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This paper summarizes our recent work on the role of classical dynamics in atom optics
with time-dependent dipole potentials. We measure momentum transfer in parameter
regimes for which the classical dynamics are chaotic and observe a wide range of phe-
nomena. These include classical mechanismssuch as the resonance overlap route to global
chaos as well as quantum suppression due to dynamical localization. The high degree of
experimental control enables detailed comparison with theory and opens up new avenues
for testing ideas in quantum chaos.

1 Introduction

The past few years have seen a resurgence in the use of classical mechanics in the
description of strongly perturbed and strongly coupled quantum systems in atomic
physics 12, where the traditional perturbative treatment of the Schrédinger equation
breaks down. In particular, recent advances in classical nonlinear dynamics and
chaos have had important applications in the description of the photo-absorption
spectrum of Rydberg atoms in strong magnetic fields3, the microwave ionization of
highly excited hydrogen atoms*, and the excitation of doubly excited states of helium
atoms5. These examples together with recent work on mesoscopic systems ¢ explore
classical-quantum correspondence in situations where the classical limit exhibits
chaos, an area of study referred to as ‘quantum chaos’”.

Parallel progress in laser cooling and trapping techniques have led in recent
years to spectacular advances in the manipulation and control of atomic motion 8.
At the ultra-cold temperatures that are now attainable, the wave nature of the atoms
becomes important, leading to the development of the new field of atom optics ¥,

Until recently, the primary focus in atom optics has been the development of op-
tical elements such as atomic mirrors, beamsplitters and lenses for atomic de Broglie
Waves. Our recent work, reviewed in this paper, has emphasized the novel regime
of time-dependent potentials and hence dynamics in atom optics. In particular, we
study momentum distributions of ultra-cold atoms exposed to time-dependent one-
dimensional dipole forces which are, typically, highly nonlinear. Thus, the classical
equations of motion can become chaotic and as dissipation can be made negligibly
small in this system, quantum effects can become important. OQur work has estab-
lished that these features together make atom optics a very simple and controlled
setting for the experimental study of quantum chaos !°.

As this work deals with momentum transfer from light to atoms, it is important
to review some basic concepts. The relevant unit of momentum is one-photon recoil
(hkr), the momentum change experienced by an atom when it scatters a photon.
For sodium atoms, this velocity change is 3 cm/s. The desired process for atom
optics is stimulated scattering, where the atom remains in the ground state, and
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coherently scatters the photon in the direction of the laser beam. Spontaneous
scattering, on the other hand, is a dissipative process and must be minimized. In a
single beam (traveling wave) the atom scatters in the forward direction, and there
is no net momentum transfer. However in a standing wave of light, created by the
superposition of two counter-propagating beams, the atom can also back-scatter.
This process leads to a momentum change of two photon recoils, or 6 cm/s velocity
change for sodium. The effective dipole potential that the atom experiences scales
with intensity I and detuning d;, from atomic resonance as I/d; while spontaneous
scattering goes as I/67 1. Therefore, by detuning farther from resonance, it is
possible to make the probability of spontaneous scattering negligible, while still
having a substantial dipole potential.

2 Experimental method

The experimental study of momentum transfer in time-dependent interactions con-
sists of three important components: initial conditions, interaction potential, and
measurement of atomic momentum. The initial distribution should ideally be narrow
in position and momentum, and should be sufficiently dilute so the atom- atom inter-
actions can be neglected. The time-dependent potential should be one-dimensional
(for simplicity), with full control over the amplitude and phase. In addition, noise
must be minimized to enable the study of quantum effects. Finally the measure-
ment of final momenta after the interaction should have high sensitivity and accur-
acy. Using techniques of laser cooling and trapping it is possible to realize all these
conditions.

A schematic of the experimental set-up is shown in Fig. 11213, OQur initial
conditions are a sample of ultra-cold sodium atoms which are trapped and laser-
cooled in a magneto-optic trap (MOT)® !, The atoms are contained in an ultra-high
vacuum glass cell at room temperature. The cell is attached to a larger stainless steel
chamber which includes a 20 1/s ion pump. The source of atoms is a small sodium
ampoule contained in a copper tube that is attached to the chamber. The ampoule
was crushed to expose the sodium to the rest of the chamber. Although the partial
pressure of sodium at room temperature is below 10~1° Torr, there are enough atoms
in the low-velocity tail of the velocity distribution that can be trapped. The trap
is formed using three pairs of counter-propagating, circularly polarized laser beams
(2.0 cm beam diameter) which intersect in the middle of the glass cell, together with
a magnetic field gradient which is provided by current-carrying wires arranged in an
anti-Helmholz configuration. This configuration is now fairly standard, and is used
in many laboratories. These beams originate from a dye laser that is locked 20 MHz
to the low frequency (red) side of the (353, F = 2) — (3P3/2, F = 3) sodium
transition at 589 nm. Approximately 10° atoms are trapped in a cloud which has
an RMS size of 0.12 mm, with an RMS momentum spread of 4.6hk; .

The interaction potential is provided by a second dye laser that is tuned typically
5 GHz red of resonance. Different beam configurations were used in the experiments
described here utilizing acousto-optic and electro-optic modulators to control the
time-dependent amplitude and phase.

The detection of momentum is accomplished by allowing the atoms to drift in
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Figure 2: Two-dimensional atomic distributions after free expansion. (a) Initial thermal distribu-
tion with no interaction. (b) Localized distribution after interaction with the potential.

the dark for a controlled duration, after the interaction with the standing wave.
Their motion is frozen by turning on the optical trapping beams in zero magnetic
field to form optical molasses 8. The motion of the atoms is overdamped, and for
short times (tens of ms) their motion is negligible. The position of the atoms is then
recorded via their fluorescence signal on a Charge Coupled Device (CCD) and the
time of flight is used to convert position into momentum. The entire sequence of
the experiment is computer controlled.

In Fig. 2, typical 2-D images of atomic fluorescence are shown. In Fig. 2(a) the
initial MOT was released, and the motion was frozen after a 2 ms free-drift time.
This enables a measurement of the initial momentum distribution. The distribution
of momentum in Fig. 2(a) is Gaussian in both the horizontal and vertical directions.
The vertical direction is integrated to give a one dimensional distribution as shown
in Fig. 3(a). In Fig. 2(b), the atoms were exposed to a particular time dependent
potential. The vertical distribution remains Gaussian, but the horizontal distribu-
tion becomes exponentially localized due to the interaction potential, as shown in
Fig. 3(b). The significance of the lineshape and other characteristics are analyzed
below.
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Figure 3: One-dimensional atomic momentum distributions. They were obtained by integrating
along the vertical axes of the 2 — D distributions in the previous figure. The horizontal axes are
in units of two recoils, and the vertical axes show fluorescence intensity on a logarithmic scale. (a)
Initial thermal distribution with no interaction. (b) Localized distribution after interaction with
the potential. The significance of the characteristic exponential lineshape is discussed in the text.

3 Single Pulse Interaction

Consider a two level atom of transition frequency wp interacting with a standing-
wave of near-resonant light (frequency wy). For sufficiently large detuning dp =
wo — Wi, the excited state amplitude can be neglected and the atom remains in the
ground state. The Hamiltonian is then given by

H =p®/2M — (ks /8) cos 2kpx , (1)

where the effective Rabi frequency is Qesy = Q?/41, and kp is the wavenumber.
Qs is proportional to the laser intensity /. The effective one-dimensional potential
neglects variations of the potential in the two transverse directions. This is justified
when the beams are sufficiently large compared to the initial atomic cloud. Quantum
mechanically, the atom can exchange energy with the standing wave only in units of
2hk; which results in a ladder of equally spaced momentum states.

The classical analysis of this Hamiltonian is the same as for a pendulum, except
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that here the conjugate variables are position and momentum instead of angle and
angular momentum. A Poincaré surface of section is shown in Fig. 4. The position
coordinate is shown for one period of the standing wave which is half a wavelength
of light. The stable fixed point corresponds to the bottom of the potential well, and
the unstable fixed point corresponds to the top. Our initial conditions are a band in
phase space, with small spread in momentum, and uniformly distributed in position
on the scale of one period.

Figure 4: Poincaré surface of section for a single resonance. Momentum (vertical axis} is in units
of two recoils, and position is in units of one period of the standing wave potential.

The simplest time-dependent potential is the turning on and off of an interaction,
and one expects that for slow turn on/off the evolution will be adiabatic. The
conditions for adiabatic behavior are usually very clear for linear potentials (the
harmonic oscillator is an example) since there are only a few relevant time scales
to consider. The difficulty with nonlinear potentials such as that occuring in the
pendulum and the standing wave of light is that there are many time scales, so the
conditions for adiabaticity must be examined much more carefully. The opposite
extreme of fast passage is generally simpler to understand. We show that for time-
scales intermediate to fast passage and adiabatic, mixed phase space dynamics and
chaos can be seen even with the mere act of turning an interaction on and off. In
the context of atom optics, this type of time-dependent interaction is ubiquitous and
occurs, for example, whenever an atomic beam passes through a standing wave of
light.

The generic time dependent potential in this case is

V(z,t) = (h8ess /8) f(t) cos 2k (2)
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One common case is for f(t) = exp —(t/r)? corresponding an atomic beam travers-
ing a Gaussian beam waist '>. We consider here the case f(t) = sin? nt/T,, which
is turned on for a single period T,.

This Hamiltonian can be expanded as

H P*/2M — (hQ.y;/8) sin® (nt/T,) cos (2kL ) ,
P?/2M — (hQs4/16) [cos 2k z

(cos 2kp(z — vt) + cos 2k (z + v,at)) /2] , (3)

where v, = A /27,. The effective interaction is that of a stationary wave with
two counter-propagating waves moving at Zv,,. Classically, there are now three
resonance zones each of width proportional to /S, ts and separation in momentum
proportional to T,~. The Poincaré surface of section for this Hamiltonian is shown in
Fig. 5. Keeping Q.;; constant and increasing T} leads to the overlap of these isolated
resonances and the subsequent diffusion of the particle in momentum. This is the
well known Chirikov resonance overlap criterion for global chaos in Hamiltonian
systems 1617, An example of a surface of section in that case is shown in Fig. 6.
The parameters for resonance overlap are easily accessible experimentally 18,

To experimentally determine the threshold 7., for overlap, we must distinguish
the momentum growth associated with spreading within the primary resonance from
diffusion that can occur after resonance overlap. This is accomplished by contrasting
the momentum transfer from the potential due to a standing wave of fixed amplitude

V'(z) = (heyy/16) cos(2kLz) , (4)
for duration T, with ‘
V(z,t) = (hQe;;/16)[cos 2k,
—  (cos2kr(z — vmt) + cos 2k (z + vmt)) /2] , (5)

resulting from the sin? amplitude modulated standing wave. The key to the inter-
pretation of the experimental results is the realization that for values of T, below the
threshold for resonance overlap V'(z) and V (z,t) should give the same result. After
overlap of the resonances, V(z,t) will result in significantly larger momentum trans-
fer than V'(x). The experimental results in Fig. 7(b) show the RMS momentum for
both cases as a function of pulse duration (rise and fall times of 25 ns are included
in the square pulse duration). These agree well with numerical classical simulations
shown in Fig. 7(a) as well as with the estimated resonance overlap threshold !8.
How does the predicted quantum behavior compare with experiment and clas-
sical simulations? As seen from the dashed curve in F ig. 7(c), we find close agreement
between all three for the square pulse potential V'’ (z). This is an interesting result
in its own right, since the coherent oscillations that occur for short times are seen
in the experiment with a large ensemble of independent atoms, and in the quantum
simulation which uses a single wavepacket approach. For the case of V(z,t) there
1s also good agreement between the three cases over the entire range of pulse times.
However, the quantum widths are slightly lower than the corresponding classical
values near the large peak in the RMS width. Although this difference is too small
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Figure 5: Poincaré surface of section for the sin? potential. In this case there are three isolated
resonances at 0 and £25.
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Figure 6: Poincaré surface of section for the sin? potential after resonance overlap has occured.
There is a bounded region of global chaos.
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Figure 72 RMS momentum computed from (a) classical simulations for sin? (solid line) and square
(dashed line) pulses; (b) experimentally measured momentum distributions for sin? (solid) and
square (open) pulses (from Ref. 18 ); (c) corresponding quantum simulations, solid and dashed
lines respectively. Q.7;/2r = 41MHz. and the threshold estimated from resonance overlap is
indicated by the arrow. A clear deviation occurs at a pulse duration close to the predicted value.

to be of quantitative significance, it is nevertheless the precursor for differences in
quantum and classical behavior that can occur when the classical dynamics are glob-
ally chaotic. These differences, which form the basis for the study of quantum chaos,
are the focus of the next experiments we discuss.

4 Modulated Standing Wave

We now subject our two-level atoms to a standing wave of near-resonant light where
the position of the nodes of the standing wave are modulated at an angular frequency
wm and with an amplitude AL. Once again, a large detuning is used to eliminate
the upper level dynamics leading to the effective Hamiltonian1?

H =p?/2M — (hQeyys/8) cos [2kr(x — ALsinwy,t)], (6)

Although this Hamiltonian may look somewhat different than the sin? case that was
discussed earlier, it can also be expanded as a sum of nonlinear resonances using
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the well known Bessel function expansion. The Hamiltonian then has the form

Vizg,t) = (hQess/8)[Jo(A)cos (2krz) + Ji(A) cos 2kL (2 — vmt)
+  Jo1(A)cos 2k (z + vimt) + J2(A) cos 2k (z — 2unt) - - ]
= (thjj/S) i Jm(/\)COS 2kL('7: - mvmt) ) y (7)

where J,,, are ordinary Bessel functions and v,, = wm/2ky. A = 2k AL is the
control parameter which takes the dynamics from integrable (A = 0) to chaotic.
Unlike the single pulse case that was considered earlier, here we take the interaction
time to be independent of the modulation period.

Now the classical dynamics involves several resonances equally spaced in mo-
mentum with widths proportional to y/|J,(A)|. For a given value of A there are sub-
stantial resonances only for m < X therefore the interaction turns off for v > Avyy,,
leading to a bounded region in momentum spanned by the resonances. The oscil-
latory behavior of the Bessel functions leads to the recurrence of stable classical
structures within a bounded region of chaos, as A is varied.

The classical dynamics can also be understood in terms of resonant-kicks that
occur twice during each modulation period: consider an atom subjected to the
modulated standing wave. When the standing wave is moving with respect to the
atom, the time-averaged force is zero, since the sign of the force is changing as the
atom goes over ‘hill and dale’ of the periodic potential. However, twice during each
modulation period, the standing wave is stationary in the rest frame of the atom, and
the atom gets a resonant-kick which changes its momentum. The magnitude and
direction of the resonant-kick depends on where the atom is located with respect to
the standing wave at that time. In this system, an atom experiences two resonant-
kicks every modulation period, although they are not equally spaced in time. The
boundary in momentum can be understood from this picture, since for each value
of A there is a maximum velocity of the standing wave. Once an atom is moving
faster than this maximum valocity, the resonant-kicks cannot occur, and the atom
1s essentially free.

The variation of the classical RMS momentum width as a function of A is shown
in Fig. 8 (dot-dashed line)?°. The parameters are w,, /27 = 1.3 MHz. and Qess/2n ~
25 MHz.. The interaction time was chosen to be 20 us which is sufficiently long for
the experimentally observed momentum spread to saturate. At small values of A, the
distribution of the classical simulation saturates near the resonant-kick boundary.
As A is increased, oscillations occur with the dips corresponding to zeros of the
Bessel functions. Notice that the overall amplitude of the oscillations decreases as
A is increased due to the reduction of the size of each resonant-kick. This can be
understood from the impulse approximation, since the maximum classical force is
fixed, but the time that the standing wave potential is stationary in the rest frame
of the atom is inversely proportional to A. We have run the classical simulation for
longer times and find that the peaks grow until the resonant-kick boundary, while
the dips grow much more slowly. This difference in rates is explained by the phase
portraits shown in Fig. 9 (top panel). In this figure, the peaks in RMS momentum are
at values of A for which the dynamics are primarily chaotic. In contrast, at the dips, a
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data is denoted by diamonds and have a 10% uncertainty associated with them. The empty
diamonds are for an interaction time of 10 us and the solid diamonds are for 20 us; classical
simulation for 20 us (dash-dot line); quantum Schrédinger for 20 us (heavy dashed line); quantum
Floquet in the long-time limit (heavy solid line). The light solid lines denote the resonant-kick
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primary island determines the momentum transfer. The classical lineshapes in Fig. 9
(middle panel) clearly show these features as well as the effect of the resonant-kick
boundary. Initial conditions contained within an island remain trapped, while those
in the chaotic domain diffuse up to the boundary, leading to ‘boxlike’ distributions.
A clear example of the stability at the dips is at A = 3.8 where J; has its first zero.
The final momentum spread in this case is governed by the surviving island due
to Jo and the system is nearly integrable. Note that the oscillations of the Bessel
functions are reflected in the exchange of the location of hyperbolic and elliptic fixed
points, which is clearly visible on contrasting the phase portraits for A = 0 and
A = 3.0, beyond the first zero of Jy at A = 2.41.

Log,o[1(P)]

Figure 9: Poincaré surfaces of section (upper panel), classical momentum distributions (middle

panel), and experimentally measured momentum distributions with Floquet theory (bottom panel,

theory marked by lines) for runs with parameters similar to those in Fig. 8. Note that the vertical
scales for the distributions are logarithmic and are marked in decades.

It 1s well known that classically diffusive behavior can be suppressed quantum
mechanically by a mechanism analogous to Anderson localization 2!. Referred to
as dynamical localization, it predicts saturation in the energy transfer (momentum,
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in our case) and a resulting exponential lineshape with a characteristic localization
length £ (in momentum). In the experiments, we have to ensure that the location
of the resonant-kick boundary is much further than £ to observe this lineshape. As
this boundary scales linearly with A, we expect to see the appearance of dynamical
localization only beyond some value of A.

The measured RMS momenta vs. A are shown in Fig. 8 (diamonds). The empty
and solid diamonds are for two different interaction times showing that these res-
ults are close to saturation for the range of A shown. Note that for small values
of A there is good agreement with the classical prediction. At A = 0 the system is
integrable and momentum is trivially localized. As A is increased the phase space be-
comes chaotic, but growth is limited by the resonant-kick boundary. Qur measured
momentum distributions (in Fig. 9, bottom panel) are characteristically “boxlike”
in this regime. As A is increased beyond a critical value there are oscillations in
localization with an RMS spread that deviates substantially from the classical pre-
diction at the peaks. For those values of A the classical phase space is predominately
chaotic, and exponentially localized distributions are observed !3:2°, This is shown
in Fig. 9 for A = 3.0. At the dips in oscillation, as in the case A = 3.8, the classical
phase space becomes nearly integrable and the measured momentum is close to the
classical prediction.

Quantum analyses under the conditions of the experiment as well as an asymp-
totic (long-time limit) Floquet analysis are also shown in Fig. 8 as are the predicted
lineshapes in lower panel of Fig. 9. It is clear that there is good quantitative agree-
ment between experiment and the effective single particle analysis 29:22,

The modulated system is characterized in general by a mixed phase space. In
certain regimes such as for A = 3.0, the stable regions become very small, and
dynamical localization can be observed. The main potential for future work with
the modulated system is, however, the study of quantum dynamics in a mixed phase
space. This will require better defined initial conditions that are localized in position
as well as momentum, and will be the main emphasis of a cesium experiment that
is now being contructed in our laboratory.

Mixed phase space dynamics inherently complicate the analysis of dynamical
localization and it is useful to realize a system where the chaos is more widespread.
Also, there is a characteristic time scale, the ‘quantum break time’, beyond which the
saturation effects of dynamical localization are predicted to occur. With a further
modification of the basic experimental setup, we can achieve both the globally chaotic
behavior as well as the capability to track the time evolution of the localization
phenomena.

5 Kicked Rotor

The classical kicked rotor or the equivalent standard mapping is a textbook paradigm
for Hamiltonian chaos. The Hamiltonian for the problem is given by

H=p24K coquJ(t —nT) (8)
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The evolution consists of resonant-kicks that are equally spaced in time, with free
motion in betwen. K is called the stochasticity parameter, and is the standard
control parameter. As K is increased, the size of each resonant- kick grows. Beyond
a threshold value of K = 4 it was shown that phase space is globally chaotic ?!.
The quantum version of this problem has played an equally important role for the
field of quantum chaos, and a wide range of effects have been predicted ?!. In
our realization, we have the cosine potential of the standing wave multiplied by
f(t), a train of N pulses with unit peak heights and period T. This system was
previously analyzed in the context of molecular rotation excitation 3. The nonzero
pulse widths lead to a finite number of resonances in the classical dynamics,which
limits the diffusion resulting from overlapping resonances to a band in momentum.
However, by decreasing the pulse duration with constant area, the width of this
band can be made arbitrarily large, approaching the 4- function pulse limit. The
boundary in momentum can also be understood using the concept of an impulse.
If the atomic motion is negligible while the pulse is on, the momentum transfer is
an impulse, similar to the resonant-kick in the modulated system. For a sufficiently
large velocity, the atom has time to move over the periodic potential while the
pulse is on, averaging the impulse to zero. The result is a momentum boundary
which can be pushed out by making each pulse shorter. The practical constraints of
available laser power limits the pulse duration, since in these experiments the pulse
train is created by turning a continuous-wave laser on and off with an acousto-optic
modulator.
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Figure 10: Digitized temporal profile of the pulse train measured on a fast photo-diode. The
vertical axis represents the total power in both beams of the standing wave. f(t) and Q.s; are
derived from this scan.

A typical experimental pulse train is shown in Fig. 10. Each pulse is typically
non-Gaussian and the integrated area is used in the comparison with theory. The
pulse period, duration, and number of pulses in a burst are variable parameters in
the experiment. The bounded region of chaos arising from the finite pulse duration
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is illustrated by the classical phase portrait, for typical experimental parameters,
shown in Fig. 11. The central region of momentum in this phase portrait is in very
close agreement with the delta-kicked rotor model with a stochasticity parameter of
K = 11.6, which is well beyond the threshold for global chaos.

p/2hk,

Figure 11: Poincaré surface of section for the pulsed system using a train of Gaussians to represent

the experimental sequence. The integrated area under a single pulse is taken to be the same as in

the experiment. The standing wave has a spatial RMS value of Qepp/27 =756 MHz. T = 1.58 pus,
and K = 11.6.

The momentum distributions were measured for an increasing number of kicks
(N), with the pulse height, period, and pulse duration fixed. This sequence of meas-
urements then determines the temporal evolution. The lineshapes shown in Fig. 12
clearly evolve from an initial Gaussian distribution at N = 0 to an exponentially
localized distribution after approximately N = 8. We have measured distributions
out until N = 50 and find no further significant change. The growth of the mean
kinetic energy of the atoms as a function of the number of kicks was calculated from
the data and is displayed in Fig. 13. It shows diffusive growth initially until the
quantum break time, after which dynamical localization is observed 24. Though not
shown here, classical and quantum calculations both agree with the data over the
diffusive regime. Beyond the quantum break time, the classical energy continues to
increase diffusively while the measured lineshapes stop growing, in agreement with
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Figure 12: Experimental time evolution of the lineshape from the initial Gaussian until the expo-
nentially localized lineshape (from Ref. 24). The break time is approximately 8 kicks. Fringes in
the freezing molasses lead to small asymmetries in some of the measured momentum lineshapes as
seen here and in the inset of Fig. 13. The vertical scale is measured in arbitrary units and is linear.

the quantum prediction. The observed lineshape is shown (Fig. 13 inset), and is
clearly exponential. These results are the first experimental observation of the onset
of dynamical localization in time, and the quantum break time24.

Between kicks the atoms undergo free evolution for a fixed duration. The
quantum phase accumulated during the free evolution is e~*?’T/2M%  An initial
plane wave at p = 0 couples to a ladder of states separated by 2hk;. For particular
pulse periods, the quantum phase for each state in the ladder is a multiple of 27, a
condition known as a quantum resonance?'. More generally, a quantum resonance
is predicted when the accumulated phase between kicks is a rational multiple of
27. We have scanned T from 3.3 us to 50 ps and find quantum resonances when
the quantum phase is an integer multiple of 7 . For even multiples, the free evolu-
tion factor between kicks is unity, and for odd multiples, there is a flipping of sign
between each kick. Quantum resonances have been studied theoretically, and it was
shown that instead of localization, one expects energy to grow quadratically with
time 2. This picture, however, is only true for an initial plane wave. A general
analysis of the quantum resonances shows that for an initial Gaussian wavepacket,
or for narrow distributions not centered at p = 0, the momentum distribution is ac-
tually smaller than the exponentially localized one, and settles in after a few kicks2¢.
Our experimental results are shown in Fig. 14. Ten quantum resonances are found
for T ranging between 5 pus (corresponding to a phase shift of 7) and 50 us (10m)
in steps of 5 ps. The saturated momentum lineshapes as a function of T' are shown
in Fig. 14(a). The narrower, non-exponential profiles are the resonances between
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Figure 14: Experimental observation of quantum resonances: (a) Occurrence as a function of the

period of the pulses. The surface plot is constructed from 150 lineshapes measured, for each T,

after 25 kicks. This value of N ensures that the lineshapes are saturated for the entire range of

T shown. At resonance, the profiles are non-exponential and narrower than the localized shapes

which appear off-resonance. Note that the vertical scale is linear. (b} Time evolution of a particular
resonance (T = 10 us).
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which the exponentially localized profiles are recovered. The time evolution of the
lineshape at a particular resonance is shown in Fig. 14(b) from which it is clear that
the distribution saturates after very few kicks.

6 Future Directions

This work establishes a new experimental testing ground for quantum chaos, and
it should be possible to study many aspects of this field. These include the study
of noise-induced delocalization 27?® and localization in two and three dimensions 2°.
Using recently developed techniques of atom cooling and manipulation it should be
possible to prepare the atoms in a small region of phase space. This would enable a
detailed study of quantum transport in mixed phase space. Some interesting topics
to study would be tunneling from islands of stability, chaos assisted tunneling, and
quantum scars 3¢,
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