions, the Antikythera

mechanism [1], appeared as early as the 1st century B.C. As technology progressed,

computers evolved from simple gear mechanisms, to mechanical integrators, to powerful

digital electronic computers capable of simulating the weather and the evolution of

galaxies.

However, all these computers are classical in nature, and as Richard Feynman

pointed out at the end of his keynote speech "Simulating Physics with Computers",

"Nature isn’t classical, dammit, and if you want to make a simulation of nature,

you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because

it doesn’t look easy."

Quantum mechanics allows us to understand matter at its most fundamental level

and opens the possibility for new technologies. At the same time, it poses new challenges

to our computation capabilities. Many important problems in physics, especially low

temperature physics, remain poorly understood because the computational requirements
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demanded by the underlying theory are very complex and vast. Classical computers,

even the most powerful supercomputers, are inadequate for simulating quantum systems

with as few as 32 particles [2].

The inadequacy of classical computers for quantum mechanical simulations stems

from the fact that the necessary resources needed to simulate a quantum system scale

exponentially with the system’s size. For example, it takes 2N complex numbers to

specify the wavefunction of an arbitrary state of N spin-1/2 particles. If we were to

store a single complex number in each baryon of the universe, we could store at most

1080 complex numbers. The maximum number of spin-1/2 particles whose wavefunction

we can represent with 1080 complex numbers is approximately 265 (2265 ≈ 1080). Using

the entire universe as our memory module, we can only afford to write the wavefunction

of a 265 spin-1/2 particle system! Clearly, if progress is to be made, a quantum computer

must be used to simulate quantum systems.

Although in the past years progress has been made in building quantum simula-

tors and computers, the main question still remains: What is the best system to realize

a quantum computer? The quest for a scalable quantum computer has led to the devel-

opment of several competing platforms and physical realizations [3–6]. The challenge is

to simultaneously satisfy a number of conditions, known as the five DiVicenzo criteria

[7] :

1. Be a scalable physical system with well-defined qubits.

2. Be initializable to a simple fiducial state

3. Have long enough decoherence times.

4. Have a universal set of quantum gates.

5. Permit high quantum efficiency, qubit-specific measurements.

Although not stated explicitly, it is also assumed that each step must be done at ultra-

high fidelity.
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This dissertation presents a system that can potentially satisfy all the DiVicenzo

criteria, and maintain ultra-high fidelity; however, the main emphasis will be the prepa-

ration of a simple fiducial state, with the fiducial state being a Fock state of lithium-6

atoms in the ground state of an optical dipole trap.

The creation of Fock states with ultra-high fidelity begins with a degenerate

Fermi gas in an optical dipole trap. Being fermions, lithium-6 atoms fill the energy

levels of the dipole trap with two atoms per energy level. Introducing a magnetic field

gradient creates a linear potential that tilts the potential produced by the optical dipole

trap. The initially bound energy levels become quasi-bound states, each with a different

lifetime. By exploiting the difference between these lifetimes, one can generate a single

pair of atoms in the ground state of the trap with fidelities that can exceed 99.9%. This

dissertation first presents the details of the design and construction of an apparatus for

laser culling, and then reports on the progress made towards the creation of atomic Fock

states with ultra-high fidelity .
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Chapter 2

Atomic Physics for Lithium 6

This chapter serves both as review of the atomic physics topics relevant for this

thesis, and to introduce the notation that will be used.

2.1 Physical Properties of Lithium 6

Lithium, from the Greek lithos (λίθoζ), meaning "stone", is the lightest metal of

the periodic table. It has three electrons, two in the inner closed shell (1s2), and one

valence electron (2s1). Some relevant physical properties of lithium are summarized in

table 2.1:

Property Symbol Value Reference

Density (300 K) ρ 0.534 g· cm−3 [8]
Melting Point TM 453.69 K [8]

180.54 ◦C
Boiling Point TB 1615 K [8]

1341.85 ◦C

Table 2.1: Physical properties of Lithium

The starting point of most cold atom experiments is an effusive beam of the atom

under study. The vapor pressures of solid and liquid lithium as a function of temperature

are given by [9]:

log10 PVsol
= −54.87864− 6450.944

T
− 0.01487480T + 24.82251 log10 T (2.1)

log10 PVliq
= 10.34540− 8345.574

T
− 0.00008840T − 0.68106 log10 T (2.2)

At 350 ◦C (623 K), we obtain a high enough vapor pressure (10−5 torr) to load around

108 atoms in a few seconds; we can operate the oven at this temperature for about 4
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years before depleting the lithium reservoir. The spectroscopy cell runs at 420 ◦C (693

K), but since it is closed it doesn’t run out of lithium and can be run almost indefinitely.

Figure 2.1 shows a plot of the vapor pressure of liquid lithium versus temperature.
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Figure 2.1: Vapor pressure of lithium as function of temperature. Figure courtesy of
Kirsten Viering.

2.2 Atomic Structure of Lithium 6

There are two stable isotopes of lithium: 6Li and 7Li. The work of this thesis

was made with 6Li, so from now on all references to lithium will refer to 6Li. Since the

natural abundance of 6Li is only 7.6%, it must be enriched before we use it. We use 95%

enriched lithium 6 from Sigma-Aldrich and Medical Isotopes Inc. Table 2.1 summarizes

some relevant properties of 6Li,

Property Symbol Value Reference

Atomic numer Z 3
Nucleons Z+N 6
Natural abundance η 7.6% [8]
Nuclear lifetime τn stable [8]
Atomic mass m 6.015 121 4 u [10]

9.988 341 4 ×10−25 kg
Nuclear spin I 1
Electronic spin S 1/2

Table 2.2: Atomic Properties of 6Li
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Being an alkali metal, 6Li has a single valence electron. Its ground state con-

figuration, 1s22s1, has one electron in an s orbital with zero angular momentum. Its

spectroscopic notation is 2S. The excited state configuration, 1s22p1, has one electron in

a p orbital with angular momentum one. Its spectroscopic notation is 2P. The simplest

way to describe the energy levels of lithium is to use the central potential approximation.

In this approximation, the potential felt by the electron is assumed to be spherically sym-

metric, and takes into account the charge of the nucleus and the electrons in the inner

shell.

In hydrogenic atoms, for which all electrons but one have been ripped off, the

gross energy depends only on the quantum number n. This means that the states 2s and

2p will have the same energy. This is not true for atoms with more than one electron,

since the electronic wave functions will interact with the inner electrons in different ways:

s electrons will penetrate inside the core and "see" more nuclear charge than electrons

with higher l. Thus, charge screening by the inner core electrons is more effective the

farther away the electron moves, i.e. the higher the value of l. This changes the absolute

energies of the 2s and 2p states and destroys the degeneracy between these two states,

making the 2s state a ground state and the 2p state an excited state. The transition

between these two states gives rise to lithium’s D line. The energy of each state can be

approximated by a modification to Bohr’s formula:

E = − hc

n∗2R∞ (2.3)

where R∞ is Rydberg’s constant and n∗ is an effective principal quantum number of the

transition. n∗ differs from the original n by n∗ = n− δl, where δl is called the quantum

defect. For the 2s and 2p states of lithium, δS = 0.412, and δP = 0.041. δl = 0 for

l > 2. Using equation (2.3) we can calculate the gross energy splitting between the 2S

and the 2P state, λD = 670.1 nm, which is very close to the actual experimental value

λD = 670.98 nm.

In addition to this energy splitting, we must consider the fine structure splitting.

Any charge with angular momentum will give rise to a magnetic moment. The electron

has an intrinsic angular momentum, Ŝ, that will produce a magnetic moment. It also has
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an orbital angular momentum, L̂, that will give rise to a second magnetic moment. The

interaction between the spin and orbital magnetic moments gives rise to the spin-orbit

coupling Hamiltonian , that can be written as,

ĤS-O = (gs − 1)
1

2m2
ec

2~2

(
1

r

∂V (r)

∂r

)
Ŝ · L̂ (2.4)

with gs − 1 ≈ 1

ĤS-O =
1

2m2
ec

2~2

(
1

r

∂V (r)

∂r

)
Ŝ · L̂ (2.5)

where L̂ and Ŝ are the orbital angular momentum and spin operators, respectively, and

V (r) is the electric potential produced by the nucleus and the inner electrons. In the

absence of strong external magnetic or electric fields, L̂ and Ŝ couple to form:

Ĵ = L̂+ Ŝ (2.6)

where

|L− S| ≤ J ≤ |L+ S| (2.7)

The spin-orbit coupling gives rise to the fine structure splitting in the 2P excited state,

which is 10.053044 GHz for 6Li [11]. The transition 2S1/2 ↔ 2P1/2 is known as the D1

line, while the transition 2S1/2 ↔ 2P3/2 is known as the D2 line.

The excited states further split due to the much weaker hyperfine structure inter-

action. The hyperfine interaction arises from the interaction between the electron and

the atomic nucleus. The hyperfine Hamiltonian can be written as,

ĤHF = −µ̂ · B̂(0) +
1

6
e
∑
αβ

Q̂αβ
∂2ϕ(0)

∂xα∂xβ

(2.8)

where µ̂ and Q̂ are the nuclear magnetic dipole moment and nuclear electric quadrupole

moment operators respectively. B̂ is the magnetic field operator at the location of the

nucleus, and ϕ is the electric potential at the nucleus. The first term is analogous to the

spin-orbit coupling. The second term gives a non-zero contribution only for the 22P3/2

state. As with the fine interaction, in the absence of strong external fields, Ĵ and Î

couple to form

F̂ = Ĵ+ Î (2.9)
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with

|J − I| ≤ F ≤ |J + I| (2.10)

In the F̂ basis, the hyperfine splitting energy is given by,

∆EHF =
1

2
AC +

3

8
B

C(C + 1)

I(2I − 1)J(2J − 1)
(2.11)

where C = F (F +1)−J(J+1)−I(I+1), and A and B are the magnetic dipole hyperfine

constant and the electric quadrupole hyperfine constant, respectively for the F state of

interest. Table 2.3 and 2.4 summarize some relevant optical properties of the 6Li D1 and

D2 line. Table 2.5 contains the values of the hyperfine constants for the 2S and 2P levels

of lithium. Figure 2.2 illustrates the fine and hyperfine splitting of the ground and 2P

excited states of 6Li .

Property Symbol Value Reference

Wavelength (vacuum) λ 670.992 421 nm [12]
Wavenumber (vacuum) k/2π 14 903.298 cm−1 [13]
Frequency ν 446.789 634 THz [12]
Lifetime τ 27.102 ns [14]
Natural linewidth γ 36.898×106s−1 [12]
γ = 2πΓ Γ 5.8724 MHz
Atomic tecoil velocity vrec 9.886 554 cm·sec−1 [12]
Recoil temperature Trec 3.535 652 56 µK [12]

Table 2.3: Optical Properties of the 6Li D1 line

2.3 Interaction With Static Magnetic Fields
2.3.1 Zeeman Effect

As we saw in the previous section, a charge possessing any kind of angular mo-

mentum acts like a magnetic dipole, and it will interact with other dipoles and any

external magnetic field. The shift of the energy levels of the atom due to its interaction

with external magnetic fields is known as the Zeeman effect . For a static magnetic
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Figure 2.2: 6Li energy level structure
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Property Symbol Value Reference

Wavelength (vacuum) λ 670.977 338 nm [12]
Wavenumber (vacuum) k/2π 14 903.633 cm−1 [13]
Frequency ν 446.799 677 THz [12]
Lifetime τ 27.102 ns [14]
Natural linewidth γ 36.898×106s−1 [12]
γ = 2πΓ Γ 5.8724 MHz
Atomic recoil velocity vrec 9.886 776 cm·sec−1 [12]
Recoil temperature Trec 3.535 811 52 µK [12]

Table 2.4: Optical Properties of the 6Li D2 line

Property Symbol Value Reference

22S1/2 Magnetic dipole constant A22S1/2
152.136 840 7 MHz [15]

22P1/2 Magnetic dipole constant A22P1/2
17.386 MHz [11]

22P3/2 Magnetic dipole constant A22P3/2
-1.155 MHz [15]

22P3/2 Electric quadrupole constant B22P3/2
-0.10 MHz [15]

Table 2.5: Hyperfine constants for the 2S and 2P levels of 6Li

field, the interaction can be written as,

ĤB =
µB

~

(
gSŜ+ gLL̂+ gI Î

)
·B

=
µB

~

(
gSŜz + gLL̂z + gI Îz

)
Bz (2.12)

where gS, gL, and gI are the electron spin, electron orbital, and nuclear Landé g-factors

respectively. When the interaction energy with the external field is much less than the

fine structure splitting, the influence that L̂ and Ŝ have on each other is stronger than

that of the magnetic field; they couple to form a new quantum number Ĵ = L̂+ Ŝ. For

lithium-6, this means that Ĵ is a good quantum number for fields much smaller than,

B ≈ h

µB

∆EFS = 7180G (2.13)

For B ≪ 7180 G, the Hamiltonian then takes the form

ĤB =
µB

~

(
gJ Ĵ+ gI Î

)
·B

=
µB

~

(
gJ Ĵz + gI Îz

)
Bz (2.14)
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where gJ is the total electronic Landé g-factor, given by

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

≈ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(2.15)

where the values gL ≈ 1 and gS ≈ 2 have been used. Ĵ starts to break up for fields of

around 1000 G.

If the interaction with the external magnetic field is much smaller than the hy-

perfine structure energy splitting, then Î will couple with Ĵ to form F̂ = Î+ Ĵ, and the

Hamiltonian takes then the simple form,

ĤB =
µB

~
gF F̂ ·B

=
µB

~
gF F̂zBz. (2.16)

Where gF is a Landé g-factor that contains contributions from both gI and gJ , and it is

given by,

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)

≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (2.17)

The second expression ignores the nuclear term, whose contribution is at a level of 0.1%.

Table 2.6 summarizes the g-factors and the fine splitting energy of lithium-6.

Property Symbol Value Reference

2P Fine Structure Splitting ∆EFS 10.053 044 GHz [11]
Electron Spin g-Factor gS 2.002 319 304 373 7 [16]
Electron L = 1 Orbital g-factor gL 0.999 9995 87 [12]

gJ (22S1/2) 2.002 301 0 [15]
Total Electronic g-factor gJ (22P1/2) 0.666 8 [15]

gJ (22P3/2) 1.335 [15]
Total Nuclear g-factor gI -0.000 447 654 0 [15]

Table 2.6: g-factors and fine structure splitting for lithium-6
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Unfortunately, the hyperfine energy splitting of lithium-6 are small: 228.2 MHz

for the 22S1/2 ground state, 26.1 MHz for the 22P1/2 excited state, and 4.4 MHz for

the 22P3/2 excited state. This means that F̂ is a good quantum number for fields much

smaller than 163 G for the 22S1/2 ground state, 19 G for the 22P1/2 excited state, and

3 G for the 22P3/2 excited state. Since the transition we use is the 2S1/2 ↔ 2P3/2

transition, we need to use the full Hamiltonian for fields as small as a few gauss. In

general, diagonalizing the full Hamiltonian is not a trivial task, but when there is only

one valence electron, the Breit-Rabi formula can be applied. The Zeeman splitting for

the ground state 2S1/2 is shown in figure 2.3. At high fields, the two lowest states of

the ground state 2S1/2 are high-field seekers. Since only low-field seekers can be trapped

in magnetic traps, lithium-6 cannot be magnetically trapped and optical traps must be

used.
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Figure 2.3: Zeeman splitting for the ground state 2S1/2 of lithium-6. Notice how F̂ stops
being a good quantum number around 20 G
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2.3.2 Feshbach Resonances

Feshbach resonances allow us to control the scattering length between lithium’s

atomic states. This has several advantages: by tuning the scattering length to zero,

we can make a non-interacting sample of atoms; and by making the scattering length

very large, we can make evaporative cooling much more efficient. For a more detailed

treatment of Feshbach resonances, see reference [17]

Consider two molecular potentials: Vbg(r) and VC(r) (see figure 2.4) . Vbg(r)

represents the potential between two free atoms in the ultracold gas. For a very low

energy collision with energy E, Vbg(r) represents the energetically open channel. VC(r),

on the other hand, represents the potential between two bound atoms and can support

a bound state near the threshold of the open channel. VC(r)is called the closed channel

potential.

closed channel

entrance channel

V
bg

(R)

V
C
(R)

E
C E

atomic separation R

Energy

0

Figure 2.4: Feshbach Resonance Potentials. Figure courtesy of Kirsten Viering.

A Feshach resonance occurs when then bound molecular state energy of the closed

channel approaches the free atom energy of the open channel. When this happens, even

weak coupling between the two molecular states can lead to a strong mixing between

the two potentials. The energy difference between the two channels can be controlled

magnetically if they have different magnetic moments. This leads to a magnetically

tuned Feshbach resonance. For low energy collisions, only the s-wave scattering length

is important. A Feshbach resonance changes the scattering length as

a(B) = a0

(
1− ∆

B −B0

)
(2.18)
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The Feshbach resonance at 834 G of lithium-6 can be found in [18–20]. The background

B
0

scattering length a

Energy E
magnetic �eld B

magnetic �eld B

(a)

(b)

0

0

bound state
continuum

Figure 2.5: Feshbach resonance. Figure courtesy of Kirsten Viering.

scattering length, a0, is the scattering length associated with Vbg(r), and it represents the

off-resonance value of the background scattering length. B0 is the resonance position,

and ∆ is the resonance width. Feshbach resonances allow us to tune the s-wave scattering

length, which is very useful when doing evaporation. Since lithium-6 is a fermion, only

atoms in different atomic states can undergo s-wave collisions. Fortunately, lithium-6

has a broad Feshbach resonance between the states |1⟩ and |2⟩ (see figure 2.5) that occurs

at 834 G with a width of about -300 G. Table 2.7 lists the widest Feshbach resonances

between the three lowest hyperfine states of lithium-6.

Channel Center Width Reference

|1⟩ |2⟩ 834 G -300 G [17, 20]
|2⟩ |3⟩ 691 G -122.3 G [20]
|1⟩ |3⟩ 811 G -222.3 G [20]

Table 2.7: Feshbach resonances of the three lowest hyperfine states of lithium-6 as defined
in figure 2.3.
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2.4 Near Resonant Atom-Light Interactions

Solving Schrödinger’s equation exactly for an atom interacting with a near-

resonant field is hard, if not impossible. Fortunately, most of the time one can make

some approximations that simplify the problem considerably while still giving a very

good approximate solution. The equations that govern the interaction of near-resonant

light with atoms are the optical Bloch equations, also known as the Maxwell-Bloch

equations. The Maxwell-Bloch equations are derived in appendix B.

2.4.1 The Maxwell-Bloch Equations

These are obtained under the following approximations: 1) Two-level atom

approximation, the atom is assumed to have only one ground and one excited state;

2) Classical fields, since we are dealing with large number of photons, we can use a

classical description for the light fields; 3) Electric dipole approximation, since the

wavelength of the light field is larger than the size of our atoms, we can consider it

to be nearly constant across the atom; 4) Rotating wave approximation, since the

light field is near resonant, we can assume that |ωlaser − ωtransition| ≪ |ωlaser + ωtransition|.

Under these assumptions, the Maxwell-Bloch equations are:

˙̃ρee = − i

2
(Ωρ̃ge − Ω∗ρ̃eg)− γρ̃ee (2.19)

˙̃ρgg =
i

2
(Ωρ̃ge − Ω∗ρ̃eg) + γρ̃ee (2.20)

˙̃ρge = − iΩ∗

2
(ρ̃ee − ρ̃gg)− iδρ̃ge −

γ

2
ρ̃ge (2.21)

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + iδρ̃eg −

γ

2
ρ̃eg. (2.22)

Here

Ω ≡ Ẽ

~
⟨e| − e⃗r · ϵ̂ |g⟩ (2.23)

µ̂eg ≡ ⟨e| − e⃗r · ϵ̂ |g⟩ (2.24)

γ =
ω3
0µ

2

3πϵ0~c3
= 1/τ (2.25)

δ = ω − ω0, (2.26)
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where γ1 is the natural decay rate and τ is the lifetime of the transition, µ̂eg is the

electric dipole matrix coefficient, δ is the detuning from the atomic transition frequency

ω0 = 2πν0, and Ω is the "Rabi Frequency".

The steady state solutions are:

ρ̃ee =
s

2(1 + s)
(2.27)

ρ̃eg =
−iΩ

2(γ/2− iδ)

1

1 + s
, (2.28)

where

s ≡ |Ω|2 /2
δ2 + γ2/4

=
2 |Ω|2 /γ2

1 + (2δ/γ)2
=

s0
1 + (2δ/γ)2

(2.29)

with

s0 ≡ 2 |Ω|2 /γ2 = I/Isat (2.30)

Isat ≡
2π2~γc
3λ3

0

. (2.31)

s is called the saturation parameter, and s0 the on-resonance saturation parameter. Isat
is called the saturation intensity; it defines the on-resonance intensity level at which the

transition starts to saturate. λ0 is the on-resonance transition’s wavelength.

2.4.2 Scattering Rate and Absorption Cross Section

Using equation (2.28) we can rewrite (2.19) as

dρ̃ee
dt

=
|Ω|2

2

γ/2

(γ/2)2 + δ2
(ρ̃gg − ρ̃ee)− γρ̃ee (2.32)

The third term, γρ̃ee, is the photon spontaneous decay rate,

γp = γρ̃ee =
γ

2

(
s0

1 + s0 + (2δ/γ)2

)
(2.33)

the first and the second term differ only in a minus sign, and they are the absorption

and stimulated emission terms respectively. The absorption coefficient per atom is then,

Rabs =
|Ω|2

2

γ/2

(γ/2)2 + δ2
(2.34)

1Note that the units of γ are s−1, while the units of Γ are Hz. γ, with units s−1, should be used
when dealing with scattering rates and lifetimes. While Γ, in units of Hz, should be used when dealing
with detunings and line broadenings.
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The absorption cross section is defined as

σabs ≡
Photon energy absorption rate

Incoming photon intensity
(2.35)

therefore,

σabs =
~ωRabs

1
2
ϵ0c
∣∣∣E⃗∣∣∣2 =

kµ2

ϵ0~(γ/2)
1

1 + (2δ/γ)2
= σ0

1

1 + (2δ/γ)2
(2.36)

σ0 ≡
kµ2

ϵ0~(γ/2)
=

3λ2

2π
(2.37)

Where σ0 is the on resonance absorption cross section. It is remarkable that the resonant

absorption cross section depends solely on the wavelength of the transition!

2.4.3 Near-resonant Forces on Atoms

The force exerted by near-resonant light on an ensemble of atoms can be calcu-

lated using Eherenfest’s theorem

F =
⟨
F̂
⟩
=

⟨
dp̂

dt

⟩
(2.38)

and the steady state solutions of the Maxwell-Bloch equations. The total force is 2

F =
~
2

1

(1 + I/Isat + (2δ/γ)2)

(
kγ

I

Isat
− δ

∂

∂z

(
I

Isat

))
, (2.39)

which can be split into F = Fscattering + Fdipole

Fscatt =
~kγ
2

I/Isat
(1 + I/Isat + (2δ/γ)2

(2.40)

Fdipole = −~δ
2

1

(1 + I/Isat + (2δ/γ)2)

1

Isat

∂I

∂z
(2.41)

The dipole force is proportional to the gradient of the intensity, thus it can be derived

from a potential:

Udipole =
~δ
2

ln
(
1 + I/Isat + (2δ/γ)2

)
(2.42)

The dipole force is conservative; it cannot be used to cool atoms, but it can be used to

trap them. The scattering force is not conservative because the spontaneous emission

of photons is an irreversible process, thus it can be used to cool but not to trap. Both

forces can be used together to trap and cool atoms.

2See Appendix B for derivation
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2.5 Far-Off-Resonance Atom Light Interactions

Far-off resonance optical dipole traps are used in the experiment to do optical

evaporation and culling. Equation (2.42) for the optical dipole trap assumes the rotating

wave approximation, that is ∣∣∣∣ωlaser + ωtransition

ωlaser − ωtransition

∣∣∣∣≫ 1 (2.43)

This is not valid for the CO2 laser (λCO2 = 10.6µm) or the YAG laser (λYAG = 1064nm),

for which ∣∣∣∣ωCO2 + ωD2

ωCO2 − ωD2

∣∣∣∣ = 1.13 (2.44)∣∣∣∣ωYAG + ωD2

ωYAG − ωD2

∣∣∣∣ = 4.41 (2.45)

So expressions (2.40) and (2.41) cannot be used for the CO2 laser or the YAG laser.

Obtaining the Maxwell-Bloch equations without the rotating wave approximation is not

easy. Fortunately, a classical approach can be used as long as the saturation parameter

is small, which is the case for our two lasers:

sCO2 ≈ 10−8 (2.46)

sYAG ≈ 10−11 (2.47)

In the limit of low saturation we can use a classical model to obtain the dipole force and

the scattering rate of a far-off resonant laser. The only non-classical consideration in our

analysis will be the use of the quantum decay rate, γ, instead of the classical damping

rate γ0 obtained from Larmor’s formula. When an atom is exposed to laser light, the

electric field E⃗ induces a dipole moment p⃗ that oscillates at the driving frequency ω.

We can express the electric field and the polarization in complex form as E⃗(⃗r, t) =

êẼ (⃗r)e−iωt + c.c. , and p⃗(⃗r, t) = êp̃(⃗r)e−iωt + c.c., where the complex amplitudes are

related by,

p̃ = αẼ (2.48)

Here α is the complex polarizability, which depends on the driving frequency ω. The

interaction potential of the induced dipole moment is,

Udip =
1

2
⟨p · E⟩ = − 1

2ϵ0c
Re(α)I (2.49)
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The angular brackets denote time average over the rapid oscillatory terms, the 1/2 factor

accounts for the fact that it is an induced polarizability, rather than a permanent one,

and the field intensity in this notation is I = 2ϵ0c
∣∣∣Ẽ∣∣∣2. The dipole potential is therefore

proportional to the intensity of the light field, and the dipole force is proportional to it’s

gradient:

F⃗dip = −∇Udipole(⃗r) =
1

2ϵ0c
Re(α)∇I (2.50)

The dipole force is a conservative potential. On the other hand, the force resulting from

the absorbed power from the field gives rise to the scattering force, a non-conservative

force. The power absorbed by the atom is:

Pabs = ⟨ṗE⟩ = ω

ϵ0c
Im(α)I (2.51)

which implies a scattering rate of

Rscat =
Pabs

~ω
=

1

~ϵ0c
Im(α)I (2.52)

The complex polarizability can be calculated by integrating the equation of motion for

the driven oscillation of the electron.

ẍ+ γωẋ+ ω2
0x = −eE(t)/me (2.53)

where

γω =
e2ω2

6πϵ0mec3
(2.54)

is the classical damping rate due to radiative energy loss. In terms of the on-resonance

damping rate γω0 ≡ (ω0/ω)
2γω, the complex polarizability is [21],

α = 6πϵ0c
3 γω0/ω

2
0

ω2
0 − ω2 − i(ω3/ω2

0)γω0

(2.55)

In a semi-classical approach, the atomic polarizability can be calculated by treating the

atom as a two-level system interacting with a classical radiation field. When saturation

effects can be neglected, the classical approximation gives the same results as the semi-

classical with only one modification: the classical damping rate γω0 can no longer be
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calculated from Larmor’s formula, but must be calculated from the dipole matrix element

between the ground and excited states, as in section 2.6:

γω0 → γ =
ω3
0

3πϵ0~c3
|⟨e|µ |g⟩|2 . (2.56)

In the limit of small saturations, the optical dipole potential and the scattering rate are

given by [21],

Udip(⃗r) = −3πc2

2ω3
0

(
γ

ω0 − ω
+

γ

ω0 + ω

)
I (⃗r) (2.57)

Rscat(⃗r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
γ

ω0 − ω
+

γ

ω0 + ω

)2

I (⃗r) (2.58)

where no rotating wave approximation has been made. For an 86 Watts CO2 laser beam

focused down to a waist of 50 µm, we get a scattering rate of 2.5 photons per hour,

while for a 30 µW YAG beam focused down to a waist of 1.8 µm, merely 1.9 photons

per hour.

2.6 Electric Dipole Transition Coefficients

The electric dipole transition coefficient describes how one internal state of the

atom couples to another via the electric dipole interaction with the near resonant field.

Other kinds of transitions – such as magnetic and higher multipolar ones exist – but

they are much weaker than the electric dipole and will not be considered here. The

matrix element for a transition that drives an atom from the state |(JI)FmF ⟩ to the

state |(J ′I ′)F ′mF ′⟩ is given by,

⟨(J ′I ′)F ′mF ′| µ⃗ |(JI)FmF ⟩ (2.59)

Calculating the integral (2.59) is not a trivial task. Fortunately, we can use the Wigner-

Eckart theorem to simplify the calculations considerably. Realizing that the electric

dipole operator can be written in the irreducible spherical tensor basis as

⟨(J ′I ′)F ′mF ′|µ1
q |(JI)FmF ⟩ , (2.60)

we can use the Wigner-Eckart theorem to factor out the F ′ and F dependence,

⟨(J ′I ′)F ′mF ′|µ1
q |(JI)FmF ⟩ = (−1)F

′−mf ′

(
F ′ 1 F

−mF ′ q mF

)⟨
(J ′I ′)F ′||µ1||(JI)F

⟩
,

(2.61)
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where the term in parenthesis is the Wigner 3-j symbol and the term with double

bars is the reduced matrix element. Since the electric dipole operator changes only

J and not I, we can use identity (A.8) to express ⟨(J ′I ′)F ′||µ1||(JI)F ⟩ in terms of

⟨(L′S ′)J ′||µ1||(LS)J⟩,⟨
(J ′I ′)F ′||µ1||(JI)F

⟩
=δII′(−1)J

′+I+F+1
√
(2F + 1)(2F ′ + 1){

J ′ F ′ I

F J 1

}⟨
(L′S ′)J ′||µ1||(LS)J

⟩ (2.62)

where the term in curly brackets is a Wigner 9-j symbol. Again, since the electric dipole

operator changes L and not S, we can use equation (A.8) to reduce the matrix element

⟨(L′S ′)J ′||µ1||(LS)J⟩ and express it in terms of ⟨L′||µ1||L⟩⟨
(L′S ′)J ′||µ1||(LS)J

⟩
=δSS′(−1)L

′+S+J+1
√

(2J + 1)(2J ′ + 1){
L′ J ′ S

J L 1

}⟨
L′||µ1||L

⟩ (2.63)

The reduced matrix elements for the D, D1, and D2 line are given in table 2.8

Property Symbol Value Reference

1.148×10−29 C·m [12]
D-Line Reduced ⟨L′ = 1||µ1||L = 0⟩ 3.443×10−18esu·cm [12]
Matrix Element 3.443 Debye [12]√

3µ0 [12]
-2.812×10−29 C·m [12]

D1-Line Reduced ⟨J ′ = 1/2||µ1||J = 1/2⟩ -8.433×10−18 esu·cm [12]
Matrix Element -8.433 Debye [12]

−
√
2µ0 [12]

3.977×10−29 C·m [12]
D2-Line Reduced ⟨J ′ = 1/2||µ1||J = 1/2⟩ 11.925×10−18esu·cm [12]
Matrix Element 11.925 Debye [12]

2µ0 [12]

Table 2.8: Reduced matrix elements for 6Li
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2.7 Fermi Gases

At high temperatures gases obey Maxwell-Boltzmann statistics, while at low

temperatures they obey Fermi-Dirac or Bose-Einstein statistics depending whether they

are made of fermions or bosons. Ultra-cold bosons will condense into a Bose-Einstein

condensate with all the atoms occupying the same ground state, while fermions will

occupy only one energy level per spin state up to the Fermi surface. This natural

splitting that arises from the Pauli exclusion principles makes fermions more suitable to

prepare Fock states using the culling process.

For a system of indistinguishable fermions, equation (2.64) gives the occupation

number of a phase space cell at temperature T ,

f (⃗r, p⃗) =
1

e

(
p⃗2

2m
+V (⃗r)−µ

)
/kBT

+ 1
(2.64)

where µ is the chemical potential [22] . Sometimes, however, it is simpler to work in

terms of the total energy rather than with p⃗ and r⃗. In terms of the energy, the mean

occupation number of each energy level with energy ϵ is given by

f(ϵ) =
1

e(ϵ−µ)/kT + 1
, (2.65)

The chemical potential µ can be calculated by requiring that the total number

of particles be N , that is

N =

∫ ∞

0

f(ϵ)g(ϵ)dϵ (2.66)

where g(ϵ) is the density of states for the given potential. For a three dimensional

harmonic potential,

V (⃗r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.67)

the density of states is given by [23]

g(ϵ) =
ϵ2

2~3ωxωyωz

=
ϵ2

2~3ω̄3
, (2.68)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies. At T = 0,

it is easy to see that f(ϵ) = 1 for ϵ < µ(T = 0), and f(ϵ) = 0 for ϵ > µ(T = 0). The

integral (2.66) then becomes

EF = ~ω̄(6N)1/3 = kBTF , (2.69)
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where EF ≡ µ(T = 0) is called the Fermi energy, and TF the Fermi temperature. EF

is the highest energy an atom can have when T = 0. When the confining potential is

harmonic, the radius of the cloud is,

RF =

√
2EF

mω̄2
(2.70)

At T = 0, equation (2.64) can also be easily integrated in momentum space to obtain

the density distribution,

n(⃗r) =

∫
|p⃗|≤

√
2m(EF−V (⃗r))

d3p⃗

(2π~)3
=

1

6π2

(
2m

~2

)3/2

(EF − V (⃗r))3/2 (2.71)

where f (⃗r, p⃗) = 1 for |p⃗| ≤
√

2m(EF − V (⃗r)) and f (⃗r, p⃗) = 0 otherwise.

For non-zero temperatures, T ≤ TF , the chemical potential can be approximated

by a Sommerfeld expansion,

µ(T ) = EF

(
1− π2

3

(
T

TF

)2
)

(2.72)

The number density integral is not as easy as before, and it evaluates to a poly-

logarithmic function,

n(⃗r) = −
(
mkBT

2π~2

)3/2

Li3/2

(
−e

(
µ−V (⃗r)
kBT

))
(2.73)

From equation (2.65) it can be seen that the occupation probability of the low-

est state increases when we increase the chemical potential and when we decrease the

temperature. However, from equation (2.69) it can be seen that EF depends on N1/3,

which makes EF not very sensitive to variations in atom number. Even so, we strive to

increase the atom number as much as possible, since the efficiency of evaporative cooling

increases as the atom number increases. Figure 2.6 shows the mean occupation number

for four different temperatures and energies both in units of the chemical potential.

How much should we cool a sample of atoms to reach the quantum regime? The

temperature of the sample is not the only parameter that determines if the sample is
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Figure 2.6: Fermi-Dirac Distribution. The Fermi-Dirac distribution (equation (2.65)) is
shown for four different values of kT : kT = µ, kT = µ/2, kT = µ/10, kT = µ/100.
For T/TF = 0.1, kT ≈ µ/10 and the occupation probability of the ground state exceeds
0.9999.

or not in the quantum regime. The density of the sample is important as well, since a

very cold but dilute system will not exhibit macroscopic quantum behavior. Degeneracy

occurs when the mean separation between particles, n−1/3, is close to the thermal de

Broglie wavelength,

λdB =

√
2π~2
mkBT

In other words, a cold gas is said to be in the quantum regime when the phase-space

density ρ = nλ3
dB approaches unity, ρ ≈ 1. For a gas of bosons, degeneracy is reached

when ρ ≥ 2.6. At this point, the system undergoes a phase transition and the ground

states become macroscopically occupied. For a gas of fermions there is not such phase

transition; the gas undergoes a smooth transition from the classical to the quantum

regime. However, by analogy to the Bose-Einstein case, it is widely accepted by the

cooling community that the Fermi gas has reached the quantum regime when the phase

space density exceeds ρ = 1. The expression for the phase-space density of a classical

gas in a three dimensional harmonic potential is:

ρ = N

(
~ω̄
kBT

)3

. (2.74)
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This equation breaks down close to T = 0, but can be used as a simple approximation

to estimate the degeneracy factor of the gas. As it is, equation (2.74) is not very

useful since it involves parameters that are not of physical relevance for us. Instead, by

substituting equation (2.69) into (2.74) and setting ρ ≥ 1, we find that a gas of fermions

becomes quantum degenerate when T/TF < 0.55, where T/TF is called the degeneracy

factor. To achieve ultra-high fidelity, we must have kT ≤ µ/10, for then the occupation

probability of the ground state will exceed Pgnd ≥ 0.9999, and will not affect the single

atom preparation scheme.
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Part II

Atomic Physics Techniques
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Chapter 3

Laser Locking

Lithium 6’s D2 line natural linewidth is 5.87 MHz, this means that if we want

to control the light-atom interactions of near resonant light, we need to have a stability

in the laser frequency of a few hundreds or even tens of kilohertz. Different detunings

are used at different stages of the experimental sequence. One of the Toptica lasers is

used as the master frequency reference and it is locked to the D2 line of lithium 6 using

frequency modulation (FM) spectroscopy [24]. The other two lasers, are locked to the

spectroscopy laser using a beat-lock technique [25].

3.1 FM Spectroscopy

For small modulation index M ≪ 1, the electric field E2(t) exiting the electro

optic modulator shown in figure 3.1 is described by E2(t) = 1/2Ẽ2(t) + c.c., where

Ẽ2(t) = E0

(
−M

2
ei(ωc−ωm)t + eiωct +

M

2
ei(ωc+ωm)t

)
(3.1)

and E0 is the unmodulated electric field amplitude. The beam exiting the electro optic

modulator consists of a central carrier frequency at ωc, and two sidebands at ωc±ωm. The

beam exiting the modulator then passes through our lithium 6 vapor cell. If the lenght

of the sample is L and has an intensity absorption coefficient α and index of refraction

n, we can calculate the total attenuation and phase shift that each frequency component

experiences. The amplitude transmission coefficient for each spectral component is Tj =

exp(−κj − iϕj), κj = αjL/2, ϕj = njL(ωc + jωm)/c, where j = 0,±1 denotes the

components at ωc and ωc ± ωm.

The transmitted field is then,
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Figure 3.1: Frequency Modulation Spectroscopy

Ẽ3(t) = E0

(
−T−1

M

2
ei(ωc−ωm)t + T0e

iωct + T1
M

2
ei(ωc+ωm)t

)
(3.2)

The intensity of the beam impinging on the photodetector is then I3(t) = 1/2ϵ0c
∣∣∣Ẽ3(t)

∣∣∣2.
Keeping only first order terms in M , and assuming that |κ0 − κ1|, |κ0 − κ−1|, |ϕ0 − ϕ1|,
and |ϕ0 − ϕ−1| are all ≪ 1, the intensity can be written as

I3(t) =
1

2
ϵ0ce−2κ0 {(1 + (κ−1 − κ1)M cos(ωmt) + (ϕ1 + ϕ−1 − 2ϕ0)M sin(ωmt)} (3.3)

The photocurrent, being proportional to I3(t), will have a beat signal at ωm as

long as κ−1 − κ1 ̸= 0 or ϕ1 + ϕ−1 − 2ϕ0 ̸= 0. If ωm is small compared to the transi-

tion’s linewidth, then the cos(ωmt) component is proportional to the derivative of the

absorption, and the sin(ωm)t is proportional to the second derivative of the dispersion.

Equations (C.11) and (C.12) give the frequency dependence of the absorption and dis-

persion profiles of typical Lorentzian spectral feature. For low saturation intensities,

κ(δ) = nσ0
1

(2δ/γ′)2 + 1
(3.4)

ϕ(δ) = nσ0
(2δ/γ′)

(2δ/γ′)2 + 1
(3.5)

δ is the detuning from the atomic transition, and γ′ is the transition linewidth, which

might be collision or Doppler broadened. For locking purposes, we use the sin(ωmt)

term, which depends on the dispersion and does not depend on the intensity of the
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beam. Care should be taken to adjust the phase correctly to pick only the dispersive

term, so that any laser intensity noise does not couple with the frequency stabilization.

The error signal we get in our system is not as simple as the one in equation (3.3),

since we have not one but two hyperfine transitions: the MOT transition, from the 2S1/2

|F = 3/2⟩ to the 2P3/2 manifold; and the repump transition, from the 2S1/2 |F = 1/2⟩

to the 2P3/2 state manifold. Furthermore, since the transitions are Doppler broadened,

the beam is retroreflected to reduce the Doppler broadening as much as possible. This

introduces an extra "cross over" transition that shows up in the error signal. This

cross over transition [26] occurs right at the middle between the two real transitions,

when the Doppler shift of the atoms is enough for the MOT transition to excite the

repump transition or vice versa. The total error signal can be seen in figure 3.2; it

contains contributions from the two hyperfine transitions and the cross over transition,

each weighted by their transition strength.

F = 3/2 to excited

state transition

F = 1/2 to excited

state transition
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Figure 3.2: Error Signal from the Spectroscopy Cell. The figure shows the error signal
derived from the spectroscopy signal. The distance between the F = 3/2 and F = 1/2
transitions is the hyperfine splitting, 228 MHz. The cross over is located exactly half way
in between the transitions. The height of each peak depends on the relative strengths
of each transition. Data courtesy of Kirsten Viering.

We lock the spectroscopy laser to the 2S1/2 |F = 3/2⟩ → 2P3/2 transition. The

Tapered Amplifier and the Imaging laser are then locked to the spectroscopy laser using

a beat-lock technique.

30



3.2 Beat-Locking Technique

The beat-locking technique [25] allows one to lock one laser to another with a

tunable frequency offset. This is very useful to us because we need to change the detuning

of the laser beams at different stages of the experiment. The scheme works as follows: the

reference laser beam and the slave laser beam are both focused on a fast photodiode that

records their beat signal. The beat signal contains two frequencies, one at νmaster+νslave

and another one at |νmaster − νslave|. The high frequency component is eliminated by

using a low pass filter. The resulting component with frequency ∆ν = |νmaster − νslave|,
is mixed with another signal with frequency νV CO coming from a voltage controlled

oscillator. This produces two new frequencies, and the higher one is eliminated again

with a low pass filter.
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Figure 3.3: Error Signals from the beat-lock setup. (a) error signal from the Tapered
Amplifier, (b) error signal from the imaging laser. The lasers are locked to the points
were the signals are zero. The difference between the two signals reflect the different
bandwidths of the RF components used on each locking setup. Data courtesy of Kirsten
Viering.

The resulting signal has a frequency of |∆ν − νV CO|. This signal is split into two

equal parts by a signal splitter, and one of them is delayed by a cable of length L. The

non-delayed signal is proportional to cos(2π |∆ν − νV CO| t), while the delayed signal is

proportional to cos(2π |∆ν − νV CO| t + Φ), where Φ = 2π |∆ν − νV CO| τ . The delayed

and non-delayed signals are then recombined in a mixer and the component with the sum

of the frequencies is again eliminated with a low pass filter. The component with the

difference of the frequencies is then proportional to cos(2π |∆ν − νV CO| τ). This error
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signal can be then used to lock the difference in the frequencies between the spectroscopy

laser and the slave laser. The error signal from the tapered amplifier and the imaging

laser can be seen in figure 3.3. The envelope of the error signal reflects the bandwidth

of the photodetector and all the electronic components used in the scheme. The zero

crossings of the signal provide locking points and their separation in frequency depends

on the delay introduced by the cable, δν = 1
2τ

. Once the lasers are locked, the frequency

offset can be verified by using a digital counter.
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Chapter 4

Atomic Cooling and Trapping

The forces that light exerts on atoms can be used to cool and trap them. The

Zeeman Slower and the Magneto Optical Trap (MOT) make use of non-conservative

near resonant light-induced forces to slow, cool, and compress the atoms. In contrast,

the CO2 dipole trap and the YAG dipole trap use far off resonance, conservative, light-

induced forces to trap the atoms. I will now describe the theory of how each of these

work. The technical details on their construction and calibration will be described in

chapter 6. Finally, their performance will be described in chapter 7.

4.1 Zeeman Slower

The starting point of our experiment is a solid piece of lithium 6 inside the oven.

At room temperature, the vapor pressure does not produce high enough flux to run the

experiment. Therefore, to increase the vapor pressure, the oven is heated to 350 ◦C. At

this temperature, lithium melts and its vapor escapes through a small hole and forms an

effusive beam. Although the flux is now high enough to run the experiment, the atoms

are moving too fast for the MOT to capture them. Therefore, we must first slow them

from an initial speed of 1000 m/s to around 50 m/s – the MOT’s trapping velocity. To

accomplish this, we use the scattering force of a near-resonant beam of light to slow

down the atoms.

An atom moving at a speed of 1050 m/s has momentum of around pLi = 10−23

kg·m/s, while a photon of near 671 nm light has a momentum of, p670 nm = 10−27 kg·m/s.

Therefore, we need around 10,000 scattering events to slow down the atom from 1050 m/s

to 50 m/s. This means we need to be able to use the same transition over and over; we

need to use a cycling transition. The transition that we chose is the 2S1/2 |mJ = 1/2⟩ →
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2P3/2 |mJ = 3/2⟩, for which we need circularly polarized light, σ+. At high fields this is

a closed transition. At low fields, however, it is not completely a closed transition and

a repump beam 2S1/2 |F = 1/2⟩ → 2P3/2 |F = 3/2⟩ must be added, thus we derive the

power of the Zeeman slower from the same beam that powers the MOT. Typical powers

in the Zeeman slower are 30 mW for the MOT component, and 10 mW for the repump

component.

oven

Zeeman slower coils

Zeeman slower beam

Atomic  beam

Figure 4.1: Zeeman Slower. An effusive beam coming from the oven propagates through
the Zeeman slower coils (shown propagating to the right). A red-detuned near-resonant
beam propagates in the opposite direction to the effusive beam (here shown propagating
to the left). Figure courtesy of Kirsten Viering.

The Zeeman slower consists of a near resonant red detuned laser beam propagat-

ing in opposite direction relative to the atoms, and a set of coils that generate either

an increasing, decreasing, or inverting magnetic field. Each way of building a Zeeman

slower has its own advantages and disadvantages. We chose the decreasing field Zeeman

slower (high field near the oven, low field close to the MOT) to perturb the magnetic

fields of the MOT as little as possible.

A red-detuned near-resonant beam of light (δ0 = ωlaser −ωtransition < 0) is placed

counter propagating along the effusive beam, as seen in figure 4.1. The Doppler shift

that the atom experiences is,

∆ω = −k⃗670 · v⃗Li > 0
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so the total detuning is

δtotal = δ0 − k⃗670 · v⃗Li > δ0. (4.1)

Fast moving atoms see the Zeeman beam closer to resonance than slow moving atoms.

As a result, they scatter photons and slow down. At this point, the Doppler shift

decreases and the Zeeman beam appears to be farther from resonance. A magnetic field

is introduced to compensate for the decrease in Doppler shift due to the decrease in

velocity. We use the Ĵ basis since the fields involved are in the range of hundreds of

Gauss for the most part of the slower. The Zeeman splitting for the excited state 2P3/2

is

∆E2P3/2
= µBg

′
3/2m

′
3/2Bz (4.2)

while the Zeeman splitting for the ground state 2S1/2 , is

∆E2S1/2
= µBg1/2m1/2Bz (4.3)

which gives a total Zeeman splitting of

∆EZ = µB(g
′
3/2m

′
3/2 − g1/2m1/2)Bz (4.4)

using equation (2.15), and using the quantum numbers for the cycling transition, g′3/2 =

4/3, g1/2 = 2, m′
3/2 = 3/2 and m1/2 = 1/2, we get,

∆EZ = µBBz (4.5)

or in frequency,

∆ωZ =
µB

~
Bz (4.6)

δtotal = δ0 − k⃗670 · v⃗Li +
µB

~
Bz (4.7)

setting the total detuning equal to zero, we can solve for B(z) and get,

B(z) = − h

µB

(
∆0 +

1

λ
v(z)

)
(4.8)

where ∆0 = νlaser − νtransition. Assuming that the atom experiences a uniform decelera-

tion, we can write the speed as v(z) =
√

v20 − 2az, so equation (4.8) becomes,

B(z) = − h

µB

(
∆0 +

1

λ

√
v20 − 2az

)
(4.9)
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For our system, ∆0 = 120 MHz, λ = 671 nm, v0= 700 m/s, and a is taken to be half

the maximum acceleration a = amax/2 = ~kγ/4mLi = 9.146× 105 m/s2. The predicted

field and the measured field can be seen in section 6.2.1.

While the absorption of photons always gives a momentum kick in the direction

opposing propagation, the spontaneous emission of the photon occurs in a random di-

rection and will lead to heating and beam dispersion in the transverse direction. Thus,

the Zeeman slower cannot be made arbitrarily long because the beam would spread too

much, reducing the loading rate of the MOT.

4.2 Magneto Optical Trap

Following the Zeeman slower, the atoms are now moving slow enough to be

trapped by the magneto optical trap (MOT). Just like the Zeeman slower, the MOT

uses red-detuned, near resonant beams to slow down atoms. Unlike the Zeeman slower, it

uses the magnetic field to introduce a position dependent light-force. It does not confine

the atoms magnetically; rather, it uses the magnetic field to induce a position-dependent

scattering force that the atoms feel. Since each atom has to scatter many photons to

be cooled and trapped, a cycling transition must be used as well. However, unlike the

Zeeman slower, the magnetic fields in the MOT are sufficiently small that the splitting

of the two ground states due to the hyperfine interaction becomes important. Figure 4.2

shows the relevant transitions for our MOT. Exciting the transition 2S1/2 |F = 3/2⟩ →
2P3/2 |F = 5/2⟩ inevitably sends some atoms into the 2S1/2 |F = 1/2⟩ ground state.

Once in the 2S1/2 |F = 1/2⟩ state, the original light field can no longer excite them to

the 2P3/2 |F = 5/2⟩ excited state. Therefore, a second laser beam, a repump, has to be

added to pump the atoms back into the cycle. In 6Li , the amount of light required for

the repumper is comparable to the one needed for the main cooling beam. The ratio is

approximately MOT:RP = 3:1. Since the power of the repumper is on the same order as

that of the cooling beam, they both are considered cooling beams and the total cooling

power is the sum of the MOT and the repump. Table 4.1 shows the typical powers for

the MOT and the Zeeman slower.
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Figure 4.2: MOT transitions. The main cooling beam excites the 2S1/2 |F = 3/2⟩ →
2P3/2 transition. Some of the atoms fall into the lower ground state 2S1/2 |F = 1/2⟩ ,
and thus a rempumper that excites the 2S1/2 |F = 1/2⟩ → 2P3/2 transition is needed.
The ratio of the MOT to repump power is nearly 3:1. Figure courtesy of Kirsten Viering

Fiber MOT Repump

Fiber No. 1 11.6 mW 5.4 mW
Fiber No. 2 6.8 mW 5.5 mW
Fiber No. 3 10.3 mW 6.3 mW
Zeeman Slower 33 mW 11 mW

Table 4.1: Typical powers of the MOT and the Zeeman slower.

Figure 4.3 shows the configuration of the near-resonant beams and the magnetic

fields of the MOT. A pair of coils is set up in anti-Helmholtz configuration; the distance

between the center of the coils equals the radius of the coils. When current is sent in

opposite directions through each coil, the resulting field is a quadrupole field that is

quasi-linear near the zero of the field, located on the axis of the coils at the midpoint

between the coils. The optical component of the MOT consists of three pairs of near-

resonant counter-propagating beams, propagating along the x, y, and z directions. The

beams are circularly polarized to drive the cycling transition.
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Figure 4.3: MOT Diagram. The Magneto Optical Trap consists of two coils carrying
current on anti-helmholtz configuration that give rise to a quadrupole magnetic field,
and three paris of right-handed near-resonant red-detuned counter-propagating beams
that intersect orthogonally at the zero of the magnetic quadrupole field. Figure courtesy
of Gabriel Price.

The slowing force that the magneto optical trap exerts over the atoms is known

as optical molasses. The scattering force that an atom with velocity v⃗ will feel in a red

detuned laser beam propagating allong the direction k⃗ will be F⃗ = k̂Fscat(δ0 − k⃗ · v⃗).
For any pair of conterpropagating beams (see figure 4.4), k⃗1 = −k⃗2, the total force is

F⃗total = k̂1Fscat(δ0 − k⃗1 · v⃗) + k̂2Fscat(δ0 − k⃗2) (4.10)

= k̂1

(
Fscat(δ0 − k⃗1 · v⃗)− Fscat(δ0 + k⃗1 · v⃗)

)
(4.11)

1
k

r

2
k

r

Figure 4.4: Molasses. Two red-detuned near-resonant beams are propagating in the
directions k⃗1 and k⃗2. When the atom moves to the right, it scatters more photons from
beam 1, when it moves to the left, it scatters more photons from beam 2. The faster
the atom moves, the more it scatters.

Figure 4.5 shows the damping force for typical parameters of our MOT (P =

12 mW per beam, waist = 10 mm, detuning = −2π × 38 MHz). Since we have a pair

of beams for each direcion in space, the MOT can cool in three dimensions. However,

although these beams can cool down a sample of atoms due to their dissipative force,
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Figure 4.5: 1D MOT damping force plot. The velocity-dependent damping force is
shown for typical parameters of the MOT. P = 12 mW per beam, waist = 10 mm, and
∆ = −2π×38 MHz. The velocity is shown in units of m/s and the force in units of
FMAX = ~kγ/2.

they cannot compress them. Any two points inside the volume where the six beams

intersect are equivalent. Furthermore, the atoms cannot be cooled down to absolute

zero because spontaneous emission inevitably heats the atoms. To see this, imagine we

start with one atom completely at rest inside the volume of the six beams. The atom

will have equal probability of absorbing photons from any of the six beams, and as soon

as it absorbs a photon, it will scatter it in a random direction. Thus, the atom has been

heated spontaneously, and it will perform a random walk in velocity-space and three-

dimensional-space (random walk in phase-space). The speed, however, cannot grow

indefinitely because the cooling mechanism eventually kicks in, balancing the cooling

and the heating rates at a finite temperature. This is not the case for the displacement;

without a confining potential, the displacement will grow without bound until the atom

eventually exits the cooling region and escapes the MOT.

To overcome this problem, a position-dependent force has to be imposed on the

atom. By using a quadrupole magnetic field, we can induce a position-dependent Zeeman

shift. For illustration purposes, consider a MOT with a cycling transition between a
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J = 0 state and a J = 1 state. The initial state is J = 0, m = 0, and the final state is

J = 1, mJ = −1, 0, 1. Consider the 1-Dimensional MOT shown in figure 4.6 in which

a constant magnetic field gradient B′ causes a Zeeman shift ∆EZ = mJµBB
′z (gJ = 1

for illustration purposes). A σ+ polarized beam can drive transitions in which ∆m = 1,

while a σ− polarized beam can drive transitions with ∆m = −1. Due to the Zeeman

splitting, an atom at the right of the origin (z = z′) will be closer to resonance with

the σ− beam propagating to the left, while an atom at the left side of the origin will be

closer to resonance with the σ+ beam propagating to the right. Thus, the quadrupole

field effectively induces a position dependent force which is linear with distance. With

the addition of the quadrupole field, the MOT can cool and compress the atoms.

m=0

m=+1

m=-1

Δ

σ+ σ-

σ+σ-
σ+σ- σ+σ-

 -1

 -1
 -1 +1  +1

 +1
 0  0 0

m=0

J=1

J=0

ω

E
z=z’

Figure 4.6: Position dependent force of a MOT. A one dimensional MOT with a cycling
transition between a J = 0 state and a J = 1 state is shown in the figure. Two red-
detuned circulary polarized counter propgating beams are shown in red. The beam
propagating to the left has a σ− polarization and can drive ∆m = −1 transitions,
while the beam propagating to the right has a σ+ polarization and can drive ∆m = 1
transitions. A constant magnetic field gradient B′ induces a linear Zeeman shift ∆EZ =
mJµBB

′z (let gJ = 1 for now). To the right of the origin, (z = z′), the Zeeman shift
moves the mJ = −1 state closer to resonance, and thus the atom will absorb the σ−

beam more strongly than the σ+. At the other side of the origin, the Zeeman shift will
move the mJ = 1 state closer to resonance and the atom will then absorb the σ+ beam
more strongly than the σ−. The Zeeman shift then induces a position dependent force
that can be used to trap atoms. Figure courtesy of Kirsten Viering

The minium temperature that can be achieved in theory with optical molasses is
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the Doppler temperature [27],

TD =
~γ
2kB

(4.12)

which for our cooling transition is 140 µK. In practice, however, it is difficult to perfectly

align the beams and the minimum temperature we can achieve is around 250 µK when

the MOT is compressed. This is cold enough to load atoms into the CO2 optical dipole

trap.

4.3 Optical Evaporation

The minimum temperatures obtainable in a lithium 6 MOT are around 250 µK

with around 2×107 atoms. With typical number densities of n ≈ 1011 cm−3, this cor-

responds to a phase space density of ρ ≈ 10−6. In order to further increase phase

space density, we use optical evaporation. The goal of evaporation is to induce runaway

evaporation, in which the temperature drops much faster than the atom loss, thus in-

creasing the phase space density as a result. Runaway evaporation allows us to achieve

low enough temperatures and high enough numbers to achieve Fermi degeneracy, which

by convention occurs when T/TF ≤ 0.55. Since the lowest hyperfine states of lithium

are high-field seekers, they cannot be trapped magnetically. Therefore, magnetic traps

cannot be used to confine lithium 6; optical dipole traps have to be used instead [28].

During evaporation, the most energetic atoms escape from the trapping potential.

Then, the remaining atoms in the sample rethermalize to a lower temperature. In

practice, these two processes occur at the same time until the process stagnates, at

which point the evaporation can be further forced by changing the depth of the confining

potential. Figure 4.7 illustrates the process. At the beginning of evaporation, the high

velocity tail of the distribution is ejected from the sample. The sample rethermalizes to

a lower temperature, and the process is repeated again. This is done continously during

the experiment.

The final temperature is not the only important parameter at the end of evapora-

tion. Recall from section 2.7 that in order to reach quantum degeneracy, the phase-space

density has to exceed 1. This means that both the number density and the temperature
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Figure 4.7: Evaporative Cooling. a) The initial sample has a mean energy E1
avg. b) The

high-energy tail of the sample is ejected from the trap. c) The sample rethermalizes at
a lower average energy E2

avg < E1
avg. Figure courtesy of Kirsten Viering.

have to be considered. During evaporation, one would like to lower the temperature

"faster" than the rate at which the atoms are lost. In other words, phase-space density

must increase at all times during evaporation. The ideal curve must take into the ac-

count the collisional properties of our sample but, in general, the larger the cross section

between the atoms the faster the sample will rethermalize, making evaporation more

efficient. Since 6Li is a fermion, two atoms will undergo s-wave scattering only if they

are in different hyper-fine states. We use the two lowest hyper-fine states |1⟩ and |2⟩

(see figure 2.3) to achieve degeneracy. When the cross section is independent of energy,

the lowering curve is [29]

U(t)

U0

=

(
1 +

t

τ

)−2(η−3)/η

(4.13)

where η ≡ U/kBT is kept constant. Near the Feshbach resonance, when the gas is in

the unitary regime and the cross section is energy-dependent, the ideal lowering curve

is [30]
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U(t)

U0

=

(
1− t

τ

)2(η−3)/(η−6)

(4.14)

4.4 Culling in the Microtrap

While optical evaporation can produce a cold Fermi gas with T/TF ≤ 0.55, we

can get an even higher Fermi temperature, and therefore a lower degeneracy factor, if

we superimpose a small-volume but tightly focused optical dipole trap on top of the

CO2 optical dipole trap. Our microtrap consists of a Nd:YAG laser with a wavelength

of 1064 nm focused to a spot of 1.46 µm. If we perform the optical evaporation with

our microtrap ON, we can assume that the atoms are going to be thermalized inside the

microtrap. Typical final atom number and temperatures for our degenerate Fermi gas

are T ≈ 0.53 µK, and N ≈ 1.3 × 105 with a power of P ≈ 0.8 W. We know we can

load at most N ≈ 103 atoms into a microtrap and therefore we can assume the trap is

completely full, and the Fermi temperature of our system increases by the trap depth of

our microtrap. For an initial power of 500 µW, the trap depth of our mictrop is around

6 µK. This gives an effective Fermi temperature of

TTotal
F = TCO2

F + TMicotrap
F = 1.2µK + 6µK = 7.2µK (4.15)

and since we assume thermalization, the Fermi gas in the microtrap should have an

efective degeneracy factor of

T/TTotal
F =

0.530 µK
1.2 µK + 6 µK

≈ 0.07 (4.16)

which gives a ground state occupation probability exceeding 99.9999%. I will now explain

how the spilling scheme works.

As the name suggests, atomic culling involves the selection of atoms that meet

certain criteria, while the rest are thrown away. Atomic culling can be done in several

ways, all of which involve loading atoms into an optical dipole trap: reducing the trap

depth [31]; reducing the trap depth and squeezing the trap [32]; and reducing the trap

depth and adding a linear potential that "tilts" the trap [33]. The last method, reducing
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the trap depth and "tilting" the potential, has already been utilized to create two-atom

fermionic Fock states with a fidelity of 96% [34]. I will now describe this last method

with more detail.

Consider the potential formed by an optical dipole trap and a magnetic field

gradient,

Voptical = 1− 1

1 + (z/zR)2
exp

(
−2

((x− x0)
2 + (y − y0)

2)

w2(1 + (z/zR)2)

)
+ µLi

dB

dz
z (4.17)

The ratio of the radial trapping frequencies to the axial trapping frequencies is,

η =
ωr

ωa

= π
√
2
w

λ
(4.18)

so for a w = 1.46 µm focused laser with λ = 1.064 µm, we have a ratio,

η =
ωr

ωa

= 6.05 (4.19)

so as long as our system has less than 12 atoms, we can treat it as one dimensional.

Furthermore, we will assume the atoms are in the ground state in the radial direction

so we can ignore any offset and set x = x0 = y = y0 = 0. For now we ignore the

graviational force since it only introduces an extra linear term that can be absorbed into

the magnetic field term. If initially, only the ground and excited state are populated,

and τgnd and τexc denote their lifetimes respectively, then the probability that after a

time τhold there is one atom in the ground state is

Pgnd = e−thold/tgnd (4.20)

for the first excited state

Pexc = e−thold/texc (4.21)

So the probability of having one atom in the ground state and no atom in the excited

state is

Psingle = (1− Pexc) · Pgnd = (1− e−thold/texc) · e−thold/tgnd (4.22)

If the lifetimes of the ground and excited state differ by several orders of magni-

tude, then the probability of obtaining a single atom in the ground state of the trap can

be as high as 99.9%.
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Figure 4.8: WKB method. Z1, Z2, and Z3 represent the classical turning points of a
particle in the potential.

The question is now how to calculate the lifetimes of the quasi-bound states. We

employ the WKB approximation [35] to obtain approximate solutions to Schrödinger’s

equation and calculate the lifetimes of the quasi-bound states. Let Z1, Z2, and Z3 in

figure 4.8 represent the classical turning points of a particle with energy E. A quasi-

bound state with energy En satisfies∫ Z2

Z1

√
2m(En − V (z))dz =

(
n+

1

2

)
π~ (4.23)

Having found the energy using the previous equation, the transmission probability

for the energy level En is

T (En) = e−
2
~
∫ Z3
Z2

√
2m(V (z)−En)dz (4.24)

this is roughly the probability that the particle will tunnel everytime it "bounces" off

Z2. If T n
0 is the trapping frequency of energy level En, then a particle will bounce an

average of 1/T (En) times and have a lifetime of

τ ≈ T n
0 e

2
~
∫ Z3
Z2

√
2m(V (z)−En)dz (4.25)

45



gnd
E

1
E

Figure 4.9: Culling potential. Culling potential (eq (4.17)) along the z axis for a 30
µW beam with a waist of 1.8 µm and a magnetic gradient of -2.5 G/cm. Egnd and
E1 denote the ground state and first excited state energy levels. For this parameters,
Egnd = −9.3203 nK, E1 = 8.1317 nK, τgnd = 3572 s, and τ1 = 0.3216 s.

where the period of the energy level En can be calculated as,

T n
0 ≈ ∂

∂E

∫ Z3

Z2

√
2m(V (z)− En)dz|E=Ebound

(4.26)

As an example, figure 4.9 shows the potential for a 30 µ W beam of λ = 1064 nm light

focused to a spot of 1.8 µm and a gradient of -2.5 G/cm. For these set of parameters,

the lifetime of the ground state is τgnd = 3572 s, while the lifetime of the first excited

state is τ1 = 0.3216 s. The large difference in the lifetimes can be exploited to obtain a

single pair of atoms in the ground state of the optical potential.
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Chapter 5

Imaging Techniques

Producing a sample of cold atoms is not the end of the story; we might want

to extract some information such as the atom number, the temperature, or its spatial

profile. In order to disturb the sample as little as possible, most cold atom experiments

use some kind of optical imaging method. There are three processes by which atoms

can interact with light, each of which is used for a particular kind of imaging method

[36] : spontaneous absorption of photons is used for absorption imaging, re-emission of

photons is used for fluorescence imaging, and phase-shifting of the transmitted light is

used for dispersive imaging methods. Dispersive imaging methods include phase-contrast

imaging and dark-spot imaging. In this experiment we used fluorescence and absorption

imaging.

Fluorescence imaging yields a higher signal to noise ratio when it comes to atom

number, while on the downside it typically destroys all the spatial information of the

sample. Absorption imaging, on the other hand, preserves the spatial information of the

cloud but is not very sensitive to atom number. Therefore, we use fluorescence imaging

for atom counting when we measure lifetimes and loading rates, while absorption imaging

is the preferred method for cloud size and density profile measurements when we measure

temperatures and density distributions.

5.1 Fluorescence Imaging
5.1.1 Atom Number and fluorescence

Fluorescence imaging is simple and very straightforward: we shine near resonant

light on the sample and form an image from the scattered light. Figure 5.1 shows a

typical fluorescence picture. The total number of counts a CCD camera measures from
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light scattered by a sample of atoms is given by,
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(c) Fluorescence picture

Figure 5.1: False color fluorescence pictures taken by our AltaU47 camera and processed
by our image acquisition software Vision. a) Raw fluorescence picture: the picture is
taken with the atoms and MOT beams ON. b) Probe picture: a second picture is taken
only with the MOT beams ON. c) Fluorescence picture: The probe picture is subtracted
from the raw fluorescence picture to eliminate background light as much as possible. In
this particular picture, the atom number is N =1.07×108, and σx = 1.98 mm, σy = 2.81
mm.

Ncounts = Natoms ·Rscattering ·∆t · ∆Ω

4π
· q
g
· T (5.1)

Where ∆t is the exposure time, ∆Ω
4π

is the fraction of solid angle that is collected,

q is the quantum efficiency in units of [electrons/photons], g is the gain in units of

[electrons/counts], T is the overall transmission coefficient of any filters that might be

inserted, and Rscattering is the scattering rate of an atom in a near resonant field in units

of [photons/s]. Assuming that the Rotating Wave Approximation holds, the scattering

rate is given by

Rscattering =
γ

2

s0
1 + s0 + (2δ/γ)2

(5.2)

where both δ and γ are in units of s−1, and s0 is the saturation parameter. The

atom number is then,

Natoms = Ncounts
8π

γ

(1 + s0 + (2δ/γ)2)

s0∆t∆Ω(q/g)T
(5.3)
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5.1.2 Atom Number Calibration for Fluorescence

To calibrate the atom counting we must measure the fractional solid angle and the

ratio q/g. The fractional solid angle must be obtained from geometrical considerations

of the imaging system, but typically it is in the order of 1% to 10%. The ratio q/g can

be obtained by measuring the total counts on the CCD for a set of exposures at different

optical powers. Then by making a fit to the equation

Ncounts =

(
q

g

)
P∆t

~ω
· T (5.4)

we get the following results,

Camera q/g
Alta U47 0.348(4)

Stingray F033BC 0.467(1)

Table 5.1: Camera Calibrations

The error in the calibrations is less than 1%. The largest source of error comes

from the fractional solid angle, but this can be measured with enough precision that its

error amounts to at most 2%. The total error in atom number for not very optically

thick clouds is therefore at most 3%. This precision is more than enough when the atom

number is larger than 104.

5.1.3 Finding the Image Plane

In any imaging system, one must always place the detector at the image plane. In

common optical systems, the objects being imaged have definite and sharp boundaries,

which makes it very easy to tell if the object is in focus or not. This is not the case for

fuzzy objects. One does not simply move the CCD chip back and forth and find where

the sharpest image of the atomic cloud is. In order to find the image plane, one can use

a simple trick known as the split image method. See figure 5.2.

To implement the split image method, all that is needed is to place a card with

two holes separated as far as possible right after the focusing lens. This will create two
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images of the atomic cloud that will intersect at the image plane. Once the image plane

is found, we can proceed to find the magnification of the system.

CCD

MOT

object

distance

image

distance

Figure 5.2: Split Image Method. A card with two holes is placed behind the imaging
lens. Two images will be formed, and they will intersect at the image plane of the lens.
Figure courtesy of Kirsten Viering

5.1.4 Magnification Calibration for Fluorescence

Knowing the magnification is not necessary to calculate the atom number in

fluorescence imaging, it is necessary in absorption imaging to calculate the size and

spatial profile of the cloud. Measuring the magnification of the imaging system is most

easily done with fluorescence imaging. In our case, because we mounted the CO2 focusing

lens on a 3D translation stage, we can move our CO2 dipole trap to different vertical

positions, load atoms, and do short-exposure fluorescence images. If the exposures are

short enough (∆t < 0.1 ms ), the position and shape of the CO2 dipole trap can be

seen and its center can still be located. The magnification can be found from the

displacements of the CO2 dipole trap in the image vs the real displacement. Figure 5.3

shows the magnification calibration for the Stingray camera.

5.1.5 Limitations of Fluorescence Imaging

As simple as fluorescence imaging is, it has some limitations and one would be

advised to keep them in mind. There are several mechanisms that can lead to an

erroneous atom number when using fluorescence. These are,

• Photon re-absorption within the cloud. Reabsorption of photons within the

cloud can happen if the cloud is optically thick, the power is high enough to
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Figure 5.3: Stingray camera imaging system calibration. The vertical position of the
center of the CO2 optical dipole trap mas measured vs the vertical displacement of the
ZnSe lens. For small displacements, the positions of the lens and the CO2 trap inside
the chamber are 1:1. By looking at the apparent displacement on the CCD chip, the
magnification can be calculated. The error bars indicate statistical uncertainties in the
CO2 trap position. A linear fit gives the magnification, in this case, M = (734±4)×10−3.

cause power broadening, or the photons are too close to resonance. To avoid this

problem, we image at 15 MHz from resonance.

• Atom loss. If the exposure time is too long or the detuning is very small, atoms

will be lost and the atom number will be an average over time. This leads to an

underestimate of the initial atom number. To avoid this problem, we image at 15

MHz from resonance and for 30 ms maximum.

• Saturating the CCD. If the sample fluoresces very strongly, the CCD could

saturate if no filters are used. This would lead to an underestimated atom number.

If the fluorescence signal is too strong, we insert an 8% transmission neutral density

filter.
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• Blooming of the CCD. Blooming (see figure 5.4) occurs when the CCD is pre-

exposed to strong light and the CCD chip doesn’t have enough time to clear. A

phantom pattern of this strong light can then be seen in the picture taken by the

camera. Although blooming is hard to eliminate from a single picture, it is quite

reproducible so one can easily just recreate the same conditions before the probe

or noise pictures are taken and then subtract them from the sample picture. The

blooming effect can be cancelled almost entirely.

Figure 5.4: CCD camera blooming.

5.2 Absorption Imaging

Fluorescence imaging enables us to measure atom number with a high signal to

noise ratio. It does so, however, at the expense of the spatial density profile of the

sample. If one wants to learn about the spatial profile of the sample or disturb it as

little as possible, then one would have to resort to absorptive or dispersive methods.

Setting up the imaging system for absorption imaging is relatively simple: one

uses fluorescence imaging to find the image plane and then measures the magnification;

however, using absorption imaging correctly is not as simple nor as straightforward as

fluorescence. A more careful analysis is needed to correctly interpret the measurements.

To calculate the correct density profile, one has to take into account the power,

detuning, polarization, and orientation (relative to any present magnetic field) of the

absorption beam; the strength of any magnetic fields present, and the population of the

atomic state being imaged. Essentially, however, one needs three pictures to calculate

the number density from absorption imaging: 1) Raw absorption picture: this picture is
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Figure 5.5: False color absorption pictures of a compressed MOT. a) Raw absorption
picture of a compressed MOT. The atomic cloud has absorbed part of the probe beam
and can be seen as a shadow. b) Probe picture without the atoms. The net absorption
is calculated subtracting the probe image from the raw absorption image, from which
the number density can be calculated using either equation (5.8) or (5.22). c) Number
density. This picture corresponds to a cloud of N = 6.6 × 107 atoms with a size of
σx = 1.082 mm and σy = 0.781 mm.

taken with the atoms present and shows a bright background with a shadow produced

by the atoms. Typical exposure times are between 5 and a few tens of µs with a few µW

of power; 2) Probe picture, this picture is taken with exactly the same conditions as the

raw absorption picture, but without the atoms; 3) Noise picture, this picture is taken

with the camera shutter closed and is used to reduce the noise caused by dark counts.

Figure 5.5 shows a typical absorption image of the compressed MOT.

The effect that a cloud of atoms has on the electric field of a beam of near-resonant

light is discussed in appendix C.

5.2.1 Absorption Imaging at Low Fields

At zero magnetic field, the orientation of the absorption beam is irrelevant since

the interaction is isotropic. For a one to one imaging system, the intensity at the CCD

is obtained by simply integrating Beer’s law (equation (C.16)),

I(x, y) = I0(−x,−y)e−β (5.5)
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where

β ≡ ñ(−x,−y)σ0

1 + (2δ/γ)2
(5.6)

and I0(x, y) is the initial intensity distribution at the atomic cloud location (i.e. with

no atoms present), and

ñ(−x,−y) =

∫
allz

n(x, y, z)dz (5.7)

is the 3D density distribution integrated along the axis of propagation, called the column

density, and σ0 is the on-resonance optical cross section for the particular transition.

Solving for the number density we get,

ñ(−x,−y) =
1 + (2δ/γ)2

σ0

ln

(
I(x, y)

I0(−x,−y)

)
(5.8)

In practice, the image is discretized by the finite size of the pixels, and I(x, y) and

I0(x, y) are obtained by subtracting the noise picture to the raw absorption and probe

picture respectively. In terms of pixels, equation (5.8) becmoes

ñij =
1 + (2δ/γ)2

σ0

ln

(
(Raw Abs Picture)ij − (Noise Picture)ij
(Probe Picture)ij − (Noise Picture)ij

)
(5.9)

The only remaining quantity to calculate is σ0, the on-resonance optical absorp-

tion cross section. We calculate σ0 for the MOT and repump transitions in the next

section.

5.2.2 Optical Absorption Cross Section for the MOT and Repump

To calculate the absorption optical cross section we need to know the electric

dipole transition matrix coefficient. At zero magnetic fields, all the magnetic sublevels

(mF ) are degenerate, so all possible values of mF have to be taken into account. More-

over, since the excited state hyper-fine splitting is unresolved, all possible values of F2

must be taken into account as well.

We assume that the resonant light is a mixture of all possible polarization, and

we express this by writing the electric dipole transition operator as:

µ⃗ =
∑
q

µ1
qa(q)êq (5.10)
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where µ1
q is the q-th spherical tensor component of the electric dipole operator, and a(q)

is the q-th polarization amplitude. ∑
q

|a(q)|2 = 1 (5.11)

We calculate the average of the square of the optical transition matrix, and since the

excited states are unresolved since they are separated by less than 5 MHz, we sum over

all F2’s and all mF2 ’s

µ2 =
1

2F1 + 1

∑
q

|a(q)|2
∑

F2,mF2
,mF1

∣∣⟨(J2I)F2mF2 |µ1
q |(J1I)F1mF1⟩

∣∣2 (5.12)

but,

⟨(J2I)F2mF2 |µ1
q |(J1I)F1mF1⟩ = (−1)F2−mF2

(
F2 1 F1

−mF2 q mF1

)⟨
(J2I)F2||µ1||(J1I)F1

⟩
(5.13)

so

µ2 =
1

2F1 + 1

∑
q

|a(q)|2
∑

F2,mF2
,mF1

(
F2 1 F1

−mF2 q mF1

)2 ∣∣⟨(J2I)F2||µ1||(J1I)F1

⟩∣∣2 (5.14)

using (A.6), we can evaluate the sum over mF1 and mF2 ,

µ2 =
1

2F1 + 1

∑
q

|a(q)|2
∑
F2

1

3

∣∣⟨(J2I)F2||µ1||(J1I)F1

⟩∣∣2 (5.15)

which reduces to

µ2 =
1

3(2F1 + 1)

∑
F2

∣∣⟨(J2I)F2||µ1||(J1I)F1

⟩∣∣2 (5.16)

which means that the total transition strength is independent of the initial polarization

of light. Using equation (A.8) to decouple F into J , we get,

µ2 =
1

3(2F1 + 1)

∑
F2

(2F1 + 1)(2F2 + 1)

∣∣∣∣∣
{
J2 F2 I

F1 J1 1

}∣∣∣∣∣
2 ∣∣⟨(L2S)J2||µ1||(L1S)J1

⟩∣∣2
(5.17)

µ2 =
1

3(2J1 + 1)

∣∣⟨(L2S)J2||µ1||(L1S)J1
⟩∣∣2 (5.18)
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So for the D2 line, independent of whether it is the MOT (F1 = 3/2) or the repump

(F1 = 1/2)

µ2 =
2

3
µ2
0 (5.19)

which means that,

σMOT
0 = σRP

0 =
2

3
σ0 =

λ2

π
(5.20)

5.2.3 Absorption Imaging at High Fields

The two lowest hyper-fine states of 6Li have a broad Feshbach resonance at about

834 G. When performing evaporation at high fields, we might want to image the atoms

at high fields rather than ramping the homogeneous magnetic field down to zero and

risk heating the sample. The absorption of light by atoms at high fields is not as

straightforward and simple as the zero field case. A strong magnetic field will break

the symmetry of the system, and a preferred direction, which we will call z, will now

exist. It can be shown [37] that for a circularly polarized beam at 90 degrees from the

z direction, the intensity at the CCD is now given by,

I(x, y) =
1

2
I0(−x,−y)

(
e−β/2 + 1

)
(5.21)

where again,

β =
ñ(−x,−y)σ0

1 + (2δ/γ)2

Solving for the number density now get,

ñ(−x,−y) = −2(1 + (2δ/γ)2)

σ0

ln

(
2

I(x, y)

I0(−x,−y)
− 1

)
(5.22)

or in terms of pixels,

ñij =
1 + (2δ/γ)2

σ0

ln

(
2

(
(Raw Abs Picture)ij − (Noise Picture)ij
(Probe Picture)ij − (Noise Picture)ij

)
− 1

)
(5.23)
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5.3 Calculating the Atom Number

Given a number density n(x, y, z), the total atom number is simply

N =

∫
space

n(x, y, z)dxdydz

or in terms of the column density,

N =

∫
XY−plane

ñ(x, y)dxdy

since the integration is done in all the plane, we can exchange x and y for −x, and −y

N =

∫
XY−plane

ñ(−x,−y)dxdy (5.24)

where ñ(−x,−y) is the column density found in sections 5.2.1 and 5.2.3. Now, one must

be careful about how to interpret dx and dy. We carry out our integration at the CCD

plane because we have detected our intensity distribution there, but the coordinates in

formula (5.24) refer to the location of the atomic cloud.

N =

∫
XY−plane

ñ(−xcloud,−ycloud)dxclouddycloud (5.25)

A simple transformation will allow us to integrate at the CCD plane,

dxCCD = Mdxcloud

dyCCD = Mdycloud

where M is the magnification of the optical system. In reality, dx and dy are the width

and height of each pixel at the CCD, so the integral (5.25) is really a sum over pixels:

N =
∆xCCD

M

∆yCCD

M

(∑
ij

ñij

)
(5.26)

5.4 Measuring the Temperature

The temperature of an atomic cloud is found by measuring how fast it expands

during free expansion. Suppose we have a trapped gas with Gaussian velocity and
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Figure 5.6: Vision graphic user interface. σX and σY are given by SX [mm], and SY
[mm] in the Gauss and Integral Fit Result box at the bottom of the picture.

position distributions. When the gas is released, it will begin to expand and its 1/
√
e

radius, or σ(t), will evolve according to

σ(t) =

√
(σ(t = 0))2 +

kBT

m
σ2
v (5.27)

where σ2
v is the variance of the velocity distribution, T the absolute temperature, and m

the mass of the atom. To extract the temperature, σ(t) has to be measured for different

times and fit to equation (5.27). The radii of the expanding clouds are calculated by

fitting Gaussian distributions to the absorption images. Figure 5.6 shows a screenshot

of our program Vision as we find the size of a typical cloud. Figure 5.7 shows a typical

temperature measurement fit.

The classical fit starts deviating from the real temperatures as the sample ap-

proaches degeneracy. Still, it is very convenient to use it for several reasons: 1) It is easier
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Figure 5.7: Temperature fit. A plot of the vertical 1/
√
e radius vs expansion time is

shown in the figure. The points are fitted to equation (5.27), resulting in a temperature
of T = (50.67± 0.88)µK

and faster to fit than the polylog function that has to be used instead; 2) The classical

fit overestimates the real temperature. Classically, as the cloud gets colder and colder,

the atoms fall to the zero energy level. Due to the Pauli’s exclusion principle, fermions

start to stack on top of each other and start occupying higher momentum states. As the

gas is released, the atoms will expand faster than they would if they behaved entirely

classically. Thus, a classical fit overestimates the temperature because it would attribute

the faster expansion rate to a higher temperature, not to the fact that the fermions are

occupying higher momentum states.

5.5 Fringe Removal Algorithm

Interference fringes produced by the viewport glass surfaces can affect the quality

of the absorption image when the absorption signal is weak. If the fringes move between

the raw absorption image and the probe image, severe fringe noise will affect the quality

of the image. Figure 5.8 shows the effect that fringes have on absorption pictures.
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Figure 5.8: Effect of fringes on absorption pictures. a) Raw absorption picture of the
atoms in the CO2 optical dipole trap. Note the fringes in the picture. b) Probe picture.
Note how the fringes moved relative to the raw absorption picture. c) Optical density.
The different fringe patterns in the raw absorption picture and the probe picture affect
the quality of the optical density picture so much that the atoms are barely visible.

The problem arises because the probe picture has not been able to cancel the

fringes appropriately. Instead of taking many probe pictures and hoping that one of

them will cancel the fringes perfectly, our approach was to construct a suitable probe

picture. How to construct a suitable probe picture? Suppose we take N probe pictures

and form a new probe picture as a linear combination of the N probe pictures: λiPi. λi is

the coefficient of the i-th probe picture Pi. Each Pi is to be regarded as a column vector

that contains all the information of the picture. Let R represent our raw absorption

picture column vector. If we exclude the region where our feature of interest is present,

in our case the region where the atoms are present, then our suitable probe picture must

minimize

S = (R− λiPi)
2 (5.28)

setting
∂S

∂λj

= 0

we get

R ·Pj − λiPi ·Pj = 0

Defining Mji = Mij ≡ Pi ·Pj and Xj ≡ R ·Pj we can rewrite the previous equation as

Xj = Mjiλi (5.29)
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from which we can solve for λi:

λi = (Mij)
−1Xj (5.30)

Applying equation (5.30) to absorption imaging improves the image quality considerably.

Figure 5.9 shows the effect that the fringe removal algorithm has on the absorption

pictures.
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Figure 5.9: Effect of the fringe removal method. a) Raw absorption picture of the atoms
in the CO2 optical dipole trap. Note the fringes in the picture. b) Constructed probe
picture. A probe picture is formed by a linear combination of many other probe pictures
such that it minimizes equation (5.28). c) Optical density. A much cleaner optical
density picture is extracted from the raw absorption and constructed probe pictures.
The atoms are clearly visible and measurements such as size and atom number are now
possible.
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Part III

The Experiment
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Chapter 6

Experimental Setup

6.1 Vacuum Chamber

Quantum states are extremely fragile; a single collision with a gas molecule can

destroy them. Therefore, vacuum pressures of less than 10−10 torr are necessary to study

such systems. At these pressures, the mean free path is greater than 700 m, ensuring that

the atoms will not collide with background molecules. In addition to low pressures, the

vacuum system must provide appropriate optical access to cool and detect our samples

of 6Li , and it has to be easy to build and assemble.

Ti:Sub Pump

Oven

Zeeman Slower

Ion Pump

Ion Pump

Octagon

Ti:Sub Pump

1.67 m

Figure 6.1: Vacuum chamber of the experiment. The total legth of the experimental
setup, from ion pump to ion pump, is 1.67 m. The oven (circled in red) is wrapped in
fiber glass and aluminum foil for heat insulation.
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The lithium setup can be seen in fig 6.1. We decided to build our vacuum system

mostly of commercially available parts, keeping modifications and homemade parts to a

minimum. The support structure of the vacuum system is made of extruded aluminum,

as can be seen in fig. 6.1. Experience from other experiments taught us that we should

minimize the degrees of freedom of the vacuum chamber as much as possible, and to do

a single, and precise alignment during assembly. There is only one bellows in the whole

vacuum system; this bellows connects the oven chamber to the differential pumping tube

and allows for angular adjustment. The alignment of the diffusive beam path, from the

oven to the Zeeman slower window, was checked meticulously with a telescope. Once

the structure is aligned, everything is locked down and no further adjustment is possible.

6.1.1 Oven Chamber

The oven is located at the very beggining of the vacuum setup (see figures 6.1 and

6.4). The oven itself (see fig. 6.2) is made of stainless steel, it has an outer diameter of

1.5 inches, holds up to 4 grams of lithium, and can be heated to temperatures of 370 ◦C

and above using a band heater. We wrapped several layers of fiber glass and aluminum

foil around the oven to avoid unnecessary heat loss and protect against the intense heat.

The oven is attached to the oven chamber with a nickel gasket. A nickel gasket must be

used to attach the oven since hot lithium can corrode copper gaskets and cause vacuum

leaks over time.

68 mm

Figure 6.2: The lithium oven. The lithium
oven can be filled with up to 4 grams of
lithium. Its outer diameter is 1.5 inches and
has a total length of 68 mm. The walls have
been reduced to decrease the heat flow to
the rest of the chamber.

During the experimental sequence, it becomes necessary to turn the effusive beam

on and off to avoid buildup of lithium on the chamber windows. An atomic beam shutter

(see fig. 6.3) was placed inside the oven chamber and connected to a stepper motor

through a rotary feed through (Accuglass Products Inc., HTR-133). Between the oven
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and the beam shutter, an atomic beam block (see fig. 6.3) with a 5 mm diameter hole

collimates the beam.

Figure 6.3: Atomic beam shutter.
The atomic beam shutter shown in
the figure was polished like a mir-
ror to aid in the alignment of the
Zeeman slower. It is connected to
a stepper motor through a rotary
feed through (Accuglass Products
Inc. HTR-133). The atomic beam
block has a hole of 5 mm that col-
limates the effusive beam.

Atomic

beam

shutter

Beam block

Oven

Rotary feedthrough

Ion pump

Titanium sublimation pump

Ion gauge

All-metal gate valve

Angle valve

Figure 6.4: The oven chamber. Connected to the oven tower are: the oven (circled in
red), a titanium sublimation pump (Duniway Stockroom, TSP-275-003), an all-metal
gate valve (VAT Valve, 48124-CE01), and an elbow. Connected to the elbow are: an
angle valve (VAT valve, 54032-GE02), a 60 L/s ion pump (Duniway Stockroom, VA-60-
TR), and an ion gauge (Duniway Stockroom, I-NUDE-F), with its ion gauge controller
(Granville Phillips, 350).
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An all-metal gate valve (VAT Valve, 48124-CE01) separates the oven chamber

from the science chamber; this way we can break vacuum in the oven chamber to refill

the lithium oven and still maintain vacuum in the science chamber.

6.1.2 Differential Pumping Tube

The differential pumping tube connects the high pressure (10−9 torr) oven cham-

ber with the low pressure (10−10 torr) science chamber. It is connected to the gate valve

through a small bellows (Standard Bellows Company, 64-34-1-EE). Longer differential

pumping tubes with smaller inner diameters yield larger pressure differentials, but at the

same time they reduce the atomic flux. Since the differential pumping tube also forms

part of the Zeeman slower, a compromise between length and inner diameter had to be

found. Ultimately, the design of the Zeeman slower coils and the differential pumping

tube depend on each other.

338 mm

Flange round groove

Di!erential pumping tube groove

Figure 6.5: Differential pumping tube. The inner diameter of the differential pumping
tube changes 9 times, from an initial diameter of 13 mm to a final diameter of 5 mm.
The tube is welded to a flange with a ground groove, where the Zeeman slower coils’
holding tube is embedded. A groove on the differential pumping tube itself provides
additional support.
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Figure 6.6: Cut flange and bellows. The bellows flange had to be cut in half to fit the
Zeeman slower coils.

Since the atomic beam radius increases as the beam propagates, the inner radius

of the differential pumping tube is machined to match the expected beam profile. A

continuously varying diameter is hard to machine, therefore we changed the diameter in

9 steps, from an initial diameter of 5 mm to a final diameter of 13 mm (see fig. 6.5).

The Zeeman slower coils had to be mounted on a supporting tube because the outer

diameter of the differential pumping tube is 17 mm, while the inner diameters of the

coils are 30 mm. This supporting tube is embedded into a round groove on the flange

connecting it to the science chamber. A second groove on the differential pumping tube

provides extra support.

The Zeeman slower coils’ supporting-tube inner diameter (25 mm) is smaller

than the diameter (32 mm) of the flange that connects the bellows to the all-metal

valve. Therefore, to assemble the coils, we had to cut the flange in half (see fig. 6.6),

slide the Zeeman slower’s supporting-tube with the coils already in place, and reassemble

and connect the flange to the all-metal gate valve.

6.1.3 Science Chamber

The main component of the science chamber is the spherical octagon (see fig.

6.7). The spherical octagon is a UHV stainless steel vacuum chamber manufactured

by Kimball Physics (MFC600-SO200800); it has eight 2-3/4" CF ports and two 6 in

CF ports. One 2-3/4" CF port connects the spherical octagon to the Zeeman slower
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differential pumping tube; the opposite one connects it to the second tower via a 6 in

nipple.

Four of the eight 2-3/4" ports are sealed with broadband anti-reflection coated

viewports (MDC, 450002) for the wavelength range from 650 to 1200 nm (Thinfilm

Labs). The remaining two 2-3/4 in CF ports are attached with two zinc selenide (ZnSe)

viewports that are AR-coated for 10.6 µm from VG Scientia.

to Zeeman Slower/

Di�erential pumping tube
to Science Tower

Zinc Selenide viewport

Zinc Selenide viewport

Broadband AR viewport Broadband AR viewport

Broadband AR viewport Broadband AR viewport

Re-entrant viewport

Figure 6.7: Spherical octagon.

To maximize the optical access to our sample, we attached two custom reentrant

viewports (Special Techniques Group, Culham Centre for Fusion Energy, United King-

dom Atomic Energy Authority) to the two 6 in CF ports of the spherical octagon. The

windows on these viewports extend inside the spherical octagon to maximize the opti-

cal access. However, the reentrant viewports cannot block the MOT or Zeeman slower

beams. Therefore, this imposes a minimum separation distance between the two win-

dows. For our design, we chose this distance to be 16.6 mm. Both reentrant viewport

windows are coated with the same broadband anti-reflection coating as the four 2-3/4 in
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viewports. Besides increasing optical access, the reentrant viewports allow us to mount

the Feshbach coils much closer to the atoms, thus allowing us to generate fields of 834

G with 132 A.

Titanium sublimation pump

Ion pump

to spherical octagon

Gate valve

Ion gauge

Zeeman slower port

Figure 6.8: Science chamber. The science chamber consists of a 6 inch nipple (science
tower), a four port 2-3/4 inch cross, and an elbow. Connected to the science tower are:
a titanium sublimation pump (Duniway Stockroom, TSP-275-003), connected at the top
of the tower, and an ion pump (Duniway Stockroom, RVIP-75-S), connected through the
elbow to the bottom of the tower. Connected to the cross are: an ion gauge (Duniway
Stockroom, I-NUDE-F) with its controller (Granville Phillips, 350), an all-metal gate
valve (Vat-Valve, 54032-GE02), and a 2-3/4 inch viewport identical to the broadband
ones of the spherical octagon.

The rest of the science chamber is described in figure 6.8. The last 2-3/4 inch

viewport is used by the Zeeman Slower beam. All lithium atoms not trapped in the

MOT end up impinging on this viewport. Therefore, to avoid lithium from coating this

viewport, it is kept at a temperature of 120 ◦C with a band heater.

Both the second tower (6 inch nipple) and the 6 inch elbow are electropolished

(by Central Electropolishing Co.) to reduce outgassing.
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6.1.4 Vacuum Chamber Bake-out and Pumps

Achieving ultra high vacuum (UHV) pressures of 10−10 torr or less involves the

use of different kinds of pumps and cleaning procedures; one cannot simply connect

vacuum pumps to a vacuum chamber and expect to reach UHV pressures of 10−10 torr

or less without first baking it out.

In our setup, two ion pumps and two titanium sublimation pumps are perma-

nently connected to the vacuum chamber. A roughing pump and a turbo pump, con-

nected to the chamber through two angle valves, are used once to do the initial pump-out

during the bake-out. Since different parts of the chamber have different baking require-

ments, some parts are individually pre-baked and two bake-outs are done on the chamber.

All the chamber components are thoroughly cleaned with acetone and methanol before

assembly.

The following bake-out and evacuation procedure was used:

• Air-bake of the differential pumping tube. To remove any residual oil from ma-

chining, the differential pumping tube was heated to about 200 ◦C for 24 hours.

• First bake-out. Since the maximum baking temperature for the zinc selenide

viewports is low (120 ◦C), they were replaced by blanks for the first high temper-

ature (200 ◦C) bake-out. The lithium oven was empty during this first bake-out.

After assembly is completed, the turbo pump and roughing pump are connected,

and the vacuum chamber is wrapped in heaters and aluminum foil. The roughing and

turbo pumps are turned on, and when the pressure drops below 10−6 torr, the bake-out

begins. For the first bake-out, the chamber is heated to 200 ◦C, which is the maximum

recommended temperature for the reentrant viewports and the rotary feedthrough.

• Second bake-out. After the first bake-out was complete, the gate valve was closed

to isolate the science chamber from the oven chamber. The blanks in the spherical

octagon were replaced with the zinc selenide viewports. To prevent contamination,

the science chamber was flooded with high purity argon and the blanks and zinc
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selenide viewports were exchanged as quickly as possible. Since the zinc selenide

AR coating is very sensitive to temperature variations, a brick oven was built

around the spherical octagon to keep the temperature as constant as possible

during the second bake-out. The oven chamber was flooded with high purity

argon to remove the oven and a blank was loosely attached while the oven was

filled with about 4 g of 95% enriched 6Li (Sigma-Aldrich and Medical Isotopes

Inc.). The oven was then quickly reattached with a nickel gasket.

6Li is kept under oil to prevent oxidation. Even though we clean the lithium very

carefully, it is not possible to remove all the residual oil from it. Furthermore, since the

oven runs at at a temperature of 350 ◦C, it has to be baked at 400 ◦C to completely

degas it. Since the oven and the rotary feed through are close, the walls of the oven had

to be thinned (see figure 6.2) to avoid excessive heat conduction from the oven to the

rotary feedthrough and the oven chamber viewport. Having the angle valve closed at

this stage prevents any oil contamination from reaching the science chamber, should it

occur in the oven chamber.

The oven itself was baked at around 400 ◦C, the octagon at 100 ◦C, and the rest

of the chamber at 150 ◦C. After the bake-out process was completed, UHV pressures

were finally obtained.

6.2 Magnetic Systems

Magnetic fields play a central role in many atom cooling and trapping techniques.

In our experiment we use magnetic fields to exploit the Zeeman shift and a Feshbach

resonance. There are three systems of coils used in the experiment, all of which were

home built:

1. Zeeman slower coils: Eight coils produce the required magnetic field to operate

the Zeeman slower.

2. Magneto optical trap (MOT) and Feshbach coils: The two Feshbach coils
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can be used to generate a quadrupole field (uniform field) when operated in anti-

Helmholtz (Helmholtz) configuration.

3. Shim coils: A system of four coils is used to produce an offset magnetic field.

This way the center of the magneto-optical trap can be moved a few millimeters.

6.2.1 Zeeman Slower Coils

The Zeeman slower magnetic field profile is approximated with eight coils (see

figure 6.9 ). Since the Zeeman slower and the MOT are next to each other, their magnetic

fields inevitably affect each other’s operation. To minimize this effect, the MOT is built

in such a way that it forms part of the Zeeman slower; the axial field of the MOT

completes the field at the end of the Zeeman slower, ensuring a smooth transition from

the Zeeman slower to the MOT.

Cooling Fan

All-metal gate valveCoils

Figure 6.9: The Zeeman slower. The Zeeman slower coils can be seen in the picture. A
continuously operating fan cools down the Zeeman slower. The all-metal gate valve can
be seen at the right of the Zeeman slower.

The required magnetic field profile for the Zeeman slower was calculated in section

4.1. This field profile can be approximated by an array of coils by changing parameters

such as the number of coils, number of turns per coils, length of each coil, and current

per coil. The more coils that are used, the better the approximation to the desired field
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will be. However, a compromise between a good approximation and complexity has to

be made. To reduce complexity we decided to use eight coils, seven of which are operated

with the same power supply. These seven coils have different numbers of windings to

produce different magnetic field strengths. The last coil has its own power supply; we

wanted to have independent control of this coil to better match the transition between

the Zeeman slower and the MOT and to be able to use it as a shim coil as well.

A Mathematica program [38] was used to simulate the magnetic fields of both

the MOT and the Zeeman slower. This program allowed us to change parameters such

as the number of windings, currents, and size of coils to find a good fit to the field.

However, since the field profile cannot not be perfectly matched with a finite number of

coils, a second Matlab program [39] was used to simulate the efficiency of the Zeeman

slower for a given approximated field profile. The Zeeman slower coil parameters are

shown in table 6.1.

Coil # Axial turns Radial turns Resistance Current Power Outer diameter
1 26 19 0.87 Ω 4.9 A 20.9 W 85.9 mm
2 26 15 0.62 Ω 4.9 A 14.9 W 74.4 mm
3 26 13 0.51 Ω 4.9 A 12.2 W 68.6 mm
4 26 12 0.46 Ω 4.9 A 11.0 W 65.7 mm
5 26 11 0.41 Ω 4.9 A 9.8 W 62.8 mm
6 26 10 0.36 Ω 4.9 A 8.6 W 59.9 mm
7 26 8 0.26 Ω 4.9 A 6.2 W 54.1 mm
8 26 5 0.15 Ω 4.3 A 2.8 W 45.5 mm

Table 6.1: Parameters of the Zeeman slower coils

The coils are made of AWG 18 square wire (MWS Wire Industries, 40039) coated

with Polyimide-ML, rated for temperatures up to 200 ◦C. The bare (coated) wire di-

mensions are 1.29 mm×1.29 mm (1.45 mm×1.45 mm).

The coils were wound on a lathe. Epoxy (Epoxy Technology, 360) was added

continuously during the winding process to provide structural support to the coil. Af-

terwards, the coil was allowed to dry at room temperature for one day. Each coil then

was baked at 100 ◦C for one hour to cure the epoxy completely. Finally, they were
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Figure 6.10: Zeeman slower field profile. The expected profile of the Zeeman slower
and MOT when 4.9 A of current run through coils 1-7 of the Zeeman slower, 4.3 A run
through coil 8 of the Zeeman slower, and 20 A run through the Feshbach MOT coils.

assembled in the Zeeman slower’s coil holding tube.

The current for the first seven coils is supplied by a Sorensen power supply

(DCR40-35A), while the current for the last coil is provided by a Kepco power sup-

ply (36-15M). All the coils are driven by a homemade current controller. The current

controller features two Arduino Duemilanove microcontrollers that monitor the coils’

temperatures and currents, and two home-made PID controllers that set and stabilize

the currents. An additional relay box can invert the current flow of the last coil. The

current controller is controlled by Control (see section 6.6) through analog and digital

outputs. From Control, one can change the currents flowing through the slower, as well

as the current direction of the last coil.

The power dissipated by the first seven coils of the Zeeman slower is around 84

Watts. While this does not justify water cooling, a continuously running fan was installed
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Figure 6.11: Zeeman slower field profile. The solid line represents the calculated field
when 5.8 A of current run through coils 1-7 and 4.9 A run through coil 8. The blue dots
are field measurements taken with a gaussmeter. The field excludes the fields from the
MOT coils. The actual currents used in the experiment are 4.9 A for coils 1-7 and 4.3
A for coil 8 (actual values not shown).

to cool the Zeeman slower. This allows us to run the Zeeman slower continuously for

more than 20 minutes.

To verify that the actual field matched the expected field, we measured the mag-

netic field of the Zeeman slower running 5.8 A of current through coils 1-7 and 4.9 A

through coil 8. These were the original values for the currents and thus are the ones we

used for comparison to our fit. The results are shown in figure 6.11. The figure shows an

incomplete Zeeman slower field since the final part of the Zeeman slower is completed

by the MOT axial field.

6.2.2 Magneto Optical Trap and Feshbach Coils

Originally, we were going to use a pair of coils for the MOT and a separate

pair of coils (the Feshbach coils) to generate a uniform magnetic field to control the
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Feshbach resonances. The Feshbach coils can operate in two configurations: Helmholtz

configuration, in which current circulates in the same direction in both coils and produces

a uniform magnetic field midway between the coils, and anti-Helmholtz configuration,

where currents circulate in opposite directions and produce a quadrupole field with a

zero located midway between the coils. The Feshbach coils can be used as MOT coils

when operated in anti-Helmholtz configuration. During the sequence, the atoms would

first be loaded in the MOT coils, then we would transfer them to the Feshbach coils still

in anti-Helmholtz configuration, after which we would compress the cloud and transfer

it to the CO2 laser. While optimizing the MOT to Feshbach-MOT transfer, we tried

loading the atoms directly to the Feshbach MOT without using the original MOT coils.

Since both methods had similar performance, we decided to use the Feshbach coils for

the MOT instead of the original MOT coils. The original MOT coils were then modified

and are now used as shim coils (see section 6.2.3).

The Feshbach coils serve two purposes: in anti-Helmholtz configuration, they

complete the MOT-Zeeman slower magnetic system, and in Helmholtz configuration,

they produce the homogeneous magnetic field necessary to access the 834 G Feshbach

resonance of 6Li .

The Feshbach resonance we use occurs at around 834 G. To generate such a field

a large amount of current has to be run through the coils. Moreover, this field has to

be maintained for a few seconds. To reduce the amount of current and power needed to

reach this field, the coils were mounted inside the reentrant viewports so they could be

closer to the atoms. The best coil parameters were found using a Mathematica program.

The inner (outer) diameters of the coils are 29.5 mm (45 mm). The coils are made

of flat wire (MWS Wire Industries, 41137) with dimensions of 0.43 mm × 7.6 mm and

each have 26 windings, giving a resistance of 30 mΩ for each coil. The coils are placed

36 mm apart and when operated in Helmoltz configuration produce 6.34 G/A. When

operated in anti-Helmholtz configuration, only 20 A are needed to produce the axial

(radial) gradient of 21 G/cm(38 G/cm) needed for the MOT operation. Notwithstanding

their low combined resistance of 60 mΩ, the coils still dissipate more than 600 W each

when operated at 834 G. It was therefore necessary to implement a cooling system for
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the coils. The water in the cooling system flows at a rate between 2.1 and 2.4 l/min

at a temperature of 18 ◦C. Even at a current of 150 A (B ≈ 951 G), the steady state

temperature remains below 70 ◦C.

45 mm

Figure 6.12: Feshbach coils heatsink. The lower face of the heatsink is polished to
increase thermal contact.

Like the Zeeman slower coils, the Feshbach coils were wound on the lathe: epoxy

(Epoxy Technology 360) was added as they were wound, and then the coils were baked at

100 ◦C to completely cure the epoxy. Unlike the Zeeman slower coils, the feschbach coils

need a high power cooling system, so a pair of water cooled heat-sinks (see figure 6.12)

was constructed. To maximize the heat conductivity between the coils and the heatsinks,

the mating faces of each coil-heatsink pair were flattened and polished. This exposed

the copper wire in the coils, so an electrically-insulating heat-conducting epoxy (AI

Technology, Primabound ME 7159) had to be used to attach the coils to the heatsinks.

This epoxy is a diamond filled epoxy with a thermal conductivity of 11.4 W/m·C ◦ and

an electrical resistivity of more than 1024 Ω·cm. After the mating faces of the coils and

heatsinks were polished, a layer of diamond filled epoxy was applied and prebaked for

30 minutes at 60 ◦C. The faces were then joined and the epoxy was cured for 2 hours at

140 ◦C.

The electrodes have round faces to maximize the electrical contact area with the

flat wire. Since the electrodes and the coils act as a giant heatsink, a special indium

solder wire (Indium Corporation of America, alloy 58Bi 42Sn) had to be used. This

solder wire has a melting point of 138 ◦C and a lower electrical resistance than regular

solder wires. To solder the electrodes to the coils, the coils with their heatsinks attached
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are heated to 130 ◦C with a heater tape. The electrodes are heated in an oven to 130 ◦C

as well. Some diamond filled epoxy is applied to the dents of the heat sink to provide

some electrical insulation and support to the electrodes, then two soldering irons are used

at the same time to solder the electrodes to the coils. To further add structural support,

epoxy putty (Loctite, Fixmaster) is used to attach the electrodes to the heatsinks. The

Feshbach coils’ current is supplied by a Lambda power supply (ESS 20-500), that can

supply up to 500 A at 20 V with a current stability of 0.1%. The value of the current is

directly controlled by the power supply, while the coil configuration is changed with an

external H-bridge driver. Figure 6.13 shows the H-bridge driver circuit diagram. The

driver consists of four sets of MOSFETs (IRF1324PbF) connected to an H-bridge driver

(HIP4081). The driver is controlled directly by the computer program Control.

+

Top coil

Bottom coil

1
A

2
A

1
B

2
B

Figure 6.13: H-bridge circuit diagram. The H-bridge controls the direction of the current
in the bottom coil by switching on and off different pairs of MOSFETs. When A1=ON,
A2=ON, B1=OFF, and B2=OFF, current flows from left to right. When A1=OFF,
A2=OFF, B1=ON, and B2=ON, current flows from right to left.

Each MOSFET set consists of ten MOSFETs in parallel, mounted on a water

cooled copper plate as seen in figure 6.14. Since each MOSFET can take up to 195

A, a set of ten can in principle take 1950 A, leaving a large safety margin and a very

fault tolerant design. To reduce the switching time, the length and area enclosed by the

cables are minimized as much as possible.
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Figure 6.14: MOSFET bank. 40 MOSFETS (IRF1324PbF) are connected to an H-
bridge driver (HIP4081). Each of the four banks shown in figure 6.13 consist of 10
MOSFETs in parallel. Each MOSFET can take up to 195 A, so each bank can take
at least 1950 A. The MOSFETs are mounted on a copper plate that has incorporated
water cooling. Figure courtesy of Kirsten Viering.

The expected magnetic field profile for the Helmholtz configuration is shown in

figure 6.15. By taking absorption pictures at high fields we concluded that the fields are

accurate to within 1 G.

6.2.3 Shim Coils

The shim coils are used to move the center of the quadrupole field of the MOT.

The last coil of the Zeeman slower is used as the x-axis (Zeeman slower axis) shim coil;

the direction and amount of its current can be controlled independently from the other

coils. The original MOT coils (see figure 6.16) are used as a pair of shim coils for the

vertical direction (y-axis). Although each can be independently controlled, the current

direction is fixed, so they are configured in anti-Helmholtz configuration to increase their

range. Finally, an extra coil was installed on the exiting zinc selenide viewport to serve

as a shim coil (z-direction, CO2 laser propagation). The shim coils current values are

set during the MOT holding phase, just after the loading is over.
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Figure 6.15: Homogeneous magnetic field produced by the Feshbach coils when operated
at 131 A in Helmholtz configuration

6.2.4 Water Cooling of the Magnetic System

The currents needed to operate the MOT and to reach the Feshbach resonance

require us to water cool the coils and the H-bridge. A diagram of this system can be

seen in figure 6.17

We use a heat-exchanger (Affinity, EWA-04AA-CE56CB) connected to a water

flow of chilled water through an externally controlled valve (Johnson Controls, VA-4233-

6GA-24). A home-built temperature controller featuring an Arduino Duemilanove mi-

crocontroller probes the water temperature with a thermocouple and accordingly opens

and closes the valve to keep the temperature at approximately 18 ◦C.

Right after the water output of the heat exchanger, a water filter is installed to

prevent water lines clogging. Since the heat exchanger cannot generate enough output

pressure, a pair of pumps (Tuthill, TXS2.6PPPT3WN1C000) are used to increase the

water flow rate. Two pulsation dampers (FlowGuard) are added in series with the pumps

to suppres mechanical vibrations.

The cooling lines for the the Feshbach coils, the shim coils, and the H-bridge, all
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Figure 6.16: Spherical octagon in the setup. The old MOT coils can be seen. These
coils are now used as shim coils in the vertical direction.

are connected in parallel. Figure 6.18 shows our brass home-built distribution system

used to split and combine the water lines. Finally, there is a flow meter measuring the

water flow returning to the heat exchanger. If the flow is less than expected, either due

to a clog or a leak, the interlock boxes controlling the electrical currents in the coils will

stop any electrical current flow, preventing potential damage to the experiment.

6.3 Near Resonant Lasers Systems

The near resonant laser system is used for the MOT, the Zeeman slower, fluo-

rescence detection, and absorption imaging. The laser system consists of three Toptica

units: two low power diode lasers (Toptica, DLpro), each with an output power of

approximately 20 mW, and one tapered amplifier with its own laser diode (Toptica,

TApro), with an output power of approximately 400 mW.

One of the DLpro modules is used to lock the frequency of the laser to the∣∣2S1/2, F = 3/2
⟩

to
∣∣2P3/2

⟩
line of lithium-6. The TA and imaging lasers are then locked

to the spectroscopy laser. The TA supplies power for the Zeeman slower, the MOT,

fluorescence detection and absorption imaging. The imaging laser provides extra power

for imaging. All the lasers are located in a separate optical table and are coupled to single

mode optical fibers that are sent to the main optical table. The fiber coupling efficiencies
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Figure 6.17: Water cooling system diagram. The magnetic system water cooling system
services the MOT coils, the Feshbach coils, and the H-bridge heatsink.

Figure 6.18: Distribution system for the water cooling system shown in figure 6.17
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are typically around 40%, but can be as high as 60%. There are two advantages of using

fibers: first, since they are single mode they serve as spatial filters; second, they decouple

the optical alignments from before and after the fiber. The laser system will now be

described in more detail.

6.3.1 Spectroscopy Cell and Laser

The spectroscopy cell is used to lock the spectroscopy laser (Toptica, DLpro)

to the
∣∣2S1/2, F = 3/2

⟩
to
∣∣2P3/2

⟩
line of lithium 6. We use Doppler free frequency

modulation spectroscopy to lock our master laser to the lithium-6 D2 line. The necessary

electronics for this technique have been implemented in the laser modules of the Toptica

system.

The beam profile coming out from the spectroscopy laser has an elliptical profile,

so a pair of anamorphic prisms (Thorlabs, PS871-B) are used to make it more circular.

Immediately after that, an optical isolator (Conoptics, 712B) protects the laser from

any reflections. A beam splitter picks up around 15 mW of light to lock the TA and the

imaging laser, the rest is sent through a telescope (f1=50 mm, f2=200 mm) with a 300

µm pinhole at the focus to further clean the mode. The resulting beam is sent through a

quartz half-wave plate (CVI-MellesGriot, PBS-670-050) to rotate the linear polarization

of the beam, so that the polarizing beam splitter (PBS) that follows reflects all the

power to the spectroscopy cell. After the polarizing beam splitter, a quarter-wave plate

turns the linearly polarized light into circularly polarized light, so that the transition∣∣2S1/2, F = 3/2
⟩

to
∣∣2P3/2

⟩
can be excited. The beam is then retroreflected, goes through

the quarter-wave plate again, turns into linearly polarized light, goes through the cube,

hits a mirror, and then a lens focuses it to a ultra-fast photodetector (New Focus, 1801).

The laser diode current is modulated at 20 MHz by the PDD module of the laser. This

produces two sidebands at ± 20 MHz of the carrier frequency. The laser beam contains

these two extra frequencies and which results in amplitude modulation after the beam

double passes the lithium cell. The AC-coupled output voltage of the photodetector is

then fed to the input of the Pound-Drever-Hall module of the laser, which generates an

error signal that can be used to lock the laser. The error signal can be seen in figure 3.2
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The spectroscopy cell is made of stainless steel and is filled with argon gas at a

pressure of 35 mTorr when it is at room temperature. The amount of gas inside the

cell is important, as it serves as a buffer gas: with too much broadening effects will

affect the spectroscopy signal, and if not enough the mean free path of lithium will be

long enough to reach the viewports and coat them. The viewports are broadband anti-

reflection coated for 400 nm to 700 nm (Larson glass). A schematic of the spectroscopy

cell optical setup can be seen in figure 6.19
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Figure 6.19: Spectrocopy cell optical setup.

A small amount of 95% enriched lithium-6 is deposited in the lithium reservoir.

The cell operates at a temperature of 420 ◦C. At this temperature the pressure is enough

to both see a spectroscopy signal and effectively contain the lithium close to the oven.

The oven is heated with a fiber glass wire heater (93.8 Ω, 120 W, 480 ◦C max) that is

wound around the oven tightly. It is wrapped with a few layers of fiberglass wrapped in

wrinkled aluminum foil. Wrinkles are important because they trap air in between. The
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oven has a small housing to prevent air currents from destabilizing the temperature.

A small valve (VAT Valve, 54024-GE02-0001) is connected to the 2-3/4 flange

tee. This valve is used to connect the vacuum pumps used for the initial pump-out.

First, the spectroscopy cell is tested for leaks without lithium. Then it is flooded with

argon and lithium is added quickly. Finally, the cell is evacuated until a pressure of

approximately 35 mTorr is reached.

6.3.2 Tapered Amplifier

The Tapered Amplifier (Toptica, TApro) is used to power the Zeeman slower

beam, all MOT beams, and one absorption beam. The schematic of the laser setup can

be seen in figure 6.21. There is a pickup mirror inside the TA that picks a small amount

of light to be used to lock the laser to the spectroscopy laser. This is done with the

beatlock technique. Figure 6.20 shows a diagram of the RF electronic components used

to generate the error signal.
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Filter

BHP-25+

Mixer

ZAD-1+

VCO

ZOS-150+

Filter

BLP-50
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Phase Detector

ZRPD-1B+

Filter

BLP-5+

error signal input PID

Control Voltage

from analog out

delay line

Thorlabs

PDA10A
to frequency counter

Figure 6.20: Tapered amplifier beatlock electronics. Figure courtesy of Kirsten Viering.

Coming out from the TA, the beam goes through an optical isolator (Conoptics,

716) with a high isolation ratio (56 to 60 dB). This is necessary as the TA is more
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sensitive to back reflection. After the isolator, a 5:3 cylindrical telescope is used to make

the beam profile more symmetric. This is important as the coupling efficiencies of the

fibers depend on the beam profile. Next, a 5:1 spherical telescope changes the size of the

beam to match the active areas of the MOT and repump AOMs (IntraAction, ATM114-

A1). After the telescope, a half wave-plate and a polarizing beam splitter split the beam

into two, with a typical ratio of MOT:RP=3:1. Figure 6.22 shows how the frequencies

are shifted by the AOM’s and the beatlock. The MOT AOM shifts the frequency by -114

MHz, while the repump AOM shifts the beam by +114 MHz. The difference between

these two shifts is 228 MHz, exactly the hyperfine splitting between the |F = 3/2⟩ and

|F = 1/2⟩ states of the ground state.
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Figure 6.21: Tapered amplifier optical setup

The final frequency for each branch is,

ω = ω0 + δoffset ± 114MHz (6.1)
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Figure 6.22: Beat lock detuning diagram. Shown in red is ω0, the on-resonant frequency
for the D2 line transition. All red arrows are the same length. The MOT AOM shifts this
frequency by -114 MHz (black arrow pointing down), while the repump AOM shifts the
frequency by +114 MHz (black arrow pointing up). Then both frequencies are shifted by
+δoffset (blue arrows pointing up), leaving the MOT with a detuning of δMOT = δdetuning =
δoffset−114 MHz from the |F = 3/2⟩ to |F ′ = 5/2⟩ transition (the MOT transition), and
the repump with a detuning of δrepump = δdetuning = δoffset−114 MHz from the |F = 1/2⟩
to |F ′ = 5/2⟩ transition (the repump transition). The separation between the |F = 1/2⟩
and |F = 3/2⟩ ground states is 228 MHz.

where ω0 is the transition frequency
∣∣2S1/2, F = 3/2

⟩
to
∣∣2P3/2

⟩
, δoffset is the beatlock

offset, and +114 MHz (-114MHz) corresponds to the repump (MOT) AOM frequency

shift. The detuning from the spectroscopy line is then,

δdetuning = ω − ω0 = δoffset ± 114MHz (6.2)

where δRP = δoffset + 114MHz and δMOT = δoffset − 114MHz. When δoffset = 114,

δRP = +228 MHz and δMOT = 0 MHz. This means that the MOT is on resonance

with the
∣∣2S1/2, F = 3/2

⟩
to
∣∣2P3/2

⟩
transition, and the repump is on resonance with

the
∣∣2S1/2, F = 1/2

⟩
to
∣∣2P3/2

⟩
transition (which is +228 MHz blue detuned from the
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∣∣2S1/2, F = 3/2
⟩

to
∣∣2P3/2

⟩
transition).

Since both the Zeeman slower and the MOT need both frequency components, the

beams are combined in a 50:50 beam splitter cube. This results in two beams containing

both frequencies. One of these beams is further split into 3 more beams that are coupled

into fibers that power the MOT. The other beam powers the Zeeman slower. Since the

Zeeman slower operates at 80 MHz red detuned relative to the MOT, the beam is first

resized in a telescope before passing through an 80 MHz AOM (IntraAction, AOM802).

The m = −1 order (-80 MHz shift) of the AOM is then coupled to the Zeeman slower

fiber, while the m = 0 order of the Zeeman slower beam is then used to power the small

MOT beam, used to do fluorescence detection, and two absorption imaging beams.

The optical setup around the spherical octagon can be seen in figure 6.23. The

light coming out of each fiber is linearly polarized, so a quarter wave-plate is inserted to

make it circularly polarized. An additional quarter wave-plate before the mirror changes

the polarization of the light to linear, then to circular again, with the same handedness.

Since the axis of fiber No. 2 is used for imaging as well, the corresponding mirror and

quarter wave-plate were mounted on a flipper that can be lifted to take images of the

atoms. The polarized beam splitter after fiber 2 is used to couple light from the imaging

fiber 1, which is the one used to take absorption pictures.

6.3.3 Imaging Laser

The imaging laser is used for absorption imaging at high fields. It is beatlocked

to the spectroscopy laser in the same way as the TA. The optical setup can be seen in

figure 6.24 and the beatlock electronics can be seen in figure 6.25.

Coming out from the imaging laser, the beam has an elliptic profile that is cor-

rected by an anamorphic prism pair. An optical isolator (Conoptics, 712B) is added

after the prism pair to avoid damage from back-reflections. Next, a plate beam splitter

picks off around 1 mW of power to be used for frequency-offset lock and the Fabry-Perot

cavity. The rest of the beam passes through an 80 MHz AOM (IntraAction, ATM801-

A1). The main purpose of the AOM is to quickly turn ON and OFF the beam, as short

pulses (≈ 10 µs) are needed for absorption imaging.
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6.4 Off Resonance Lasers Systems

The off resonance laser systems are used to create optical dipole traps. We have

one 130 Watt CO2 laser used to optically trap and evaporate lithium-6 to degeneracy.

A small power Nd:YAG laser is used to trap the lowest energy state atoms of the CO2

optical trap to then do the culling process.

6.4.1 Carbon Dioxide Laser

An ideal optical dipole trap to perform optical evaporation should be very deep

and have a negligible photon scattering rate. A high power far red-detuned laser would

offer both a low scattering rate and a deep optical potential. At a wavelength of 10.6

µm and a power of 130 Watts, the Coherent GEMSelect CO2 laser yields a scattering

rate of a few photons per hour. In addition, the intensity noise of the CO2 laser is below

our requirements.

Although the power of the laser can be pulsed to reduce its average power, it is

operated in continous mode and its power is controlled by a single crystal germanium

acousto-optical modulator (IntraAction, AGM-4010BJ1) with a center frequency of 40

MHz. Despite the relatively high transmission of germanium at 10.6 µm, the crystal

absorbs enough power that it requires water cooling with a flow rate of 1 L/min. The

diffraction efficiency of the first order of the AOM is about 85%. This leaves enough

power in the zeroth order to require a water cooled beam dump.

Figure 6.26 shows a diagram of the CO2 laser optical setup. Copper mirrors are

used to reflect the CO2 laser. Because the germanium crystal is water cooled only at the

top and the bottom, a vertical temperature gradient develops across the crystal which

leads to a cylindrical lensing effect. Thus, a cylindrical telescope is placed after the

germanium AOM to correct for this effect. All CO2 lenses are made of Zinc Selenide.

After the cylindrical telescope, a 1:4 spherical telescope increases the beam di-

ameter before the final f = 5 in focal length Zinc Selenide lens that focuses the beam

into the spherical octagon. The power right before the ZnSe lens at the octagon is 86

Watts. The trap formed by the CO2 laser is a single pass optical dipole trap. After going
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through the spherical octagon, the beam is dumped in a water cooled beam dump.

6.4.2 CO2 Laser Interlock and Cooling Systems

The CO2 laser, the germanium AOM, the AOM driver, and the beam dumps

are all water-cooled. The CO2 laser is cooled by a chiller (Lytron, RC022J03BF2C031)

provided by Coherent. An additional chiller (Neslab, M33), provides cooling for the

beam dumps, the AOM, and the AOM driver. A second home-built distribution line

identical to the one described in section 6.2.4 is used to distribute the water lines.

An interlock box monitors will shut off the laser if the water flow rate is insufficient

or the temperature rises above 22 ◦C. Additionally, an emergency shut-off switch is

located at the entry of the lab that will stop emission at any time.
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6.5 The Microtrap Optical Setup

The power for the microtrap comes from a Mephisto (Innolight GmbH) laser.

The power of the beam coming out of the Mephisto is modulated with an AOM and

then coupled to a fiber that is sent to the experiment table. Figure 6.27 shows the

optical setup of the microtrap beam. Coming out of the fiber, the beam has a waist of 8

mm. A polarizing beam splitter cube cleans the beam’s polarization. The beam is then

split into two beams by a non-polarizing beam splitter. One of the resulting beams is

sent to a photodiode for amplitude stabilization purposes, while the other is used as the

microtrap beam. The microtrap beam is reflected down by a mirror and then passes

through a dichroic mirror that transmits 1064 nm and reflects 671 nm. After the dichroic

mirror, the beam is focused by the microtrap objective.
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6.5.1 The Microtrap Objective

The top reentrant viewport of the spherical octagon is the most crowded and

heavily used viewport of all. It is used by the vertical MOT beam, the Nd:YAG microtrap

beam, the small MOT beam, and to collect photons for single atom detection. The

microtrap objective must therefore allow the MOT beam return collimated, focus the

Nd:YAG laser at a distance of 14.3 mm and with the smallest spot size possible, and

allow the small MOT beam to propagate at an angle without interfering with it. It must

also have a large numerical aperture to collect as many photons as possible, and it must

be easy to construct and align.

The objective (figure 6.28 )was designed using Zemax optical design software and

is made of commercially available parts: an aspheric lens (Thorlabs, AL4532-B), and a

meniscus lens (CVI MellesGriot, MENP-50.0-4.8-300.0-C-670-1064). Aspheric lenses are

designed to minimize aberrations. However, the reentrant viewport window introduces

aberrations that must be corrected with the meniscus. The spacing between the two

lenses is 2 mm, and to focus at the location of the atoms the objective needs to be

mounted 2.8 mm above the window of the reentrant viewport. The diffraction limited

spot size of this objective for an incoming YAG beam with a waist of 8 mm is expected

to be 1.7 µm.

Figure 6.28: The microtrap objective. The microtrap objetive is made of two commer-
cially available parts: an aspheric lens (Thorlabs, AL4532-B), and a meniscus lens (CVI
MellesGriot, MENP-50.0-4.8-300.0-C-670-1064).
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6.6 Control and Data Acquisition System
6.6.1 Control

The experimental sequence is controlled by a program named Control. Control

was developed by Florian Schreck and its latest version is written in Microsoft Visual

C++ 2005 and must be run in 32-bit Windows XP [40]. Control’s graphical user inter-

face allows the user to enter experimental parameters, create and modify experimental

sequences, and execute them. The graphical elements of the program and the sequences

themselves can only be modified in the source code. Therefore, the experimental se-

quences are programmed sequentially in a C++ environment. This has two advantages:

first, time ordering becomes clear with sequential programming; and second, it allows

the user to use all the power, might, and resources of Visual C++. A typical sequence

looks like this,

void CSequence::MainSequence(){

StartSequence();

OpenOvenShutter();

OpenAllShutters();

SetMOTAttenuation(0);

SetRepumpAttenuation(0);

SetZSAttenuation(0);

SetZeemanCurrent(5.9);

SetMOTCurrent(20);

Wait(7000);

..

StopSequence();

}

In its current version, Control runs at 2 MHz (0.5 µs time resolution) and provides

classes to use the following National Instruments cards
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• NI-PCI 6533. This is a fast 32 digital output card. Control can control each

output of this card individually to give 32 digital outputs, or it can use it to create

the Multi-IO system that will be described later.

• NI-PCI 6733. This card provides 8 analog outputs, 8 configurable digital input-

s/outputs, and one 24-bit counter.

• NI-PCI 6024e. This card provides 16 single-ended analog inputs with a 12-bit

resolution at a sampling rate of 200 kS/s, two 12-bit analog outputs, 8 digital I/O

lines, and two 24-bit counters.

• NI-PCI GPIB. This card provides a GPIB port, and can support up to 14 devices.

In addition to these NI card classes, Control provides a variety of classes that

give access to the serial port, parallel port, and windows network sockets (TCP/IP).

Using these classes, one can easily build classes to support any instrument or computer

that connects to the main computer via parallel, serial, GPIB, or the Ethernet port.

6.6.2 The MULTI-IO System

A typical cold atoms experiment needs a few tens of digital and analog outputs,

and some tunable radio frequency sources. This requires buying several computer cards

and can be expensive. Fortunately, Control can use a single NI-PCI 6533 card to cre-

ate a much larger number of analog and digital outputs and to control Direct Digital

Synthesizers. The MULTI-IO system is a software communications architecture that

uses a 25-bit parallel bus distribution system that connects to digital output cards, ana-

log output cards, and Direct Digital Synthesizers. The MULTI-IO system currently

supports,

• Analog Output cards. Each Analog output card provides eight 16-bit Digital to

Analog converters and driver electronics to drive 1/4 of Ampere per channel from

-10 V to 10 V.
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• Digital Output cards. Each Digital output card provides 16 buffered digital

outputs that can drive 50 Ohm loads.

• Direct Digital Synthesizers (DDS). Each DDS can produce frequencies up to

135 MHz. The DDSs require a master clock running at 300 MHz.

More detailed information and instructions on how to build the MULTI-IO system

hardware and devices can be found in [40].

6.6.3 Vision and Apogee Server

Our main data acquisition program, Vision, was written by Florian Schreck in

Borland C++ 5.02; its source code and manual can be found in [40]. Vision manages the

cameras that we use in the experiment and analyses and stores the pictures. Athough

Vision supports several cameras, it doesn’t support the cameras that we use in the

experiment: two Apogee AltaU47 cameras, and one Allied Vision Technologies Stingray

F033B/C. To solve this problem, a third program called Apogee Server was written in

Visual C++ (by Florian Schreck), for which drivers for all these cameras exist. Vision

and Apogee Server communicate via TCP/IP through which Vision can configure the

cameras and retrieve the pictures. If a new camera needs to be added, one simply needs

to obtain the Visual C++ drivers and modify the existing classes in Apogee Server and

Vision. Vision also communicates with Control via TCP/IP, from which it receives all

the experimental parameters of each run and all the necessary camera settings.

By analyzing fluorescent and absorption pictures, Vision can calculate optical

densities and cloud sizes, from which it can calculate lifetimes and temperatures.

6.6.4 Labview Server

To measure the atom number at the end of the sequence, we turn on the MOT

beams and focus the fluorescence onto a single photon counting module (model Perkin

Elmer SPCM-AQR-14). The signal of this module is fed to the 24-bit counter of a

National Instruments card. Since the NI-PCI 6733 was never able to work at 2 MHz

with the newer version of Control, a Labview program that could communicate with
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Figure 6.29: Experiment control and data acquisition system. Double arrows mean
bidirectional communication, a single arrow means output only.

Control via TCP/IP had to be written. The Labview class in Control communicates

with Labview Server through the LAN. At the beginning of the sequence, Control arms

the counter through Labview Server, and at the end of the sequence, Control sends all

the experimental parameters to Labview Server. Labview Server then saves both the

parameters and the results of the measurements in the same file.

6.6.5 Computer Communications

We use four computers in the experiment, each of them running an instance of

Control, Vision, Apogee Server, and Labview Server. Their interconnectivity can be

seen in fig. 6.29.

1. Control sends Labview Server all the parameters to arm the counter.

2. Labview Server arms the counter.

3. Control sends Vision parameters to arm the cameras.

4. Vision sends Apogee Server all the camera parameters to arm the cameras.

5. Apogee Server arms each camera.

6. Control runs the sequence and triggers the cameras and the counter.

7. Apogee Server retrieves the pictures as soon as they become available and sends

them back to Vision.

98



8. Control sends Vision extra parameters needed to analyze the pictures.

9. Vision analyzes the pictures and saves the results in a file.

10. Labview Server saves the result of the measurement in a file.

11. Control sends Vision and Labview Server the rest of the experimental parameters.

12. Labview Server and Vision each save the experimental parameters in a file.
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Chapter 7

Experimental Sequence: Towards high-fidelity Fock
states

The 6Li experiment has not yet produced high-fidelity Fock states. However,

much progress has been done towards this goal. In particular, evaporative cooling was

optimized and degeneracy was achieved; the microtrap objective was characterized, in-

stalled, and aligned; the microtrap laser optics were installed; atoms were loaded into

the microtrap; and the single atom detection optics were installed and are currently

being optimized.

This chapter will describe the experimental sequence used to obtain a single

pair of atoms with ultra-high fidelity and summarize the progress done towards the

production of ultra-high fidelity atomic Fock states.

7.1 Experimental Sequence

Starting from a cloud of cold 6Li atoms in a MOT, the atoms are cooled further

and compressed into a CO2 optical dipole trap. We then perform optical evaporation to

cool the atoms to degeneracy. A weak but tightly focused 1064 nm optical dipole trap

(the microtrap) is superimposed on top of the CO2 optical dipole trap during evaporation

to increase the Fermi temperature, thus achieving an effective degeneracy factor T/TF ≤

0.1. The probability of ground state occupancy is now Pgnd > 0.9999. The CO2 optical

dipole trap is turned off and a magnetic field gradient is turned on. The magnetic field

gradient tilts the optical potential produced by the microtrap, transforming the bound

states of the microtrap into quasi-bound states, each with a lifetime τi. The difference in

the lifetimes of the ground and first excited state can be of several orders of magnitude.

Therefore, by waiting a suitable amount of time, one can generate a single pair of atoms
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in the ground state of the trap with a probability exceeding 99.9%. The single pair

can then be transferred to a magneto optical trap for single atom detection. The exact

sequence to obtain a single pair of atoms in the ground state of an optical dipole trap is

the following.

1. Load atoms into the MOT.

2. Load the atoms into the CO2 optical dipole trap by compressing the MOT.

3. Turn on the microtrap on top of the CO2 optical dipole trap.

4. Perform evaporative cooling to obtain a Fermi degenerate gas with an effective

T/TF ≤ 0.1

5. Turn off the CO2 optical dipole trap.

6. Culling process: reduce the power of the microtap and introduce a magnetic field

gradient.

7. Wait for a certain holding time.

8. Adiabatically turn off the magnetic field gradient and increase the power of the

microtrap. Turn on MOT for single atom detection.

For a microtrap power of 14.57 µW, a magnetic field gradient of -2.5 G/cm, and

a holding time of 67.5 ms, the probability of obtaining a single pair in the ground state

can be as high as Pgnd = 0.9962. I will now describe each step of the experimental

sequence in more detail.

7.2 Loading the MOT

The experimental sequence starts by loading atoms into the magneto optical trap.

Operating the oven at 350 ◦C and when optimally aligned, the MOT can be loaded at

a rate of around 108 atoms per second. Lower loading rates of 107 are typically not a
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Figure 7.1: Atoms in the Magneto Optical Trap (MOT). A cloud of N ≈ 108 cold atoms
of 6Li trapped in the magneto optical trap at T ≈ 3 mK. The diameter of the cloud is
between 3 and 4 mm. The atoms are the oval shaped cloud and are fluorescing at 671
nm. The rest of the red light is just reflections. It is a tradition (a very confusing one)
to call the MOT to the atoms trapped in the MOT.

problem since what really matters is how many atoms are loaded into the CO2 optical

dipole trap. Figure 7.1 shows a picture of a typical MOT with around 108 atoms.

The loading rate of the MOT is very sensitive to beam alignment and depends on

the oven temperature as well. Higher oven temperatures will yield higher loading rates

at the expense of faster depletion of the lithium-6 oven. The atom number depends

on the beam alignment, power, magnetic field gradient, and vacuum pressure. In our

system, the size of the MOT saturates at around 1×109 atoms. The main reason for this

limitation is two-body collisions; at high densities, inelastic collisions between lithium

atoms lead to heating of the MOT. The beam size and the magnetic field gradient also

limit the size of the MOT.

7.3 Compressed MOT and the CO2 Optical Dipole Trap

The next step in the sequence is to load the atoms in the MOT into the CO2

optical dipole trap (ODT). The atoms in the MOT cannot be efficiently loaded into the

CO2 laser by just superimposing the CO2 laser on top of the MOT. The MOT atoms

are too hot (T > 2 mK) to be loaded into the CO2 ODT, which has a depth of just 700

µK. Even if the atoms were cold enough, since the CO2 ODT is a conservative trap, any

atom that makes it into the trap has enough energy to make it out of the trap. To load
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atoms into the CO2 ODT, we compress and cool the MOT by ramping the detuning of

the MOT beams from 38 MHz to 6 MHz while at the same time decreasing the power

of the MOT beams from 10 mW (4 mW) to 40 µW (30 µW) of MOT (repump) to

avoid heating. Bringing the MOT beams (both MOT and repump) closer to resonance

decreases the Doppler temperature, but increases the scattering rate. Therefore, the

power of the beams is decreased at the same time to avoid heating the sample. Figures

7.3 and 7.2 show the temperature and diameter respectively of the MOT as the detuning

of the MOT and repump beams is decreased: the MOT reaches a temperature of around

250 µK with a size of σY ≈ 475 µm and σX ≈ 690 µm.

In the experiment, the detuning was always changed linearly, but the power was

changed according to a power law that was optimized automatically. Depending on the

compression curve (power v.s. detuning), up to 3×106 atoms can be loaded into the CO2

ODT. Now, there is one very important step that has to be done after compressing the

MOT to successfully load atoms into the CO2 ODT: optical pumping. Since lithium-6

atoms in the states |F = 1/2⟩ and |F = 3/2⟩ have a nonzero scattering length even at

B = 0, we must pump all of them into the state |F = 1/2⟩ so that they do not undergo

s-wave scattering. A magnetic field can then be used to lift the degeneracy of the state

and perform evaporation with the two lowest hyper-fine states |F = 1/2,mF = ±1/2⟩.

Optical pumping is usually done by turning off the repump component of the MOT

beam 50 µs before the main MOT component is turned off.

The next step after compressing the MOT is to load it into the CO2 ODT.

The trap depth of the CO2 ODT is around 700 µK, and the 1/e2 diameter is 100 µm.

Therefore, the compressed MOT must be cooled well below 700 µK and compressed as

much as possible to load the atoms into the CO2 ODT. The trap can be loaded simply

by compressing the MOT within 200 µm of the center of the CO2 ODT.
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Figure 7.3: Temperature of the compressed MOT vs final detuning of the MOT beams.
Black squares (red circles) represent Tx (Ty). Figure courtesy of Kirsten Viering.
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7.4 Alignment of the CO2 Laser Optical Dipole Trap: Invisible
Atomic Beam Finder

Forced optical evaporation is a very useful technique to achieve degenerate quan-

tum gases [27]. The large detuning of the CO2 optical dipole trap provides an extremely

low scattering rate: a 86 Watts beam of the CO2 laser focused down to a spot with a

waist of 50 µm, produces a trap with a depth of ≈ 800µK with a scattering rate of 2.5

photons per hour, while a YAG (1064 nm wavelength) laser with similar spot size and

trap depth has a scattering rate of 1.1 photons per second. Since the heating rate of the

CO2 is almost 2000 times smaller than the one of a YAG, we chose the CO2 to perform

optical evaporation. Our 86 Watt CO2 laser beam is focused inside the vacuum chamber

by an f = 5 in lens down to a spot of 50 µm, as can be seen in figure 6.26.

Although a CO2 optical dipole trap has been used to trap [41] and cool [28] 6Li

to degeneracy, it is still difficult to align it and work with it. The main difficulty is how

to align an 86 W beam focused down to a 50 µm size spot inside a vacuum chamber

with a precision of better than 200 µm without any commercially available device that

can image it. First, of course, one has to do a rough alignment and get the focus of

the CO2 reasonably close to the MOT. This can be done inserting a copropagating,

near-resonant beam along the path that the CO2 laser beam follows before entering

the spherical octagon. This procedure, however, can only get the beam a couple of

millimeters from the center of the MOT; a fine alignment procedure has to be used to

do the final alignment.

One approach uses the AC-Stark shift (light shifts) induced by the optical dipole

trap. In this approach, the near resonant beams are turned on and the fluorescence

changes as the position of the optical dipole trap changes. Unfortunately, the AC-Stark

shift that the CO2 laser induced in the 2S1/2 ground state and the 2P3/2 excited state

are nearly the same. For a 50 W laser beam focused to a waist of 50 µm the change in

transition frequency at the peak intensity of the CO2 laser is less than 10 MHz. The

linewidth of this transition is around 6 MHz so the change in scattering rate is negligible.

A different transition has been used [41] at 610 nm. The scattering rate of this transition
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is very sensitive to the alignment of the CO2 optical dipole trap. This method requires,

however, an extra laser system, along with all its optics and electronics.

This is too expensive considering that we only need to align the CO2 laser once.

Therefore, we developed a cheap and robust method to align the CO2 optical dipole trap

[42]. The CO2 laser beam is aligned using balanced lock-in detection from a fluorescent

split-image. This technique requires a lock-in detector, two photodiodes, and a few

optics.

MOT beams

y

zxMOT

Mirror M1

APD 1
APD 2

Lens L1
MOT 

image

D-shaped 

mirror M2
Lens L2

Lens L3

CO
2
 beam

Figure 7.4: Optical setup for the CO2 alignment procedure. Light from the MOT is
collected by Lens L1, which forms a real image of the MOT at a D-shaped mirror M2
mounted on translation stage. The D-shaped mirror splits the image of the MOT in
two parts, each of which is focused by a lens (Lens L2 and Lens L3) onto an avalanche
photo diode (APD1 and APD2 respectively). With the MOT on and with the CO2 laser
off, the D-shaped mirror is moved to balance both signals. Figure courtesy of Kirsten
Viering.

The optical setup of the beam alignment technique can be seen in figure 7.4.

Light from the MOT is collected by Lens L1, which forms a real image of the MOT at

a D-shaped mirror M2 mounted on translation stage. The D-shaped mirror splits the

image of the MOT in two parts, each of which is focused by a lens (Lens L2 and Lens

L3) onto an avalanche photo diode (APD1 and APD2 respectively). With the MOT ON

106



and with the CO2 laser OFF, the D-shaped mirror is moved to balance both signals. In

a perfectly static MOT, the two signals would balance exactly, but due to beam power

fluctuations and complicated MOT dynamics, the signal cannot be completely balanced

and exhibits a particular noise spectrum. The noise spectrum of the difference of the

signals can be seen in figure 7.5. If we now turn on the CO2 laser in the vicinity of the

MOT, we would induce a slight increase in the atom density. However, the fluctuations

in the fluorescence of the MOT would make it impossible to see any change in the local

density. Fortunately, if we pulse the CO2 laser at frequency much higher than the typical

frequency of fluctuations, then we could do lock-in detection and be able to detect this

small density increase.

The natural question is now, what is the optimum modulation frequency. Figure

7.5 suggests that we use any frequency above 2 kHz. We cannot use arbitrarily large

pulsing frequencies because the atoms in the MOT cannot respond too fast. In our case,

the best pulsing frequency was found to be 2.4 kHz.

(a) (b)

Figure 7.5: Power spectrum of the balanced fluorescence signal of the MOT. Left: noise
with no MOT. The main sources of noise when there is no MOT are electronic and
scattered light fluctuations. Right: noise spectrum when the MOT is present. From the
noise spectrum it can be seen that the noise decreases after 2 kHz. We found that the
best modulation frequency for our system was at 2.4 kHz. Figure courtesy of Kirsten
Viering.

Figure 7.6 shows the detected signal as the CO2 laser is moved across the MOT

using the ZnSe lens mounted on a 3D translation state. Figure 7.6 (a) shows the relative

orientation of the CO2 laser beam relative to the MOT and the D-shaped mirror. The
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CO2 laser beam can be translated along the x, y, and z axes shown in the figure. Figure

7.6 (b) shows the recorded signal when the CO2 laser is moved along the x axis (in and

out of page) when positioned at Y = −0.8 mm and Z = 2.5 mm. Since the CO2 beam

stays in the same half of the MOT’s image, the signal has the same sign across the scan.

1)

2)

3)

.
x

y

z

(b)

(d)(c)

Y=-0.8mm

Z=2.5mm

X=0.0mm

Z=2.5mm

X=0.0mm

Y=-0.5mm

(a)

Figure 7.6: Signals recorded from the alignment procedure. (a) Relative orientation of
the CO2 laser beam relative to the MOT and the D-shaped mirror. The CO2 laser beam
can be translated along the x, y, and z axes shown in the figure. The relative angle arises
because look at the MOT thru a viewport at an angle. (b) Recorded signal when the
CO2 laser is moved along the x axis (in and out of page) when positioned at Y = −0.8
mm and Z = 2.5 mm. Since the CO2 beam stays in the same half of the MOT’s image,
the signal has the same sign across the scan. (c) Recorded signal when the CO2 laser is
moved along the y axis (positions 1 thru 3) with X = 0 mm and Z = 2.5 mm. The CO2

laser beam moves across the two halves of the MOT’s image, therefore a sign change is
expected. Moreover, the signal vanishes when the CO2 is exactly at the center of the
MOT. (c) Recorded signal when the CO2 laser is translated long the z direction. Figure
courtesy of Kirsten Viering.

Figure 7.6 (c) shows the recorded signal when the CO2 laser is moved along the y

axis (positions 1 thru 3) with X = 0 mm and Z = 2.5 mm. This time the CO2 laser beam

moves across the two halves of the MOT’s image, therefore a sign change is expected.
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Moreover, the signal vanishes when the CO2 is exactly at the center of the MOT. Finally,

Figure 7.6 (c) show that the technique is not very sensitive to displacements in Z. There

are two reasons for this: first, as the beam moves in the z direction, the size of the beam

increases, affecting a larger portion of the MOT, but with a smaller intensity.

Nevertheless, the method is sensitive even if the CO2 is a couple of millimeters

away from the center of the MOT, which is the best one can do when aligning it with a

copropagating near-resonant beam.

7.4.1 CO2 Laser Trapping Frequencies and Waist Measurement

In principle, if one knows the power of an ideal optical dipole trap, one can cal-

culate the trapping frequency for small oscillations. Since our trap is not ideal, the

beam waists at the focus and the trapping frequencies of the trap were independently

measured. The CO2 laser beam waist was measured at low power using a photodiode

sensitive to 10.6 µm (VIGO systems). A beam splitter is temporarily placed after the

spherical telescope. The beam splitter reflects 99% of the beam into a beam dump, and

the transmitted 1% is sent through a replica of the ZnSe lens used in the experiment and

through a ZnSe window to simulate the spherical octagon ZnSe viewport. The beam

waists were then measured and found to be 61 µm and 42 µm. One common way of

measuring the trapping frequency of an optical dipole trap is to trap atoms and then

modulate either the intensity of the trap or the position of the trap to parametrically

heat the sample. Modulating the intensity has the disadvantage that the trapping fre-

quency also depends on the intensity, so the modulation depth cannot be too large.

On the other hand, modulating the position of the beam does not change the trapping

frequency and can be done at much larger modulation depths. Figures 7.7 and 7.8 show

the atom loss from the CO2 optical dipole trap when the amplitude is modulated by

20% for a few seconds for low and high frequencies respectively. Since the heating mech-

anism is parametric heating, resonant atom losses occur at twice the expected trapping

frequencies.
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Figure 7.7: Atom loss due to amplitude modulation of the CO2 optical dipole trap from 0
to 800 Hz. Since the atom loss mechanism is parametric heating, the resonant frequency
is twice the trap frequency. The resonance occurs at ≈ 280 Hz, so the trap frequency is
ωz ≈ 140 Hz. The error bars indicate statistical uncertainty in the atom number.

Figure 7.9: Atom loss due to transverse modulation of the vertical position of the CO2

optical dipole trap from 0 to 18 kHz. The system behaves like a driven harmonic
oscillator, and the maximum atom loss occurs exactly at the resonance ≈ 5.25 kHz.
This is consistent with figure 7.8 and shows that the vertical position has the highest
trapping frequency. The error bars indicate statistical uncertainty in the atom number.
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Figure 7.8: Atom loss due to amplitude modulation of the CO2 optical dipole trap from 0
to 15 kHz. Since the atom loss mechanism is parametric heating, the resonant frequency
is twice the trap frequency. Two resonances occur, one at ≈ 7 kHz, and the other at
≈ 10.5 kHz. Therefore, the trap frequencies are ωx ≈ 3.5 kHz and ωy ≈ 5.25 kHz. The
error bars indicate statistical uncertainty in the atom number.

7.5 Evaporative Cooling: Achieving Degeneracy

Evaporative cooling allows us to achieve low enough temperatures (T ≈ 0.5 µK)

and high enough atom number (N>105) so that the phase space density exceeds ρ ≥ 1.

Evaporation becomes more efficient with longer evaporation times, as the sample has

more time to rethermalize. However, the finite lifetime of our cold atoms in the CO2

ODT (τ ≈ 27 seconds) limits the evaporation time. Fortunately, we can increase the

collision rate by increasing the scattering cross section using Feshbach resonances. The

two lowest hyper-fine states of 6Li present during evaporation, states |1⟩ and |2⟩ as

defined in figure 2.3, have a broad feshbach resonance at 834 G that can be used to

change the scattering lenght a from a = 0 to about a = −300a0 at ≈ 330 Gauss to

a = ∞ at 834 G. Increasing the scattering cross section enables us to perform efficient

evaporation in shorter time, avoiding atom losses due to the finite lifetime of our CO2

optical dipole trap.

A two-stage forced evaporation sequence (see figure 7.10) is employed to achieve

degeneracy:
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1. Initially, around 2.3×106 atoms in the CO2 optical dipole trap have a temperature

of around 115 µK.

2. Free evaporation 1: An homogeneous magnetic field is ramped from 0 G to 760 G.

The atoms are allowed to freely evaporate for 300 ms at full trap depth until they

reach a temperature of around 50 µK. Approximately 1.2×106 atoms remain.

3. Forced evaporation 1: With the magnetic field still at 760 G, the trap depth is

reduced from 100% to 13% of the total trap depth. The curve used is the energy

independent curve,

U(t)/U0 = (1 + t/τ)β

with parameters: τ = 500 ms, β=1.3.

4. Free evaporation 2: With a trap depth of 13% and still at 760 G, the atoms are

allowed to freely evaporate again for 100 ms.

5. Forced evaporation 2: The magnetic field is ramped to 330 G and the trap depth

is ramped from 13% to 0.35% of the total trap depth. The curve used is again the

energy independent curve used in the first forced evaporation but with different

curve parameters: τ = 600 ms, β=1.4.

To calculate the degeneracy factor, we need to measure both the temperature

and the Fermi temperature through the evaporation sequence. Recall that kBTF =

~ω̄(6N)1/3, so we need to measure the atom number and the trapping frequencies to cal-

culate the Fermi temperature at any given time during the evaporation sequence. Now,

while measuring the atom number is a trivial task, measuring the trapping frequencies

is tedious. I will make the reasonable assumption that ω ≈ ω0

√
U(t)/U , so that we can

use the previously measured full trap depth trapping frequencies: ωx = 2π × 3.5 kHz,

ωy = 2π × 5.5 kHz, and ωz = 2π × 140 Hz. The atom number and temperature during

evaporation are shown in figures 7.11 and figure 7.12 respectively.
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1 2 3 4

Figure 7.10: Evaporation Curve. The vertical dashed lines divide the evaporation curve
in 4 parts. From left to right: 1) Free evaporation for 300 ms at 760 G and 100% of trap
depth, 2) Forced evaporation at 760 G from 100% to 13% trap depth. Curve parameters:
τ = 500 ms, β=1.3. 3) Free evaporation for 100 ms at 760 G and 13% trap depth, and 4)
Forced evaporation at 330 G from 13% to 0.35% trap depth. Curve parameters: τ = 600
ms, β=1.4.

Figure 7.11: Atom number during the two-stage forced evaporation sequence. The error
bars indicate statistical uncertainties. After 6 seconds, the error bars are smaller than
the points.
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Figure 7.12: Temperature during forced evaporation. The first stage of forced evapo-
ration starts when the atoms reach a temperature of around 50 µK. The second stage
starts when they reach a temperature of around 10 µK. The final temperature is around
(574± 140) nK

The Fermi temperature can now be calculated, as well as the degeneracy fac-

tor T/TF . Figures 7.13 and 7.14 show the Fermi temperature and degeneracy factor

respectively. The phase-space density can be calculated from ρ = (T/TF )
−3/6. Figure

7.15 shows how the phase-space density increases during the two-stage evaporation. The

lowest degeneracy factor in figure 7.14 is T/TF ≈ 0.4, with T = 0.530 µK and TF ≈ 1.2

µK. Adding the microtrap on top with a power of 500 µW and a waist of 1.46 µm, and

assuming thermalization, will further increase the Fermi temperature to TF = 7.2 µK,

giving a final T/TF ≈ 0.07.
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Figure 7.13: The Fermi temperature is shown through the evaporation sequence. The
error bars are calculated using the statistical uncertainties of the atom number and
assuming there are no statistical uncertainties in the trapping frequencies.

The next section describes the microtrap beam waist measurements and align-

ment
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Figure 7.14: The degeneracy factor is shown through the evaporation sequence. The
smallest degeneracy factor is around T/TF ≈ 0.42. The error bars are calculated using
the errors from both the temperatures and the Fermi temperatures.

Figure 7.15: Phase space density during the two-stage forced evaporation. The error bars
are smaller than the points. The largest error bar corresponds to the highest phase-space
density value: 2.23± 0.06.

116



7.6 The Microtrap

The micotrap is a weak (P ≤ 1 mW) but tightly focused (w ≈ 1.4 µm) optical

dipole trap formed by a 1064 nm wavelength Nd:YAG laser. Being so tightly focused,

the microtrap can only hold around 1000 atomic states. It is in the microtrap where the

final stage of the high-fidelity preparation of a single pair scheme takes place. In this

section I present the microtrap beam waist properties and the alignment procedure.

7.6.1 The Microtrap Objective Beam Properties

To measure the microtrap beam waists, the objective was mounted outside the

chamber and a window simulating the re-entrant viewport window was placed at the

same distance as the experimental setup. The beam waists were then measured and the

results can be seen in figures 7.16 and 7.17. The waists are wx = 1.36 µm and wy = 1.57

µm which give an effective w ≈ 1.46 µm.

Figure 7.16: Horizontal waist of YAG. The horizontal waist of the YAG was measured
to be 1.36 µm.

7.7 Alignment of the Microtrap Objective

The alignment of the microtrap was a challenging task that took us over a month

to complete. One has to consider how stable is the position of the atomic cloud at every
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Figure 7.17: Vertical waist of YAG. The vertical waist of the YAG was measured to be
1.57 µm.

moment of the experimental sequence and how it changes on a daily basis due to laser

power and temperature fluctuations. The relevant atomic cloud positions we need to

consider are:

• The MOT. The alignment of the MOT is stable. If the beams are fairly retrore-

flected, the center of the MOT is insensitive to beam translations smaller than the

waist of the beams. Since the MOT diameter is around 4 mm and its position

changes by no more than 200 µm every day, its day to day position variation is

negligible. However, care should be taken to retroreflect the beams as good as

possible since the center of the compressed MOT and its compression efficiency

depend strongly on beam alignment.

• The Compressed MOT. The position of the compressed MOT is unstable and

changes every day. The position of the compressed MOT is very sensitive to the

alignment and intensities of the MOT beams. Due to thermal effects, the coupling

efficiencies of the MOT fibers change from day to day and this changes the position

of the compressed MOT randomly by around 100 µm. Since the CO2 dipole trap

has a waist of 50 µm, we have to tweak the CO2 dipole trap and the compressed

MOT alignment almost every day.
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• CO2 Dipole Trap. The position of the CO2 dipole trap is stable; once in position,

we do not need change it.

• YAG Microtrap. The position of the YAG micotrap is stable; once in position,

we do not need change it.

We decided to implement shim coils, since the only unstable position for the

atomic cloud is the compressed MOT. Shim coils provide an offset magnetic field that

changes the position of the zero of the quadrupole field, thus changing the position of

the center of the compressed MOT. This allows us to align the CO2 dipole trap and the

microtrap regardless of where the MOT compresses to, since we can always use the shim

coils to move around the compressed MOT.

Even though the shim coils makes our CO2 dipole trap alignment independent of

the day to day laser beam intensity variations, we still need to align both the CO2 and

the microtrap within 50 µm to see any trapping effect. With an initial uncertainty in

the position of at least 64 cubic millimeters, a brute force three dimensional search with

steps of 50 µm in x and y and 300 µm in z taking 1 minute each would take almost 120

days working 12 hours per day. Even if we decided to do it, there was no guarantee that

we didn’t have to repeat the alignment again. It was clear that a more efficient method

had to be used. The alignment procedure we used was the following.
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Figure 7.18: Fraction of atoms left after shinning a resonant beam for 20 µs. (a) Moving
the CO2 beam along the X direction (Zeeman Slower axis). (b) Moving the CO2 beam
along the Z direction (CO2 beam propagation axis).
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1. Resonant beam alignment with fluorescent imaging. We switched the YAG

fiber to a fiber carrying a resonant beam, this way the resonant beam will follow

the same optical path as the YAG beam. We then loaded atoms into the CO2

dipole trap and shined the resonant beam for a few tens of microseconds (typically

20 µs) after which we measured the atom number using fluorescence imaging and

compared it with the number when no resonant beam was present. This method

allowed us to align the CO2 beam within 1 mm in the radial directions of the

resonant beam; see figure 7.18. While this method is not sensitive to translations

along the resonant beam axis (up-down, objective axis), we were able to reduce

the problem from a 3D search to a 1D search. We then used absorption imaging

to align the axial direction of the resonant beam.
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Figure 7.19: Absorption pictures of the atoms in the CO2 dipole trap with the resonant
beam on. (a) The CO2 dipole trap is shown at five different positions along the Zeeman
Slower axis: a) x = 7.38 mm, b) x = 7.35 mm, c) x = 7.30 mm, d) x = 7.25 mm, and
e) x = 7.20 mm. (b) The CO2 dipole trap is shown at five different vertical (up-down)
positions: a) y = 1.90 mm, b) y = 2.00 mm, c) y = 2.10 mm, d) y= 2.20 mm, and e) y
= 2.30 mm.

2. Resonant beam alignment with absorption imaging. With absorption imag-

ing we were able to see the local effect the resonant beam had on the atoms trapped

in the CO2 dipole trap. This method allowed us to clearly see the converging and

diverging nature of the resonant beam, thus giving us a final uncertainty in the

position of less than 50 µm in the radial direction and less than 150 µm in the axial

direction. Figures 7.19 and 7.20 show absorption pictures of the atoms trapped in
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the CO2 dipole trap. The pictures show the Y-Z plane. Figure 7.19(a) show the

CO2 beam at five different x positions; each of them had to be sliced
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Figure 7.20: Absorption pictures of the atoms in the CO2 dipole trap with the resonant
beam. The CO2 dipole trap is shown at four different positions along the CO2 beam
propagation: a) z = 6.00 mm, b) z = 5.60 mm, c) z = 5.45 mm, and d) z = 5.00 mm.
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Figure 7.21: YAG beam alignment with fluorescence imaging. Around 1000 atoms are
loaded into the YAG microtrap. (a) Fluorescence picture with no loading (microtrap
off). (b) Fluorescence picture with loading (microtrap on).

3. YAG beam alignment with fluorescent imaging and interactions. We

switched back to the YAG fiber and scanned the axial direction since the previous

alignment was for a resonant beam at 671 nm that focuses farther away from the

lens than the YAG beam. Having previously measured the waist location for 671

nm and 1064 nm, we knew that the two foci were 400 µm apart. At the beginning,

we did not turn on the interactions and we could not load any atoms into the

YAG. We then realized that the atoms where not thermalizing in the YAG dipole

trap and were as likely to enter it as to leave it. We successfully loaded around

1000 atoms (see figure 7.21) after turning on the interactions at 300 gauss for a
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couple of seconds. This method allowed us to align the YAG beam within 50 µm

(300µm) of the radial (axial) direction of the CO2 dipole trap.

4. YAG beam alignment with absorption imaging. Finally, we used absorption

imaging to see the local effect of the YAG microtrap on the CO2 dipole trap. A

peculiar change in the atomic density could be seen in the absorption pictures.

The disturbance (see figure 7.22)was about 100 µm along the axial direction of

the CO2 dipole trap. This method allowed us to axially (radially) center the YAG

beam along (across) the CO2 dipole trap within 100 µm (25 µm) of its center.

2.34 mm

a)

b)

Figure 7.22: YAG beam alignment with absorption imaging. An absorption image of
the atoms in the CO2 ODT was taken (a) with the YAG off, and (b) with the YAG on.
A peculiar feature, the "disturbance", can be seen circled in red.

Further optimization will be done using the single atom detection setup.

7.8 Power Stabilization of the Microtrap

Intensity noise in optical dipole traps can cause atom loss due to heating [43].

This would compromise the preparation of a single pair and would lower the fidelity.
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Therefore, we stabilized the laser intensity using a PID controller. Figure 7.23 shows

the optical setup of the PID controller used to stabilize the power of the microtrap.

Figure 7.23: Optical setup of the intensity stabilization for the microtrap. The output
of the Mephisto laser is sent through and acousto-optic modulator (AOM). The output
is coupled to a fiber and sent to the experiment table. Part of the output of the fiber
is sent to a photodetector. The output signal of the photodetector is sent to the PID
controller module. The output of the PID controller is sent to the AOM driver that
modulates the AOM. Figure courtesy of Jianyong Mo

The heating rate as a function of the power spectrum of noise is given by [43],

Γϵ ≡
1

TI(sec)
= π2ν2

trSϵ(2νtr). (7.1)

Here νtr is the trap oscillation frequency in Hertz, and TI is the energy e-folding time

in seconds. The solid line of figure 7.24 shows the maximum noise for an e-folding time

of TI = 100 s. As can be seen in the figure, the noise is already well below the TI = 100

e-folding time limit.
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Figure 7.24: Microtrap intensity noise suprresion. The solid orange curve is the maxi-
mum intensity noise density that our microtrap can have for an e-folding time of 100 s.
The intensity noise power spectra is shown in blue. Figure courtesy of Jianyong Mo

7.9 Single Atom Detection

Once we prepare a single pair of atoms in the ground state of the microtrap, we

need to detect them with high fidelity. The single atom detection optical setup is shown

in figure 7.25. A similar setup has been used before [44] to detect single atoms in a

MOT. A pair of lenses (f1 and f2) focuses the image of the MOT on a pinhole that acts

like a spatial filter, blocking all the light that doesn’t come from the neighborhood of

the MOT. The light exiting the pinhole goes through a telescope (lens f3 and f4) that

has a bandpass filter that blocks all light except 671 nm. Lens f4 focuses the beam onto

the avalanche photodetector (SPCM-AQR-14) operating in photon counting mode.

The dichroic mirror shown in the figure 7.25 is the same one placed along the

microtrap objective axis (see figure 7.26). The vertical axis (figure 7.26) is used for

three purposes: 1) as a MOT beam axis, 2) as the microtrap beam axis, and 3) as the

single atom detection axis. To work as a MOT axis, a quarter wave plate, a lens, and a

mirror were mounted on a translation stage that moves them in and out of the axis at

different stages of the experiment. The lens is necessary because the beam is diverging
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Figure 7.25: Single atom detection setup. Lens f1 collimates the light coming from the
MOT. Lens f2 focuses it on the pinhole, which acts like a spatial filter. Lens f3 collimatse
the beam before the narrow line filter, which absorbs all light except 67 1nm. Lens f4
focuses the beam onto the avalanche photodetector.

after agoing through the objective. When the mirror and the wave plate are on the

axis, the axis works as a MOT axis. When the mirror and wave plate are out of the

way, the axis can be used as the microtrap axis and the single atom detection axis at

the same time thanks to the dichroic mirror. Notice, however, that to perform single

atoms detection the MOT beams need to be on. Since the mirror and wave plate are

out of the way, we cannot longer use the vertical MOT beam. Instead, we made a cut

through the lenses through which a small MOT beam passes and is retroreflected by a

small mirror and quarter wave plate. We call this small beam the "small MOT beam"

and the MOT obtained with this beam "the small MOT". Single atom detection is done

with the Small MOT. A schematic of the complete optics of the vertical axis can be seen

in figure 7.26
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Figure 7.26: Full vertical axis optical setup. A mirror, a lens, and a quarter waveplate
are mounted on a translation stage that moves them in and out of the axis. The vertical
axis serves three purposes: 1) as a vertical MOT beam when the mirror and the quarter
wave plate are on axis, 2) as the axis for the microtrap when the mirror and the quarter
wave plate are off the axis, and 3) as the single atom detection axis, when the mirror
and the quarter waveplate are off the axis and the small MOT is on.
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7.10 Future outlook
7.10.1 Culling Parameters

Figure 7.27 shows the results of a WKB calculation. The maximum fidelity that

we can obtain with the current vacuum pressure is around 99.7. Further improvement

on the vacuum pressure and reducing the waist of the microtrap should allow us to go

beyond 99.9%.

Figure 7.27: Contour plot of the probability of producing a single atom in the ground
state of the microtrap after waiting long enough so that the ratio of the excited state
occupancy probability to the ground state occupancy probability is 10−4.

7.10.2 Single Atom Detection

Currently, the single atom detection signal is being optimized. The dark counts

for our detection system are around 300 counts/second, while the background noise is

between 3 · 104 and 7 · 104 counts/second. Based on the geometrical setup and small

MOT beam parameters, we expect around 104 counts/second·atom. Once we achieve a

signal of around 104 counts/second·atom we can start optimizing the culling process.
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7.10.3 Scalability to N pairs

Scaling the production of a pair to multiple pairs can be done by means of painted

potentials [45]. A single axis acousto-optic deflector can be used to generate a linear

array of N traps by multiplexing different modulating its crystal with different radio

frequencies. The main advantage of multiplexing the frequencies rather than applying

all of them at the same time, is that the spots can be put arbitrarily close without

worrying for interference. Figure 7.28 (7.29) shows how two (four) optical dipole traps

can be generated by multiplexing two (four) frequencies into an acousto-optic deflector.

Figure 7.28: Scaling to N traps. A single axis acousto-optic deflector (AOD) can be used
to generate N microtraps. The figure shows two spots being generated by multiplexing
two different frequencies into the AOD. Figure courtesy of Felix Schmidt.

Figure 7.29: Scaling to N traps. A single axis acousto-optic deflector (AOD) can be used
to generate N microtraps. The figure shows four spots being generated by multiplexing
four different frequencies into the AOD. Figure courtesy of Felix Schmidt.
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7.10.4 Future Studies

With the capability of producing N pairs of atoms in the ground state of N

microtraps, one can further split the N microtrap into 2N microtraps and have 2N

atoms in the ground state of 2N microtraps. Furthermore, if one uses a 2 axis electro

optic deflector (which is faster than acousto-optic deflectors), one can generate as many

as 81 dipole traps and can arrange them in any desired geometry. This would enable to

study from single to many-body quantum phenomena like many-body tunneling. Using

Feshbach resonances, one can tune the interactions between the atoms and simulate

Hubbard-like Hamiltonians, or one can use Raman pulses to implement quantum gate

operations and perform quantum computing [46].
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Appendix A

Angular Momentum Identities

The convention used here is the same as in Angular Momentum in Quan-

tum Mechanics, by A. R. Edmonds [47]; Quantum Mechanics: Fundamentals ,

by Kurt Gottfried and Tung Mow Yang.

Wigner-Eckart Theorem

⟨γ′j′m′| T̂k
q |γjm⟩ = ⟨jk;mq|jk; j′m′⟩

⟨
γ′j′||T̂k||γj

⟩
√
2j′ + 1

(A.1)

= (−1)j
′−m′

(
j′ k j

−m′ q m

)⟨
γ′j′||T̂k||γj

⟩
(A.2)

Wigner 3-j symbol:(
j1 j2 j3
m1 m2 −m3

)
=

(−1)j1−j2+m3

√
2j3 + 1

⟨j1j2;m1m2|j1j2; j3m3⟩ (A.3)

Properties of the Wigner 3-j symbols

Even permutations leave the 3-j symbol unchanged,(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
=

(
j3 j1 j2
m3 m1 m2

)
(A.4)

Odd permutations introduce a factor of

(−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j1 j3
m2 m1 m3

)
=

(
j1 j3 j2
m1 m3 m2

)
=

(
j3 j2 j1
m3 m2 m1

)
(A.5)

Orthogonality relations

∑
j3m3

(2j3 + 1)

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m′
2 m3

)
= δm1m′

1
δm2m′

2
(A.6)
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∑
m1m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′

3

)
=

1

2j3 + 1
δj3j′3δm3m′

3
δ(j1j2j3) (A.7)

where δ(j1j2j3) is the triangular condition, which is met if j3 = j1 + j2

Wigner 6-j symbol

Wigner 6-j symbols allow us to decouple (factor) angular momentum components from

the reduced matrix element. If Ĵ = ĵ1 + ĵ2, and T̂q
k acts only on ĵ1 to give a new

Ĵ′ = ĵ′1+ ĵ2, as for example, the electric dipole operator acts only on Ĵ in F̂ = Ĵ+ Î, and

only on L̂ in Ĵ = L̂+ Ŝ.

⟨
γ′(j′1j2)J

′||T̂k||γ(j1j2)J
⟩
=(−1)j

′
1+j2+J+k

√
(2J + 1)(2J ′ + 1){

j′1 J ′ j2
J j1 k

}⟨
γ′(j′1j2)J

′||T̂k||γ(j1j2)J
⟩ (A.8)

Orthogonality Relation for Wigner 6-j Symbols

∑
j

(2j + 1)(2j′′ + 1)

{
j1 j2 j′

j3 j4 j

}{
j3 j2 j

j1 j4 j′′

}
= δj′j′′ (A.9)
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Appendix B

Maxwell-Bloch Equations

B.1 Near resonant atom-light interactions

In this section I will discuss the theory of the interaction of atoms with near

resonant light. Since we will be dealing with a large number of photons, the light

fields can be treated classically. These photons, however, are near resonant and the

atom-photon interaction must be treated quantum mechanically. Therefore, I will use a

semi-classical framework to describe the interaction of atoms with near-resonant light.

The equations that govern the interaction of near-resonant light with atoms are the

optical Bloch equations, also known as the Maxwell-Bloch equations.

The treatment presented here is not complete – only the results relevant for this

thesis will be derived. For a more complete treatment of the problem, see [27], [48], [26],

and [49].

B.1.1 The Maxwell-Bloch equations

In deriving the Maxwell-Bloch equations, I will make use of the following approx-

imations,

• Two-level atom approximation. I will assume that our atom has only 2 non-

degenerate states: a ground state |g⟩, and an excited state |e⟩, whose energies

differ by ~ω0.

• Classical fields (semi-classical) approximation. Since we are dealing with a

large number of photons, we can write the electric field as E⃗ = ϵ̂Ẽ cos (k⃗ · r⃗− ωt),

where Ẽ is a complex amplitude, ϵ̂ is a polarization vector, and the real electric

field is the real part of E⃗.
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• Electric dipole approximation. I will assume that our atoms are smaller (< 1

nm) than the wavelength of the light field (671 nm), so we may regard the electric

field as nearly constant within the region in which the atomic wavefunctions are

peaked.

• Rotating wave approximation. I will neglect terms that vary as ei(ω+ω0)t com-

pared to ei(ω−ω0)t, where ω and ω0 are optical frequencies.

If energy of the ground state is defined as zero, then the wavefunction of a two-level

system can be written as,

|Ψ(⃗r, t)⟩ = cg(t) |g⟩+ ce(t)e
−iω0t |e⟩ (B.1)

• make diagram

where ~ω0 is the energy difference between the ground and excited states. We

wish to find how the coefficients cg(t) and ce(t) change in time due to the Hamiltonian:

Ĥ = Ĥ0 + V̂ , where Ĥ0 is the Hamiltonian of the unperturbed atom with eigenstates

|g⟩ and |e⟩, and V̂ = −er̂ · E⃗, where e is the charge of the particle, not necesarily that

of the electron. Substituting the wavefunction (B.1) into Schrödinger’s equation (B.2),

i~
∂Ψ(⃗r, t)

∂t
= ĤΨ(⃗r, t) (B.2)

yields two coupled differential equations for the coefficients cg(t) and ce(t),

i~
dce
dt

= cg ⟨e| V̂ |g⟩ eiω0t (B.3)

i~
dcg
dt

= ce ⟨g| V̂ |e⟩ e−iω0t (B.4)

were

Veg = ⟨e| V̂ |g⟩ = ⟨e| − e⃗r · E⃗ |g⟩ = ⟨e| − e⃗r · ϵ̂Ẽ cos (k⃗ · r⃗− ωt) |g⟩ (B.5)

After using the electric dipole approximation,

Veg = Ẽ cos (k⃗ · r⃗0 − ωt) ⟨e| − e⃗r · ϵ̂ |g⟩ (B.6)
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where r⃗0 is at the position of the atom, which without loss of generality we can set to

the origin, thus

Veg = V ∗
ge = ⟨e| V̂ |g⟩ = Ẽµ̂eg cos(ωt) = ~Ωcosωt (B.7)

with,

µ̂eg ≡ ⟨e| − e⃗r · ϵ̂ |g⟩ (B.8)

and,

Ω ≡ Ẽ

~
⟨e| − e⃗r · ϵ̂ |g⟩ (B.9)

µ̂eg is the electric dipole matrix coefficient, and Ω is called the "Rabi Frequency". Note,

however, that Ω is a complex number! The actual Rabi frequency is |Ω|. Substituting

equation (B.7) into equations (B.4) and (B.3) and using the complex form of cosine, we

get

i~
dce
dt

= cg~Ω
(
ei(ω+ω0)t + e−i(ω−ω0)t

2

)
(B.10)

i~
dcg
dt

= ce~Ω∗
(
ei(ω−ω0)t + e−i(ω+ω0)t

2

)
(B.11)

Using the Rotating Wave Approximation, the equations simplify to

i~
dce
dt

= cg~Ω
e−iδt

2
(B.12)

i~
dcg
dt

= ce~Ω∗ e
iδt

2
(B.13)

Now, the coefficients cg(t) and ce(t) change in time due to both parts of the

Hamiltonian, Ĥ and V̂ . To isolate the time evolution due solely to V̂ , we transform to

the rotating frame. We set c′g(t) ≡ cg(t) and c′e(t) ≡ ce(t)e
+iδt, so equations (B.12) and

(B.13) become

i~
d

dt

(
c′e
c′g

)
=

~
2

(
−2δ Ω

Ω∗ 0

)(
c′e
c′g

)
(B.14)

Ĥ ′ =
~
2

(
−2δ Ω

Ω∗ 0

)
(B.15)
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where Ĥ ′ is an effective Hamiltonian that captures the time evolution due only to V̂ .

Although equation (B.14) captures all the dynamics induced by the interaction Hamilto-

nian V̂ , it does not take into account spontaneous emission. Moreover, equation (B.14)

describes the evolution of a pure state; spontaneous emission, however, turns pure states

into statistical mixtures. Therefore, we must retort to the density matrix formalism [50]

if we wish to incorporate spontaneous emission into our analysis. The density matrix

is a quantum mechanical operator that can describe both pure and mixed states. For a

2-level system mixed state, the density matrix in the rotating frame can be written as,

ˆ̃ρ =

(
ρ̃ee ρ̃eg
ρ̃ge ρ̃gg

)
(B.16)

For a pure state, ρ̃ij = c̃ic̃
∗
j

ˆ̃ρ =

(
ρ̃ee ρ̃eg
ρ̃ge ρ̃gg

)
=

(
c̃ec̃

∗
e c̃ec̃

∗
g

c̃g c̃
∗
e c̃g c̃

∗
g

)
(B.17)

Combining equations (B.17) and (B.14), we get

dˆ̃ρ

dt
=

i

~

[
ˆ̃ρ, Ĥ

]
(B.18)

We can now include the effect of spontaneous emission by adding the following term to

equation (B.18),

d

dt

(
ρ̃ee ρ̃ge
ρ̃eg ρ̃ee

)
spont

=

(
−γρ̃ee −γ

2
ρ̃ge

−γ
2
ρ̃eg γρ̃ee

)
(B.19)

where γ1 is the natural decay rate, given by

γ =
ω3
0µ

2

3πϵ0~c3
(B.20)

and the lifetime of the transition is

τ ≡ 1/γ (B.21)

1Note that the units of γ are s−1, while the units of Γ are Hz. γ, with units s−1, should be used
when dealing with scattering rates and lifetimes. While Γ, in units of Hz, should be used when dealing
with detunings and line broadenings.
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Equation (B.18) becomes,

dˆ̃ρ

dt
=

i

~

[
ˆ̃ρ, Ĥ

]
−

(
γρ̃ee

γ
2
ρ̃ge

γ
2
ρ̃eg −γρ̃ee

)
(B.22)

whose components are known as the Maxwell-Bloch equations:

˙̃ρee = − i

2
(Ωρ̃ge − Ω∗ρ̃eg)− γρ̃ee (B.23)

˙̃ρgg =
i

2
(Ωρ̃ge − Ω∗ρ̃eg) + γρ̃ee (B.24)

˙̃ρge = − iΩ∗

2
(ρ̃ee − ρ̃gg)− iδρ̃ge −

γ

2
ρ̃ge (B.25)

˙̃ρeg =
iΩ

2
(ρ̃ee − ρ̃gg) + iδρ̃eg −

γ

2
ρ̃eg (B.26)

Defining w ≡ ρ̃gg − ρ̃ee, and using ρ̃gg + ρ̃ee = 1, we find the steady state solutions

ρ̃ee =
s

2(1 + s)
(B.27)

ρ̃eg =
−iΩ

2(γ/2− iδ)

1

1 + s
(B.28)

w =
1

1 + s
(B.29)

where,

s ≡ |Ω|2 /2
δ2 + γ2/4

=
2 |Ω|2 /γ2

1 + (2δ/γ)2
=

s0
1 + (2δ/γ)2

(B.30)

with

s0 ≡ 2 |Ω|2 /γ2 = I/Isat (B.31)

Isat ≡
2π2~γc
3λ3

0

(B.32)

s is called the saturation parameter, and s0 the on-resonance saturation parameter. Isat
is called the saturation intensity; it defines the on-resonance intensity level at which the

transition starts to saturate. λ0 is the on resonance transition’s wavelength.

B.1.2 Near-resonant forces on atoms

The force exerted by near-resonant light on an ensemble of atoms can be calcu-

lated using Eherenfest’s theorem,

F =
⟨
F̂
⟩
=

⟨
dp̂

dt

⟩
(B.33)
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using
dp̂

dt
=

i

~

[
Ĥ, p̂

]
(B.34)

and [
Ĥ, p̂

]
= i~

∂Ĥ

∂z
(B.35)

we get

F = −

⟨
∂Ĥ

∂z

⟩
= −Tr

[
ρ̃
∂V̂

∂z

]
= −

ρ̃ge
∂
ˆ̃
V eg

∂z
+ ρ̃eg

∂
ˆ̃
V ge

∂z

 (B.36)

in the rotating frame,
ˆ̃
V eg = V̂ege

iωt =
1

2
Ẽµeg =

1

2
~Ω (B.37)

where (B.7) has been used and the positive term eiωt has been discarded due to the

rotating wave approximation. If we now let the complex amplitude Ẽ have the form,

Ẽ = Ẽ(z) = E(z)eikz (B.38)

where E(z) is a real amplitude, we can subsitute the solution for ρ̃eg (equation (B.28)),

equation (B.38), and equation (B.37) into (B.36), to get (after some tedious algebra)

F =
~
2

1

(1 + I/Isat + (2δ/γ)2)

(
kγ

I

Isat
− δ

∂

∂z

(
I

Isat

))
(B.39)

From which the results,

Fscatt =
~kγ
2

I/Isat
(1 + I/Isat + (2δ/γ)2

(B.40)

Fdipole = −~δ
2

1

(1 + I/Isat + (2δ/γ)2)

1

Isat

∂I

∂z
(B.41)

Udipole =
~δ
2

ln
(
1 + I/Isat + (2δ/γ)2

)
(B.42)

can be derived.
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Appendix C

Propagation of the electric field through the atomic
cloud

First, an expression for the macroscopic electric susceptibility in terms of mi-

croscopic quantities will be derived. Then, the differential equation for the attenuation

of the electric field of a near resonant beam passing through a medium composed of

two-level atoms will be derived.

C.0.3 Electrical Susceptibility of an ensemble of two-level atoms

The macroscopic complex polarization amplitude of our two-level system can be

written as,

P̃ = ϵ0χẼ (C.1)

where both χ and Ẽ are complex quantities. The actual polarization being the real part

of P̃ .

P =
1

2
ϵ0χẼ +

1

2
ϵ0χ

∗Ẽ∗ (C.2)

From a microscopic point of view the polarization is just

P = ne ⟨⃗r · ϵ̂⟩ , (C.3)

where the average denotes a statistical average. Using equation (2.24), we can rewrite

this as

P = −n ⟨µ⟩ = −nTr[ρ̃µ] = −nµegρ̃ge − nµgeρ̃eg

P =
inµge

2

Ẽµeg/~
(γ/2− iδ)

1

1 + s
− inµeg

2

Ẽ∗µge/~
(γ/2 + iδ)

1

1 + s
(C.4)

comparing equations (C.4) and (C.2), we see that

χ =
in |µeg|2

ϵ0~(γ/2)
(1 + i(2δ/γ))

(1 + (2δ/γ)2)

1

1 + s
(C.5)
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using (2.36)

χ =
inσ(δ)

k

(
1 + i(2δ/γ)

1 + s

)
(C.6)

C.0.4 Propagation of an electric field through a medium

The wave equation for an electromagnetic wave propagating through a medium

is,

∇2 ⃗̃E− 1

c2
∂2 ⃗̃E

∂t2
= µ0

∂2 ⃗̃P

∂t2
(C.7)

making the slow varying amplitude approximation, we can write the electric field as,

⃗̃
E = ϵ̂Ẽ(z)e(k⃗·⃗r−ωt) (C.8)

Substituting equation (C.8) into equation (C.7), using ⃗̃
P = ϵ0χ

⃗̃
E, and keeping only first

order derivatives, we get,
∂Ẽ(z)

∂z
=

1

2
ikχẼ(z) (C.9)

which can be split into two parts,

∂Ẽ(z)

∂z
= −1

2
(κ(δ, s) + iϕ(δ, s))Ẽ(z) (C.10)

where κ(δ, s) and ϕ(δ, s) are the absorption and dispersion coefficients respectively, and

are given by:

κ(δ, s) =

(
nσ0

1 + s

)
1

1 + (2δ/γ)2
(C.11)

ϕ(δ, s) =

(
nσ0

1 + s

)
(2δ/γ)

1 + (2δ/γ)2
(C.12)

Equation C.9 can be rewritten as,

∂Ẽ(x, y, z)

∂z
= −nσ(δ)

2

(
1 + i(2δ/γ)

1 + s

)
Ẽ(x, y, z) (C.13)

where

σ(δ) =
σ0

1 + (2δ/γ)2
(C.14)

When the intensity is well below the saturation intensity, s ≪ 1, then equation (C.13)

reduces to,
∂Ẽ(x, y, z)

∂z
= −nσ(δ)

2
(1 + i(2δ/γ))Ẽ(x, y, z) (C.15)
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Multiplying by Ẽ∗ both sides of equation (C.13), and adding it its own complex conju-

gate, we get Beer’s law:
∂I

∂z
= −nσ(δ)I (C.16)
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