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Chapter 1

Introduction

1.1 Interaction of atoms with light

In this section, we briefly discuss how the interaction between light and

matter appear and how it can be used to cool and trap atoms. This topic is

discussed in great detail in many references, see for example [1–5]. Here we

closely follow the reference [4] where dipole optical traps are reviewed.

An insight into atom-photon interaction can be obtained from the class-

cal Lorentz model where an atom is modeled by classical damped oscillator [6].

If the electric field E changes in time harmonically with frequency ω, it induces

a dipole moment, p, in the classical oscillator that has the resonant frequency

ω0 and damping rate Γω. Since the electrons are much lighter than nuclei

the mass of the oscillator is electron mass, me. This induced dipole moment

is proportional to the electric field and coefficient of proportionality is called

polarizability α

p = αE. (1.1)

Note that we use standard convention when amplitudes p and E are com-

plex and the measurable quantities are given by the sum of two complex

conjugate expressions, for instance, time varying electric field is E(r, t) =

1



êE(r) exp(−iωr) + c.c.. This induced dipole moment interacts with the elec-

tric field which results in the dipole potential quadratic in the field, that is

proportional to the intensity

Udip =
1

2
〈pE〉 = − 1

2ε0c
Re(α)I (1.2)

The factor of 1/2 is because the dipole is not permanent, but rather induced.

Intensity is I = 2ε0c |E|2.

The classical equation of the damped harmonic oscillator is

me

[
ẍ + Γωẋ + ω2

0x
]

= −eE(t). (1.3)

Substituting harmonically a varying field and position, we find complex polar-

izability of

α =
e2

me

1

ω2
0 − ω2 − iωΓω

= 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − iω3

ω3
0
Γ

. (1.4)

For the classical model, damping rate results from the dipole radiation of the

accelerated charge which is given by Larmor’s formula [6]

Γω =
e2ω2

6πε0mec3
. (1.5)

In the last expression in Eq. (1.4) we have introduced on-resonant damping

rate Γ = (ω0/ω)2Γω. We should note that the induced dipoles are of quantum

nature and, in general, damping rate is inversed Einstein coefficient A asso-

ciated with the transition which is determined by the dipole matrix element

between ground and excited state [2]

Γ =
ω3

0e
2

3πε0~c3
|〈r〉|2 . (1.6)
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For many atoms with a strong dipole transition the classical formula (1.5)

provides very good approximation. For most of alkali atoms when detuning is

much larger than the splitting between the two D lines (fine splitting), which

combined oscillator strength is close to unity, the two formulas agree within a

few per cent.

As we saw above, the real part of the polarizability results in the di-

pole potential. This potential is conservative and can be used for trapping

of atoms. Imaginary part of the polarizability corresponds to absorption of

energy. Absorbed photons are emmited spontaneously in all directions with

equal probability. Hence a dissipative force can arise when absorption happens

from one direction. This has been used to achieve laser cooling (for the review

see [3]). Withing the classical model scattering rate can be expressed as

Γsc =
Pabs

~ω
=
〈ṗE〉
~ω

=
1

~ε0c
Im(α)I(r). (1.7)

The methods of laser cooling that rely on repeated absorption and emit-

tion of photons (such as Doppler cooling and polarization gradient cooling) are

limited to the temperature that corresponds to the velocity gained by an atom

emitting a single photon, recoil velocity. For alkali atoms the recoil velocity

is order of centimeters per second, and the limiting temperatures are order of

1µK. To reach such temperatures from room temperature (hundreds meters

per second) many scattering events have to occur. This requires a cycling

transition in the spectrum, that is, a transition for which spontaneous decay

returns the atoms to the original state. This requirement is quite restrictive
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since only for small fraction of atoms, let along molecules, such transitions

exist in the easily accessible region of spectrum.

Based on the expression for complex polarizability given above the fol-

lowing expressions can be derived for the dipole potential and the scattering

rate in case of large detunings, ∆ = ω − ω0 and negligible saturation

Udip(r) = −3πc2

2ω2
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) ≈ 3πc2

2ω2
0

Γ

∆
I(r), (1.8)

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) ≈ 3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (1.9)

The approximate expressions are for the most commonly relevant case when

detuning is much smaller than the resonant frequency ∆ ¿ ω0 (this is so called

rotating-wave approximation). Notice that in this regime

~Γsc =
Γ

∆
Udip. (1.10)

This expression shows that substantial dipole potential can be achieved with

small number of spontaneous scattering events when detuning large and large

enough intensity is chosen. Also the last expressions show that for red-detuned

traps, when the laser is detuned below the resonance, ∆ < 0, the atoms are

trapped in regions with larger intensity. In contrast blue-detuned beams, when

∆ > 0 produce a repulsive dipole potential.

In Chapter 2, we suggest how using the concepts discussed above to

produce a one-way barrier. Atoms in ground state will pass through it in one

direction but will be reflected in opposite. Such a barrier may consist of two

beams: one blue detuned from the resonance producing repulsive potential
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for the atoms in the ground state, another that excites atoms to the excited

state for which the dipole potential produced by the other beam is attractive.

Using such a barrier, one can collect atoms or molecules in a volume much

smaller than original, thus increasing the phase space volume. In contrast to

the methods mentioned above, this approach requires only a single scattering

event.

In the discussion above quantum multiplicity of the states was ig-

nored. In general, polarizability depends on the sub-level. Second-order time-

independent perturbation theory can be applied for degenerate sub-levels to

using the dressed state view for the system of atom and photon field [1, 7]. This

matrix element between the ground state sublevels α and β can be written as

Hαβ =
∑

αβγ

(
E∗(r) ·D∗

γα

)
(E(r) ·Dγβ)

~(ω − ωγ)
. (1.11)

Here, the interaction E ·D between electric field and dipole is considered as

perturbation, index γ labels excited state sublevels, ω is the frequency of the

light, and ωγ is the frequencies of the atomic resonanes. Note that applying

this formula to a two-level atom gives an energy shift and expressing the dipole

element Dαγ in terms of natural linewidth Γ with Eq. (1.6) we find the energy

shift

∆E = ±3πc2

2ω3
0

Γ

∆
I, (1.12)

with plus sign for the ground state of the atom and minus sign for the excited

state. Notice that this expression is the same as Eq. (1.8) obtained with the

classical model. An additional insight is that the excited state also is shifted
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but in the opposite direction of the ground state, that is blue detuned beam

produces attractive potential for atoms in the excited state and red detuned

beam produces repulsive potential for them. We use this fact when the specific

model for one-way barrier is suggested.

As an illustration, we discuss state-dependent optical energy shifts us-

ing alkalii atoms which is also important for some future discussion. The

strongest dipole transitions in alkalii atoms are D1 (2S1/2 →2 P1/2) and D2

(2S1/2 →2 P3/2). The splitting between the lines is due to spin-orbit coupling

which is much larger than hyperfine splitting between ground and excited sub-

levels. When detuning is much larger than the hyper-fine splitting the optical

shift that depends on projection of total angular momentum mF is [4]

Udip(r) =
πc2Γ

2ω3
0

(
2 + PgF mF

∆2,F

+
1− PgF mF

∆1,F

)
I(r), (1.13)

here gF are Lande factors, P = 0,±1 for linear and circular σ± polarizations

of light correspondingly, the detunings ∆1,F and ∆2,F are with respect to fre-

quencies correspoinding to transitions from the centers of the ground 2S1/2, F

states to 2P1/2 and 2P3/2. When the detuning becomes much larger than fine-

splitting ∆FS between two D lines the previous equation becomes

Udip(r) =
πc2Γ

2ω3
0∆

(
1 +

1

3
PgF mF

∆FS

∆

)
I(r). (1.14)

Note that when the detuning is much larger than fine-splitting the shifts for

all sublevels are just like for two-level atom.
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1.2 Bose-Einstein condensation

In the typical laser cooling schemes such as Doppler cooling, ultracold

gases are obtained. Their temperatures can be around 10µK and the density

around 1012 cm−3. The thermal de Broglie wavelength of the atoms for a given

temperature T is conventionally defined as

λT =

(
2π~2

mkBT

)1/2

. (1.15)

When the temperature decreases and the density n stays constant at some

point it becomes comparable to the separation between atoms n−1/3. Then

the quantum nature of the atoms becomes important. For bosons a transition

to a Bose-Einstein condensate (BEC) occurs, where a macroscopic number of

atoms are described by a single wave function.

Laser cooling does not achieve BEC because for densities around 1012-

1013 cm−3 temperatures around 100 nK are required. Typically, the ultracold

atoms are trapped in potentials created by magnetic fields or optical dipole

traps that can be approximated by harmonic wells. Even though lowering

the frequency of confinement decreases the temperature, it does not bring the

atoms closer to condenstation since the density will decrease and as a result

the transition temperature also decreases. It is important to increase phase

space density which cannot be achieved in conservative traps due to Liou-

ville’s theorem of mechanics. The condensation of the ultracold dilute gases

was succesfully achieved with evaporative cooling [8–10]. During evaporative

cooling, the gas is kept in a trap and the most energetic particles are removed

7



selectively. The particles that remain equilibrate to a higher temperature, and

as a result to lower phase space densities since the trap does not change.

After the evaporative cooling, a very small fraction (tenth of a percent

or less) of initial atoms in the trap remains. Also the scheme requires equili-

bration on a time scale much shorter than the duration of the evaporation. In

Chapter 2, we suggest the use of a moving one-way barrier to trap atoms at

the appex of their trajectory in the trap. We analyse the problem in a regime

complimentary to evaporative cooling, when no equilibration of less energetic

atoms occurs. We show that a decrease in phase space density can be achieved

this way.

In the other chapters, we deal with the dynamics of the BEC in po-

tentials created by light. The Gross-Pitaevskii (GP) equation describes the

dynamics of BEC of dilute gases very well [11]

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t) =

(
− ~

2

2m
∇2 + V (r) + U0 |ψ(r, t)|2

)
ψ(r, t), (1.16)

here ψ is the wave function, the coupling constant U0 depends on the s-wave

scattering length a and number of atoms in the condensate N : U0 = 4π~2a
m

N .

In several places, we consider the situations where the BEC is strongly

confined in one or two dimensions, so that the dynamics in those direction

is “frozen out” [12]. Such a regime has been succesfully implemented experi-

mentally [13]. The condensate can be considered effectively two-dimensional

when the third direction is confined by a trap with harmonic oscillator split-

tings in that direction ~ωz is much larger than the three-dimensional chemical
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potential of the BEC µ

µ ¿ ~ωz. (1.17)

In this case, the dynamics in the strongly confined direction “freezes” into

the ground state of a harmonic oscillator φ(z), the total wave function then

may be written as ψ(r) = φ(z)ψ(x, y) and Eq.(1.16) may be written for two-

dimensional r with

U0,1D =

(
8πωz~3

m

)1/2

aN. (1.18)

In case when two directions are strongly confined

µ ¿ ~ωy,z (1.19)

the GP equation becomes one-dimensional with coupling constant

U0,2D = 2~ωy,zaN. (1.20)

1.3 The study of condensed matter phenomena with
ultracold atoms

In the last decade, many experiments have studied the quantum mo-

tion of ultracold atoms in periodic potentials created by standing waves of

light [14]. Phenomena, such as Bloch oscillations and Wannier-Stark ladders,

impossible to observe for electrons in metals due to short relaxation times,

have been observed. An electric field results in constant force for electrons.

This is mimicked with neutral atoms by accelerating the lattice with constant

acceleration. In the reference frame where the lattice is stationary the atoms
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experience constant inertial force. Similarly, a magnetic field can be repro-

duced by rotating the lattice.

In this dissertation in Chapter 4, we study wave packet dynamics of

ultracold atoms in 2D optical lattices, revealing a number of novel phenom-

ena involving Berry phase, self-rotation, spin-orbit coupling, and discrete soli-

tons. The simplest system where the Berry phase and self-rotation manifest

themselves is a 2D lattice with broken inversion symmetry. They result in

transverse drift during Bloch oscillations and non-zero angular momentum.

In spin-dependent lattices effective coupling between atomic spin and its mo-

mentum can be produced in similar form to Rashba spin-orbit coupling for

2D electrons in semiconductors. As a result, effects similar to the anomalous

and spin Hall effects can be observed directly. For interacting atoms in the

parts of the Brillouin zone where the effective mass is negative, sufficiently

strong repulsive interaction may cause a wave packet to collapse into discrete

solitons.

In Chapter 3, we consider a system which is reminiscent of a Coulomb

blockade of electrons in quantum well. In our case, a quantum dot well, created

by a tightly focused laser beam, is placed in the center of a BEC confined in a

quasi-one-dimensional configuration [15]. We show that for certain parameters

it is possible to extract a single atom from a BEC by raising the depth of

the well at a given rate. This is possible due to rapid decoupling of the

quantum dot and BEC reservoir when the state with a single atom in the

dot is just below a chemical potential of the BEC. The analysis is done for

10



realistic experimental parameters for a 87Rb condensate where the density

is limited by three-body collisions. The realization of atomic number states

should enable many applications in quantum state engineering [16].
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Chapter 2

One-way wall

2.1 Limitations of present cooling schemes

The successful approach to reach quantum degenerate regime for gases

of ultracold atoms was to use laser cooling [3] followed by evaporative cool-

ing [17–19]. Both of these methods have some shortcomings. In this chapter

we discuss an alternative way to compress phase space volume which relies on

a one-way barrier for atoms that transmits atoms in some state in one direc-

tion and reflects atoms in that state when they are incident on it from another

side [20, 21]. Phase space compression can be achieved in regimes, which is in

many respects complimentary to those of laser cooling and evaporative cooling.

Laser cooling of atoms relies on multiple scattering of the photons. Due

to the Doppler shift, the scattering of the photons is preferential for atoms

moving towards the beam. The major limitation of the laser cooling is the re-

quirement of a cycling transition. This limits, the applicability of the method

to a small set of atoms in the periodic table. Further cooling below the single

photon recoil limit was made possible by creating dark states in momentum

space using quantum interference [22] or stimulated Raman transitions [23].

Dark states in position space have been based on creating selective regions
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where laser cooling turns off due to optical pumping to a dark state [24, 25].

More recently collective-emission-induced cooling was demonstrated using an

optical cavity [26]. These methods, however, could not demonstrate compres-

sion in phase-space density to reach quantum degeneracy in the dilute gases.

Evaporative cooling was originally suggested as a means to achieve

Bose-Einstein condensation in atomic hydrogen [17–19]. Its application to

magnetically trapped alkali atoms [9, 27] culminated in the first observation of

Bose-Einstein condensation in atomic vapors [8–10]. Since then it has been an

essential process by which to obtain degenerate quantum gases. Nevertheless it

has shortcomings. The main two are: (i) Almost all atoms originally trapped to

produce the condensate are lost during the evaporation process. (ii) The time

scale for collisions leading to thermal equilibrium must be short compared to

the time employed to form the condensate. The latter shortcoming is especially

severe for fermionic atoms, since for two fermions in the same state, s-wave

scattering is forbidden by the Pauli exclusion principle. Currently, degenerate

fermionic gases can only be obtained by a combination of evaporative and

sympathetic cooling [28] in the presence of bosonic atoms or different states

of the fermionic atoms [29].

2.2 Model

We first describe a simple two-level model illustrating the mechanism

for one-way barrier. Consider a two-level atom with ground state |1〉 and an

excited state |2〉 that decays spontaneously back to the ground state with a
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2

1

Figure 2.1: The first scheme for uni-directional wall. Beam B blue detuned
from the resonance creates repulsive potential for atoms in state |1〉. Beam
RES is tuned to atomic resonance.

lifetime τ . One laser beam, denoted B is tuned to the blue of the atomic

transition, while another beam, denoted RES, is tuned exactly on resonance,

as shown in Fig. 2.1(a). We construct a barrier as shown in Fig. 2.1(b); On the

left side is a focused RES sheet, and to the right of that a focused B sheet. An

atom impinging from the right will encounter the B sheet which is a repulsive

barrier and it will be reflected back. In contrast, an atom impinging on the

barrier from the left will first be promoted to the excited state |2〉 with some

probability. It then encounters the barrier which is attractive for that state, so

it goes through. We must assume that the spontaneous lifetime is longer than

the transit time of the atom through the barrier, and that the atom decays

to the ground state after crossing the barrier. Clearly, this wall reflects atoms

from the right and transmits them from the left.

In the work independent of ours [30] the authors suggested to use stim-
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(a) (b)

B

RES

2

1

3

Figure 2.2: Extension of the scheme in Fig. 2.1 to a three level atom. Transition
|1〉 → |2〉 is a strong dipole transition to create a substantial repulsive wall
for state |1〉. Level |3〉 is metastable with lifetime comparable to transit time
through beams.

ulated Raman adiabatic passage (STIRAP) to optimize the excitation stage.

In that configuration, two Raman beams replace the RES beam and achieve

almost full excitation independent of velocity of incoming atoms.

As a physical realization of the two-level, model we consider a three-

level model as illustrated in Fig. 2.2(a). The ground state |1〉 has one allowed

dipole transition to state |2〉, and another weak transition to state |3〉. Such

configuration makes it possible to produce a strong repulsive wall with an

allowed dipole transition and a relatively long-lived state for which this wall is

nearly transparent. A uni-directional barrier can be constructed in this case

in the same way as for the two level model, except that the repulsive barrier

should be a beam tuned to the blue of the |1〉 → |2〉 transition, while the

resonant beam is tuned to the |1〉 → |3〉 transition. The barrier is illustrated
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in Fig. 2.2(b). An atom coming from the right in the ground state is reflected

from the repulsive barrier. An atom coming from the left first encounters the

resonant beam and is excited to the long-lived state |3〉. Assuming that the

blue-detuned beam is close to the |1〉 → |2〉 transition, it will generally be

completely non-resonant when the atom is in state |3〉 and the atom can pass

through the barrier.

 M

3

RES

M RES

21

2

2

(a) (b)

δ

1

2

Figure 2.3: Scheme that may be used to create a uni-directional wall for the
case of alkali atoms. Beam M is attractive for state |1〉 and repulsive for |2〉.
Beam RES transfers atoms from |1〉 to |2〉 in a few scattering events.

This scheme can be realized in alkaline earth atoms. For example,

calcium has a ground state |g〉 and a transition to one excited state |e1〉 with

a wavelength of 423 nm and lifetime of 5 ns, and a transition to another excited

state |e2〉 with a wavelength of 657 nm and lifetime of 330 µs. In this case,

the B sheet would be tuned to the blue of the 423 nm transition (far enough

to minimize spontaneous scattering) while the RES sheet would be tuned to

the 657 nm transition. The resonant beam must be spectrally broadened in
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an experimental realization so that Doppler shifts are not important.

For alkali atoms, one-way barrier may be constructed as shown in

Fig. 2.3. For atoms in state |1〉 the beam M is attractive, since it is detuned to

the red side of the transition. The state of the atoms is changed to |2〉 by the

beam RES in a few scattering events. This state is not affected by the beam

RES and the beam M is a repulsive wall for it. For example, in Cesium, which

has a ground hyperfine state splitting of 9.2 GHz the beam M would be tuned

4.6 GHz to the red of the 2S1/2, F = 3 →2 P3/2, F = 4 transition at 852 nm,

the RES beam would be tuned to the transition.

One limitation of these methods is that typical dipole trap depths are

only a few mK. This requires therefore that atoms or molecules be pre-cooled

using other methods which are not laser-based. In recent years there has been

enormous progress in this direction and several methods have already been

demonstrated experimentally. These include buffer-gas cooling [31, 32], Stark

deceleration [33], and rotating supersonic nozzle [34].

2.3 Phase-space compression in stationary regime

How can such a one-way barrier be used to compress phase space?

Consider a 1D box of length L with a spatially uniform distribution of atoms.

Now suppose we turn on a uni-directional barrier somewhere in the box, as

shown in Fig. 2.4 (a). After some time, all of the atoms will be trapped in one

region, as illustrated in Fig. 2.4 (b).
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(a)

(b)

Figure 2.4: Illustration of the cooling process. As the uni-directional wall
is placed inside of a billiard, atoms are accumulated in the smaller part, thus
increasing the density. Kinetic energy increase is due to photon recoil as atoms
decay to ground state.

To study this simple model further, we have performed a Monte-Carlo

simulation and compared with a simple analytic model. We start with atoms

uniformly distributed in a 1D billiard and with a Maxwell distribution in

velocity with standard deviation σv. A semi-penetrable wall with width 2d

separates the billiard into two parts with widths l1 > l2, so that the resonant

part of the wall with width d borders with longer side and the blue detuned

part of the same width borders the shorter side. We assume that external walls

of the billiard are repulsive for both states. As soon as an atom enters the

resonant beam, it gets transferred to state |2〉 for which the second half of the

wall is attractive. We simulated exponential decay of the atom with decay time

τ . As the atom decays it gains one recoil velocity vr in a random direction.

The equilibration time is much longer than accumulation time. Three different

cases are considered in the simulation: (i) Decay occurs in the small region.
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In this case, the particle is trapped. (ii) Decay occurs in the large region or in

the resonant beam. In this case, the particle is not trapped, but gets another

chance and eventually will be trapped. (iii) Decay occurs in the repulsive wall.

In that case, the particle is considered lost from the distribution, since it would

acquire a large kinetic energy as it exits the barrier.

The model has six parameters: d, vr, τ , l1, l2, σv. The unit of length,

Lu, is taken to be d, and the unit of velocity, vu, is taken to be vr. The unit of

time is then tu = Lu/vu = d/vr. We observe how a change of parameters (τ ,

l1, l2, and σv) affects the performance, which we characterize by two figures of

merit. The first one is compression in phase space

C = e
(l1 + l2 + 2d) · σv

l2 · σv,final

, (2.1)

where e is the ratio of number of trapped atoms to number of initial atoms.

The second figure of merit is the average rate of phase space change C/Tf ,

where Tf is the time it takes to capture a fraction f of the atoms. For the

discussions below we use the time when ninety percent of trappable atoms are

captured, T0.90.

Figure 2.5(a) shows the velocity distribution for 50000 atoms before

and after the process for the following parameters: τ = 10, l1 = 100, l2 =

10, σv = 5. In the plots (c)-(f) in Fig. 2.5 variations of the parameters are

performed with respect to this set. Figure 2.5(b) displays the distribution of

capturing times. For this particular set of parameters we find a compression

factor, C = 9.2.
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As the length of bigger part of the billiard, l1, increases (Fig. 2.5(c))

the compression factor increases, the average time of the operation increases as

well and as a result the rate of compression saturates. For a particular initial

velocity distribution and wall width there is an optimal decay time for which

the compression is the largest (Fig. 2.5(e)). Average rate of compression in

this case decreases monotonically (Fig. 2.5(f)).

Naturally, the operation of the scheme is optimal when the decay rate

is much larger than the time most of the particles spend in the gap and

much smaller than the time it takes one particle to cross the smaller region:

tgap ¿ τ ¿ ttravel. Also the size of the wall should be much smaller than

the size of the both regions: d ¿ l1, l2. In these limits, we can obtain simple

analytic expressions for phase space compression and compression rate (see

Appendix A).

When we define the fraction of originally trapped particles f0 = l2/(l1+

l2) the compression in phase space density is given by

C = f0
σv√

f0σ2
v + (1− f0)(σ2

v + v2
r)

. (2.2)

In two following limits it becomes

l1 À l2, σv À vr, C =
l1
l2

, (2.3)

l1 À l2, σr ¿ vr, C =
l1
l2

σv

vr

, (2.4)

hence the scheme is only efficient in the first limit when the initial velocity

spread is much larger than the recoil velocity. In this limit it is also applicable

20



10 0 10
0

200

400

600

velocity

n
u
m

b
er

 o
f 

p
ar

ti
cl

es

0 200 400 600
0

20

40

60

l
1

C

0 500 1000
0

2000

4000

6000

time

n
u
m

b
er

 o
f 

p
ar

ti
cl

es

0 200 400 600
0

0.02

0.04

l
1

C
/T

f

0 20 40 60
7

8

9

10

τ

C

0 20 40 60
0

0.05

0.1

τ

C
/T

9
0

(a) (b) (c)

(d) (e) (f)

Figure 2.5: (a) Initial and final velocity distributions for parameters τ = 10,
l1 = 100, l2 = 10, σv = 5. Total initial number of particles is 50000. (b)
Distribution of times after which particles end up in the smaller region. (c)
Change of compression in phase space, solid line is for analytic expression
given by analytic formula (2.2), limiting case (2.3) is not distinguishable from
it in this regime. (d) Average compression rate as size of the larger region l1 is
varied, with f = 0.90, the lines show the average compression rate estimated
from (2.6) with f = 0.95. The numerical solution of (2.5) give indistinguishable
result in this regime as well. (e) and (f) the same when decay time, τ , is varied.

in two and three dimensions hence the recoil that might be accumulated in the

transverse dimension will not be significant. In Fig. 2.5(c) we show that for

appropriate decay times the agreement between this simple analytic formula

and the results of Monte-Carlo simulations is very good.

To estimate the time Tf it takes to capture a fraction f of particles one

has to solve the following nonlinear equation (see Appendix A)

f0 + (1− f0)

[
1

ṽ0

√
2

π

(
1− e−

ṽ2
0
2

)
+ erfc

(
ṽ0√
2

)]
− f = 0, (2.5)
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here ṽ0 = 2l1/σvt is velocity, in units of σv, above which all particles are

captured in the smaller region. In the limit l1 À l2, σv À vr and when

ṽ0 ¿ 1, i.e. (1− f) ¿ 1 the equation can be linearized (see Appendix A) and

the average rate is given by

C

Tf

=
1− f

1− f0

σv

l2

√
π

2
(2.6)

which is independent of l1. Such dependence is seen in Fig. 2.5(d). This simple

formula captures the behavior and the result is in reasonable agreement with

the simulation, however does not take into account loss of the particles.

2.4 Phase-space compression by moving wall

Evaporative cooling relies on removing atoms above certain energy

while remaining particles equilibrate to larger phase space densities. In a non-

uniform trap there is relationship between energy of the particles and position:

the removal of the energetic particles happens at some particular position.

During the evaporative cooling this position is swept towards the minimum of

the potential, atoms with smaller and smaller energies are removed, until the

remaining atoms equilibrate to significant phase space densities.

Here we demonstrate that by slowly sweeping a one–way wall through a

general trapping potential, the particles naturally compress into a state of very

low energy: energetic particles are not removed but rather re-captured with

smaller energy. The basic idea is illustrated in Figure 2.6. At any given time,

all particles remaining in region A to the right of the potential have energy
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less than V (xb). When the wall moves slightly to the right, the particles that

reach it are at their turning point, and have very small kinetic energy. As the

one-way barrier continues to move to the right, for a convex potential, as the

particles bounce off the moving wall, they lose more energy in the collision

than they gain otherwise. In this way, a slow sweep of the semi–permeable

barrier through the convex well reduces particle energies to very low values set

by the speed of the sweep.

The conditions needed for this optical compressor to work are quite

different from those required for the effectiveness of evaporative cooling. The

optical compressor relies upon the existence of a non-equilibrium distribution

of particles to the right of the wall. In particular, the velocities of particles that

reach the semi–permeable barrier from the right are all very low, rather than

being given by the Maxwell–Boltzmann distribution that would describe them

in equilibrium. Thus the process of compression must be fast compared to the

thermal equilibration time of the particles. On the other hand, the sweep of

the wall cannot occur too quickly, because the kinetic energy of particles after

they traverse the wall is given by a positive power of the wall velocity.

Thus, the optical compressor provides a process completely comple-

mentary to evaporative cooling: (i) No atoms are lost during the compression

process. (ii) The time scale for collisions leading to thermal equilibrium must

be long compared to the time spent sweeping the semi–permeable barrier. We

note that as the equilibration time becomes comparable to the time of the

sweep, phase space compression will occur due to combination of evaporative
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Figure 2.6: Functional diagram of the optical phase–space compressor in a
trap. Particles begin in region A with characteristic energies kBT . Particles
arriving at the semi–permeable barrier from the right travel through it, while
those in region B arriving from the left are reflected. The semi–permeable
barrier moves to the right at speed u = ẋb, transferring particles from region
A to region B, where their maximum kinetic energy is much less.

cooling in region A and the process discussed here.

2.4.1 Model

We consider an ideal collisionless gas trapped in a one-dimensional po-

tential V (x); two other dimensions are either untrapped or confined in a box-

shaped potential. The gas is originally in thermal equilibrium at temperature

T = 1/kBβ. An ideal infinitely thin semi–permeable barrier is located at po-

sition xb, which is originally far to the left of any particles. The barrier moves

to the right with velocity u = ẋb, its intersection point with the well moving

from E1 to E0 and eventually passing through the whole well and out the right
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hand side.

In the limit of slow wall velocities it is possible to obtain analytical

results. We first focus on the distribution of velocities with which particles

cross the barrier, and then consider the question of how their velocities change

after they have crossed the barrier.

Particles with energy E are not affected by the wall until the wall

reaches the point where V (xb) = E. Let the period of oscillation of a particle

of energy E in region A be T(E). We assume that there are

n(E)dE ∝ D(E)e−βEdE (2.7)

particles near energy E, and that their positions in the trap are random. Here

D(E) is the energy density of states in the trap. Therefore, from the time

the first particle of this energy passes through the barrier, until the last one

leaves, there passes a time T(E). The last particle to be captured is one that

had just passed the turning point and was headed to the right as the barrier

reached energy E. Particles of energy E will pass at a uniform rate through

the barrier during the time interval T(E). The first particle to pass the barrier

will have no kinetic energy, while the last one through will have kinetic energy

K = − ∂V

∂xb

uT(E) ≡ ĖT. (2.8)

Here Ė gives the rate at which the intersection point of the barrier with the

potential well decreases in energy per time. We emphasize that we are using

here the assumption that compression is fast compared to the thermal equili-
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bration time, or else the kinetic energies of particles escaping the trap would

be described by a Maxwell–Boltzmann distribution with temperature T .

Once particles have passed the semi–permeable barrier, they collide

repeatedly with the barrier as it moves to the right and reflect from it. They

lose energy to the barrier in this process. The final energy of each particle

can be determined by observing that the process is adiabatic in the sense of

mechanics, so that the action I =
∮

pdq is conserved [35]. Consider a particle

that has kinetic energy K and total energy E as it passes through the barrier.

If the kinetic energy K is not too large, the potential in region B can be treated

as linear, and one computes that the particle has action

I =
2

3

(2mK)3/2

mF
, (2.9)

where m is the particle mass, and F =
∣∣V ′(E)|x:V (x)=E

∣∣ is the slope of the

potential. As the wall continues to move to the right, this action is preserved,

allowing one to determine the final energy e of the particle once the barrier

has swept all the way through the trap. We define in particular the function

K(e, E). (2.10)

which gives the initial kinetic energy of the particle in terms of its total final

energy e, and its initial energy E when it crossed the barrier.

Thus we have the following expression for the distribution of particle

energies f(e) in region B at the end of the compression process:

f(e) ∝
∫ E1

E0

dE
dK

de

θ(K(e, E))θ(ĖT −K(e, E))D(E)e−βE

ĖT
, (2.11)
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Here θ is the Heaviside step function. This expression follows by noting that

the n(E)dE particles with potential energy E cross the barrier with kinetic

energies K evenly distributed between 0 and ĖT. The energies E0 and E1 are

the minimum and maximum intersection points of the semi–permeable barrier

with the potential well, as indicated in Figure 2.6.

The distribution f(e) in Eq. (2.11) does not describe a case of thermal

equilibrium. Once the compression process has terminated, we expect that

the gas will be maintained for times long compared with the thermal equili-

bration time. The total energy of particles in the trap will be conserved in

this process. Thus the end result will be a thermal distribution of particles

with average energy ēf = E/N and temperature Tf that may be found from

the system of three equations with three unknowns (entropy S, free energy F ,

and temperature T ) [36]:

F = −NT ln e
N

∫
e
− 1

kBT

�
p2

2m
+V (x)

�
dxdp
2π~ ,

S = −∂F
∂T

,
E = F + TS.

(2.12)

We characterize this final equilibrium distribution by the efficiency γ, defined

to be the ratio of phase space density before and after compression [37]:

γ =
Γf

Γi

= exp

(
Si − Sf

kBN

)
. (2.13)

Note that for a power–law potential V (x) = Axn, moving from initial average

energy ēi to final average energy ēf the solution of the system (2.12) above

gives the compression (see Appendix B)

γ =
Γf

Γi

=

(
ēi

ēf

) 1
2
+ 1

n

. (2.14)
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Figure 2.7: (a) - Gravitational trap. Final energy. Straight line is the analytic
result discussed in the text. Connected dots is numeric simulation. The wall
is initially placed at E = 10kBT . Each point is average of N = 1000 particles.
(b) - Parabolic trap. Final energy. Straight line is the analytic result discussed
in the text. Connected dots is numeric simulation. The wall is initially placed
at E = 3kBT . Each point is average of N = 1000 particles.

2.4.2 Examples

We now provide examples of two different trapping potentials, and cal-

culate their effectiveness in cooling dilute gases.

First, consider the gravitational trap, defined by

V (x) =

{ −Ax for x < 0
∞ else.

(2.15)

Density of states for the trap is D(E) ∝ √
E. As the semi–permeable barrier

moves through this potential, the shape of region B does not change, and

therefore the kinetic energy of a particle when it passes the barrier precisely

equals its final total energy; that is, K(e, E) = e. Carrying out a computation
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involving the period of motion in such a potential, we find

f(e) = B1exp(−e2/e2
0), (2.16)

where e0 = 2
√

2u
√

mkBT . (2.17)

Here erfc(x) is the complementary error function and B1 is a normalization

coefficient. From this distribution we obtain the average energy after compres-

sion,

ēf =
√

π/2u
√

mkBT . (2.18)

and the efficiency

γ =

(
ēi

ēf

)3/2

=

(
9

2π

kBT

m

)3/4
1

u3/2
. (2.19)

The average energy vanishes as velocity of the wall goes to zero.

As a second example, consider a parabolic potential

V (x) =
1

2
Ax2. (2.20)

In this case density of states D(E) does not depend on energy. Employing Eq.

(2.9)

K(e, E) =

[
3π

2

√
Ee

]2/3

(2.21)

In this case the energy distribution is given by

f(e) = B2

(e0

e

)1/3

Γ

[
5

6
,

(
e

e0

)4
]

, (2.22)

(2.23)

where e0 = ε0

(
u

√
m

kBT

)3/2

kBT, (2.24)
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and Γ[a, x] =
∫∞

x
dte−tta−1 is incomplete Gamma function [38], B2 is another

normalization constant and ε0 = 2 · 23/4(2π)3/2/3π. The average energy after

the process is

ēf = Cm3/4u3/2(kBT )1/4 (2.25)

where C = ε0
2
5
Γ[5

4
] ≈ 2.038. The efficiency in this case has the same scaling

in dependence on parameters only different numerical prefactor

γ =
ēi

ēf

=
1

C

(
kBT

m

)3/4
1

u3/2
. (2.26)

We performed numerical simulations of the process by randomly gen-

erating a particle with a certain energy in the gravitation and harmonic po-

tentials. We solved the equation of motions until the wall reached the lowest

point of the the gravitation potential or the symmetric point in the trap in

the case of the harmonic potential. The procedure was repeated for N parti-

cles with average energy corresponding to the temperature. The results of the

simulation are shown in Fig. 2.7(a) and Fig. 2.7(b). They are in quite good

agreement with the analytic formulas for small velocities.

2.4.3 Comparisons and limitations

Because the one-way wall for an atomic barrier relies upon different

internal states, it truly diminishes the system entropy as a Maxwell demon

would, except for the unavoidable heating due to recoil of a photon motion.

This can be captured as the cooling effect as described here. By comparison, in

a plasma, where analogous one-way walls were proposed in the radio frequency
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regime [39], there is no opportunity to change internal states of the plasma ions.

Instead, the one-way ponderomotive-effect wall operates through Hamiltonian

forces only, thereby conserving phase space. Thus, no matter how the wall is

moved, no real cooling can take place. In the end, if the plasma ions occupy

the same volume in space, they would of necessity occupy the same volume in

velocity space – and hence not achieve a cooling effect. Note, however, that

while the one-way radio-frequency wall does not cool plasma, it can force ions

or electrons to move in one direction only. Thus, plasma current can be driven

by plasma waves, which can be useful for a variety of plasma applications [40].

The limitation of the semi-permeable wall is that it results in heating

of atoms to a single photon recoil mvr = ~kL. As the wall velocity reduces,

the process becomes inefficient. If the temperature of the gas is originally nr

recoils; i.e. kBT = n2
rEr where Er = ~2k2

L/2/m, then assuming that the final

energy is Er we find the slowest velocity with which it is still advantageous to

move the wall in case of the parabolic trap is

u ≈ 0.15

n
1/3
r

vr. (2.27)

In particular, if we start with a temperature of 10 recoils, the minimum wall

velocity comes out to be u = 0.05vr. If velocity relaxation happens on time

scale τ , the size of the trap can then be uτ . For alkalies, τ can be as long

as tens of seconds; hence in this case the size of the cloud is on the order of

centimeters.
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Chapter 3

Quantum Tweezer

It has been suggested in [15] to use a tightly focused laser beam (quan-

tum dot) to extract a small number of atoms from a BEC. It has been shown

that the fluctuation of number of extracted atoms may be negligible — a num-

ber Fock state is created in the dot. Motivated by the current experiments

in progress [41, 42] ,we analyze the original suggestion where the quantum

tweezer is dragged out of the BEC and a modified version where the coupling

between the BEC and the dot is reduced by raising the potential at a fixed

position in the center of the BEC.

A major advantage of the method in comparison to just trapping an

atom from a background vapor [43] is that the atoms are in the ground state of

the potential created by the focused beam and no additional cooling is required.

A small number of neutral atoms in the ground state of tight potentials have

attracted a lot of attention recently as systems to create entanglement between

atoms. In the last section of this chapter, we give a brief overview of the

previous work and discuss how interactions between small numbers of atoms

in quantum tweezers can produce entangled states. We illustrate how these

states may be, for instance, used for multiparticle interferometry [16].
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3.1 BEC and a quantum dot

In this section, we outline the ideas that were originally suggested in [15]

and described in detail in [44]. In particular, we provide the results of the cal-

culations based on the model described in [15, 44] relevant for implementation

with 87Rb atoms, currently being pursued [41, 42, 45]. First, based on the pa-

rameters of a trap, we estimate the maximum number of atoms possible in

the long-lived BEC. For the operation to be effective, the depth of the dot

needs to be chosen so that conditions on length scales are fulfilled. These in-

clude relationship between the width of the BEC boundary, the location of the

avoided crossings and spacing between them. After obtaining the parameters,

we briefly illustrate the idea behind the tweezer in the dragging regime.

3.1.1 Number of atoms in BEC

The maximum number of atoms in a BEC is limited by three-body

losses. When the density is above critical the BEC is short-lived because of

that. We estimate the maximum number of atoms as

N <
ρcrit

ρxρyρz

, (3.1)

where ρcrit is the largest density we may allow, and ρx,y,z is the linear density

of the single atom wave function.

For a BEC to be in quasi-1D regime frequencies of transverse confine-

ment have to be much larger than the chemical potential and the wave function

in the directions of tight confinement can be written as the ground state of a
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harmonic oscillator

ψy,z =
(mω⊥

π~

)1/4

e−
√

mω⊥
π~ x2

2 . (3.2)

In order to make a conservative estimate, we take the largest value of

the wave function to obtain linear densities

ρy,z =

√
mωy,z

π~
. (3.3)

At the same time, confinement in the third direction is very weak, so that

wave function in that direction is given by the Thomas-Fermi approximation

ρx =
1

g1DN
(µ− V (x)), (3.4)

and the maximum linear density in that direction is estimated as

ρx =
µ

g1DN
(3.5)

here g1D = 2as~ω⊥ is the effective nonlinear coefficient in 1D Gross-Pitaevskii

(GP) equation [12].

The chemical potential, µ, is related to number of atoms, N , and the

trap frequency of weak confinement. From the condition for the Thomas-Fermi

size of the BEC µ− V (x) = 0 we find that its half length is

R =

√
2µ

mω2
. (3.6)

On the other hand, the wave function must be normalized to unity

1

g1DN

R∫

−R

(
µ− mω2x2

2

)
dx = 1. (3.7)
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Combining last two expressions we eliminate the half length and obtain an

expression for the chemical potential in terms of the weak trapping frequency,

ω, number of atoms, N , and nonlinear coefficient in 1D GP equation, g1D.

This is given by

µ =

(
9

32
mω2g2

1DN2

)1/3

. (3.8)

Ultimately, we obtain an expression for the maximum number of atoms in the

cloud in terms of the parameters of the problem, given by

N <
8

3
π3/2ρ

3/2
crita

1/2
s ~2

m2ωω⊥
. (3.9)

The typical critical density for alkali atoms when the life-time becomes

smaller than a second is of order ρcrit = 1014 cm−3. Taking for estimation as =

100a0, a0 is the Bohr radius, and frequencies ω = 3 2π ·Hz, ω⊥ = 50 2π · kHz,

we obtain the result which indicates that the number of atoms in the trap

cannot be larger than order of 100. Both frequencies that we took are pushing

the practical limits which may be obtained with dipole optical traps [41, 42].

3.1.2 Adiabatic energy levels

In this chapter, we use units such that ~ = 1, Matom = 1 and unit of

length is Lu = 1µm. The energy and time units are therefore given by

Eu = 118.3 h · Hz = 5.68 kB · nK,
tu = 1.346 ms.

(3.10)

We consider a two mode system: an atom may be described either by

the BEC wave function ψB or by the wave function in the dot ψd that are
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given by equations

[
−1

2
∇2 + Vt(x)

]
ψB(x) + g1D |ψB(x)|2 ψB(x) = µψB(x), (3.11)

and [
−1

2
∇2 + Vd(x)

]
ψd(x) = εdψd(x). (3.12)

The total potential is V (x) = Vt(x) + Vd(x) . For this approximation to be

valid the size of the dot potential has to be much smaller than the size of the

BEC and the metastable ground state in the dot is almost decoupled from

the smoothly varying trap potential. We also require that only this state is

relevant, that is, the dot is tightly focused so that separation between the

levels inside of it is larger than the thermal energy kBT .

The many-body state may be approximated by the expansion in terms

of linear combinations of these two wave functions. As a result, the position-

dependent destruction operator is

Ψ̂(x) = φB(x)âB + ψd(x)âd (3.13)

where â†d creates a particle in the dot and â†B creates a particle in the modified

condensate wave function orthogonal to ψd(x) defined as

φB(x) = ψB(x)−αψd(x)√
1−α2 ,

α =
∫

dxψd(x)ψB(x).
(3.14)

Notice that without loss of generality, we consider the wave functions to be real

valued. The Hamiltonian of the system may be written in the basis of Fock

states inside of the dot |n〉. In this case there are N − n atoms in the BEC.
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We consider the situation with N À n. The non-vanishing matrix elements of

the system Hamiltonian when interaction energy in the dot is comparable to

the binding energy are (for details see [44])

〈n|H |n〉 = nE1 + n(n−1)
2

ν,
〈n + 1|H |n〉 = 〈n|H |n + 1〉 =

√
n + 1∆(n),

〈n + 2|H |n〉 = 〈n|H |n + 2〉 =
√

(n + 1)(n + 2)A,

(3.15)

here ν is the interaction energy of two atoms inside of the dot, and εd is the

depth of the ground state in the dot. The coefficients E, ν, ∆, and A are given

by the following expressions

E1 ≈ εd − µ + V (rd) + 2g1DNJ2,
ν = g1D(J0 − 4J2 + J4) ≈ g1DJ4,

∆(n) = ∆0 + nΓ,

∆0 =
√

N3g1DJ1,

Γ = g1D

√
NJ3,

A = 1
2
g1DNJ2,

(3.16)

with overlap integrals Jn defined as

Jn =

∫
dr[φB(r)]4−n[ψd(r)]

n. (3.17)

Below, the BEC and the dot wave functions are calculated with imaginary

time method [46].

The adiabatic energy levels, i.e. levels for a fixed position of the dot

are shown in Fig.3.1(b). The energy levels for large separation between the

dot and the BEC correspond to Fock states inside of the dot since there is no

overlap between the BEC and the dot wave functions, hence the Fock states in

the dot is the good basis. The avoided level crossing are due to overlap between

the BEC and the dot wave functions, the smaller the overlap the smaller the
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Figure 3.1: (a) Diagonal terms of the Hamiltonian (no coupling). Verticals
dashed lines show (from left to right): 1 → 2 atoms level crossing, BEC
boundary, and 0 → 1 atoms level crossing. Characteristic lengths are shown
to scale. (b) Energy levels of the two mode system (with the coupling present).
Dashed-dotted line shows profile of the BEC in arbitrary units.

gap. The idea of the quantum tweezer operation relies on the fact that for a

certain extraction rate all the avoided crossings are passed adiabatically except

the last one, which is passed non-adiabatically, so that the system stays in the

level that corresponds to a single atom inside of the dot for large separations.

Depth of the dot cannot be chosen arbitrary, since it is important that only

the last level crossing happens outside of the BEC — this is controlled by the

depth of the dot potential as we discuss below.

3.1.3 Depth of the dot and length scales of the problem

Effective operation of the tweezer in the dragging regime relies on cor-

rect relationship between three length scales. These are δ, width of the surface

structure of the BEC; δr, separation of the last two level crossings; and ∆r,
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distance from the edge of the BEC to the last level crossing (see Fig. 3.1(a)).

These lengths scales are approximately given by

δ=
(

1
2ω2R

)1/3
,

δr = ν
V ′(x)|x=R

= ν
ω2R

,

∆r = |εd|
V ′(x)|x=R

= |εd|
ω2R

,

(3.18)

here ν is interaction energy of two atoms inside of the dot, and εd is the depth

of the ground state in the dot. For effective operation of the tweezer applied

to single atom extraction, the width of the surface of the BEC must be smaller

than separation between the last two level crossings, and the second to last

crossing must be inside of the BEC to allow strong coupling between the BEC

and the dot wave functions, while the last level crossing must happen outside

of the BEC. Hence the conditions

δ < δr,
∆r < δr.

(3.19)

From the second inequality we get the condition on the depth of the dot

potential

|εd| < ν. (3.20)

In case of the Gaussian dot well for large depths, the potential may be ap-

proximated by a harmonic oscillator as in

V (x) = −V0 exp

(
− x2

2σ2

)
≈ −V0 +

V0x
2

2σ2
= −V0 +

ω2
eff

2
x2 (3.21)

with effective trapping frequency

ωeff =

√
V0

σ2
. (3.22)
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The depth of the energy level is given by

εd = −V0 +
1

2
ωeff = −V0 +

1

2

√
V0

σ2
. (3.23)

Interaction of the two atoms in the dot could be estimated from the harmonic

oscillator wave function

ν ≈ g1D

∫
|ψd|4 dx =

g1D√
2π

(
V0

σ2

)1/4

, (3.24)

The maximum allowed depth of the dot potential may be estimated either

from a numerical solution of the nonlinear equation

εd = ν, (3.25)

or conservatively as

V0 = g1D√
2π

(
V0

σ2

)1/4

V0,c =
(

g4

4π2σ2

)1/3

.
(3.26)

In the Fig. 3.2(a), we show energy of the ground state of the potential, and

interaction energy, calculated numerically for the Gaussian potential, and an-

alytically from the harmonic well approximation.

We see that for V0 < 3 the conditions of Eq. (3.19) are satisfied. We

choose the following parameters for the calculation

V0 = 2.5, g1D = 4.55, N = 100, ω = 0.0258, (3.27)

here the nonlinear coefficient, g1D, and number of atoms, N , are obtained from

the parameters in previous section. The frequency ω is for 3 2π · Hz is also as
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Figure 3.2: (a) The depth of the bound state in the dot and interaction energy
of two atoms in the dot. Dashed line – ν, energy of two atom interaction in the
dot, solid line - εd, depth of the lowest energy level in the dot. Circles are for
the values calculated numerically for the Gaussian potential with σ = 1, the
lines are for estimated with harmonic well approximation. Vertical lines show
estimation for the maximum depths of the dots for effective 1 atom tweezing
- conservative and from solving nonlinear equation. From numerical values it
is clear that for V0 < 3 the condition in Eq. 3.19 should be fulfilled. (b) The
BEC wave function calculated numerically for the parameters mentioned in
the text. Half length, R, and width of the surface, δ, are shown to scale.

in previous section. From this parameters we numerically calculate the depth

of the ground state in the dot and the length scales.

εd = −1.8, R = 100.8

δ =
(

1
2ω2R

)1/3
= 1.95,

δr = ν
ω2R

= 30.1,

∆r = |εd|
ω2R

= 26.8.

(3.28)

As we see in Fig. 3.1 this length scales are in good agreement with numerical

simulations. The BEC wave function is calculated with imaginary time evolu-

tion [46]. For parameters mentioned above it is shown in Fig. 3.2(b). Chemical
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potential and half-length of the cloud agree very well with analytic formulas

in Thomas-Fermi regime

µ =
(

9
32

ω2g2N2
)1/3

= 1.95,

R =
√

2µ
ω2 = 100.8.

(3.29)

The width of the surface depending on the fit region is δ ∼ 1 to 2. The level

structure for two mode system is shown in the Fig. 3.1.

3.1.4 Conditions for operation

The probability of tunneling between two quantum states at an avoided

crossing depending on a parameter (r in this case) is given by the Landau-

Zener formula [47, 48]

PLZ = exp

(
− δ2

2
(

d∆E
dr

)
v

)
, (3.30)

where δ is the smallest energy spacing, d∆E
dr

is relative slope of the energy levels

with respect to parameter r, and v is the rate of change of the parameter. This

gives the critical rate vad of change below which the system will stay in the

first level

vad =
δ2
ge

9.1d∆Ege

dx

= 0.34. (3.31)

The time to for the dot to travel the half length is

tR =
R

vad

= 294 = 395 ms. (3.32)

This seems to be very reasonable if the lifetime of the BEC is order of a second.

The last level crossing is much smaller than the previous ones. Here we cannot
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get the level separation at the level crossing with numerical precision, but it

is at least two orders of magnitude smaller, so that there must be very wide

plateau in rate of change for the operation.

3.2 Raising the dot in the middle

In a further study of the quantum tweezer problem, we have consid-

ered raising the dot in the center of the BEC. Such a dot can be created with

two blue detuned beams separated by a small distance, producing a M-shaped

potential. In this regime one may consider adiabatic levels of the system in

dependence of the height of the potential. We have found that even for smaller

frequencies of transverse confinement this regime would be more advantageous

than when the dot is dragged out from the BEC: the extraction times are much

smaller and the developed gaps are larger allowing for larger initial temper-

ature of the system. In this section, we describe this approach briefly,since

the main conceptual difference is that instead of changing the position of the

dot its depth is changed. We also study the sensitivity of the procedure on

fluctuation of various parameters.

3.2.1 Dot potential in the center

As in the another approach, we consider the situation in which the

confinement in the transverse direction is much larger than chemical potential

of the BEC. In contrast to the previous approach, the dot potential is given

by two repulsive regions that may be produced by two blue-detuned tightly
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focused beams (see Fig. 3.3(a))

V (x) = V0

(
e−(x− d

2)
2
/2σ2

+ e−(x+ d
2)

2
/2σ2

)
≈

Voff +
ω2

effx2

2
,

(3.33)

where d is the separation between the centers of the beams, and σ = w/2 is

half of the Gaussian beam waist at e−2 level. The frequency of the confinement

in the dot is at a maximum for fixed V0 when d = 2
√

3σ. In this case, the

offset of the bottom of the potential, Voff , and the effective frequency of the

confinement, ωeff , are approximately given by

ωeff = 2
e3/4σ

V
1/2
0 ,

Voff = 2V0e
−3/2.

(3.34)

The position of the dot is stationary in the bulk of the BEC. The

extraction of a small number of atoms occurs when the depth V0 of the well is

increased at some rate.

3.2.2 Adiabatic energy levels and extraction

We calculated the adiabatic energy levels with dependence on V0 based

on an approach similar to that which is described in Section 3.1.2. We used

a two mode many-body system. The BEC and the dot wave functions are

calculated separately (see Fig. 3.3(b)). For the dot, we replace the metastable

M-shaped potential with V-shaped potential representing the middle part. As

the depth of the dot increases this becomes an increasingly better approxima-

tion. The BEC wavefunction is calculated for the full potential that includes

both slowly varying trap and repulsive potentials. At the small depths, the
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Figure 3.3: (a) Potentials used in the calculation: M-shaped – BEC potential,
V-shaped – dot potential. The solid horizontal line shows the chemical poten-
tial, the two dashed lines show one and two particles in the dot energy levels.
The height of the dot potential is V0 = 5. (b) The BEC and the dot wave
functions, the dot wave function is decreased by two orders of magnitude. For
this value of V0, the overlap nearly vanishes.

tunneling couples the two systems and the state of the system does not cor-

respond to a definite number of atoms in the dot. For infinitely large dot

potential the state with n atoms in the dot and N − n atoms in the BEC is

the eigenstate of the system.

For this configuration, we have found that even for smaller frequencies

of transverse confinement the operation is more robust. Smaller values of

transverse confinement frequencies allow for a larger number of atoms in the

BEC, this makes the mean-field approximation better. In Fig. 3.4 we show

adiabatic levels of the system in dependence of parameter V0 with frequency of

transverse confinement ω⊥ = 30 2π ·kHz and a weak confinement of frequency
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ω = 3 2π ·Hz. In this case, performing a similar estimate on maximum number

of atoms as in Section 3.1.1, we find that this can be as large as N = 200.

We proceed with these numbers in the simulation. Notice that in Fig. 3.4,

the levels are separated by a larger amount than in the dragging approach in

Fig. 3.1.
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Figure 3.4: (a) Diagonal terms of the Hamiltonian (no coupling). (b) Energy
levels of the two mode system (including coupling).

In Fig. 3.5, we show the results of the solving the dynamical Schrödinger

equation described by the two-mode Hamiltonian. We start with such a value

for the dot potential such that the BEC wave function overlaps with the dot

wave function substantially. Initially we take the system to be in the lowest

level. The depth is increased linearly in time until the two system decouple

completely. For a range of rates with which the potential is raised all of the

levels are crossed adiabatically except the last one and the system ends up

in the first excited level with a large probability, which for large depths of
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the dot correspond to exactly one particle in the dot and N − 1 particles

in the BEC. The gaps between avoided level crossings are larger than in the

dragging approach. This allows shorter duration of the process: order of tens

of milliseconds.
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Figure 3.5: Probabilities to extract certain number of atoms when the depth
of the dot is changed from V0 = 3 to V0 = 7. Initially the system is in the
ground state.

3.2.3 Variations and parameter fluctuations

In the experiments, the number of atoms in the BEC fluctuates from

shot to shot [41, 42]. We have investigated how this fluctuation will affect the

efficiency of the operation. We have considered a few variations to the proce-

dure described above. We have taken (1) linear ramp of the dot’s depth, and

also (2) quadratic and (3) exponential ramps. (4) Since in the experimental

realization the potential for the BEC may be close to the flat box with infinite

walls [41, 42], we have considered that case as well with linear ramp of the

dot’s depths. In these four cases we have observed how the efficiency of the
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Figure 3.6: (a) Parabolic trap. Linear ramp. Probability to find a single atom
in the trap is shown by thick lines. Thin lines are for extraction of different
numbers of atoms. Legend shows number of atoms in the BEC in each case.
As number of atoms increases the operation region shifts to slower rates. (b)
Same as (a) for quadratic ramp.

operation changes when the number of atoms in the BEC fluctuates around

N = 200. We also have considered the effect of a small variation of other

parameters: (5) a decrease of transverse confinement frequency, (6) a change

of the distance between the beams from optimal, and (7) an increase in σ, the

width of the beams creating the dot.

For a linear ramp of the potential depth given by V0 = Vinit + αt

and the same parameters as mentioned above, we observe that as number

of atoms increases a region of operation increases and shifts to slower rates

(see Fig. 3.6(a)). We define region of operation as the region of rate parameter

α when extraction of a single atom is above 90 percent. As a result if from

shot to shot the number of atoms fluctuates by 20 the region would shrink
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Figure 3.7: (a) Parabolic trap. Exponential ramp. Probability to find a single
atom in the trap is shown by thick lines. Thin lines are for extraction of
different numbers of atoms. Legend shows number of atoms in the BEC in
each case. As number of atoms increases the operation region shifts to slower
rates. (b) Box trap. Linear ramp. Thick lines show probability to extract a
single atom from BECs with different number of atoms. As number of atoms
increases the operation region shrinks.

from a decade to an octave.

As a possible improvement one may take a quadratic ramp instead of

linear one, so that the last level crossing is crossed with larger rate than previ-

ous ones. We take the following form for the ramp: V0 = Vinit + βt2. In terms

of region of operation (in logarithmic scale) for parameter β in comparison

to α the improvement is noticeable but not dramatic: the operation region is

increased to more than a decade (see Fig. 3.6(b)). Similar trends as in the

first case are present: as the number of atoms increases, the region shifts to

slower rates and becomes larger.

Finally, we take yet another form of the ramp: V0 = Vinite
rt. The
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Figure 3.8: (a) Parabolic trap. Smaller frequency of transverse confinement.
Thick lines show probability of extraction of a single atom. Frequency of the
transverse confinement is shown in the legend. (b) Parabolic trap. Size of
the dot is increased by 20 percent from the optimum. The effectiveness of the
operation is reduced a lot. The operation region is shifted to slower rates by
more than a decade.

results of the simulation with this ramp are shown in Fig. 3.7(a). The region

of operation also increases in comparison to linear ramp.

When the frequency of the transverse confinement decreases the effec-

tive interaction strength between the atoms decreases. And since the operation

of the quantum tweezer relies on a large interaction between the atoms it would

become less effective. This is illustrated in Fig. 3.8(a). As the frequency of the

transverse confinement decreases from 30 2π ·kHz to 24 2π ·kHz the operation

region shrinks substantially.

It is also important to keep the dot potential optimal, so that the

frequency of the confinement is maximal. As d, the separation between the
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Figure 3.9: Parabolic trap. Width of the beams creating the dot, σ, is increased
by 20 percent. Distance between them is optimal in terms of new width. The
operation region is shift to slower rates. There are rates when the operation
is more efficient.

beams forming the dot, increases by 20 percent the region of operation shifts

by more than a decade (see Fig. 3.8(b)).

Finally, in Fig. 3.9, we show the effect of larger σ, spot size of the beams

creating the dot. The size of the spot is increased by 20 percent. The operation

becomes more efficient, but the operation region shifts to slower rates. The

effects of the excited states in the dot, which were ignored in the model, may

become more relevant for wider dots.

3.3 Nonlinear atom optics with a small number of atoms
and multiparticle interferometry

As one of the possible application of a small number of atoms extracted

from a BEC in this section, we consider various nonlinear processes with a
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small number of atoms that may combined into multi-particle interferometry

scheme, when interferometric effects observed only when observation of all the

particles participating in the process is made [16]. In the scheme, we suggest

that it is crucial for an atom to be in the ground state of a tightly focused

optical trap – this condition would be automatically satisfied for an atom

extracted from a BEC with the quantum tweezer.

3.3.1 Quantum entanglement: previous experiments and sugges-
tions

Entanglement is at the root of Bell’s theorem, which exposes the differ-

ences between quantum theory and a local classical theory based on elements

of reality [49]. The predictions of quantum mechanics have been experimen-

tally observed with entangled Einstein-Podolsky-Rosen (EPR) pairs [50–52]

as well as Greenberger-Horne-Zeilinger (GHZ) triples [53]. A related conse-

quence of entanglement is the possibility of multiparticle interferometry. Given

a maximally entangled system of N -particles (a “Schrödinger cat” state), a

measurement of interference between different parts of the wave function cor-

responding to a single particle yields random results. It is only when perform-

ing a coincidence measurement on all N particles that an interference pattern

is revealed [54]. Experimental confirmation of this result has been obtained

using photonic EPR pairs [52, 55] and internal states of four ions in the same

trap [56] but no experiments have been performed using a larger number of

particles. The latest generation of experiments with photons rely on paramet-

ric down-conversion, which has the technical disadvantage of an exponentially
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decreasing number of useful counts as N increases. Although multiparticle

entanglement has also been demonstrated using liquid state NMR [57] and

trapped ions [56], these systems couple to the environment quite strongly and

they decohere on a fast timescale. Given that entanglement is the key in-

gredient in all quantum computation and quantum communication schemes,

clean experimental studies of its consequences have become an active topic of

research in the last decade.

In recent years several papers [58–60] have suggested the generation of

entanglement between neutral atoms confined in traps by using their inter-

action in controlled atomic collisions. The atoms are guided in their motion

and their evolution yields the required entanglement of internal states. Other

schemes to achieve this sort of entanglement starting from BECs have been

suggested [61–63].

3.3.2 Nonlinear atom optics processes with a small number of atoms

Here we present two general N -atom nonlinear processes. The first one

is used to convert a Mott-insulator-like (MI) state [58] into a state with all

particles in the (many-body) ground state of a single trap (BEC-like state);

its reverse process converts the BEC state into a MI state. The second process

is used to generate a Schrödinger cat state starting from a BEC state by con-

trolling the splitting of the well. As an application of the processes we discuss

a scheme for multiparticle interferometry with spatially separated paths.

In the first process, which is also stage I of the interferometry setup, we
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Figure 3.10: Schematics of the multiparticle interferometry procedure. Stage I
- creation of N atoms in the ground state of the trap starting with N individual
atoms in N traps. Stage II - creation of “Schrödinger cat” state. Stage III -
spatial separation of the atoms. Stage IV - applying phases, combining on the
beamsplitters and measurement.

start with a collection of N atoms in the ground states of N independent traps

(MI state). These separate atoms can be extracted from a reservoir using a

quantum tweezer as discussed above. Alternatively, single atoms stored and

detected in micro-optical traps (which have been experimentally reported [43,

64] but are in excited states of the trap) can be Raman cooled individually

to the ground state. Given that the storage and detection of a small number

of atoms in optical dipole traps has been recently reported [43, 64], one could
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alternatively Raman cool individually trapped atoms to the ground state.

The BEC state (stage I, Fig. 3.10) is achieved by bringing together

the N wells adiabatically if the interaction between atoms is repulsive, as will

be shown in detail below. This is a consequence of the quantum adiabatic

theorem, since the MI state is the ground state when the wells are far apart.

The evolution is then represented by

|w1 w2 . . . wN〉 → |ΨI〉 = |w w . . . w〉, (3.35)

where the states are properly symmetrized bosonic states.

In the second process (stage II of multiparticle interferometry) the in-

teraction is attractive. Switching of the interaction sign in the interferometry

process can be done by using a Feshbach resonance [65–67]. Starting from the

BEC state, we slowly split the well into two approximately equal microtraps,

which we label as L and R. The lowest energy states are then the ones having

all atoms in the left or in the right well. Since initially the system is in the

ground state, by separating the traps at some slow rate v, when the wells

are far apart there exist a linear combination of these two nearly degenerate

states, i.e. the system is in the Schrödinger cat state

|ΨI〉 → |ΨII〉 = α|LL . . . L〉+ βeiθ|RR . . . R〉, (3.36)

with α, β, and θ real. For perfectly symmetric traps, α = β and θ = 0, but

any asymmetry makes these parameters rate dependent, as will be discussed

in detail below.
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Additional processes are needed to realize multiparticle interferometry.

During stage III, the interaction is switched back to repulsive and each of the

two traps is separated to N . This stage can be seen as the inverse of stage I

applied to the wells L and R. Again, if the separation is done adiabatically

the system remains in the ground state which in this case corresponds to a

single atom in each one of the wells. The state is now

|ΨII〉 → |ΨIII〉 = α |L1L2 . . . LN〉+ βeiθ |R1R2 . . . RN〉 . (3.37)

Subsequently, the atoms in wells derived from the original R well are subjected

to additional phase shifts φ1, φ2 . . . φN , which can be applied, for example, by

adjusting the depth of the wells adiabatically.

In the final stage IV of the scheme, we combine states Li and Ri in a

50-50 beamsplitter [68]. Notice that in the experiment, only one of these two

is occupied, so the interatomic interaction plays no role in this stage.

3.3.3 The signature of multi-particle interferometry

We denote the outputs of each beamsplitter by Ai and Bi and assign

a value of +1 to the measurement of an atom in channel Ai, and −1 to the

measurement of atom in channel Bi. The probability, P (+1), that the product

of all measurements gives +1 (for instance A1B2B3 in the case of three atoms)

is (1− αβ cos (∆ + θ)) /2, where ∆ =
N∑

i=1

φi. The probability for the product

to be −1 is P (−1) = 1 − P (+1), hence the expectation value over a large

number of measurements is −αβ cos (∆ + θ). We would like to stress that a

56



1.0 1.5 2.0
-30

-25

-20

-15

-10

-5

 

 

E

d

Figure 3.11: Stage I: adiabatic energy levels for three atoms in three wells with
repulsive interaction as a function of d. The other parameters of the potential
are V0 = 10, σ = 0.5, U0 = 10, q3 = −q1 = 10−4, q2 = 0.

correlated measurement of less that N atoms does not show any dependence

on phase and appears random.

3.3.4 Model

A number of experimental techniques under development, such as mag-

netic microtraps [69, 70], hollow optical fiber atom guides [71–73], and optical

microtraps [74], allow the kind of atom manipulations discussed here. Fes-

hbach resonances in ultracold atomic collisions [65–67] or the fact that the

scattering length for alkali atoms depends on the internal state may be used

to modify the effective interaction between atoms, even to convert it from

repulsive to attractive.

In order to obtain the relevant parameters for the operation of the in-

terferometer, we study the evolution of an N particle system using optical
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microtraps. As an example, we numerically solve the Schrödinger equation

in the case of three atoms in a quasi-1D configuration. As for the quantum

tweezer this is achieved by strongly trapping the atoms in the perpendicular

dimensions, effectively freezing these degrees of freedom. We scale the equa-

tions choosing units of length Lu = 2 µm, of energy Eu = ~2/ (2MuL
2
u) and

of time tu = ~/Eu in this section. The particle interaction is represented by a

delta-function potential

U(x1, x2) = U0δ(x1 − x2). (3.38)

The atoms are also subject to external potentials due to the optical traps,

which in each stage are

VI,III(x, d) =
3∑

i=1

(1 + qi)V (x, (i− 2)d),

VII(x, d) =
2∑

i=1

(1 + qi)V (x, (i− 3/2)d),
(3.39)

with

V (x, d) = −V0 exp

(
−(x + d)2

2σ2

)
. (3.40)

The qi parametrize the asymmetry between the intensities of the beams defin-

ing the different wells; we assume that these are 10−4.

3.3.5 Discussion

Let us consider first the evolution during the first and the third stages

of the operation. There are four different energy scales in the problem. The

first one is the energy difference between the energy levels localized in different
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wells, which we can estimate as Easym ≈ qV0. The second is the energy required

to move one of the atoms to an already occupied well, estimated to be Eint ≈
U0/σ0 where σ0 = (V0/σ

2)1/4 is the width of the wave function in a well. The

third scale is the energy Eexc ≈ σ−2
0 required to put one of the atoms in an

excited state of one of the traps. The last energy scale (ED ≈ (π/ND)2) is the

energy required to excite the atoms out of the ground state when the distance

between the wells is D ≈ 2σ, at which time the trap can be approximated by

a square well of width ND. We consider operation in the regime in which

Easym ¿ Eint, Eexc, ED. (3.41)

Fig. 3.11 shows the dependence of the adiabatic levels on the separation d

during this stage. The presence of the small asymmetry in this stage does not

affect the nature of the ground state, which is non-degenerate. Joining or sep-

arating the wells at a slow speed keeps the system in the ground state, i.e. the

lowest curve in the figure. We can estimate the rate at which the adiabaticity is

lost by applying the Landau-Zener formula [47, 48], vad ≈ (∆Egap)
2/(dE/dx).

The slope can be estimated as
√

NV0/σ
2. The size of the gap depends on

which of the three large energy scales in (3.41) is the smallest. In the example

that we are presenting, all three are roughly the same order of magnitude.

The probabilities |ai|2 = |〈ψi|ψ〉|2 to find the system in the states |ψi〉 at the

end of the evolution is plotted in Fig. 3.12 as a function of the speed v. In

our example, the critical rate is vcI,2 = 0.35; the probability to find the system

in other states is less than 0.01. For multiparticle interferometry, it is critical

not to accumulate an additional phase during the third process due to the
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Figure 3.12: Stage III: probabilities to find the system in the adiabatic states
after a single well with three atoms is split into three wells with an atom per
well (dfinal = 3.0) as a function of the speed v. The energy levels are the
ones shown in Fig. 3.11. For velocities smaller than denoted with dashed line
probability to state in the ground state is larger then 0.99, for velocities larger
than denoted with dashed-dotted line dephasing is less then 0.1. For stage I
the dynamics are very similar except there is no limit on how slow the process
could be done.

asymmetry between the right and left set of wells. This gives rise to a lower

bound for the allowed velocity, as explained below. For the parameters chosen

in the figure this is vcI,1 = 0.09.

Between these stages and stage I, we need to change the sign of the

effective interaction between the particles. For the cases which we are consid-

ering, the particles remain in the ground state with very high probability (of

the order of 99%) even if this change is performed suddenly.

During stage II, the adiabatic energy levels as a function of d are

shown in Fig. 3.13. Once again, we have four energy scales, which can be

approximated by Easym ≈ NqV0, Eint ≈ (N − 1)|U0|/σ0, Eexc ≈ σ−2
0 , and
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Figure 3.13: Stage II: adiabatic levels of three atoms in two wells in the case
of attractive interaction for different values of the separation d . The other
parameters of the potential are V0 = 30, σ = 0.5, U0 = −4, q1 = 0, q2 = 10−4.

ED ≈ (π/2D)2. We work in the regime in which (3.41) is valid. Separating

the wells adiabatically maintains the system in the ground state, which cor-

responds to all N atoms being in the lowest of the two wells, which is not

the desired state. In order to mix the lowest two energy states we need to

evolve the system non-adiabatically with respect to the lowest gap but at a

slow enough speed to remain adiabatic with respect to the larger gap. Be-

low vcII,2 = 0.27 the probability to tunnel to these excited states is less then

0.01 and entanglement is obtained with αβ = 0.99 or larger. On the other

hand, the asymmetry yields a dephasing between the two parts of the wave

function θ = Easymtsep, where the separation time is inversely proportional to

the velocity v. Allowing a maximum dephasing φmax, we must go faster than

vcI,1 ≈ qV0,IIIN/φmax. This calculation assumes, however, that the asymmetry

is constant. In a practical situation, q is driven by fluctuations in the laser
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Figure 3.14: Stage II: full lines are probabilities to find the system in the
adiabatic states after the separation of one well with three atoms to two
(dfinal = 3.0) as a function of the speed v. The dashed line is θ. The in-
teraction is attractive and the parameters are the ones used in Fig. 3.13. For
velocities in the interval between vertical lines the desired state is prepared
with probability of 0.99 and dephasing smaller than 0.1.

power, and consequently the phase θ grows diffusively, as the square root of

tsep instead of linearly, making the condition less restrictive.

The only two conditions for the applicability of the method are related

to the asymmetry of the potential. As long as condition (3.41) is met and as

long as vc,2 is larger than vc,1, there is a range of velocities for which the opera-

tion is possible. The critical velocities have a different dependence on N , so for

fixed values of the parameters defining the potential and the interaction, there

is a maximum number of atoms for which this happens. However, by choosing

a different set of parameters this condition can be relaxed. In particular, the

strong N−2 dependence of the preparation of the MI state can be overcome
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Figure 3.15: Tunneling probabilities for a beamsplitter described by Eq. 3.42
(τ = 10, V0 = −15, d2 = 5). It is advantageous to work at largest distance,
providing a wavepacket splitting distance dopt = 2.25.

by separating the atoms in series instead of doing it parallel (for N = 2n, we

can think of n steps in which each well is split into two).

The sign of the interaction is changed when all the particles are in

the same well. As long as equation (3.41) holds, the system remains in the

ground state with very high probability (around 99% in our example) even if

the change is done suddenly . A single particle 50-50 beamsplitter does not

rely on atom-atom interaction and may be implemented by bringing two wells

to some finite distance for a given time [68]. Transmission probabilities for a

beamsplitter in which the parameter d changes in the form

d(t) = d2 − d2 − d1

cosh(t/τ)
(3.42)

are shown on the Fig. 3.15.
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3.3.6 Experimental parameters

Finally, numerical values for realistic experimental parameters are given.

In the model described above, the effective interaction between atoms is de-

termined by the scattering length a and the strength of the confinement in the

transverse direction. The frequency ω⊥ of the confinement in the case in which

the system stays in the ground state of transverse motion may be expressed

in terms of the dimensionless interaction parameter U0 used above [58] as

ω⊥ =
U0~

4 |a|MuLu

. (3.43)

Hence it is desirable to use atoms with the largest product of mass and scat-

tering length possible. In Table 3.1 we present the rescaled values used in

the calculation for two workhorses of cold atom experiments, sodium and ru-

bidium. The magnetic fields needed to observe Feshbach resonances in alkali

atoms are typically hundreds of gauss [65–67]. In the proposed scheme for mul-

tiparticle interferometry one should work on the side of the resonance where

the scattering length changes sign to avoid the losses associated with crossing

the resonance.
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Table 3.1: Parameters of the numerical estimates in dimensional units. For the
estimates we take scattering lengths of 23Na at = 65a0 and 87Rb at = 106a0

in triplet states with no magnetic field with a0 being the Bohr radius [75]; we
assume that near a Feshbach resonance the values will be of the same order of
magnitude.

Parameter Na Rb Units
ω⊥ 79.9 13.0 2π kHz
vcI,1 62.2 16.5 µm/s
vcI,2 242 64.0 µm/s
vcII,1 117 31.1 µm/s
vcII,2 186 49.4 µm/s
V0,II 2.47 0.665 h×kHz
dopt 5.16 5.16 µm
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Chapter 4

Optical Lattices

4.1 Berry phase effects in asymmetric optical lattices

4.1.1 Semiclassical equation of motion and Bloch theorem

The semiclassical equations of motion are a cornerstone in the theory

of charge transport in metals and semiconductors [76]. They relate the group

velocity of the electrons to the local band curvature and the change in the

lattice momentum to external forces. The standard form of the equations

found in textbooks until recently is

ṙc =
1

~
∂E(kc)

∂kc

, (4.1)

~k̇c = F + 2mṙc × ω(rc). (4.2)

As we have discussed earlier, the Coriolis force term in the second equation

that arises in a rotating reference frame is equivalent to a magnetic field Beff =

2mω/e for electrons.

For semiclassical equations of motion to be correct, a particle wave

packet must have a size much larger than a unit cell of the lattice. In this

case it is localized in the momentum space to a size much smaller than the

Brillouin zone (BZ) . The wave packet can be represented as a superposition

|Ψ〉 =

∫

BZ

dk f(k) |Ψk〉 (4.3)
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of the eigenstates of the Hamiltonian in the absence of external force F:

Ĥ0 |Ψk〉 = Ek |Ψk〉 . (4.4)

The envelope function is centered around kc and the center of the wave packet

in space is

xc = 〈Ψ|x |Ψ〉 . (4.5)

Stationary eigenstates of the Schrödinger equation in a periodic poten-

tial satisfy Bloch theorem: they are plane waves ekr modulated by a function

uk(r) called a Bloch state that has a periodicity of the potential. This may be

written as

|Ψn,k〉 = ekr |un,k(r)〉 . (4.6)

In the last expression, for generality, we leave the band index n, even though

in the future discussions we will be mostly concerned with dynamics within a

single band and omit the index. An important condition for the semiclassical

approach to be correct is that force must be small so that tunneling between

bands does not happen and the dynamics is restricted to a single band. We will

discuss this criteria quantitatively in the following sections. By substituting

the last expression into the Schrödinger equation we can obtain the eigenvalue

equation for the Bloch states:

H0 |uk〉 =

[
1

2m
(p + ~k)2 + Vlatt(r)

]
|uk〉 = Ek |uk〉 . (4.7)
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4.1.2 Berry curvature and self-rotation

Very recently, it has been shown that the semiclassical equations of

motion need to be modified to include corrections due to geometrical (Berry)

phase [77–79]. The equations become

ṙc =
1

~
∂ES(kc)

∂kc

− k̇c ×Ω(kc), (4.8)

~k̇c = F + 2mṙc × ω(rc). (4.9)

The first major difference is the presence of the Berry curvature Ω. It is a

symmetric analog of angular velocity ω (or magnetic field in case of electrons)

if we exchange the rc and kc variables. The second correction is to the band

energy, which must contain a term proportional to the self-induced angular

momentum (self-magnetization) S. This term is proportional to the angular

momentum of the wave packet with respect to its center

ES(kc) = E(kc) + S(kc) · ω(rc) (4.10)

S =

∫
dr (r− rc)× J(r), (4.11)

where J(r) is the current density [77] given by

J(r) =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) . (4.12)

Both the Berry curvature and the self-induced angular momentum depend

on a position of the wave packet in the momentum space kc and are readily

calculatable from the Bloch states of the stationary problem

Ω (kc) = i

〈
∂u

∂kc

∣∣∣∣×
∣∣∣∣
∂u

∂kc

〉
, (4.13)

S (kc) = i
m

~

〈
∂u

∂kc

∣∣∣∣× (H0 (kc)− E (kc))

∣∣∣∣
∂u

∂kc

〉
. (4.14)
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The Berry curvature can be nonzero only for complex u(r). As long as the

semiclassical approximation holds, this result is independent of the distribu-

tion f(k) used, and hence of the width of the wave packet in real space. In

particular it is independent of time for a fixed value of kc, that is, the wave

packet maintains a constant angular momentum as it spreads on the lattice.

In many circumstances these corrections to the semiclassical equations

of motion do not need to be taken into consideration because of constraints

imposed on them by the symmetry of the Hamiltonian. If the system possesses

time-reversal symmetry, then both vectors Ω and S are odd functions of kc.

On the other hand, if it possesses inversion symmetry then they are even

functions of kc. This implies that in systems with both symmetries they

vanish throughout the Brillouin zone.

The semiclassical equations of motion in (4.8), (4.9) have been suc-

cessfully applied to the quantum Hall effect in magnetic sub-bands [77, 78]

and to the anomalous Hall effect in ferromagnets [80–82]. Sundaram [79] has

considered a tight-binding model of two-dimensional asymmetric honeycomb

lattice. It has clearly illustrated some physical consequences of the corrections

to semiclassical equations. This model can be used as a starting point for first-

principle calculations similar to [82] applied to thin films of semiconductors

such as InSb that are grown on GaAs (100) surfaces [83] or allotropic forms of

BC2N [84]. We discuss how this model can be realized almost ideally with ul-

tracold atoms in optical lattices below. In what follows, we first present some

analytical results from the tight-binding model and then discuss the results of
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the numerical calculations in continuous potentials.

4.1.3 Tight-binding honeycomb lattice

For a periodic potential it is possible to define a basis of Wannier func-

tion [85]. These are orthogonal functions centered at each lattice site (position

R) and associated with a band n. They may be written as

|wn(R)〉 =
1√
N

∑

k

e−ikR |Ψn,k〉 . (4.15)

Since the Wannier function from different bands are orthogonal, they provide

convenient basis for expansion of the Hamiltonian especially when the potential

is sufficiently deep so that the Wannier functions decay exponentially. Quite

often the dynamics may be limited to a single band and the Hamiltonian can

be written as

Ĥ =
∑

RR′
|w(R′)〉 〈w(R′)| Ĥ |w(R)〉 〈w(R)| . (4.16)

As the depth of the lattice increases, neighboring Wannier functions overlap

less and only nearest between neighboring coupling may be assumed. This is

so called tight-binding approximation [85].

Because the Berry curvature effects arise only in spatially asymmet-

ric potentials, we consider here a simplest two-dimensional asymmetric tight-

binding model — the honey-comb lattice with two sites per unit cell each with

different depth. The sites are called A and B as in Fig. 4.1. The lattice is

defined by the lattice vectors a1 =
√

3aêy and a2 = 3/2 aêx +
√

3/2 aêy, where
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Figure 4.1: (a) Asymmetric honeycomb lattice for the tight-binding model.
Sites A and B have different depth. Tunneling occurs only between sites
connected by the lines. Lattice vectors a1 and a2 define the unit cell. The cor-
responding Brillouin zone in reciprocal space is shown in (b); due to symmetry
all points marked by a circle correspond to the same K point.

a is the lattice constant. Here we consider only tunneling between neighboring

sites, that is, tunneling only between sites of different type. The tight-binding

Hamiltonian in this case may be written as

ĤTB =
∑
Rs

εs |w(Rs)〉 〈w(Rs)| − h
∑

RR′s

(|w(RA)〉 〈w(R′
B)|+ h.c.). (4.17)

Here, summation is over cite type s and vectors Rs = ma1+na2+Rs,0 that are

associated with each site. Summation in the second term is only over nearest

neighbors. On-site energies εA and εB and hopping element h are given by

εs = 〈w (Rs)| Ĥ |w (Rs)〉 , (4.18)

h = 〈w (RA)| Ĥ |w (RB)〉 . (4.19)
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The analytic solutions for the Hamiltonian (4.17) can be found by

switching to the basis of the Bloch states

|φs(k)〉 =
1√
N

∑
Rs

eikRs |w(Rs)〉 . (4.20)

In the basis of
∣∣φA(k)

〉
and

∣∣φB(k)
〉
, the Hamiltonian then becomes

H(k) =

(
εA V (k)

V (k)∗ εB

)
. (4.21)

The off-diagonal term is given by

V (k) = −h(1 + eik·a1 + eik·a2). (4.22)

Diagonalizing the matrix we find band energies

ε±(k) = ±
√(εg

2

)2

+ |V (k)|2, (4.23)

where we have chosen the reference level for energy in the middle of the gap

between two bands defined by εg = εA − εB. The band structure along high

symmetry path is depicted in Fig. 4.2 (a). The lowest point of the Γ point.

For non-equal depths of the sites the gap between the bands appear. The two

bands come closest at point K, where k0 = 4π/(3
√

3a) ey and V (k0) = 0. At

that point, the separation between the bands is smallest and equal to εg.

In two-dimensional systems, the Berry curvature and the angular mo-

mentum are directed along the perpendicular (z) direction. Their values for

the tight-binding model described above are

Ω(k) =

√
3εgh

2a2

16E3
+

[sin(
√

3kya)− 2 sin(
√

3kya/2) cos(3kxa/2)], (4.24)

S(k) =
M

~
(2E+)Ω(k). (4.25)
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Figure 4.2: (a) Dispersion for a tight binding model with εg = h = 1. (b)
Berry curvature Ω (left axis) and angular momentum S (right axis) in this
case.

An intriguing relation at the K point, where S and Ω are minimum, is

S(k0) = ~
M

M∗ , (4.26)

where M∗ is the effective mass given by M∗ = −2εg~2/(9h2a2).

The angular momentum S and Berry curvature Ω are plotted in recip-

rocal space in Fig. 4.2. Both of these quantities attain their maximum absolute

value at k0 and all symmetrically located points. The value attained diverges

as the gap size εg goes to zero. The angular momentum is not quantized.

The angular momentum arises because of current distributions within

the wave packet. With the tight-binding model, this can be illustrated ana-

lytically [79, 86]. In Eq. (4.3) we take a Gaussian envelope of the Bloch states

f(k) =
1√
πσk

e
− (k−k0)2

2σ2
k , (4.27)

with the spread σk much smaller than the size of the Brillouin zone. Envelopes
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fA(R) and fB(R) of the wave packet in space defined as

|Ψ〉 =
∑
R

fA (R)
∣∣wA (R)

〉
+

∑
R

fB (R)
∣∣wB (R)

〉
(4.28)

to the first order in σk are

fB (R) ≈ 2
√

πσke
k0Re−

R2σ2
k

2 , (4.29)

fA (R) ≈ haσ2
k

εg

ei 2π
3 R (êx + iêy) fB (R) . (4.30)

The population of B sites is described by a Gaussian multiplied by a phase

factor. In contrast, population in A sites vanishes at the center of the wave

packet and reaches maximum at the distance R ≈ 1/σk. The tight-binding

equivalent of the current density in Eq. (4.12) is the bond current IRR′ along

the bond between two neighboring sites A and B located in the cells associated

with R and R′. This is given by

IRR′ = − i

~
h

(
fA∗(R)fB(R′)− fA(R)fB∗(R′)

)
. (4.31)

The bond current is therefore zero in the center, reaches a maximum absolute

value at the distance R ∼ 1/σk and vanishes at infinity. This is illustrated

in Fig. 4.3. The phase of the envelope changes by π as one goes around the

circle but the momentum does not quantize. The continuous wave function

has circulation in each unit cell.

4.1.4 Continuous honeycomb lattice

We confirm and extend the understanding obtained from the tight-

binding model to a continuous potential. Since we are motivated by potential
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Figure 4.3: Distribution of the bond currents in the tight-binding limit for a
wave packet centered at K point.

observation of the effects with ultracold atoms, we consider the following po-

tential

Vlat(r) =
6∑

i=1

Ai cos(ki · r + φi), (4.32)

with the following parameters

A1 = A2 = A3 = V0 = −4.664,
A4 = A5 = A6 = V1 = −4,

φ1 = −φ2 = φ3 = 1.1,
φ4 = φ5 = φ6 = 0.

(4.33)

In case of ultracold atoms this potential can be implemented by interference

of six beams or by holographic techniques. The beam wave vectors are given

by
k1 = −2π/3a êx + 2π/

√
3a êy, k2 = 4π/3a êx,

k3 = k1 + k2, k4 = k1 − k2,
k5 = 2k1 + k2, k6 = k1 + 2k2.

(4.34)

In this section, we use a system of units such that ~ = M = a = 1. The

ratio between the two amplitudes V1 and V0 control the width of the potential
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Figure 4.4: (a) A continuous potential seen by the atoms; the dark regions
correspond to the lowest values. (b) Berry curvature in the reciprocal space.
It is peaked at the points where the bands come close one to another.

wells, the phase φ controls the ratio between the depths. For the symmetric

potential α = π/3. Here we use α = 1.1. In Fig. 4.4 (a), we show the

continuous potential. It is equivalent to the tight-binding model for infinitely

large potential depths when the atoms become tightly localized in the wells.

The quantum dynamics of a wave packet is simulated numerically. For

the simulations of the continuous time-dependent Schrödinger equation we

use the split-operator fast Fourier transform approach, details of which, for

example, are described in [87]. The steps of the simulations closely follow a

possible experimental implementation. First, we start with a Gaussian wave

function with the size much larger than the spacing between the sites. This

may be a ground state of an atom in a harmonic potential. For the moment, we

do not consider effects of interaction between particles and will return to this
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discussion later. The lattice potential is introduced adiabatically. After which

a uniform gradient in the potential V (x, y) = fy is added. This gradient may

be implemented experimentally either with a constant force f or by chirping

the frequency of the beams that results in lattice acceleration a and effective

inertial force f = M/a. The wave packet starts moving in reciprocal space

along the direction of the acceleration and performs Bloch oscillations in real

space.

Berry curvature and lattice-induced angular momentum for deep op-

tical continuous potential are very similar to the tight-binding case. In Fig. 4.4

(b) we show Berry curvature calculated for the continuous potential of Eq. (4.32)

for V1 = −4, V0 = −4.664. Similar to the tight-binding model, it has peaks

at the points where two bands come close to each other. The lattice-induced

angular momentum is also very similar. After the force is applied to the wave

packet it drifts in reciprocal space at a constant rate and experiences different

Berry curvatures at different times. Due to the transverse force that arises be-

cause of the Berry curvature in the first semiclassical Eq. (4.8) the wave packet

drifts in the perpendicular direction. The displacement in the perpendicular

direction is proportional to the integral of the Berry curvature along the path

∆rc = −
∫ k

0

dk′ ×Ω(k′). (4.35)

The motion of the wave packet center obtained with the continuous simulation

of the wave packet dynamics is shown in Fig. 4.5 (a). When the force is small

enough and tunneling between bands is neglected, the center of the wave packet
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Figure 4.5: (a) Motion in real space of the center of the wave packet. (b)
Angular momentum as a function of the position in reciprocal space, calculated
for an acceleration f = 0.05 applied along the y-direction.

undergoes Bloch oscillation in real space from point I to point III and then

back to point I. This is in contrast with a symmetric optical lattice where

the oscillation occurs only along the direction of the drive here because of

the Berry curvature it is also oscillating in the transverse direction. Such

oscillations may be measured by a direct observation.

Another observable effect is associated with the lattice induced angular

momentum. Here we do not rotate the lattice and it does not enter the second

semiclassical equation of motion Eq. (4.9). As the wave packet moves in the

reciprocal space angular momentum does reveal itself as the distribution of

currents around the center of the wave packet. In Fig. 4.5 (b) we show average

angular momentum with respect to the center along the trajectory. At the
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Figure 4.6: (a) Averaged angular momentum distribution calculated for the
continuous potential when the wave packet reaches k0. The averaging assumes
an experimental precision in position measurement of σinst = a. (b) Effect of
non-adiabaticity. The beating frequency corresponds to the gap between the
two lowest bands.

point II the induced angular momentum is the largest. Its directions are on

two halves of the trajectory – from point I to point III and in opposite direction.

Fig. 4.6 (a) shows averaged angular momentum of the atoms in the continuous

case at the corner of the Brillouin zone at point K. It is very similar to the one

obtained with the tight-binding model in Fig. 4.3. The density current varies

from positive to negative values withing the unit cell, averaging assumes finite

spatial resolution. The velocity distribution of the atoms can be measured by

Doppler-sensitive Raman transitions [23]. In this way, atoms with a selected

velocity are driven into a dark state, and one can remove the remaining atoms

by shining resonant light. By imaging the remaining atoms, one may obtain

the real space distribution of atoms with the given velocity. By changing the

detuning, different sets of atoms are observed.
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Adiabaticity is crucial during the process. An adiabatic criterion can

be estimated based on the Landau-Zener formalism for tunneling between two

levels with an avoided crossing. In this case the probability to tunnel is given

by [47, 48]

P = exp

(
−πδ2

2α

)
, (4.36)

where δ is the gap between the states and α is the relative slope . This criteria,

when a lattice potential with amplitude V0 is introduced in time tV , becomes

δ2tV
V0

À 1, (4.37)

where δ is the gap between the first and the second bands at k = 0, since

originally the width of the wave packet in the momentum space is much smaller

than the size of the Brillouin zone (note that units with ~ = 1, are used). The

maximum “force” of the drive may be similarly estimated as

εg

∂ε
∂k

F
À 1. (4.38)

Here εg is the smallest gap between the first and the second bands, and ∂ε
∂k

is

the largest slope of the dispersion. An alternative expression may be derived

based on the WKB approximation [85]

ε
3/2
g m

1/2
eff

F
À 1 (4.39)

where the effective mass, meff , can be estimated from the dispersion as well.

In the simulations we made sure that the adiabaticity criteria are fulfilled. We

checked it numerically by increasing the driving force and observing the break

80



down of the adiabaticity. In Fig. 4.6 (b) the value of the angular momentum

of the wave packet along the trajectory for the case when the driving force is

just above the critical value. The observed beating frequency is given by the

gap between the bands.

4.2 Discrete solitons

4.2.1 Introduction

Periodic lattices with substantial nonlinearities appear in various sys-

tems such as biological molecules [88], nonlinear optical wave guides [89], solid-

state materials [90, 91], and Bose-Einstein condensates (BECs) [92]. In these

systems, interplay between linear coupling effects among adjacent sites and

nonlinearity can result in a self-localized state — lattice or ‘discrete’ soli-

ton [88–92]. Until recently direct observation of discrete solitons has been per-

formed only in one-dimensional optical wave guides [89, 93, 94]. Yet in systems

with dimensionality more than one a number of fundamental phenomena, such

as vortex lattice solitons, bright lattice solitons that carry angular momentum,

are expected [95]. Recently a novel experimental technique to produce pho-

tonic crystal by optical induction allowed the authors of Ref. [96] to directly

observe two-dimensional discrete solitons.

As was discussed in the introduction, similar to dynamics of the opti-

cal pulses in nonlinear photonic crystals, the evolution of a BEC in an optical

lattice is governed by a nonlinear Schrödinger equation (NLSE) with peri-

odic potential, hence many predictions observed with respect to photonics
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are expected with a BEC. In the case of BEC, the nonlinear coefficient can

be either positive or negative for repulsive or attractive atomic interaction

respectively, with most of the experiment being done with repulsive atoms.

One-dimensional solitons in the absence of periodic potential were observed in

attractive BEC [97, 98]. One-dimensional matter-wave discrete solitons in op-

tical lattices were studied extensively theoretically both for attractive and re-

pulsive interactions [99–101]. Decoherence of the repulsive BEC during Bloch

oscillation in a 1D optical lattices observed in experiments [102–104] was re-

lated theoretically to generation of discrete soliton [92, 105] (similar decoher-

ence phenomena in two- and three-dimensional (3D) optical lattices have been

reported [106, 107]). The observation of the matter-wave discrete soliton was

reported in 1D [108].

In contrast to free space, stable localized modes are possible in periodic

potentials in any dimension both for attractive and repulsive interaction. In

the case of a self-repulsive BEC generation of multidimensional matter-wave

discrete solitons due to a modulational instability has been predicted theoret-

ically [109], and the existence and stability of 2D discrete soliton have been

studied [110]. Using a variational approximation and direct numerical sim-

ulation the authors of Ref. [111] demonstrated that in the case of attractive

interaction above the threshold number of atoms, the initial BEC wave packet

placed in an optical lattice collapses into multidimensional discrete solitons.

The effect of the lattice for quantum wave packets much larger than the

unit cell of the periodic potential, may be replaced by the effective mass. In
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which case, even for repulsive interaction, the wave function envelope dynamics

may be governed by the NLSE with negative (self-focusing) nonlinearity [112,

113]. As we discussed in the previous section, the center of the quantum wave

packet in momentum space can be easily shifted in a controlled manner by

accelerating the lattice (for instance by chirping the relative detuning of the

beams creating the lattice) as was demonstrated in early experiments with

cold atoms [14] and later with BEC [114]. Recently, the effects of negative

effective mass have been studied with 87Rb condensates in one dimensional

optical lattices [115].

In 2D above critical value of the self-focusing nonlinearity wave packet

collapses. The nonlinearity in case of a BEC is determined by the number of

atoms, scattering length, effective mass in the lattice and frequency of trans-

verse confinement. When wave packet size becomes comparable to the size of

a unit cell, the effective mass approximation breaks down. If the nonlinearity

is close to that one for which a discrete soliton is supported by the band gap,

part of the wave function is transferred to discrete soliton and part decays into

linear waves. This is a general phenomenon for NLSE when a state is prepared

sufficiently close to the localized state [116].

We first obtain a criteria for critical value of interaction using vari-

ational approximation for the wave packet envelope dynamics [117, 118] and

effective mass approximation [112, 113]. We also show that this critical nonlin-

earity is associated with the smallest nonlinearity for which the lattice supports

discrete solitons [119–121]. This value is equal to the only nonlinearity with

83



which a stationary solution is possible for the free space 2D NLSE with the

corresponding effective mass. In what follows, we illustrate discrete soliton

generation with a self-repulsive BEC using two numerical examples: square

optical lattice for the parameters considered in [110] and asymmetric honey-

comb lattice. The latter was originally considered in the previous section as

a system to study effects of Berry curvature in periodic potentials [86]. For

both systems, we simulate all the stages of the possible experiments: adiabatic

introduction of the lattice, half of the Bloch oscillation and a wait period for

the wave function to collapse to discrete soliton.

4.2.2 Variational Approximation

The variational approximation for the NLSE was originally developed in

nonlinear optics (extensive review was published in [118]). It was successfully

applied to describe BEC dynamics [122–126], including evolution in the optical

lattices [92, 111, 127]. We first apply the variational approximation ideas to the

evolution of a BEC Gaussian wave packet in free space in D dimensions.

The Gross-Pitaevskii (GP) equation is a NLSE describing the dynamics

of BEC:

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t) =

(
− ~

2

2m
∇2 + V (r) + NgD |ψ(r, t)|2

)
ψ(r, t), (4.40)

with a nonlinear term being due to the mean-field treatment of the interaction

between the atoms. It can be both positive and negative depending on the

scattering length of the atomic collisions. Most of the current experiments
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deal with self-repulsive BECs (positive scattering length). Here we normalize

the wave function to unity.

To apply variational approximation, we restrict the dynamics of the

quantum wave packet in free space (V (r) = 0) in D dimensions to the form

ΨD(r) =
(α

π

)D/4

e−(α+iβ)r2/2, (4.41)

where α and β are variational parameters, α being inversely proportional to

the width of the wave packet squared. The semi-classical Lagrangian corre-

sponding to the GP equation may be written as

L(α, α̇, β, β̇) = 〈ΨD| i~ ∂

∂t
− Ĥ |ΨD〉 . (4.42)

The terms necessary for its calculation are

〈ΨD| i~ ∂

∂t
|ΨD〉 =

~D
4

β̇

α
, (4.43)

〈ΨD| − ~2

2M
∇2 |ΨD〉 =

~2D

4m

(
α +

β2

α

)
, (4.44)

Vint =
NgD

2

∫
dr |ΨD(r)|4 =

NgD

2

( α

2π

)D/2

. (4.45)

The first term describes temporal evolution, the second is associated with

kinetic energy, and last term describes mean field interaction between particles.

After the substitution γ = 1/α (γ is proportional to the wave packet spread),

the Lagrangian equation becomes

γγ̈ − 1

2
γ̇2 =

2~2

m2
+

2NgD

m
γ

(
1

2πγ

)D/2

. (4.46)
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In the free space case, without mean field interaction (gD = 0), this equation

gives an exact result for dependence of the wave packet dispersion on time

γ2 = 2(σ2
0 + At2), (4.47)

where σ2
0 = γ2(t = 0)/2 is initial spatial second moment of the wave packet,

and

A =
~2

2m2γ2(t = 0)
=

~2

4m2σ2
0

. (4.48)

Equation (4.46) is particularly simple in 2D. In this case, the right hand side

becomes independent of parameters of the wave packet, and the dynamics is

effectively described in the same way as for non-interacting atoms. The wave

packet becomes dispersionless when the right hand side of (4.46) vanishes.

This gives the criteria for critical interaction strength

Ngc =
2π~2

m
. (4.49)

For negative nonlinearity, when |g| > gc, the wave packet collapses.

Quantum motion of a wave packet in periodic potential can be effec-

tively described as motion in free space using the concept of effective mass,

which in principle may be negative. We comment on this below.

4.2.3 Effective Mass

When the external potential V (r) is periodic, and the size of the quan-

tum wave packet is much larger than its unit cell, the effect of the potential

for different wave vectors k0 may be described in terms of the effective mass.
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The effective mass tensor may be inferred from the band dispersion [112, 113]

meff,µν = ~2

(
∂2E

∂kµ∂kν

)−1

, (4.50)

When the wave packet is delocalized in real space over many lattice sites, in

momentum space it is localized around a given wave vector k0. The effective

NLSE then can be written for the envelope fn(r) over different Bloch bands

ψ(r, t) =
∑

n

fn(r, t)φnk0(r)e
−iEnk0

t/~, (4.51)

here fn(r, t) is a slowly varying function within the unit cell, and each Bloch

function φnk0 is the solution of the linear eigenproblem

(
− ~

2

2m
∇2 + V (r)

)
φnk(r) = Enkφ(r), (4.52)

normalized to the area of the unit cell

∫

cell

dr |φnk0(r)|2 = Ω. (4.53)

In the experiments, it is possible to prepare wave packets that populate only

the lowest band [14]. The NLSE for the envelope incorporates the effects of

the external potential into effective mass [112, 113]

i~
(

∂fn

∂t
+ vg · ∇fn

)
=

(
− ~2

2meff,µν

∂2

∂xµ∂xν

+ Ng′2 |fn|2
)

fn, (4.54)

where vg is drift velocity of the wave packet center given by

vg =
1

m
〈φnk0| p̂ |φnk0〉 , (4.55)
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and effective interaction strength g′2 is given by

g′2 =
g2

Ω

∫

cell

dr |φnk0(r)|4. (4.56)

In the particular examples we will discuss below, the wave packet will be driven

to the point in the Brillouin zone where vg = 0, and effective mass tensor is

negative in all directions, hence the envelope dynamics will be governed by

NLSE with negative mass. This can be viewed as a NLSE with positive mass

with inverted sign of nonlinearity, which is clearly seen from the equation for

complex conjugate of the envelope function

i~
∂f ∗n
∂t

=

(
− ~2

2 |meff,µν |
∂2

∂xµ∂xν

−Ng′2 |f ∗n|2
)

f ∗n. (4.57)

This equation can be obtained by taking the complex conjugate of (4.54) and

using absolute value of the mass.

Hence, in this situation, as long as the condition for the effective mass

approximation holds, m in the Eq. (4.46) should be replaced by meff . In

the case, when an effective mass and nonlinearity have opposite signs and

|g′2| > g′2,c, where critical interaction strength is defined in (4.49), with mass

being replaced by effective mass, the wave packet collapses. Notice that in

general from (4.46) it follows that dispersion of the wave packets for any D

when the effective mass is negative is described by the equation with positive

mass and inverted sign of nonlinearity. When the size of the wave packet

becomes comparable to the lattice spacing the effective mass approximation

no longer holds. In 2D there is a nonlinearity below which discrete solitons are
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not supported by the bandgap. If the nonlinearity is sufficiently larger than

this delocalizing nonlinearity, part of the wave packet decays into discrete

soliton and part decays into linear waves.

4.2.4 Delocalization

In contrast to 1D, where discrete soliton may correspond to arbitrary

nonlinearity, in 2D and higher dimensions discrete solitons are possible only for

nonlinearity above a critical value [119]. The authors of [120] considered the

possibility of observing the delocalization transition with matter-wave discrete

solitons in optical lattices, when an irreversible change from discrete soliton

to delocalized states is produced for a slow change in the lattice parameters.

This delocalizing nonlinearity may be associated with the critical nonlinearity

for a Gaussian wave packet to collapse as discussed in Section 4.2.2.

The concept of the effective mass is not generally applied to the discrete

soliton since in the middle of the gap the discrete soliton is localized within

one lattice site. As the chemical potential of the discrete soliton comes close

to a band of linear states, its space extension increases, hence one may expect

that the effective mass approximation becomes applicable. The results of

Section 4.2.2 imply that there is only one value of nonlinearity for which the

localized modes are supported in 2D free space when the envelopes of the

localized modes are approximated by Gaussians. This also can be shown in

general from the scaling arguments for the 2D NLSE. Indeed, if the normalized
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wave function ψ1(x, y) is the solution of

−∇2ψ1 + γψ3
1 = µ̃ψ1, (4.58)

then the normalized wave function ψ2 = Bψ1(Ax,Ay) is the solution of

−∇2ψ2 + γψ3
2 = A2µ̃ψ1. (4.59)

This means that in 2D free space there is only one possible value of γ for which

localized modes can be found for any value of µ̃, the shape of the soliton for

different µ can be obtained only by scaling.

Localized wave packets with very large extension correspond to the

critical nonlinearity. As their size is reduced, other corrections due to the

lattice also start to play a role. The variational approximation gives a clear

picture of what happens to initially localized states of the NLSE in 2D. It

predicts the critical value of nonlinearity above which evolution of the wave

packet width changes character. One may expect that Ngc given in (4.49) is

close to the exact value. We confirmed this expectation by performing direct

self-consistent numerical simulations based on the effective potential approach

suggested in [121]. Similar to the self-consistent Hartree-Fock approximation,

one may consider a discrete soliton to be a localized state in the effective

potential created by itself

Veff(r) = −Ng′D |ψ(r)|2 . (4.60)

In the numerical simulation, we started with an arbitrary nodeless initial wave

function, and with the imaginary time evolution found the ground state of the

90



potential (4.60) for the Hamiltonian given by

Ĥeff = − ~2

2 |meff |∇
2 + Veff(r), (4.61)

and used it in the next step of iteration. We found that independent of the

initial guess state above the critical value

Ng′num =
5.850 ~2

|meff | , (4.62)

the self-consistent procedure resulted in collapsing states with infinite negative

energy, while for smaller nonlinearities the states expanded, with energy going

to zero. This value differs from the one for an extended Gaussian wave packet

to collapse (4.49) by approximately 10 percent.

As an alternative method we also reduced the 2D equation to a 1D

ordinary differential equation and solved two point boundary value problem

(ψ′(0) = 0, ψ(∞) = 0) with the shooting method [128]. We found that for ar-

bitrary energy, nodeless solitons in free space with arbitrary size are supported

only for one value of nonlinearity given by the same value as in (4.62).

The direct dynamical simulations discussed in the next section confirm

the existence of the critical nonlinearity above which a wave packet with a

finite size collapses. Also, using the imaginary time evolution for different

values of chemical potential in the gap, we find corresponding nonlinearity for

discrete soliton in the lattice to exist. The minimum nonlinearity found as a

result of this calculation is also in a good agreement with (4.49) and (4.62).
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4.2.5 Numerical Simulations

First, we give general remark about the numerical simulations, and then

consider two specific numerical examples in continuous potentials: square and

honeycomb lattices.

By choosing appropriate units of length, Lu, and mass, Mu = Matom,

the GP equation (4.40) is reduced to a dimensionless form

i
∂ψ

∂t
=

[
−1

2
∇2 + VL(r) + Ng2 |ψ|2 + F · r

]
ψ. (4.63)

We also add an external force F. This, in the case of optical lattices, may

be created by accelerating the lattice, for example, by sweeping the relative

frequency of the beams creating the lattice. In this case, unit of energy of

the problem is Eu = ~2/MuL
2
u and the unit of time is given by tu = ~/Eu.

When the unit of length is chosen to be equal to the inverse wave vector of

the light creating the optical lattice Lu = 1/kL, typical maximum depths of

the optical potentials achievable in the dissipationless regime are of order 20.

The forces created by accelerating the lattice are limited due to the finite

lifetime of the excited states, in case of alkali atoms to about 1000tu, in the

experiments [14] forces on the order of ∼ 1 to 10 were used. The dynamics of

the BEC is described by a 2D equation in the case when the strong confinement

in the transverse direction “freezes” the wave function in that direction to

the harmonic oscillator ground state. This happens when oscillator length in

that direction lz =
√
~/Matomωz becomes smaller than the condensate healing

length ξ = (4πna)−1/2, where n is atom density and a is scattering length.
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When, at the same time, lz is still larger than 3D scattering length, |a|,

|a| < lz < ξ (4.64)

the collisions between the atoms preserve their 3D character, yet the dynamics

of the BEC in the two other directions are effectively described by 2D GP

equation [12]. Such a regime was recently demonstrated experimentally [13].

The nonlinear coefficient in this case is given by

g2 =

(
8πωz~3

Matom

)1/2

a. (4.65)

The experimental system, therefore, provides great flexibility with which the

nonlinear coefficient in corresponding NLSE can be controlled. The parameters

variable in experiments are number of atoms, N , the frequency of transverse

confinement ωz, and the scattering length, a. In principle, a may be tuned by a

magnetic field with Feshbach resonances [65]. For the experimental parameters

of [13] we estimate the nonlinear coefficient in present units to be Ng2 ∼
6000. For the ansatz chosen above to be valid, kinetic energy (4.44) should be

larger than interaction energy (4.45). It means that the nonlinearity should

be smaller than ∼ 2π. Below we consider only the cases when this holds.

For BEC the effective nonlinearity can be always reduced either by changing

number of atoms or trapping frequency in transverse direction.

The stationary states of Eq.(4.63) are described by solutions of the

form: ψ(r, t) = φ(r) exp(−iµt), where µ is the chemical potential. Localized

states can be found for µ in the gaps of linear problem.
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Below, we consider two examples. The first one is based on parame-

ters for which existence and stability of the solitons were studied in [110].

Our consideration extends the treatment to suggest a specific approach for

discrete soliton generation based on the ideas outlined above. The second

example deals with the asymmetric honeycomb lattice that we considered to

observe effects of the Berry curvature in section 4.1 in the context of observing

self-rotation and Berry curvature effects for quantum wave packets in asym-

metric periodic potentials [86]. As we have included the effects of interaction

to the continuous simulations performed for that study, we have observed ro-

bust spontaneous generation of the discrete soliton above a critical interaction

strength for wave packets left at the corner of the Brillouin zone. Here, we

discuss how this effect could be naturally explained in terms of the effective

mass concept.

In both cases, we have performed simulations in a form that mimics

possible experiments. We start with a Gaussian wave packet in free space

with a size that is much larger than the unit cell of the potential. The process

may be divided into three stages: (1) adiabatic introduction of the lattice

potential, (2) acceleration of the lattice for half of the Bloch oscillation, and

(3) a wait period for the wave packet to collapse. In the first two stages,

adiabaticity is crucial. The same conditions as discussed in Section 4.1 must

be valid.

As a first example, we discuss the model potential considered in [110] for
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existence and stability of 2D discrete soliton in continuous potentials, namely

VL(x, y) = V0(sin
2 x + sin2 y). (4.66)

Such a potential may be experimentally obtained by overlapping two pairs

of counter-propagating beams, far detuned from atomic resonance to reduce

effects of spontaneous emission. These beams also have to be detuned from

each other to avoid a cross term. As in [110], we use amplitude V0 = 5.

In Fig. 4.7(a), we show the dispersion of the linear problem (4.52) for

the potential (4.66) along the high symmetry directions. The first band has

a minimum at zero momentum (Γ point), and a maximum at the corner of

the Brillouin zone (M point). There exist directions on the plane for which

the maximum value of the potential is smaller than V0. These are orthogonal

(x,y) directions, while the absolute maximum of the potential is 2V0. For the

chemical potential of the localized states above V0 (shown as a green dashed

line in Fig. 4.7(a)), the BEC states are quasi-unbound. For values of µ close to

this boundary an adequate description of discrete soliton is not possible within

one-band tight-binding model. This is because situations when nodes of the

solitonic wave functions are located at the potential minima are possible [110].

The xx-component of the effective mass tensor (4.50) is shown in Fig. 4.7(b).

Since the potential is separable and symmetric, the yy-component has the same

dependence on ky, and the tensor is diagonal. At the points of global maxi-

mum and minimum of the dispersion, the effective mass in both directions is

the same. At the Γ point, the effective mass has the smallest positive value
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(meff,Γ = 5.53), while at the point M it is negative and has the smallest ab-

solute value (meff,M = −5.03). Hence the smallest nonlinearity is necessary

for the wave packet to self-collapse at the M point. The fact that in 1D, for a

sinusoidal potential for wave vectors, k, larger than half of the largest vector in

the Brillouin zone, k > kcrit = π/(2a), where a is lattice spacing, allows to give

a physical explanation of the origin of the Landau instability studied in [129]

in terms of tight-binding approximation. For any interaction strength, wave

packets composed of Bloch waves for k < kcrit remain wave packets composed

of Bloch waves, while for k > kcrit, when interaction is large enough, they

partially collapse to localized modes.

To investigate the validity of the effective mass description, we checked

in numerical simulations the predictions that may be based on the formulas

discussed in previous sections. From (4.48), we introduce the quantity char-

acterizing dispersion of the wave packet

χ =
Aσ2

A σ2|g2=0

= 1 +
Ng′2meff

2π
, (4.67)

which changes linearly with interaction. As it becomes negative, the wave

packet collapses. Notice that in this expression, the effective interaction strength

is related to continuous interaction strength with (4.56), which for the case of

separable sinusoidal potential at least partially may be computed analytically.

For the separable potential (4.66) the solution of the stationary eigenprob-

lem (4.52) is separable: φ(x, y) = φx(x)φy(y), where each wave function is
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given by the solution of the corresponding equation

[
1

2

∂2

∂x2
+

(
E − V0

2

)
+

V0

2
cos 2x

]
φx(x) = 0. (4.68)

Due to Bloch-Floquet theorem, the solution is a product of a periodic Bloch

function uk(x) and a plane wave

ψx,kx(x) = eikxxuk(x). (4.69)

After the following substitutions

b = 2
(
E − V0

2

)
,

z = x,
q = −V0

2
,

ψx(x) = y(z),

(4.70)

Eq. (4.68) becomes the Mathieu equation [130]

∂2y

∂z2
+ (b− 2q cos 2z)y = 0. (4.71)

As a result the general solution of (4.68) are given by combination of symmet-

ric and asymmetric Mathieu functions with characteristic exponent r = kx,

characteristic values ar and br correspondingly and parameter q = −V0/2

ψx,kx(x) = Cer(ar, q, z) + iSer(br, q, z). (4.72)

At the top and bottom of the Brillouin zone this is just a symmetric Mathieu

function

ψx,kx(x) = Cer(ar, q, z) = Cekx

(
2

(
E − V0

2

)
,−V0

2
, x

)
. (4.73)
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Introducing the numerical factor

I =

(
π/2∫
−π/2

Ce4
r(a, q, z)dz

)2

(
π/2∫
−π/2

Ce2
r(a, q, z)dz

)4 , (4.74)

we get the following dependence of χ on interaction strength,

χ = 1 +
ΩmeffI

2π
Ng2. (4.75)

Therefore the critical interaction strength is given by

Ng2,c =
2π

Ω |meff | I . (4.76)

For the considered example, area of the lattice unit cell is Ω = π2 and the

numerical factor for the top of the band is IM = 0.398, which makes the

critical interaction strength Ng2,c = 0.285.

To test predicted behavior of the parameter ξ, we perform a numerical

simulation with a continuous potential. We start with a wave packet of size

σx,y = 15/
√

2, while the size of the unit cell is π in each direction. The lattice

potential is ramped from V0 = 0 to V0 = 5 in tV = 450, then the lattice is

accelerated with force F = 0.01 in diagonal [11] direction. The acceleration is

halted after the wave packet undergoes half of the Bloch oscillation, in other

words, when its center is located at point M in momentum space. After this,

the wave packet expands freely in the presence of the lattice potential. Ramp

time and the force satisfy adiabaticity conditions so that the wave packet

during evolutions stays in the first band. In addition to expanding the wave
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packet at the top of the band, we have studied the expansion as soon as

the lattice was introduced without an external field, F. In both cases the

agreement with the analytic prediction (4.67) is very good (see Fig. 4.7(c) and

Fig. 4.7(d)).

As the external force is removed, the wave packet contracts due to

phases accumulated during the acceleration even in the linear case. But this is

only when the interaction is above critical so that localized modes are formed.

To find a stationary localized solution we followed the optimization procedure

based on a descent technique with Sobolev preconditioning used in [110] and

described in [131]. In Fig. 4.8(a), we display the dependence of the nonlin-

earity on chemical potential of the discrete soliton. The error bar shows the

estimated uncertainty for the curve to intersect the band of extended states

obtained by interpolating to infinite size and infinite relaxation time of the

descent procedure. The agreement with the argument based on effective mass

and free space solitons given in Section 4.2.4 is excellent. As one starts with

an extended wave packet and nonlinearity supported by the gap, it shrinks

and may lose some part to radiation (extended states), so that the effective

interaction experienced by the localized mode is then just a fraction of the

actual interaction. As shown in Fig. 4.8, the solitons are formed inside the

gap. When the nonlinearity increases, their chemical potential increases but

not significantly, so that they stay relatively close to the top of the first band.

Extending work of Section 4.1 to the case when interaction between

particles is described by the Gross-Pitaevskii equation, we have observed
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self collapse of the wave packet to localized modes above critical interaction

strength [86]. The effective mass concept provides an explanation of the phe-

nomena and relates the critical interaction strength to other parameters of the

problem.

We take the same potential described by Eq. (4.32). The band structure

is shown in the Fig. 4.9(a). Asymmetry splits the first band in the middle. In

this case, the boundary between strongly bound and quasi-unbound states is

located in the second gap. The effective mass is negative in both directions

at K point (see Fig. 4.9(b)). We start with a Gaussian wave packet in free

space which has spatial dispersion σx,y = 10/
√

2 ≈ 7.071. Since the size of

the unit cell in this case is Ω = 3
√

3/2, the wave packet occupies several unit

cells. The lattice potential is introduced in time tV = 120 and we accelerate

it along y-axis with |F| = 0.05. In this case, conditions in (4.37)-(4.39) are

fulfilled. An analysis of the expansion for different values of the interaction at

the bottom of the first band (Γ point) and the top of the first band (K point)

is shown in the Fig.4.9(c). To compare results of the continuous simulation

with the prediction of the (4.67), we calculated effective mass, Meff , from the

band structure and the numerical factor I, that involves integrals of the Bloch

wave functions, by integrating over one unit cell wave functions obtained by

adiabatic evolution. Their values are Meff,Γ = 1.7986, IΓ = 0.9396 at the point

Γ and Meff,K ≈ −0.8918, IK ≈ 1.9567 at the point K. Probability density plots

after expansion for ∆texp = 200 at the K point are shown in the Fig. 4.10. As

interaction increased past the critical value, the lattice solitons are dynamically
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formed. The figure illustrates that the phenomena is also observed for a square

lattice: the fraction of the wave function transferred to the localized modes

decreases as the interaction strength is increased. The effective interaction

experienced by each mode is such that the corresponding chemical potential

is close to the first band.

As we have seen in the numerical examples discussed above, if the

nonlinearity is small enough, the wave packet collapses into a single discrete

soliton. Clouds of ultracold atoms can be imaged non-destructively [132].

Observation of a persistent atomic cloud localized to dimensions comparable

to the wavelength of the light forming the lattice will be a clear signature

of the discrete soliton formation. Observations of the predicted delocalizing

transitions with a single discrete soliton prepared in a controlled fashion for a

varying lattice depth is also an exciting possibility.

4.3 Effective spin-orbit coupling

As we discussed in Section 4.1, geometric phase appears in crystal mo-

mentum space whenever time-reversal and/or spatial inversion symmetries are

broken in the lattice [77, 78]. The Berry phase may also appear in systems with

spin-orbit coupling due to broken chiral symmetry. In solid state systems, such

as ferromagnetic crystals for example, the geometric phase due to broken time-

reversal symmetry is responsible for the anomalous Hall effect (AHE) [81], that

is the generation of a transverse current by an electric field even in the ab-

sence of a magnetic field. A closely related phenomenon, recently proposed
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for spintronics applications [133], is the spin Hall effect (SHE) [134–136]: the

production of a transverse spin current by an electric field in the presence of

a significant spin-orbit coupling. The observation of the spin Hall effect was

recently reported in solid state systems [137, 138].

We showed how spin-orbit coupling and geometric phase may be pro-

duced for atoms in 2D optical lattices and proposed experiments to explore

their consequences. Optical lattices provide great flexibility with which po-

tentials can be created and atomic quantum states prepared. By choosing the

polarization of the beams appropriately, the internal degrees of freedom of the

atom can be coupled to their momenta as in the (relativistic) spin-orbit effect

for electrons in solids. In particular, we show how a Hamiltonian similar to

the Rashba Hamiltonian for electrons in 2D semiconductor systems [139] can

arise in the description of atoms propagating in an optical lattice produced by

the interference of suitably polarized laser beams. As we mentioned before,

a constant force field, analogous to an electric field for electrons can be pro-

duced by accelerating the lattice [14]. By studying the transport of the atoms

in these spin-dependent lattices, one can observe effects similar to AHE and

SHE.

Atoms in different internal (spin) states can interact with laser light

in different ways depending on its polarization. This effect has recently been

applied to the experimental study of quantum transport of atoms in one-

dimensional optical lattices in the localized regime [140, 141], for which a wide

range of phenomena has been theoretically proposed (see references at [141],
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and also, for instance [142], and references there in). Here, we consider ultra-

cold atom dynamics in 2D optical lattices in the itinerant regime where motion

through the lattice is of concern.

4.3.1 Fictitious magnetic field

Let us consider the Hamiltonian for an atom interacting with a configu-

ration of laser beams producing an electric field E(r). In general, if the detun-

ing of the light frequency ω from the resonance frequency is large with respect

to the radiative width of the excited states, spontaneous emission is suppressed

and we can adiabatically eliminate the excited states by writing an effective

Hamiltonian which involves only the ground state sublevels [7, 143, 144]:

Heff =
∑

αβγ

(
E∗(r) ·D∗

γα |g : α〉) (E(r) ·Dγβ 〈g : β|)
~(ω − ωγ)

=
∑

αβ

Vαβ(r)|g : α 〉〈 g : β|. (4.77)

For a ground state of total angular momentum F , the indexes α and β run

over the 2F + 1 Zeeman sublevels. Dγβ = 〈e : γ|d |g : β〉 is the dipole matrix

element between the ground state sublevel β and the excited state sublevel γ

(of energy ~ωγ).

Given the analogy with electrons, in the following we shall focus on

the case of atoms with F = 1/2. This case can be effectively realized using

alkali atoms, cooling and manipulation of which have come a long way. In

particular, 6Li atoms have a ground state hyperfine component of F = 1/2.

Similar features are expected to occur for higher values of the atomic spin F
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as well.

In the F = 1/2 case, the external potential Vαβ(r) can be simply written

in terms of a fictitious magnetic field B(r) coupled to the total atomic angular

momentum operator F̂:

Vαβ(r) = V (r)δαβ + B(r) · F̂αβ. (4.78)

The scalar potential V (r) is proportional to the local light intensity, while the

vectorial field B(r) is proportional to the local electromagnetic spin:

V (r) = b0E
∗(r) · E(r), (4.79)

B(r) = −ib1E
∗(r)× E(r). (4.80)

The proportionality coefficients b0,1 depend on the details of the atomic struc-

ture as well as on the light frequency. As discussed in [143], an effective

coupling to the fictitious magnetic field requires the detuning from the ex-

cited state to be smaller than the fine structure of the excited state. We shall

give the specific experimental parameters later. Some consequences of the

fictitious magnetic field have already been investigated from many different

points of view, for instance Sisyphus cooling in resonant optical lattices [145],

or NMR type experiments [146, 147]. The fictitious magnetic field was cru-

cial for the observation of mesoscopic quantum tunneling in one-dimensional

spin-dependent optical lattices [140].
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4.3.2 Lattice configuration

We consider a 2D optical lattice created with three laser beams propa-

gating in a plane with equal angles between them (see Fig. 4.11), a geometry

already studied in the dissipative regime [148]. We however restrict our at-

tention on the dissipationless case, as was done experimentally, for instance

in [149] with Cesium atoms in one-dimensional configuration. We choose the

polarization of the electric fields in such a way that the components respec-

tively parallel and perpendicular to the plane are the same for all three beams

Ei = (αẑ + βẑ × q̂i)e
iqir; (4.81)

the qi are the wave vectors of the light beams, coefficients α and β are complex

and ẑ is the unit vector perpendicular to the plane. For this configuration, the

scalar potential (4.79) and the fictitious magnetic field (4.80) are

V (r) =
∑

i

V0 coskir, (4.82)

B(r) =
∑

i

(V1ẑ sinkir + V2ki sinkir + V3ẑ × ki coskir),

where k1 = q2 − q3, etc. and the amplitudes Vi are

V0 = b0

(|α|2 + |β|2 cos(2π/3)
)
, (4.83)

V1 = 2b1 |β|2 sin(2π/3), (4.84)

V2 = −4b1 sin(π/3)Re (α∗β) , (4.85)

V3 = 2b1Im (α∗β) . (4.86)
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In this subsection, we will use M , (q
√

3)−1 and 6Er as the basic units of mass,

length and energy respectively, where M is the mass of the atom, qi is the

light wave vector, and Er = ~2q2/2M is the recoil energy. Experimentally,

potentials with depths up to 20Er are achievable in the dissipationless regime.

4.3.3 Effective Hamiltonian and Berry curvature

In what follows we are interested in the dynamics of an atomic distrib-

ution prepared in the lowest band of the potential. The different terms in the

Hamiltonian proportional to the Vi are shown in Fig. 4.11. We consider the

case in which |V0| À |V1| , |V2| , |V3|. Together with a direct numerical calcu-

lation of the band structure and Berry curvature (see Fig. 4.12), we consider

a tight-binding model that allows us to obtain an effective Hamiltonian close

to the Γ point. The scalar part of the potential creates a honeycomb lattice

which is perturbed by the vector part. Introduction of the term with V1 makes

the lattice asymmetric for each spin component, similar to the one described

in Section 4.1. V2 and V3 lead to hopping processes with simultaneous spin

flipping. The tight-binding approach results in the effective Hamiltonian




ε↑A + h0 v 0 v1

v∗ ε↑B + h0 v2 0

0 v∗2 ε↓A − h0 v

v∗1 0 v∗ ε↓B − h0




|A, ↑〉
|B, ↑〉
|A, ↓〉
|B, ↓〉

. (4.87)

Since lattices for different spins are mirror images of each other, the on-site

energies for different spins are such that ε↑A = −ε↑B = −ε↓A = ε↓B. The off-
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diagonal matrix elements are

v(k) = −t
(
1 + eikR1 + eikR2

)
,

v1(k) = t̃
(
e−iπ/3 + eiπ/3eikR1 − eikR2

)
,

v2(k) = t̃
(
e−iπ/3 + eiπ/3e−ikR1 − e−ikR2

)
,

(4.88)

where t is proportional to the overlap of the wave functions in different sites

with the same spin, t̃ is proportional to the overlap of wave functions at dif-

ferent sites with different spin, and Ri are the lattice primitive vectors (see

Fig. 4.11). The coefficient t is determined by the scalar potential, while t̃ is

governed mostly by V3 terms (to the lowest order, terms with V2 do not af-

fect the dynamics, since the corresponding B field vanishes at the place where

the overlap between on-site wave functions is the largest, see Fig. 4.11). The

parameter h0 describes an additional external field.

For vanishing fictitious magnetic field B and external field h0, the bands

have a two-fold spin degeneracy at all points of the Brillouin zone; at points

K and K′, where bands cross, the degeneracy is four-fold. As the V1 term is

added, the bands keep the two-fold spin degeneracy, but the four-fold one at

K and K′ is lifted and a gap is correspondingly opened. Spin degeneracy is

then lifted by the inclusion of the V3 term. The band degeneracies at the high

symmetry points can be understood from the tight-binding model simply by

looking at the properties of the off-diagonal matrix elements in (4.87). For

instance, at the Γ point one has v1,2 = 0 and only v 6= 0, therefore the upper

and lower bands are two-fold degenerate there. An effective Hamiltonian close

to the Γ point can therefore be obtained simply by treating v1 and v2 as a

perturbation.
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The spectrum of the unperturbed Hamiltonian in the absence of the

external field consists of two doubly degenerate states of energies

ε± = ±1

2

√(
ε↑B − ε↑A

)2
+ 4|v(k)|2. (4.89)

For small k around the Γ point, the dispersion is quadratic in k. The corre-

sponding two lowest eigenvectors are of the form:

|↑,−〉 = a |A, ↑〉+ b |B, ↑〉 ,
|↓,−〉 = b |A, ↓〉+ a |B, ↓〉 . (4.90)

In the subspace spanned by these two eigenvectors, the effective Hamiltonian

has the form:

HΓ(k) = ε−I + h0σz − γ(kyσx + kxσy), (4.91)

with v1 and v2 taken into account, σi are Pauli matrices and I is the unit

matrix. This reduces to the standard form of the Rashba Hamiltonian if

one makes a global spin-rotation about the σy axis to flip the signs of σx

and σz. For the model discussed here, the value of the spin-orbit coupling

parameter γ = 0.08 can be extracted from the relative slope of the two lowest

eigenstates. A Hamiltonian of such a form has been recently predicted to give

both AHE [81] and SHE [134–136] in solid state systems.

The simple analytic form of the Hamiltonian in (4.91) gives a simple

expression for the Berry curvature which is responsible for AHE [77, 78, 81]

Ω↑/↓
z = ∓1

2

γ2h0

(h2
0 + γ2k2)

3/2
. (4.92)

The results of the Berry curvature calculation for the continuous potential

in Eq. (4.82) are shown in Fig. 4.12. For h0 = 0, the Berry curvature is zero
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everywhere and singular at the points where the bands touch. Any finite value

of the external field h0 completely removes the degeneracy of the bands and

makes the Berry curvature peaked around the Γ and K′ points with a finite

maximum and width.

4.3.4 Observation of anomalous and spin Hall effects

An effect similar to AHE can therefore be observed with cold atoms:

a wave packet initially prepared in the lowest band with a small quasimomen-

tum spread ∆k ¿ 1 around the Γ point and accelerated in the ΓK direction

performs Bloch oscillations in the direction of the drive and at the same time

it drifts along the perpendicular direction because of the geometrical phase

accumulated 1. The spread in momentum mentioned above corresponds to

a sub-recoil velocity distribution. Sub-recoil cooling techniques are reviewed

in [150]. In Fig. 4.13 (a), we show the trajectory of the wave packet cen-

ter calculated with semiclassical equations including the Berry curvature ef-

fects [77, 78]. The external force has been taken to be f = 0.001. In order to

maximize the drift in a given time, the largest force that preserves adiabatic

evolution in the first band has to be chosen in an actual experiment. The mag-

nitude of the acceleration creating the force f is ∼ 500 m/s2, a value already

demonstrated in the framework of optical lattices [14]. The chosen value of

external field h0 corresponds to ∼ 1 mG. To observe a wave packet drift of

1For this direction, symmetry arguments guarantee that no transverse drift coming from
the band asymmetry can occur.
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∼ 10λ, the acceleration needs to be applied for ∼ 50 ms.

To observe an effect similar to SHE with cold atoms, a spin-sensitive

measurement of the wave packet momentum distribution after it was exposed

to an external force has to be performed. The quasimomentum spread has to

be small enough and the force applied for a short enough time, so that the

wave packet stays within the region where (4.91) is valid. This region has

a radius of the order of 0.2 around the Γ point. As discussed in [134–136]

off-diagonal terms in Eq. (4.91) may be thought of as a momentum dependent

magnetic field ∆k = −γ(kyx̂+kxŷ). For h0 = 0, the spins are initially parallel

to the plane. As the external force is applied the center of the wave packet

moves in momentum space and the spins are affected by changing momentum

dependent magnetic field, ∆k(t). Their dynamics can be described by the

Landau-Lifshitz equation [135]

~dn̂

dt
= n̂×∆(t), (4.93)

where n̂ is the direction of the spin. As the center of the wave packet moves

∆k rotates in the plane, but in the opposite directions on opposite sides of the

wave packet (left and right sides with respect to the motion). As a result, a

non-vanishing z-component appear, i.e. spins “tilt vertically”. For an atom

with quasimomentum (kx, ky) and a force along the x̂ direction f = fxx̂, the

z-component of the spin is:

nz,k =
fxky

γk3
. (4.94)
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It is opposite on the opposite sides. This corresponds to spin current in the

transverse direction.

For the momentum spread, we have taken ∆ky = 0.1, which corre-

sponds to the minimum of the first band when h0 = 0, and for the force

f = 10−4 (≈ 50m/s2). For these values, we predict nz,k = 0.125. To measure

the spin tilting in the vertical direction one should measure the momentum

distribution of the different vertical spin components after the force has been

applied. Spin dynamics can be frozen by suddenly switching on an external

magnetic field h0 À γ∆k. The lattice potential is then adiabatically removed:

this transforms the quasimomentum distribution into a true momentum dis-

tribution so that SHE can be observed as the motion of the different spin

z-components in opposite directions along the y axis.

4.3.5 Estimation of experimental parameters

Finally, we estimate the required experimental parameters. If we write

the vertical and horizontal components of the polarization as

α = |α| eiφα , (4.95)

β = |β| eiφβ , (4.96)

then the Eq. (4.85) requires that

φ = φα − φβ =
π

2
. (4.97)

From the ratio of Eq. (4.84) and Eq. (4.86) we obtain

|α|
|β| = sin

2π

3

V3

V1

= 0.866 (4.98)
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and from the ratio of Eq. (4.83) and Eq. (4.84) we obtain the required ratio

of the coefficients b0 and b1

V0

V1

=
b0

2b1 sin 2π
3

(
|α|2
|β|2 + cos

2π

3

)
, (4.99)

b0

b1

=
V0

V1

2 sin
2π

3

((
V3

V1

sin
2π

3

)2

+ cos
2π

3

)−1

= 69.3, (4.100)

the values here are for the amplitudes V0 = 1, V1 = V3 = 0.1, V2 = 0.

Coupling of orbital angular momentum of an atom’s electron to its

spin is responsible for fine structure in the spectra of the element. For a

fictitious magnetic field to be substantial, detuning should be not too large in

comparison to the fine splitting. The radiation couples to orbital momentum

of the electron and only through spin-orbit interaction to its spin. When the

detuning is too large in comparison to the splitting it is not relevant and light

does not effect the spin.

In alkalies, the orbital electron’s spin-orbit coupling produces two lines

D1 and D2. The ground state in alkalies has total angular momentum of the

electron J = L+S = 1/2, since the spin is S = 1/2 and orbital momentum L =

0. The two correspond to transition which is in the central field approximation

corresponds to L = 1. The D1 line corresponds to transition from the excited

state with J = 1/2 and the D2 line to the transition from J = 3/2. The

polarizability tensor of the D1 line is (see Appendix C)

α̂ij,1 = α

(
2

3
δij Î − i

3
εijkσ̂k

)
, (4.101)
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and polarizability of the D2 line is

α̂ij,2 = α

(
1

3
δij Î +

i

3
εijkσ̂k

)
, (4.102)

here characteristic polarizability α̃ can be defined in terms of the dipole oper-

ator reduced matrix element 〈J ‖d‖ J ′〉 [149], since we are interested in ratio

of the coefficients b0 and b1 its explicit form is not relevant. From the ex-

pression for the polarizabilities we obtain expressions for the coefficients with

dependence on detuning given by

b0,tot = −U1

3

(
2

∆2

+
1

∆1

)
, (4.103)

b1,tot = −2U1

3

(
1

∆2

− 1

∆1

)
, (4.104)

here ∆1 and ∆2 are detunings from the D1 and D2 lines respectively. The

ratio b1/b0 vanishes for detunings much larger than the fine splitting, i.e. the

fictitious magnetic field becomes small in comparison to the scalar potential.

Taking parameters of 6Li [151], we obtain the detuning from the D2

line resonance

∆2 =
2

3
∆

(
b0

b1

− 1

)
= 458 GHz, (4.105)

where ∆ = 10.056 GHz is the fine splitting. To estimate necessary intensity,

we may use the expression for depth of the optical potential given in [4]:

Udip =
πc2Γ

2ω3
0

(
2 + PgF mF

∆2,F

+
1− PgF mF

∆1,F

)
I(r). (4.106)

For the sake of estimation we take linear polarization (P = 0) and obtain

I = 77.4
mW

cm2
. (4.107)
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The maximum scattering rate is estimated based on another equation from [4]

Γsc =
πc2Γ2

2~ω3
0

(
2

∆2
2

+
1

∆2
1

)
I = 223 s−1 (4.108)

Even with this number the number of scattered photons would less than

10 during 50 ms – the estimated duration of the drift experiment. Since the

lattice is blue detuned, the atoms are located in the regions of space where

the intensity is smaller than maximum. The scattering rate at the distances

from the center of the wells equal to Harmonic oscillator length given by the

strength of potential (≈ 6Erec) approximately order of magnitude smaller.
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Figure 4.7: (a) Dispersion for square lattice potential (4.66) along the high
symmetry path. The green dashed line shows the boundary between strongly
bound and quasi-unbound states [110]. (b) xx component of the effective mass
tensor along kx-axis. (c) Dependence of wave packet dispersion on time after
the lattice potential is introduced. The two sets of curves are for different
points in Brillouin zone: (I) - point Γ, (II) - point M. (d) Dispersive char-
acteristic χ from (4.75). The blue dots are obtained from fitting quadratic
dispersion (4.47) to continuous simulation data from panel (c), red line is
expected behavior of χ.
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Figure 4.8: (a) - Dependence of nonlinearity on corresponding chemical po-
tential. The first and second bands are shown with solid rectangles. The inset
shows a region denoted by a rectangle in the lower left corner. The horizontal
solid line shows numerical value for delocalizing nonlinearity, gnum, the dashed
line is the critical nonlinearity for extended Gaussian wave packet to collapse
g2,c. (b) - Spatial distribution of discrete soliton corresponding to µ = 0.7 ob-
tained with the descent method. (c) - Probability distribution for BEC wave
function evolved with Ng2 = 0.2 for ∆t ∼ 1500 after it was driven to M point.
(d) - The same for Ng = 0.4 (point A in (a)), approximately 0.72 of the wave
function probability is transferred to the soliton, which corresponds to an ef-
fective nonlinearity of Ng2,eff ≈ 0.288 - at the top of the first band (point B in
(a)).
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Figure 4.9: (a) Dispersion for asymmetric honeycomb potential (4.32) along
high symmetry path. The green dashed line shows boundary between strongly
bound and quasi-unbound states [110]. (b) - xx, and yy components of effective
mass tensor along ky-axis. (c) - Dependence of wave packets dispersion on
time after the lattice potential is introduced. The two sets of curves are for
different points in Brillouin zone: (I) - point Γ, (II) - point K. (d) - Dispersive
characteristic χ from (4.75). The blue dots are obtained from fitting quadratic
dispersion (4.47) to continuous simulation data from panel (c), red line is
expected behavior of χ.
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Figure 4.10: Probability density of the wave packet that has been driven to
K point of square lattice after expansion for ∆texp = 200 with different inter-
actions: (a) - Ng2 = 0.5, (b) - Ng2 = 2.5 (c) - Ng2 = 5 (d) - Ng2 = 10. As
the interaction increases fraction of the wave function transferred to solitons
decreases.
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component is proportional to the length of the arrow. The inset in panel (a)
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Appendix A

Expressions for compression and rate of

compression

Here we show how analytic expression for phase space compression

in case of stationary wall Eq. (2.2) and Eq. (2.5) for captured fraction are

obtained.

A.1 Compression

The definition of the phase space compression we used in the text is

C =
l1 + l2

l2

σv

σv,final

. (A.1)

Final distribution in velocity is given by originally trapped atoms and those

that are trapped after a single recoil kick

gfinal(v) =
l1

l1 + l2
ginit(v) +

l2
l1 + l2

gkick(v). (A.2)

Initial velocity distribution is

ginit(v) =
1√

2πσv

e
− v2

2σ2
v . (A.3)

Velocity distribution for the fraction that experiences the recoil kick is

gkick(v) =

∫
ginit(v

′)∆(v, v′)dv′, (A.4)
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with redistribution function of the kick

∆kick(v) =
1√

2πσv

1

2
[δ ((v − v′)− vr) + δ ((v − v′) + vr)] . (A.5)

In the model we have neglected 3D nature of the photon recoil, this should

only overestimate limiting values of phase space compression. Thus after the

kick velocity distribution is

gkick(v) =
1√

2πσv

1

2

[
e
− (v−vr)2

2σ2
v + e

− (v+vr)2

2σ2
v

]
. (A.6)

Calculating the distribution’s dispersions

v̄final = 0,

σ2
v = v2 − v̄2,

v2
1 = σ2

v , v
2
2 = v2

3 = σ2
v + v2

r ,

σ2
v,final = v2 = l2

l1+l2
σ2

v + l1
l1+l2

(σ2
v + v2

r) = σ2
v + l1

l1+l2
v2

r ,

(A.7)

and substituting them to Eq. A.1, we obtain the expression for C given in the

text.

A.2 Rate of Compression

First we obtain the Eq. 2.5 for fraction of atoms trapped after certain

time t This fraction is given by

f(t) = f0 +

∞∫

0

f(v, t)g (|v|) dv, (A.8)

where f(v, t) is the fraction of particles that have crossed the wall and have

magnitude of the velocity in the range

|v| − |v|+ dv, (A.9)
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f(v, t) =
min (vt, 2l1)

2l1
. (A.10)

Initial distribution in magnitude is

g (|v|) =
2√

2πσv

e
− v2

2σ2
v . (A.11)

Explicit expression for fraction transfered for all velocities is

f(t) = f0 +

v0(t)∫

0

tv

2l1

2√
2πσv

e
− v2

2σ2
v dv +

∞∫

v0(t)

2√
2πσv

e
− v2

2σ2
v dv, (A.12)

here v0 = 2l1/t and when we define ṽ0 = v0

σv
the equation becomes

f0 − f + ṽ0

√
2

π

ṽ0∫

0

ve−
v2

2 dv +

√
2

π

∞∫

ṽ0

e−
v2

2 dv = 0. (A.13)

With error function and complimentary error functions defined as

erf(x) = 2√
π

x∫
0

e−t2dt

erfc(x) = 1− erf(x)
(A.14)

we obtain Eq. 2.5. Using the series expansion for error function

erf(x) =
2√
π

(
x− x3

3
+ . . .

)
(A.15)

we obtain the linearized equation the solution of which gives Eq. 2.6.
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Appendix B

Expressions for compression in a trap

We obtain ratio of phase space volumes of two classical systems of N

atoms in the same trap for different average energies per particle ē1 and ē2 that

are proportional to corresponding temperatures. The strategy is as following:

we obtain entropy S from the free energy F and relate it to total energy E [36].

Starting with general expression for free energy

F = −NT ln
e

N

∫
e−ε(p,q)/kBT dτ . (B.1)

For a specific case of 1D potential

V (q) = Aqn. (B.2)

Using some intermediate formulas

ε(p, q) =
p2

2m
+ V (q), (B.3)

∫ ∞

−∞

p2

2m
e
− p2

2m
1

kBT dp = kBT
√

2mkBT

∫
x2e−x2

dx, (B.4)

∫ ∞

−∞
Aqne

−Aqn 1
kBT dp = kBT

(
kBT

A

)1/n ∫
xne−xn

dx. (B.5)

Free energy is

F = −NkBT ln e
N

√
2mkBTπC

(
kBT
A

)1/n
=

−NkBT ln BT 1/2+1/n =
−NkBT ln B −Nf(T ).

(B.6)
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Where f(T ) is the function defined as

f(T ) = T ln T 1/2+1/n. (B.7)

Here and later A,B,C are some numerical constant that will be irrelevant in

the answer. Entropy is

S = −∂F

∂T
= NkB ln B −Nf ′(T ). (B.8)

Energy
E = F + TS = kB (Nf(T )−NTf ′(T )) ,

f ′(T ) = NkBT (1/2 + 1/n) ,
E = NkBT (1/2 + 1/n).

(B.9)

Difference in entropy

S1 − S2 = −NkB (f ′(T1)− f ′(T2)) = NkB ln

(
T1

T2

)1/n+1/2

. (B.10)

Compression in phase space

Γ2

Γ1

= e
S2−S1
kBN =

(
T1

T2

)1/n+1/2

=

(
E1

E2

)1/n+1/2

. (B.11)

126



Appendix C

Polarization tensor for D1 line

We illustrate how the polarizability tensor can be obtained for D1 line

following steps similar to [149] where it is shown how to obtain it for D2 line.

Since the operator must act on two-dimensional Hilbert state the gen-

eral form of the tensor is

ᾱij =
1

3
δijTr

(
D̂†D̂

) Î

2
+

1

2
εijk

(
D̂† × D̂

)
. (C.1)

To obtain explicit form of the coefficient the same symmetry arguments as

in [149]. To calculate the trace of the scalar product only trace of one compo-

nent needs to be calculated

Tr
(
D̂†D̂

)
= 3Tr

(
D̂†

zD̂z

)
. (C.2)

The vector product is anti-Hermitian as a result it must have the form

(
D̂† × D̂

)
k

= iCσ̂k, (C.3)

where the coefficient C may be evaluated by decomposing one of the compo-

nents explicitly (
D̂† × D̂

)
z

= −i
(
D̂†

+D̂+ − D̂†
−D̂−

)
. (C.4)
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m ↓| q → −1 0 1

−1
2

0 − 1√
3

−
√

2
3

1
2

√
2
3

1√
3

0

Table C.1: Values of the Clebsch-Gordan coefficients

To proceed with the steps outlined above we use the definition of the operator

D̂

D̂i =
∑
m,q

ei · ε∗qcm+q
m |J ′,m + q〉 〈J,m|, (C.5)

where the coefficients cm+q
m are Clebsch-Gordan coefficients of the angular mo-

mentum sum of the ground state angular momentum and the angular momen-

tum of a photon

J + 1 = J′, (C.6)

cm+q
m = 〈J, 1; m, q | J, 1; J ′,m + q〉 . (C.7)

Their explicit values for the transition of interest are given in the Table C.1.

Thus the dipole moment components are

Dz = − 1√
3

∣∣∣∣−
1

2

〉 〈
−1

2

∣∣∣∣ +
1√
3

∣∣∣∣+
1

2

〉〈
+

1

2

∣∣∣∣ , (C.8)

D+ = −
√

2

3
ε+

∣∣∣∣+
1

2

〉〈
−1

2

∣∣∣∣ , (C.9)

D− =

√
2

3
ε−

∣∣∣∣−
1

2

〉〈
+

1

2

∣∣∣∣ , (C.10)

where all the states are in the form

|J ′ = 1/2,m + q〉 〈J = 1/2,m| . (C.11)
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As a result

Tr
(
D̂†D̂

)
= 2, (C.12)

(
D̂† × D̂

)
z

= −i
(
D̂†

+D̂+ − D̂†
−D̂−

)
=

2

3
iσk, (C.13)

αij (J = 1/2 → J ′ = 1/2) = ˜̃α

(
1

3
δij Î +

i

3
εijkσ̂k

)
, (C.14)

note that in these expressions the labels are only for m of the ground state.
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23:1316, 2001.

[132] M.R. Andrews, M.O. Mewes, N.J. van Druten, D.S. Durfee D.M. Kurn,

and W. Ketterle. Science, 273:84, 1996.

[133] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von

Molnár, M. L. Roukes, A. Y. Chtchelkanova, , and D. M. Treger. Sci-

ence, 294:1488, 2001.

141



[134] N. Nagaosa S. Murakami and S.-C. Zhang. Science, 301:1348, 2003.

[135] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H.

MacDonald. cond-mat/0307663.

[136] D. Culcer, Jairo Sinova, N. A. Sinitsyn, T. Jungwirthand A. H. Mac-

Donald, and Q. Niu. cond-mat/0309475.

[137] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom. Science,

306:1910, 2004.

[138] J. Sinova J. Wunderlich, B. Kaestner and T. Jungwirth. Phys. Rev.

Lett., 94:047204, 2005.

[139] Yu. A. Bychkov and E. I. Rashba. J. Phys. C, 17:6039, 1984.

[140] D. L. Haycock, P. M. Alsing, I. H. Deutsch, J. Grondalski, and P. S.

Jessen. Phys. Rev. Lett., 85:3365, 2000.

[141] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I. Bloch.
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