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We propose a method to produce a definite number of ground-state atoms by adiabatic reduction of the
depth of a potential well that confines a degenerate Bose gas with repulsive interactions. Using a variety of
methods, we map out the maximum number of particles that can be supported by the well as a function of
the well depth and interaction strength, covering the limiting case of a Tonks gas as well as the mean-field
regime. We also estimate the time scales for adiabaticity and discuss the recent observation of atomic
number squeezing [Chuu ef al., Phys. Rev. Lett. 95, 260403 (2005)].
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The controlled generation of many-body atomic number
states has been a long-standing goal in physics, and success
would provide an enabling tool for the study of entangle-
ment [1-4] and few-body tunneling [5] with possible
applications in quantum computing. One avenue towards
this goal is the Mott insulator state where single-atom or
multi-atom number states are predicted [6,7]. Current ex-
periments along this line are based on optical lattices [8]
where direct access to individual sites has not been accom-
plished and appears very difficult. A completely different
approach was taken in a recent experiment where number
squeezing was created and observed by direct atom count-
ing [9]. Motivated by this work, we have studied theoreti-
cally the question of number-state generation, and the
results are presented in this Letter. We find that number-
state generation is indeed possible, and we identify appro-
priate parameter regimes and conditions for its realization.

The basic idea is to confine a degenerate Bose gas in an
optical box with a finite barrier height that can be con-
trolled. The repulsive interaction between the atoms im-
plies that a finite box can only contain a maximum number
of atoms. As the barrier height is slowly reduced, atoms
must leave, and the final number is completely determined
by the stopping point of the barrier. Since the confinement
and the barrier in Ref. [9] were realized by means of optical
dipole traps, we call this process “laser culling of atoms”
although the same principle could also be implemented in
other types of traps. The main theoretical questions that
must be addressed are how the maximum number of atoms
depends on the potential and interaction strength and how
slowly must the potential be changed in order to avoid
excitations within the box. Below, we outline the idea of
atomic culling in two limiting cases: impenetrable bosons
in one extreme and a modified mean-field picture in the
other. The diffusion Monte Carlo and direct diagonaliza-
tion of the Hamiltonian bridge these two regimes. Finally,
we discuss the criteria for adiabaticity of the process.
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Maximum number of bound atoms—Consider a one-
dimensional model of N bosons in a square well of depth
Vy and width L, interacting with each other with a delta
function potential of strength g. This is the simplest model
of the potential well used in Ref. [9], when the lateral
directions are tightly bound and tunneling through the
barriers is negligible. The experimental system had a lat-
eral confinement frequency of about | = 200 Hz, which
is not high enough to make the system truly one-
dimensional. However, much stronger confinement may
be employed in the future (v; = 40 kHz has been
achieved recently). We use dimensionless units with
Planck’s constant %, atomic mass m, and the well width
L set to unity. There are only two dimensionless parame-
ters in our model, the well depth in units of (/L)*>/m and
the interaction strength in units of #?/mL. The dimension-
less interaction strength may be conveniently written as
g = 4mv ma,L/h [10], where a, is the scattering length.
For 3'Rb confined in a well of L = 10 um with v, =
1 kHz of lateral confinement, one has g = 1. Such a sys-
tem would be in the weak coupling regime (defined by
g ¥ N) for all but a very small number of atoms.

An obvious approach in the weak coupling regime is the
mean-field approximation assuming that all N particles
occupy the same single-particle state, with its wave func-
tion determined variationally by the Gross-Pitaevskii (GP)
equation [11,12]. However, this approximation is only
good for the case when all particles are deeply bound in
the well. Near the “ionization” threshold, one particle
should become weakly bound with long tails of its wave
function extending beyond the well, while all others re-
main tightly bound. This situation is more appropriately
described by a Hartree-Fock-type wave function with N —
1 particles in a state ¢»; and one particle in another state ¢,
[13,14]. In order to minimize the total energy, ¢»; should be
symmetric and nodeless. For bosons, ¢, does not need to
be orthogonal to ¢;, and should also be symmetric and
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nodeless, because the N-body ground-state wave function
should be so with respect to any particle coordinates.

In Fig. 1, we show the result of a variational minimiza-
tion of the total energy for the case of N = 3, and g = 1,
using trial orbitals of the form

¢i(x) = Jriexp(—xlx]) (i =12). )

When the well is deep, k; are all comparable, indicating the
tendency for all particles to occupy a single state. As the
well becomes shallow, k, tends to zero while x; remains
finite, which corresponds to delocalization of only one
particle. For comparison, we have also calculated the total
energy when only a single orbital is used (by setting x| =
K5), finding a higher ground-state energy.

Without the orthogonality condition, the equations
for determining the optimal form of the orbitals are com-
plicated. Fortunately, at ionization threshold, the two
orbitals are orthogonal because ¢, becomes extended.
Minimization of the Hartree-Fock energy leads to the
coupled nonlinear equations

[h(x) + g(N = 2)|p, > + 2glhal* 1) = 1y,
[A(x) + 2(N — 1)gld1* 1y = pro,

where h(x) is a single-particle Hamiltonian. The first equa-
tion reduces to the GP equation for N — 1 particles because
the amplitude of ¢, is negligible at the ionization thresh-
old. The second equation describes a particle in the effec-
tive potential of the square well plus the mean-field
potential of the N — 1 particles. The ionization condition
(s = 0) is reached when the integral of the effective
potential vanishes, i.e.,

Vo = 2g(N — 1)/L. 3)

For a potential well which is not a square but is sym-
metrical, we can still apply the above reasoning, and the
result is that —V,,L must be replaced by the integral of the
potential. We also note that the GP equation for all N

0.6
0.5
5{\1 0.4

FIG. 1. Calculation of parameters «; and k, from a variational
principle for the case of N = 3 and g = 1. Dashed line shows the
result based on a single trial orbital.

particles in a single orbital would yield an erroneous
ionization threshold which is only half of the above value.

In the opposite limit of strong interactions, g > N, we
have the case of N impenetrable bosons. The problem is
mapped to N noninteracting fermions in a square well [15].
The many-body eigenstates of the problem are given by the
absolute value of the Slater determinant of single-particle
states. The potential well can support N bound single-
particle states when the well is deeper than

Vo = [m(N — 1)/LF/2; “4)

only then can N impenetrable bosons be trapped. As the
well depth decreases to such a value that the most energetic
single-particle state delocalizes, only N — 1 particles re-
main trapped in the well, as illustrated in Fig. 2. We note
that the Tonks gas limit is physically quite different than
the regime of Ref. [9], where g = 0.2.

To solve the problem for intermediate values of g, we
resort to a direct diagonalization of the many-body
Hamiltonian. In order to execute numerical calculations,
we contain the well in a large box of size D >> L with hard
walls and find single-particle eigenstates. A discrete
second-quantized Hamiltonian is then constructed with
elements given by the eigenenergies and by integrals of
products of the eigenfunctions. An N-body Hamiltonian
matrix can then be formed in the Fock-state basis and is
diagonalized by standard numerical routines. The bound-
state total energies for N = 1,2, 3, and g = 1 are shown in
Fig. 3 for different V.

As an alternative method to calculating the ground state
of N bosons, we use the diffusion Monte Carlo approach
[16]. Previously, this method was successfully used to
calculate the ground state of bosons with an arbitrary
interaction strength. With this approach, we also take a
box of size D > L. In Fig. 4, we show threshold values of
the well depth above which N particles can be supported.
Statistical errors are estimated to be comparable to the size
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FIG. 2. Ground-state energy of N Tonks bosons in a square
well as a function of well depth. Zero of energy is at the top of
the well. Whenever two energy levels merge (as denoted by three
vertical dashed lines), a particle is ionized.
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FIG. 3. Bound levels of bosons interacting with g = 1. Zero of
energy is at the top of the well. Thick lines correspond to ground
state of N particles. Thin lines indicate bound excitations. Two
vertical dashed lines indicate the region where only N = 1,2
particles are supported in the bound-state. Vertical dotted line
shows the smallest V, for which an excited bound-state is
supported for N = 3.

of the symbols (except for the case of N =4 at g = 4).
Results for N = 1, 2,3 at g = 1 agree very well with direct
diagonalization. Results in the weak coupling regime g <<
N are predicted correctly by the formula Eq. (3).
Adiabaticity condition—We now discuss how to achieve
the atomic number states that we have studied above. We
assume that our initial state is one with an unknown
number of atoms but at essentially zero temperature.
Since our eventual goal is to obtain a few atoms with a
known definite number, this initial ensemble can be rather
small, containing, say, about 100 atoms. It can be prepared

FIG. 4 (color online). Ionization threshold values of the well
depth as functions of the interaction strength. Curves from
bottom to top are for N = 1, 2, 3, 4, respectively. The squares
are obtained with a diffusion Monte Carlo method, and the lines
are guides for the eye. The two crosses for g = 1 are obtained
with direct diagonalization. The dashed line is from the weak
coupling formula Eq. (3) for the case of N = 4.

from a large Bose-Einstein Condensate (BEC), with 10*
atoms at 10% of the condensation temperature 7.. By
maintaining a sufficient density with continuous reduction
of the well size, it is certainly possible to reach a tempera-
ture of 1% of T, by further evaporative cooling with about
100 atoms left in the trap [17]. The estimated fraction of
thermal atoms will be (7/T.)*? = 0.1%, yielding a high
probability for all the remaining atoms to be in the ground
state. To reach even smaller atom number (towards N =
1), the size of the box must be appropriately reduced in
order to maintain the high density required for evaporation.
This would then ensure that the thermal fraction is negli-
gible and the fidelity of number-state generation is very
high. The techniques for making a single tightly-confined
optical box were developed by us and described in two
earlier papers [18].

At this stage, the atomic number may not be the maxi-
mum allowed for the potential well because atoms with
energies near the top of the barrier may be ““ionized” due
to various perturbations. As long as the atomic gas is not
excited within the well, we can regard our system to be in a
ground state, albeit with an unknown number of atoms.
Towards this goal, the perturbations have to be small
compared to the excitation energy gap. In the weak cou-
pling limit, the latter can be estimated to be the Bogoliubov
excitation of the longest wavelength [19], hw =
(pg/m)'\27rh/L, where p is the one-dimensional density
of atoms. Interestingly, the same expression is obtained
even if the system is in the three-dimensional regime,
where one only need to take g as the three-dimensional
coupling constant divided by the cross sectional area of the
atomic gas. For the system studied in the recent experiment
[9], a time scale of 5 ms is found for the excitation gap.
This is in fact within an order of magnitude of the observed
time scale for the onset of nonadiabatic effects on atom
number statistics. Deviation from the weak coupling re-
sults is important only when g/N (corresponding to 7y in
Ref. [20]) is large compared to unity. For intermediate
couplings, the excitation energy levels are calculated and
displayed as thin lines in Fig. 3. In the strong coupling
limit, there are no bounded excitations for a maximally
bound number of atoms.

As the well size or potential barrier is reduced, it is
possible to achieve a state with the atomic number equal
to the maximum allowed, provided one can avoid unin-
tended ionizations. Two conditions must be satisfied. First,
the precision in the control of well size and barrier height
must be within the window between the ionization thresh-
olds. In the weak coupling limit, g << N, this window size
is AV, = 2g/L. In the strong coupling limit, we have
AVy = (N — })(ar/L)*. For intermediate couplings, these
windows are the gap regions between the lines in Fig. 4 and
between vertical lines in Fig. 3.

Second, the ionization energy in the middle of a parame-
ter window (where it is maximum) must be large enough to

063001-3



PRL 98, 063001 (2007)

PHYSICAL REVIEW LETTERS

week ending
9 FEBRUARY 2007

withstand noise and nonadiabatic effects. The ionization
energy is the difference between N- and (N — 1)-particle
states when N + 1 particles have stopped being sup-
ported. In the weak coupling regime and for a well depth
in the middle between two ionization threshold values, we
may use the standard GP theory to find the total energies
for N and N — 1 particles. An analytic result can be
obtained in the Thomas-Fermi limit, where the ioniza-
tion energy is found to be gN/L. In the strong coupling
regime and for N >> 1, the ionization energy is found to be
(N + Y)(ar/L)*. For intermediate couplings and small num-
ber of particles, the ionization energy is given by the gap
between the two lowest thick lines in Fig. 3. Clearly, a
stronger interaction strength creates a larger ionization
energy.
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