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Dynamical Bloch Band Suppression in an Optical Lattice
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Dynamical Bloch band suppression is observed for the first time, using cold sodium atoms in a
detuned standing wave of light. This system has well-defined Bloch bands as its energy spectrum, w
are modified dynamically by imposing a strong phase modulation of the standing wave. The atoms
prepared in the lowest band, and the spectrum is mapped out by introducing a weak spectroscopic
that drives transitions between the modified bands. Dynamical suppression of the bands is observ
a critical value of the modulation strength, and is well supported by a full quantum mechanical anal
that goes beyond the single-band and tight-binding approximations. [S0031-9007(98)07857-0]

PACS numbers: 32.80.Pj, 42.50.Vk
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Twelve years ago, Dunlap and Kenkre studied theore
cally the problem of electron dynamics in a Bloch ban
driven by an ac electric field. They found the surprisin
result that dc transport of the electrons can be complet
shut off when the strength of the ac field takes some spec
values [1]. This effect of dynamical localization wa
later found to be associated with a collapse of the Blo
bands in a Floquet analysis of the quasienergy spectrum
Holthaus [2]. These ideas reveal the possibility for a ne
and interesting solid state device, but their experimen
realization has been difficult. The suppression of transp
has indeed been observed on a superlattice driven b
terahertz free-electron laser [3], but it was interpreted as
inhibition of interwell tunneling rather than that of Bloch
transport, because it is not clear if quantum coherence
be maintained over a distance of more than two wells.

In this Letter, we report the first observation of dy
namical suppression of Bloch bands due to an ac fie
Our system consists of laser-cooled atoms in an opti
lattice, rather than electrons in a superlattice. The ma
advantage of our system is the long coherence times, l
ited only by residual spontaneous scattering. This featu
has made it possible, in earlier work, to observe a numb
of important quantum phenomena such as Bloch oscil
tions, Wannier Stark ladders, and Landau-Zener tunnel
[4]. In our experiments we trap neutral sodium atoms
the lowest band of a one-dimensional optical lattice. W
then modulate the position of the potential to realize bo
an intense ac field and a weak spectroscopic probe in
der to directly observe band suppression. The concept
simplicity of the system enables a direct comparison wi
theory, and provides a new testing ground for the study
particle transport in this regime.

The optical lattice is a one-dimensional sinusoidal p
tential experienced by an atom in a standing wave of las
light. The light is detuned sufficiently far from resonanc
that spontaneous emission can be neglected, and the
fective potential for the atom in its ground state is give
by V0 coss2kLxd, wherekL ­ 2pylL is the photon wave
number. The amplitude of this optical dipole potentialV0
0031-9007y98y81(23)y5093(4)$15.00
ti-
d
g
ely
ial

s
ch
by
w
tal
ort
y a
the

can

-
ld.
cal
in

im-
re
er

la-
ing
in
e
th
or-
ual
th
of

o-
er
e
ef-

n

is proportional to the laser intensity and inversely propo
tional to the detuning from the atomic resonance [5].

An ac field is added by imposing a phase modulation
one of the standing wave component fields. In the lab
ratory frame, the potential has the formV0 cosf2kLx 2

ls sinsvstdg, wherels and vs are the modulation index
and frequency. In the comoving frame of the lattice, t
Hamiltonian has the form

Hlatt ­
p2

2M
1 V0 coss2kLxd 2 x

Mlsv2
s

2kL
sinsvstd ,

(1)

where the mass of the atomM appears in the last term
revealing its inertial origin.

The eigenfunctions for this potential in the absence
the ac term are delocalized Bloch states and the distri
tion of energy levels is characterized by bands of allow
regions separated by band gaps. In the context of e
tronic motion in crystals under the influence of a dri
ing laser field, it was shown that the dipole driving ter
modulates the bandwidths. In particular, the quasiene
band structure undergoes a dynamical suppression w
J0sFayh̄vsd ­ 0, whereF ­ Mlsv2

s y2kL is the ampli-
tude of the ac force,a ­ pykL is the period of the lattice,
and J0 is the zeroth order Bessel function. In the tigh
binding limit, where the well depth is large enough to co
sider only nearest-neighbor coupling, a full band collap
occurs in which the bandwidth shrinks to zero and t
hitherto delocalized Bloch states become localized [1,
In this experiment, coupling to non-nearest neighbors
well as the presence of higher bands complicate the b
evolution and prevent a complete collapse [6].

In order to observe the quasienergy band structure,
added a second phase modulation to the potential that
much weaker than the strong ac field. This weak pro
did not significantly alter the quasienergy levels but cou
drive transitions between them. By preparing the ato
in the first band and measuring the depletion of its popu
tion as a function of the probe frequency, a spectrum w
obtained.
© 1998 The American Physical Society 5093
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The experimental setup for this spectroscopic study w
based on the system used previously to study Wanni
Stark ladders and tunneling in optical lattices [7]. Th
optical standing wave was created by two linearly pola
ized, counterpropagating laser beams. The beams w
spatially filtered to have a Gaussian profile with a wai
of 2.0 mm at the location of the atomic cloud. The phas
of the standing wave was controlled by adjusting the fr
quency difference of the component fields. The avera
power in each beam was 82 mW, and the instantaneo
power for each run was monitored with two calibrate
photodiodes. The detuning was chosen to be32 GHz 6

100 MHz from thes3S1y2, F ­ 2d $ s3P3y2, F ­ 3d tran-
sition at 589 nm. These parameters yielded a well depth
V0yh ­ 102 kHz with an absolute uncertainty of610%.

The preparation of a significant number of atoms in th
lowest band of the optical lattice was achieved by usin
a magneto-optic trap (MOT) [8]. After the cooling and
trapping stage, the MOT fields were extinguished and t
optical lattice was turned on. Approximately 10% of ou
atoms were projected into the lowest band of the lattic
We then accelerated the lattice at2 000 mys2 for 600 ms.
This acceleration was chosen to maximize the tunneli
out of the second and higher bands while minimizing loss
from the first band. At the chosen acceleration and we
depth, the Landau-Zener expression for the lifetimes of t
first and second bands yields 18 s and87 ms, respectively
[9]. Therefore, only the first band was significantly boun
to the potential during this acceleration, and the atom
occupying it were transported to a velocity of 1.2 mys,
separating them in velocity from the other atoms.

The acceleration was then stopped, and both the stro
and weak phase modulations were turned on smooth
during 16 ms to avoid phase jumps which could drive
transitions between bands. The total time that the ato
were exposed to the phase modulations was500 ms. For
each spectrum, the strong drive amplitude was fixed a
the probe modulation frequency was scanned in the ran
50–200 kHz. The modulation index of the weak prob
was 0.05. In order that the strong drive only modify th
band structure without driving transitions, its frequenc
was chosen to bevsy2p ­ 20 kHz, far less than the width
of the first band gap. To determine the depletion of the fir
band, an acceleration identical to the first was imposed
separate in velocity those atoms still in the first band fro
those which made transitions to higher states. After a 3 m
free drift, the resulting spatial distribution was “frozen” in
place for 10 ms by an optical molasses; the fluorescen
was imaged onto a charge-coupled-device camera. W
resolved three groups of atoms which correspond to t
MOT distribution left behind during the first acceleration
those atoms which were driven out of the first ban
during the modulation, and those atoms which survive
the modulation and were accelerated to the final veloci
The fraction remaining in the first band was obtained b
normalizing the number of survivors by the total numbe
of atoms initially trapped.
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Figure 1 shows a series of measured spectra for incre
ing ac field strengths. When there is no strong field pres
(ls ­ 0) we obtain a spectrum of the unperturbed Bloc
band structure (Fig. 1a). Although the spectrum maps
transition from the first to second bands1 $ 2d, the spec-
trum width represents that of the second band since, for
chosen well depth, the first band is only 3 kHz wide whic
is small compared to the 32 kHz width of the second ban
As the modulation strength is increased, the second b
flattens and side peaks spaced at multiples of the str
field frequency grow in size. For a modulation index o
ls ­ 3.8, the condition for band collapse is fulfilled. Fo
this case, the central peak is at its narrowest with a ha
width of approximately 15 kHz. As the modulation inde
is increased past the band collapse condition, the cen
peak broadens and the previously distinct side peaks ov
lap, producing broad tails on the central resonance.

Mirror vibration and frequency instabilities of our elec
tronic drivers caused a low frequency fluctuation of th
standing wave position which excited atoms out of the lo
est band at a constant rate. This loss, which was cons
for each run, resulted in a background of lost atoms a
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FIG. 1. Measured survival probability in the lowest band a
a function of probe frequency for six different strong fiel
modulation strengths. In (a)–(f) the values forls were 0, 1, 2,
3.8, 4.3, and 5, respectively. Spectrum (a) is of the unperturb
Bloch band, and spectrum (d) is of the system at the ba
collapse condition. The side peaks which develop are separa
by the strong ac modulation frequency (20 kHz) and correspo
to multiphoton transitions. Each point is an average of seve
runs and the error bar denotes the one-sigma error of the m
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prevented the survival probability from approaching uni
even when the probe was far from resonance. An ad
tional complication arose from the fact that although th
strong ac modulation frequency was far from resonan
for the s1 $ 2d transition, its amplitude was nevertheles
large enough to drive off-resonant transitions. This e
plains the drop of the base line for larger values ofls.

In the theoretical analysis of this problem we calcu
lated the quasienergies and their corresponding coupl
strengths between the first and higher bands in order
generate a prediction for the experimental spectral d
tributions of Fig. 1. For convenience, we used scal
units, in which h̄ ­ M ­ 2kL ­ 1. In these units, the
frequency and well depth scale asvs ! vsy8vr and
V0 ! V0y8h̄vr , wherevr ­ 2p 3 25 kHz is the single
photon recoil frequency. A unitary transformation of th
Hamiltonian in Eq. (1) yields

H0 ­
fp 2 lsvs cossvstdg2

2
1 V0 cossxd . (2)

The Hamiltonian is periodic in both time and space wit
periods T ­ 2pyvs and 2p, respectively. Floquet’s
theorem shows that states exist of the formCe,ksx, td ­
eiskx2etdue,ksx, td with ue,ksx, t 1 T d ­ ue,ksx, td ­
ue,ksx 1 2p, td which satisfy H0Ce,k ­ i ÙCe,k. In
analogy with the time-independent case,e is called the
quasienergy of the state and is defined up to an inte
multiple of the frequencyvs. It is also periodic in the
lattice momentumk which is conventionally restricted to
the first Brillouin zone, the intervals21y2, 1y2g.

The problem of finding the quasienergies and the
associated vectors can be solved in the following mann
First, write the wave function asCe,ksx, td ­ eiskx2etd 3P

n,m cn,meisnx2mvstd and insert this expression into
Schrödinger’s equation. Second, solve the set of eq
tions obtained for the coefficientscn,m and the quasienergy
e. The most general representation of the spectrum
the repeated-zone scheme in which each quasienerg
represented by all of its possible valuese 1 jvs, for
integer values ofj.

Transitions from the first to higher bands wer
achieved, as in the experiment, by introducing a seco
weak ac field of frequencyv. The Hamiltonian can be
written as Hstd ­ H0std 2 plv cossvtd, where H0std
is given by Eq. (2) andl ø ls. k is still a conserved
quantity since the new term is a small perturbation whic
preserves the lattice periodicity.

Assume that an atom is in the quasienergy stateCe1,k ­
j1l corresponding to the first band and that the perturbati
only drives transitions to one other quasienergy sta
Ce2,k ­ j2l (this approximation is valid as long as the
frequencyv is close to resonance). Given the state vect
of the atom,C ­ a1j1l 1 a2j2l, the equations of motion
for a1 anda2 are

i Ùa1 ­ 2lv cossvtd fa1k1jpj1l 1 a2k1jpj2lg , (3a)

i Ùa2 ­ 2lv cossvtd fa1k2jpj1l 1 a2k2jpj2lg . (3b)
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For short times the second state is not significantly pop
lated, so thatja2j ø ja1j ø 1. To lowest order,Ùa2 ­
ilv cossvtd k2jpj1l. Since the quasienergy states are no
stationary, the time dependence of the matrix eleme
k2jpj1l contains many frequencies:

e6ivtk2jpj1l ­
X

j

eise22e11jvs6vdtGjskd , (4)

where Gjskd ­
P

n,msk 1 ndcs1d
n,mscs2d

n,m1jdp. Resonant
transitions occur whenevere2 2 e1 ø 6v 2 j0vs for
some value ofj0. These are multiphoton transitions
in which j j0j is the number of participating photons
of the strong field. In analogy with the rotating wave
approximation where only the resonant term is kept, w
approximated Eq. (4) by just one term of the sum,

e6ivtk2jpj1l ­ eise22e11j0vs6vdtGj0 skd . (5)

We are keeping the term in Eq. (3) with the slowes
temporal dependence. All other terms will produce fa
population oscillations with frequencies of integer mul
tiples of vs. In the presence of strong resonances, the
do not contribute appreciably to the measured transitio
probabilities.

The quasienergies were calculated numerically for th
cases in whichls ­ 0, 3.8, and 5.2. The valuesvs ­
0.10 andV0 ­ 0.510, corresponding tovsy2p ­ 20 kHz
andV0yh ­ 102 kHz in real units, were chosen to match
the parameters used in the experiment. The results
shown in the left panel of Fig. 2 in scaled units. The low
est band, located at about20.2, is not shown in the figure.
The results were plotted in the repeated-zone scheme
quasienergy space and in the restricted-zone scheme ik
space. The three values ofls chosen correspond to (a) no
strong ac field, (b) at, and (c) past the condition for ban
collapse. The plot ofe2skd 1 j0vs was gray scaled by the
value of fGj0 skdg2 which determines the transition proba
bility and therefore the quasienergies that are important

When ls ­ 0 the quasienergy spectrum is simply
the real energy spectrum repeated with periodicityvs.
However, only one representation of each quasienergy
present in Fig. 2a since all values ofGj0 skd with j0 fi 0
are zero. This is due to the absence of photons wi
frequencyvs, which are necessary for such transitions
The plot shows the second band and part of the third ban
As ls is increased, multiphoton transitions become mo
probable and some of the repetitions of the bands beco
visible. The repetitions of the original second and thir
bands interact and develop avoided level crossings.

The effect of a strong ac electric field on a single ban
has been studied previously [2]. In this model, the cou
pling between the different Bloch bands is not taken int
account. For comparison, the second band was calcula
using this model and the results were plotted with dash
lines. For the band collapse condition (Fig. 2b) this mod
predicts an almost flat band. However, the Floquet ana
sis shows that the avoided crossings significantly broad
5095
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FIG. 2. The left three panels are plots of the calculate
quasienergies versusk for three values ofls (0, 3.8, and 5.2)
in scaled units. We restricted our attention to the energy ran
[0.1, 0.7] which corresponds to energies accessed by our pro
In addition, the quasienergies were plotted using a gray sc
to differentiate their on-resonant coupling strengthsGj0 skd. For
comparison, the single-band approximation result is shown
the dashed line. To the right of each panel is the experimenta
measured spectrum (points with error bars) and the theoret
spectrum (thin line) predicted from the calculated quasiener
bands.

the bandwidth beyond the predictions of the single-ba
model.

Using the calculated quasienergies and their correspo
ing matrix elements, we generated spectral distributions
compare with the experimental data. Rabi oscillations a
known to govern the transition probabilities between ban
and have been characterized in this system [10]. In ord
to calculate the survival probability for the first band a
a function ofv, we used the approximation Eq. (5) an
neglected the diagonal terms in Eq. (3) (the weak pro
drives transitions between bands but does not change t
shape or position). The results shown in the right pan
of Fig. 2 were obtained by assuming that the first band w
uniformly populated. In addition, the spectra were ave
aged to account for the finite Gaussian bandwidth of t
weak probe used in the experiment. There were two ad
5096
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tional experimental effects which had to be accounted f
in order to compare the spectral distributions. The first e
fect, mentioned previously, was a base line shift due to
constant loss of atoms from the optical lattice. The seco
was a systematic underestimate of the survival probabil
due to nonuniform detection of our atomic sample. Th
spectra were scaled and the base lines shifted to comp
sate for these effects. The absolute position and shape
the resonances, which are the most important features,
independent of these effects. The agreement between
measured and calculated spectra is good, indicating that
approximation in Eq. (5) is valid and that Fig. 2 is a faith
ful representation not only of the quasienergies but also
their respective coupling strength with the lowest band.

In summary, we have observed dynamical Bloch ban
suppression in a system of cold sodium atoms in an optic
lattice in the presence of a strong ac field. These results
in good agreement with a full quantum mechanical analys
of the problem, which goes beyond the tight-binding an
single-band approximations. In the future, we plan t
investigate the role of decoherence on band collapse, and
extend these measurements to a many body atomic syst
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tion and the National Science Foundation.
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