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Ballistic peaks at quantum resonance
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Abstract

We report studies of the motion of cold atoms in a time-dependent optical potential. The dynamics of our system are that
of the quantum kicked rotor, and exhibit a wide variety of phenomena. One purely quantum effect is the quantum resonance,
which occurs for well-chosen initial conditions and specific values of the period between kicks. Distinctly nonclassical
behavior, such as ballistic growth in momentum, is possible at a quantum resonance. Previous experimental studies have
observed these resonances, but have not clearly resolved the expected ballistic motion. We now observe ballistic motion at
quantum resonances and compare our momentum distributions with theory and numerical simulations. q 2000 Elsevier
Science B.V. All rights reserved.

PACS: 05.45.qb; 32.80.Pj; 42.50.Vk; 72.15.Rn
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1. Introduction

Quantum systems with nonintegrable classical
limits have proven to be a rich field of study over the
last quarter century. A natural focus of study has
been the interface between the starkly different be-
havior in the classical and quantum regimes. This
field of research, ‘quantum chaos’, has led to the
discovery of fundamentally new quantum mechani-
cal phenomena, which have in turn been areas of
active research. One such result is dynamical local-
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Ž .ization, a quantum suppression of classical chaotic
w xdiffusion 1–7 . Another purely quantum effect is the

Ž .quantum resonance, where a ballistic quadratic ,
rather than diffusive, growth of energy can take

w xplace 8 .
Dynamical localization was first studied experi-

mentally in the ionization of Rydberg atoms in strong
w xmicrowave fields 9–13 . A more recent experimen-

tal technique involves momentum transfer to cold
w xatoms in time-dependent optical potentials 14 . This

technique was used in a series of experiments in our
group on dynamical localization and quantum chaos

w xwith cold sodium atoms 15–19 . These results, along
w xwith other work 20 , established atom optics as a

new experimental testing ground for the field. The
simplest experimental configuration in that work was
a periodically pulsed standing wave of light. This
system constitutes an experimental realization of the
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kicked rotor, which has widely been studied in clas-
sical and quantum chaos for many years.

A quantum resonance is a phenomenon that oc-
curs in the kicked rotor system when the time be-
tween kicks is carefully chosen. Then, for certain
initial conditions, the evolution operator between
kicks can become either unity or only alternate sign
between successive kicks. Quantum resonances were
observed in experiments with sodium atoms using

w xthis idea 15,21 . In contrast to the ballistic motion
expected when the evolution operator becomes unity,
it was observed that near the quantum resonances
most of the momentum distribution rapidly settled
into a nearly static distribution. This is primarily due
to the nonzero initial momentum width of the distri-
bution. A small fraction of the atoms appeared to
undergo ballistic motion, but the signal was below

w xthe available resolution of the experiments 21 .
Our current set of experiments are conducted with

a second generation system that uses cesium atoms
w x22 . This experiment has considerably higher resolu-
tion than those using sodium atoms, and we are now
able to clearly resolve ballistic peaks at the quantum
resonance. Our study is relevant not only for compar-
ison with theory, but also in relation to ongoing
studies about effects of applied acceleration in this
system. Quantum resonances have been studied in

w xthis context 23 , where it was found that gravity in
the direction of the standing wave can enhance bal-
listic motion.

In the remainder of this paper we will first intro-
duce a theoretical description of our system. We will
then describe the experimental setup before present-
ing our results.

2. Theoretical background

Our experiments are performed on cold atoms that
interact with a pulsed standing wave of light. We
begin by showing the connection between this sys-
tem and the kicked rotor problem.

Let us consider a two-level atom with transition
frequency v interacting with a standing wave of0

linearly polarized, monochromatic light of frequency
v , and let k sv rc. This light forms a one-di-L L L

mensional optical lattice of the type that is now
commonly used in atom optics. We are concerned

with the limit where the laser detuning D sv yL L

v is large relative to the relaxation rate G of the0

excited state. In this case, the induced dipole force
due to the AC Stark shift can be significant while
incoherent effects such as spontaneous emission can
be made negligible. Furthermore, the excited state

w xpopulation can be adiabatically eliminated 14 . In
this approximation, we neglect internal structure and
treat the atom as a point particle. This approximation
leads to the following Hamiltonian for the center-of-
mass motion of the atom:

p2

H x , p s qV cos 2k x . 1Ž . Ž . Ž .0 L2m

Here, m is the atomic mass, V s"V 2r8 D is the0 L

‘well depth’ of the lattice, Vsy2 d E r" is thez 0

maximum Rabi frequency, d is the atomic dipole
moment, and E is the electric field of a single0

traveling wave component of the standing wave
Ž . Ž . Ž .E x,t sz2 E cos 2k x cos v t .ˆ 0 L L

The behavior described so far corresponds to the
dynamics of the simple pendulum. We may intro-
duce time dependence by changing the well depth,
which is easily controlled by changing the intensity
of the standing-wave light. The kicked rotor corre-
sponds to the case where the optical field is pulsed
on periodically in time:

p2

H x , p ,t s qV cos 2k x F tynT .Ž . Ž . Ž .Ý0 L2m n

2Ž .
Ž .Here, T is the kicking period, and F t is a pulse

shape function of unit amplitude and duration t <T.p

In the limit of d-function pulses, we recover the
Hamiltonian of the d-kicked rotor. In a physical
experiment one cannot reach this limit, and the
nonzero pulse lengths lead to a decreasing effective
kick amplitude as a function of atomic momentum
w x22 .

It is convenient to transform to a set of scaled,
dimensionless units. Let us define xX s2k x, pX sL

X X XŽ . Ž . Ž .kr2"k p, t s trT , f t s F Tt rh, K sL
XŽ . Ž .kr" hV T , and H s kr" TH, so that we may0

Ž .rewrite the kicked rotor Hamiltonian 2 as

p2

H x , p ,t s qKcos x f tyn , 3Ž . Ž . Ž . Ž .Ý
2 n
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after dropping the primes. In these transformations,
1 ` Ž .we have defined the pulse integral hs H F t d ty`T

A t rT and the constant ks8v T , where v sp r r

"k 2r2m is the recoil frequency. We will use theseL

scaled variables for the remainder of this paper,
except for the presentation of data in which momen-
tum is reported in multiples of two photon recoils
Ž .2"k . This momentum scale is natural since theL

dipole force arises from the scattering of photons
from one traveling wave into the other and the
atomic momentum can only change by two photon

Ž .recoils by k in scaled units at a time. This
‘momentum ladder’ structure also results from the
spatial periodicity of the potential.

The classical dynamics of the ideal d-kicked rotor
are given by the Chirikov–Taylor map, or ‘standard
map’, obtained by integrating over a single kicking
period. The dynamics are completely specified by
the stochasticity parameter K. For K)4, the phase
space is predominantly chaotic. The signatures of
chaotic behavior in an ensemble of rotors are approx-

Ž .imately diffusive linear energy growth in time and
a Gaussian momentum distribution.

The quantum dynamics are specified by K as well
as by the additional parameter k. The scaled commu-

w xtation relation is x, p s ik, and we interpret k as a
scaled Planck constant that measures the action scale
of our system relative to ". The system exhibits
diffusive behavior only for short times, after which
the rotors settle into an exponential momentum dis-

w xtribution 2,5 , the hallmark of dynamical localiza-
tion.

Quantum resonances have been studied theoreti-
cally, and it was found that if the period T between
pulses is carefully chosen, the system is not expected
to exhibit dynamical localization. Between kicks, the
atoms undergo free evolution for a fixed period.
During this evolution, a plane wave with momentum
p accumulates a quantum phase proportional to its0

2w xenergy and evolves by a phase factor exp yip r2k .0

During a kick, the atom is only free to couple to
other plane waves on its momentum ladder, i.e.,
those with momentum p " jk, where j is an inte-0

ger. When the initial momentum p is either zero or0

an integer multiple of k, then a proper choice of
ks8v T can lead to phase factors of "1 for ther

free evolution for all states on the momentum ladder.
This condition is called a quantum resonance and

occurs when k is chosen to be an integer multiple of
w x2p 8 . Similar types of quantum resonant behavior

are expected to occur at other rational multiples of
kr2p , although we have experimentally resolved
only the stronger resonances at integer values of
kr2p . For values of k that are even multiples of
2p , the free evolution factor is unity. For odd multi-
ples of 2p , the phase factor either is unity or flips
sign between successive kicks, depending on the
initial momentum state.

At the quantum resonance where the evolution
Žfactor is unity for the ps jk plane waves e.g.,

.ks4p , the atoms should exhibit ballistic motion in
which the energy grows quadratically with time
w x8,24,25 . We may illustrate this behavior by first
considering the interaction between the atoms and a
single pulse of light. Let us continue to use the case

Ž .of a plane wave p s0 initial condition and further0

simplify to the limit of a d-function pulse. The
probability for the atom to be diffracted into the
momentum state with momentum ps jk is

2P sJ Krk , 4Ž .Ž .j j

Ž .where J x is an ordinary Bessel function and j isn
w xan integer 26 . Let us now consider a series of N

pulses timed so as to satisfy the quantum resonance
condition. Since this condition ‘collapses’ the free
evolution between the kicks, we can consider the
pulse sequence to be a single large pulse. The mo-
mentum distribution after N kicks is thus

2P sJ NKrk . 5Ž .Ž .j j

The evolution of this distribution is plotted in Fig. 1
for typical experimental parameters. The Bessel

Ž .functions J x peak when x is near n, and twon

clear peaks move out from p s0 at a uniform rate.0

It is important to note that while these peaks do
represent the leading edge of the probability distribu-
tion, they do not represent uniform acceleration of
the entire atomic sample. Two features of Fig. 1 that
illustrate this are the low absolute amplitudes of the
peaks and the rich structure between the peaks, as is
clear on the density plot.

This analysis has considered only a plane-wave
initial condition at p s0, so that the momenta are0

Žrestricted to the integer momentum states ps jk for



( )W.H. Oskay et al.rOptics Communications 179 2000 137–148140

Fig. 1. Ballistic peaks in the d-kicked rotor with a plane-wave initial condition and parameters ks4p and Ks37. Two peaks move away
Ž .from p s0 with near uniform acceleration. The distributions shown are calculated from Eq. 5 . The evolution of the momentum0

Ž . Ž .distribution is shown as both a surface plot left and as a density plot right . The intensity scale for these plots is linear.

.integer j . This assumption is valid in the case of the
kicked rotor, where most of the relevant theoretical
work has been done. However, given the continuous
nature of our experiment, this model is of limited
utility, as we will show.

Fig. 2 compares the effects of using plane-wave
and Gaussian initial conditions in numerical simula-
tions at ks2p . In this case we expect to see
quantum ‘antiresonance’ behavior where the flipping
of sign between successive kicks causes periodic
recurrences. While this behavior is observed for a
plane wave initial condition, the continuous distribu-
tion shows surprisingly different results. In the
Gaussian case, we see a nearly static central region
flanked by two weak ballistic peaks. It is clear from
these results that the choice of initial conditions can
make a large difference in the observed dynamics.
Indeed, the primary signature of quantum resonances
in the earlier sodium experiments was a static, rather

w xthan accelerating, momentum distribution 15,21 . In
those experiments, no difference was observed be-
tween the behavior of the system at ks2p and 4p .

A more detailed consideration of the dynamics
can be used to account for both momentum ladders
with p /0 as well as the initial momentum distri-0

w xbution of the atomic sample 21 . Independent of
these considerations, atoms initially near ps0 will

undergo ballistic motion as we have described, for
ks4p . The overall behavior leads to momentum
distributions characterized by a static central region
surrounded by ballistic peaks, as our results in this
study indicate.

One other fundamental difference between our
system and the ideal d-kicked system is the nonzero

w xpulse length in our experiment 22 . If we continue to
view the pulse sequence as a single large pulse, then
we note that the movement of atoms during the total
pulse time may no longer be negligible. The motion
of atoms in a nonlinear resonance is bounded, and
we expect this boundary to play some role in our

w xobserved distributions 18 . A second complication is
Žthat our pulse period T defined from the beginning

.of one kick to the beginning of the next one is not
exactly equal to the time between kicks. A conse-
quence of these effects is that there is some subtlety
in comparing our experiments with theory based on
d-kicks. The finite-pulse effects are accounted for by
directly incorporating them into numerical quantum
simulations that use experimental parameters such as
the pulse length. We employ these simulations for
unambiguous comparison between theory and exper-
iment in the remainder of this paper.

The numerical simulations in the vicinity of the
quantum resonance proved to be particularly sensi-
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Ž . Ž .Fig. 2. Comparison of quantum d-kicked rotor simulations at ks2p and Ks82. Part a shows a simulation with a plane wave p s00

initial condition. This case shows quantum ‘antiresonance’ behavior characterized by period-2 recurrences and a lack of ballistic peaks. Part
Ž .b shows a simulation for the same parameters, but beginning with a near-Gaussian initial momentum distribution of width s r2"k s4.p L

This distribution was obtained from a time-of-flight measurement and is very close to that used in the experiments. In this case, ballistic
Ž .peaks are visible and the overall dynamics are more complicated. The intensity scale for the surface plots left is linear while the intensity

Ž .scale for the density plots right is logarithmic.

tive to the chosen ensemble and grid resolution. We
will describe these simulations in some detail be-
cause high resolution is required to eliminate numer-
ical artifacts and ensure that the calculated distribu-
tions converge. The simulations in this paper with

Ž .near-Gaussian initial conditions Fig. 2b and Fig. 6
were started with a distribution that is very close to

the initial condition in our experiment. An ensemble
Ž Ž ..of 30 wavepackets 50 for Fig. 6 d–f was dis-

tributed uniformly along a unit cell in position. The
momentum distribution for each packet was directly
adapted from a recent time-of-flight momentum
measurement of the initial condition in our experi-
ment. These simulations were performed on a grid
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spanning the range pr2"k s"256. The grid reso-L

lution was Dpr2"k s1r1024 and the plots wereL

smoothed by averaging over bins of 2"k . For Fig.L

6, the pulses were modelled by square pulses, and
we have found that the simulations are not highly
sensitive to the exact pulse shape.

3. Experiment

The experimental setup is that of our earlier stud-
w xies of quantum chaos with cesium atoms 22,27,28 ,

with modifications primarily to the parameters under
study. The experiments are performed on laser-cooled

Ž . w xcesium atoms in a magneto-optic trap MOT 29,30 .
Two actively locked, single-mode diode lasers at

852 nm are used for cooling, trapping, and detection
of the cesium atoms. The trapping light is produced
by the first laser and is tuned 15 MHz to the red of

Ž . Ž X .the 6S ,Fs4 ™ 6P ,F s5 cycling transi-1r2 3r2

tion. The light produced by the second laser is tuned
Ž . Ž X .to the center of the 6S ,Fs3 ™ 6P ,F s41r2 3r2

resonance. This repumping light is used to prevent
optical pumping into the Fs3 ground state during
the trapping and detection stages of the experiment.
The trap is loaded at these parameters for 7 s. The
atoms are further cooled by reducing the intensity of
the trapping light and increasing its detuning for 3
ms before turning off the trapping light. We ensure

Ž .that nearly all the atoms are in the 6S ,Fs41r2

ground state before the interaction with the standing
wave by turning off the repumping light 150 ms after
the trapping laser light. Typically, this procedure
yields 106 atoms with s s0.15 mm. The momen-x

tum distribution is nearly thermal, and 96% of the
distribution fits into a Gaussian of width s r2"k sp L

4, corresponding to a temperature of roughly 10 mK.
After the trapping fields are turned off, the inter-

action potential is turned on. The pulsed standing
wave is provided by a stabilized, single-mode Ti:sap-
phire laser, which is pumped by an argon-ion laser.
This light passes through an acousto-optic modulator
that controls the pulse sequence. The beam is hori-
zontally aligned with the atoms and retro-reflected
through the chamber to form a standing wave. The
beam has a typical maximum power of 470 mW at
the chamber and a waist of 1.46 mm. We detuned

Ž .this beam 6.1 GHz to the red of the 6S ,Fs41r2
Ž X .™ 6P ,F s5 cycling transition, with typical3r2

drifts of about 100 MHz. The pulse sequence con-
Žsists of a series of 295 ns full width at half maxi-

.mum pulses with a rise and fall times of about 70
ns. There is typically less than 3 ns variation in the
pulse duration. The pulse period for the experiments
presented here were chosen between Ts20 and 121
ms, corresponding to the range k;2 to 4p , with
less than 4 ns variation per pulse period. The detec-
tion of momentum is accomplished by letting the
atoms drift in the dark for a controlled duration
Ž .typically 15 ms . The trapping beams are then turned
on in zero magnetic field, forming an optical mo-

w xlasses that freezes the position of the atoms 15 . The
atomic position is recorded via fluorescence imaging

Ž .in a short 10 ms exposure with a cooled CCD
camera. The final spatial distribution and the free-
drift time enable the determination of the momentum
distribution in the direction of the standing wave.

There are several systematic effects in the deter-
mination of the momentum distributions, which we
now summarize. The first is the uncertainty in the
spatial calibration of the imaging system. The second
effect arises from the ambiguity in the drift time due
to motion occurring during different interaction times.
There is no clear way to remove this effect from the
measured distributions. These two factors lead to
overall systematic errors on the order of "10% in
the momentum scaling. Another effect that we must
consider is due to the Gaussian intensity profile of
the optical molasses laser beams used in the detec-
tion of the distributions. This leads to a slight reduc-
tion in the measured population in the wings of the

² 2:momentum distributions. The energy p of a mo-
mentum distribution tends to be particularly sensitive
to the population at high momenta. It is primarily
important to correct for these effects when energy of
the distributions is to be calculated. However, for the
purposes of this paper we are only concerned with
the qualitative behavior of the distributions and the
data presented here have not been compensated for
these effects. A final systematic effect in our experi-
ment concerns the strength of the interaction poten-
tial. The uncertainty in the stochasticity parameter K
is "10%, with the largest contributions due to the
measurement of laser beam profile and absolute
power.
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4. Data and results

Let us first examine the dynamics of our system
in the absence of quantum resonances. Fig. 3 shows
the evolution of a distribution when the kicking
period was set to Ts20 ms, corresponding to ks
2.08, which is not close to an integer multiple of 2p .
In this case, the momentum distribution takes only a
few kicks to settle into a distribution that is exponen-
tial over more than two orders of magnitude. This
behavior is a signature of dynamical localization,
which takes place when the quantum resonance con-
dition is not satisfied. Note that values of the
stochasticity parameter K reported here are not scaled

w xaccording to the quantum scaling factor 28 , which
goes to zero in the vicinity of a quantum resonance.

As we tune to the quantum resonances, qualita-
tively different momentum distributions are found.
Fig. 4 shows the behavior of the system near quan-
tum resonances. The behavior near the antiresonance
is shown in Fig. 4a. This data set was taken with
pulses spaced by Ts60 ms, corresponding to ks
6.24;2p , with stochasticity parameter Ks19. The
distribution is nearly static. Note, for example, that
the amplitude of the distribution is almost constant

after the first kick. The overall shape of the distribu-
tion appears to remain that of the initial distribution.
A slight ripple on the sides of the distribution can be
identified as a ballistic peak. Fig. 4b shows the
results of an experiment using pulses spaced by
Ts121 ms, corresponding to ks4p , and with
stochasticity parameter Ks37. The qualitative be-

Ž .havior is similar to the antiresonance ks2p case.
The higher kicking strength appears to increase the
population that undergoes ballistic motion, as one
may infer from the larger bump on the right side of
Fig. 4b. From a simplistic viewpoint, one might
expect to see contrasting behavior in the cases of the
resonance and antiresonance. However, as we saw in
Fig. 2, the continuous nature of the initial condition
has a strong effect on the evolution of the distribu-
tions. Some qualitative differences between the two
cases do become visible in a regime of higher kick-
ing strength, as we will see later. The parameters of
this data set match those used to produce Fig. 1. It is
apparent that the speed at which the ballistic peaks
move out in both parts of Fig. 4 is approximately the
same as in Fig. 1, where the peaks are at about
pr2"k s"40 after 13 kicks. This is to be ex-L

pected since the ratio Krk was approximately the

Ž .Fig. 3. Measured evolution of the momentum distribution as a function of time from the initial condition 0 kicks through 13 kicks. For this
scan, the parameters were K;10 and Ts20 ms, corresponding to ks2.08. This corresponds to a parameter regime far from quantum
resonances where dynamical localization is observed. The final profile shows a clear exponentially localized momentum distribution. Note
that the intensity axis is logarithmic and in arbitrary units, and that each waveform has been normalized. The momentum axis is determined
experimentally and the minor asymmetry is due to the initial position of the trapped atoms.
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Ž . Ž .Fig. 4. Evolution of momentum distributions a near ks2p , with Ks19 and b near ks4p , with Ks37. The distributions are
qualitatively different from the exponentially localized case shown in Fig. 3, and exhibit weak ballistic peaks. The peaks can be seen in this

Ž .case as small ripples on the surface plots left that start at ps0 and are visible as bulges at pf"40 after 13 kicks. A second feature to
notice is that the spread in p of the entire distribution is much smaller than in the localized case. The intensity scales for these plots are
logarithmic and in arbitrary units.

same in the three cases. Note that the laser intensities
for the data in Fig. 4a and Fig. 4b were approxi-
mately the same.

If we now turn up the stochasticity parameter, we
can further increase the population that undergoes
ballistic motion. Fig. 5 shows two cases with stronger

Ž .kicks and more obvious ballistic peaks. Fig. 5 a–c
again shows the antiresonance case, with Ts60.5
ms. There are several features to note in this plot.

First, the ballistic peaks are much larger than those
in Fig. 4 and can now be clearly resolved. The peaks
are also moving more quickly than those shown in
Fig. 4. Here, the majority of the ballistic atoms have

Žleft the region in which we can detect atoms f
."80P2"k by the 10th kick. Since the distribu-L

tions are normalized after detection, the remaining
distribution appears to be inflated. For this data set

Ž Ž ..only Fig. 5 a–c , a longer pulse width t of ap-p
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Ž . Ž .Fig. 5. Evolution of momentum distributions a–c near ks2p , with Ks82 and d–f near ks4p , with Ks184. The ballistic peaks are
clearly visible in these plots. Finite pulse effects lead to a curvature in the apparent trajectory of the peaks for the ks2p case. While the

Ž . Ž . Ž .density plots a,d are shown with a logarithmic intensity scale, the surface plots are shown with both logarithmic b,e and linear c,f
intensity scales to highlight different features. Each plot is in arbitrary units.

proximately 600 ns was used to further increase K.
The longer pulse also leads to more pronounced
finite-pulse effects, which are clearly visible in this
plot. The peaks follow a path that is consistent with
ballistic motion for the first few kicks, but slow
down by about the seventh kick. The overall shape
of the final distribution is similar to that of the initial

condition, but with many fewer atoms near ps0.
Note that the values of K and k used here corre-
spond to those used for the simulations in Fig. 2.

A scan with stochasticity parameter Ks184 at
the quantum resonance ks4p is shown in Fig.
Ž .5 d–f . The ballistic peaks are larger than those in

Ž .Fig. 5 a–c , but the distribution is otherwise quite
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similar. The peaks also appear to be moving more
quickly than in any other cases shown, and appear to
have left the visible region by the seventh kick.

Let us now compare our measured distributions
with the results of numerical simulations that ac-
count for both the extended nature of our initial
conditions and nonzero pulse durations. Fig. 6 shows
the results of quantum simulations for the same

parameters as the data shown in Fig. 5. The data and
simulations shown in these two figures are plotted
with both linear and logarithmic scales to facilitate

Ž .comparison. The first case, shown in Fig. 6 a–c ,
corresponds to ks2p , Ks82, and was calculated
with a 600 ns pulse width. The surface plot shows
the curvature of the ballistic-peak trajectory, which

Ž .closely follows the trajectory seen in Fig. 5 a–c .

Ž .Fig. 6. Quantum simulations of momentum distribution evolution, for the same cases as the data shown in Fig. 5. The two cases are a–c
Ž .near ks2p , with Ks82 and 600 ns pulses and d–f near ks4p , with Ks184 and 295 ns square pulses. The initial condition for both

cases was a Gaussian with width s r2"k s4. The evolution of the ballistic peaks closely matches that of the experimental data in Fig. 5.p L

The remainder of the distribution undergoes motion that is primarily not resolved in the experiment.
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Ž .Fig. 7. Detail of the data shown in Fig. 5. Case a , which is at ks2p shows a small period-2 oscillation in intensity at ps0 that follows
Ž . Ž .the prediction for a quantum antiresonance see Fig. 2 . For case b , near the full quantum resonance at ks4p , the period-2 oscillations

are not observed. Note that similar behavior is visible at the appropriate scale in the simulations shown in Fig. 6. For both plots, the intensity
scale is linear and the entire range is not shown.

The density plot of the same simulation shows a
bright central region that does not undergo ballistic
motion. Note that Fig. 2b shows a simulation with
these parameters that uses d-function pulses. A com-

Ž .parison of Fig. 2b and Fig. 6 a–c shows the effects
of nonzero-width pulses. The second case, shown in

Ž .Fig. 6 d–f , represents ks4p at Ks184, and was
calculated with a 295 ns pulse width. The momen-
tum boundary effects are present but not as strong in
this case, as the ballistic peak trajectory is nearly
straight. The peaks leave our detection region after

Žabout seven kicks, as we saw in the experiment Fig.
Ž ..5 d–f .

Now that we have examined the behavior of the
ballistic peaks, let us again consider the differences
between the behavior at ks2p and ks4p . Fig. 7
shows a magnified section of the data presented in
Fig. 5, plotted with a linear intensity scale. It is
possible to resolve features on this scale that were
not visible in Fig. 5. The most striking feature of
Fig. 7a is the period-2 oscillation present in the
intensity at ps0. These oscillations are a feature of
the dynamics at ks2p where the quantum phase
factor between kicks alternates sign, and were not
visible in the data taken with a weaker kicking
strength. Oscillations of similar magnitude are pre-

Ž .sent in the simulations shown in Fig. 6 a–c . The
period-2 oscillations are not present in Fig. 7b, which
presents data taken at ks4p . Likewise, the simula-

Ž .tions at ks4p shown in Fig. 6 d–f do not exhibit
period-2 oscillations.

Finally, let us note that while the ballistic peaks
can clearly be resolved by eye in our measured
distributions, it is harder to classify them by looking
at the energy evolution. In the current generation of
experiments, only a small fraction of the atoms are
states that undergo ballistic motion. Colder initial
conditions should enable a more detailed study of
these dynamics.

5. Summary

We have observed the motion of ballistic peaks at
Ž .the quantum resonance ks4p and at the quantum

Ž .antiresonance ks2p in the quantum kicked rotor
system. Qualitative agreement has been established
between measured momentum distributions and
quantum simulations about the location and behavior
of these peaks. Further, we have experimentally
resolved differences between the behavior of the
system at the resonance and antiresonance due to
their different natures.
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