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Bruce George Klappauf, Ph.D.
The University of Texas at Austin, 1998

Supervisor: Mark Raizen

This dissertation describes experimental studies of quantum chaos with trapped

atoms in a time-dependent dipole potential. Our starting point is the use of

a pulsed standing wave of light to generate an experimental realization of

the quantum kicked rotor. The classical counterpart of this system, the delta-

kicked rotor is a paradigm for the study of chaotic dynamics, and this quantum

realization allows us to study the correspondence between quantum and clas-

sical behavior under a variety of conditions. The generality of this system

makes our research important to the fundamental understanding of quantum

mechanics. This work also provides an experimental connection to the wealth

of theoretical and numerical studies in chaos and quantum chaos, and we hope

it will inspire new directions for future work.

The first of our three experiments characterizes the momentum bound-

ary, a classical limit on momentum growth due to the non-zero pulse width of

any real system. Since our primary measurement in these experiments consists

of the momentum distribution of atoms after an interaction with the standing

wave, it is important to understand this boundary.
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The second experiment studies the effects of noise and dissipation on

the quantum kicked rotor. It is well accepted that the quantum version of this

system exhibits a suppression of the diffusive energy growth that characterizes

the classical behavior. This coherent quantum effect is known as dynamical lo-

calization, and theoretical predictions suggest that noise added to the quantum

system may destroy this effect, driving the system back toward the classical

limit. We present experimental evidence to support these predictions.

Finally, we study the quantum dynamics of the kicked rotor as a func-

tion of the interaction strength and the kicking frequency. The classical system

exhibits an oscillatory dependence of the momentum diffusion on the interac-

tion strength and, for certain parameters, exhibits anomalous diffusion. Our

results show a similar oscillatory dependence on the interaction strength, and

an additional dependence, predicted for the quantum case, on the kicking fre-

quency. We also observe an unpredicted qualitative variation in the momentum

distributions near those parameters exhibiting classical anomalous diffusion.
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Chapter 1

Introduction

1.1 Background

In the mid-1980’s a great deal of interest developed in looking at the interaction

of atoms with a standing wave of light. This primarily involved studying the

interaction itself, and atomic analogues of optical scattering effects [1, 2, 3, 4].

In 1992 it was recognized by Graham et al.[5] that for sufficiently far detuning,

the dipole potential of the standing wave could produce a versatile conservative

interaction potential for the atoms, which could be used to take this research

in a new direction: quantum chaos.

The proposed experiment was for an atomic beam passing through a far-

detuned, modulated standing wave. The dipole interaction with the modulated

standing wave was shown to be mathematically equivalent to the periodically

driven pendulum, one of the classically chaotic systems used theoretically to

develop the emerging field of quantum chaos. The key to studying coherent

quantum evolution over long times with the standing wave was that the rate

of incoherent scattering could be made arbitrarily small, given enough laser

power.

Shortly thereafter, the research group of Mark Raizen (at the Univer-

sity of Texas) realized that they could go one step further, by using ultra-cold

atoms from a magneto-optic trap (MOT) rather than an atomic beam [6]. This

allowed the atoms to experience the more uniform intensity at the center of
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the laser beam for the entire interaction, rather than traversing the beam dur-

ing the interaction. The time-of-flight momentum measurement could still be

accomplished by simply imaging the atoms after a free expansion. The cold

atom approach also opened the door for much longer, well defined, and easily

controlled interaction times, up to milliseconds in the latest series of experi-

ments. The first series of experiments used trapped sodium, and demonstrated

several important quantum phenomena predicted for these systems [7, 8].

The first of these effects, studied with a phase-modulated standing

wave, was dynamical localization. This effect is a quantum suppression of clas-

sical diffusion predicted for several quantum systems whose classical dynamics

exhibit chaotic behavior. A control parameter in the modulated standing wave

allowed the system to be continuously varied from a regime where the classical

dynamics are nearly integrable, to one where they are chaotic, allowing the

study of the transition to chaos [6, 9]. The next experiment realized one of the

simplest and most important systems for the study of classical chaos and quan-

tum chaos, the delta-kicked rotor (DKR). Dynamical localization was again

observed in this system, and in addition, the group went on to demonstrate

and begin analysis of another quantum effect inherent in this realization of

the DKR, quantum resonances [10]. Finally, the group was able to test the

resonance overlap criterion for the onset of global stochasticity by studying

the effects of applying just a single temporal pulse of the standing wave as a

function of the pulse duration [11].

Subsequent sodium experiments involved exploring the detailed band

structure and tunneling properties of atoms in an accelerating periodic optical

potential [12]. These experiments, and the chaos experiments, advanced the

understanding of momentum transfer to atoms in an optical lattice. However,

they also demonstrated the utility of this experimental system for studying

both general properties of periodic lattices, which relate to solid state prob-
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lems, and for studying the relationship between quantum and classical chaos,

which is being found in an ever increasing number of problems. The work

described in this dissertation represents a continuation of the work on quan-

tum chaos that began with the earlier experiment, this time focusing on our

quantum realization of the delta-kicked rotor.

Due to a variety of technical limitations with the original sodium exper-

iment, we have built a new experiment using cesium atoms instead of sodium.

Chapter 2 describes the new experimental apparatus and control systems.

One immediate benefit of this change was that the wavelength of the cesium

transition used is readily accessible by currently available diode lasers. These

proved to be more efficient in terms of table space, energy, alignment time, and

cost as compared with the argon-pumped dye lasers required by the sodium

experiment.

The primary limitation of the sodium experiment that prompted this

change was related to pulses themselves. Our experimental approximation to a

“delta-kick” has a non-zero pulse width which limits the maximum momentum

that can be transferred to the atoms [13]. This limitation, which places a

momentum boundary in phase space that depends on mass and wavelength, is

reduced in cesium. The effects of this issue are studied in Chapter 3.

After characterizing the effect of the boundary, and having verified

our ability to again observe localization, we began to study the effects of

applying amplitude noise to the kicks and of inducing a controlled level of

spontaneous emission [14]. Theoretically, it was believed that either of these

perturbations should destroy the coherent quantum evolution necessary for

dynamical localization. It has also been suggested that sufficient decoherence

might drive the system back to its classical behavior, despite the very quantum

regime in which we operate (the relevant phase space structures are small

relative to ~). These results are presented in Chapter 4.
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Finally, in Chapter 5 we consider more detailed structures in the phase

space, and study what effects these have on the global transport properties of

the system. One of the most striking and unique features of the DKR system

is the existence of resonant stable structures called accelerator modes. These

features have a dramatic effect on momentum transport, causing anomalous

diffusion of the momentum distribution in phase space when they are present.

The occurence accelerator modes appears to be related to the periodic variation

of the momentum diffusion rate with the strength of the delta kicks. While this

is a classical effect, we have observed very similar oscillations in our quantum

system. However, in this case the oscillation period depends also on the relative

size of the phase space structure to ~, the quantum unit of phase space volume

[15]. This dependence was predicted by Shepelyansky in 1987 [16].

As we stated in the beginning, these studies of the quantum behavior of

a simple classically chaotic system are made possible by the ability to generate

a non-dissipative, spatially periodic dipole force in a far-detuned standing wave

of light, in which we can treat the atom as a point particle in a classical

sinusoidal potential. Thus, our starting point is a quantum pendulum, the

details of which are outlined in the Section 1.2. The connection to quantum

chaos is made in Sections 1.3 and 1.4.
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1.2 Atoms in a Standing Wave of light

The physics of an atom in a standing wave of light is central to all of the work

discussed here. In general there is both coherent (stimulated), and incoherent

(spontaneous) scattering of the photons by atoms. The spontaneous scattering

is used primarily for the trapping and cooling of the atoms via the near-

resonant optical molasses and MOT beams [7, 17, 18]. The description of the

coherent interaction, which generates the dipole potential, was sketched out

by Graham et al. [5], and has been presented in iteratively more detail in

subsequent work [7, 19, 8, 12, 20]. Here we present some of the main points

of the coherent and incoherent interaction, and then discuss the relevant units

and scales.

1.2.1 The Coherent Interaction

For now we assume a two-level atom with ground and excited states labeled |g〉
and |e〉 respectively, separated by energy ~ω0. This interacts with a standing

wave formed by two linearly polarized, counterpropagating laser beams, each

with frequency ωL and propagation vectors corresponding to ±kL. Assuming

a plane wave approximation at the center of the beams, this gives an electric

field of the form

E(x, t) = ẑE1 cos(kLx − ωLt) + ẑE2 cos(kLx + ωLt). (1.1)

In the ideal case where E1 = E2 = E0, we have

E(x, t) = ẑE0 cos(kLx)(e+iωLt + e−iωLt), (1.2)

resulting in an intensity standing wave given by

I(x) = ε0c 〈E · E〉 =
ε0cE

2
0

2
[1 + cos(2kLx)] . (1.3)
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This one-dimensional field, in the absence of inelastic scattering by the atoms,

can only transfer momentum to the atom in units of two photon recoils. That

is, it absorbs a photon and its momentum from one beam, and emits it into

the opposite beam. The recoil in momentum given to the atom is then

∆p = ±x̂ 2~kL. (1.4)

Because of this well-defined unit of momentum, it is useful to define a unit

of frequency (and energy) which corresponds to the kinetic energy from one

photon recoil. Given in terms of the wave number, the energy is

~ωr = ~

(
~k2

L

2M

)
, (1.5)

where ωr is called the recoil frequency. The recoil frequency depends on both

the atomic mass and the transition frequency. For the cesium D2 line,

ωr
∼= 2π × 2.066 kHz, (1.6)

which is the value that will apply in all of our work.

The Hamiltonian for the atom can be broken up into three parts given

by

H = Hcm + Hinternal + Hinteraction, (1.7)

where

Hcm =
p2

2M
, (1.8)

Hinternal = ~ω0|e〉〈e|, (1.9)

and

Hinteraction = −er′e · E(re, t) = −d · E(re, t). (1.10)
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In these equations p is the atomic center-of-mass momentum, r′e is the

electron position relative to the atom, re is the electron position relative to the

field, and d is the dipole operator. In the dipole approximation the electron

displacement r′e is small compared to the wavelength of the the interacting

field E. Therefore, we can evaluate E at the center of mass position of the

atom, r, and write the dipole moment in terms of the internal atomic state.

The dot product yields the z component dz of the dipole moment and we have

the interaction term

−ere · E(r, t) =
−|〈e|dz|g〉|E0

2
cos(kLx)(a†e+iωLt + ae−iωLt) (1.11)

=
−d E0

2
cos(kLx)(a†e+iωLt + ae−iωLt), (1.12)

where a ≡ |g〉〈e| is the atomic lowering operator, and d is the dipole matrix

element shown in Eq. (1.11).

With the definition of the maximum resonant Rabi frequency as

Ω0 ≡ −2dE0

~
, (1.13)

we have

H =
p2

2M
+ ~ω0|e〉〈e| +

~Ω0

2
cos(kLx)(a†e+iωLt + ae−iωLt). (1.14)

This Hamiltonian can be cast into a simpler form by a series of manipulations

presented in the references above. We substitute it into Schrödinger’s equation

and apply the rotating wave approximation to remove the terms at optical

frequencies. We may also adiabatically eliminate the excited state amplitude

in the limit of large detuning from resonance. We then make the definition

V0 ≡
~Ω2

0

8∆L

=
d2E2

0

2~∆L

, (1.15)

where ∆L ≡ ωL − ω0 is the detuning from the atomic resonance. Finally, we

have the resulting autonomous Hamiltonian

H =
p2

2M
+ V0 cos(2kLx). (1.16)
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This is the Hamiltonian for a pendulum.

The equation for V0 is valid for cesium, despite the fact that cesium

is far from being a two level atom. We simply need to be careful how we

determine the dipole coupling. This is described in the next section. Also,

if the counterpropagating lasers have different intensities, then the E2
0 in the

definition of V0 can be replaced by E1E2 as defined in Eq. (1.1).

1.2.2 The Incoherent Interaction

In order to include spontaneous emission in our treatment we need to replace

the Schrödinger equation with the optical Bloch equations, including a dissi-

pation term involving the radiative lifetime Γ [21]. The resulting scattering

rate for a two level atom is

Rsc =

(
Γ

2

)
(I/Isat)

1 + 4(∆L/Γ)2 + (I/Isat)
, (1.17)

where

Isat =
cε0Γ

2
~

2

4d2
(1.18)

is the saturation intensity.

The hyperfine structure of cesium, shown in Fig. 1.1, is far from a two

level atom. In fact, there is a different coupling to each hyperfine sublevel,

which is contained in the dipole moment within Isat. This means that the

saturation intensity depends both on the polarization of the driving light, and

the hyperfine population distribution of the atoms. Nonetheless, we can see

from this equation that if the driving light is far enough detuned, the coupling

term in the denominator is irrelevant. If, in addition, the detuning is much

larger than the hyperfine splitting, then (∆L/Γ) in the denominator will be
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roughly the same for each hyperfine excited state F ’. Therefore we can add

up all of the contributions from all of the relevant transitions from a given

ground state |F m〉 to get an overall scattering rate

Rsc =

(
Γ

2

) I
(

4
cε0Γ2~2

) ∑
F ′m′

|ε̂ · dF,m,F ′m′ |2

4(∆L/Γ)2
. (1.19)

For far-detuned, linearly polarized light, |ε̂ · d|2 = d2, and only the m = m′

states couple. By a happy property of the dipole operator, the sum over the

excited F ′ states for any given ground state |F m〉 is a constant, independent

of m. This constant is given by

d2 =
1

3
|〈J‖er‖J ′〉|2, (1.20)

where |〈J‖er‖J ′〉| is the J −→ J ′ reduced dipole operator that is determined

from lifetime measurements by

1

τ
=

ω3

3πε0~c3

2J + 1

2J ′ + 1
|〈J‖er‖J ′〉|2. (1.21)

The resulting values of d and Isat for our far-detuned interaction transition,

(6S1/2, F = 4) −→ (6P3/2, F
′ = 3, 4, 5), are given by

d = 2.19 × 10−29 C·m and Isat = 1.65 mW/cm2. (1.22)

These are the same values that determine the coherent interaction strength in

Eq. (1.15).

1.2.3 Natural Units

Now a word about units. As appealing as it is to use “real” MKS units, the

standing wave Hamiltonian lends itself nicely to a set of “natural” dimension-

less variables, obtained from a set of natural units. The main advantage of the

natural units is that they restate our problem in a language that is independent
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Figure 1.1: Hyperfine stucture for the cesium D2 line

of our particular experimental setup. This facilitates communication and col-

laboration with other interested parties, theorists and experimentalists alike.

Also, it makes the equations a little simpler, and eliminates five experimental

parameters (T, M, kL, ωr, ~), to leave only two dimensionless parameters, κ and

k̄, which determine all of the dynamics for the ideal delta-kicked rotor.

I will reiterate the unit conversions decribed in previous work, adjusted

for our cesium experiment, and elaborate on some of the especially relevant

scaling factors [8, 12]. The basic units we are interested in will be labeled with
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the subscript “u”.

tu ≡ T time unit
T is some natural time period of the
system.

du ≡ 1

2kL
distance unit

This is 1/2π times the spatial pe-
riod (λ/2) of the standing wave.

Mu ≡ Matom mass unit Mass of the atom

The following units are derived from those above.

pu ≡ Mu
du

tu
momentum unit

Eu ≡ pu
2

Mu
energy unit

~u ≡ dupu phase space volume unit

With these we make the conversion to the scaled, dimensionless vari-

ables.

τ ≡ t

tu

φ ≡ x

du

= 2kLx

µ ≡ M

Mu
= 1

ρ ≡ p

pu

=
p

2~kL

k̄

E ≡ E

Eu
=

E

8~ωr
k̄2

κ ≡ V0

Eu

H ≡ H

Eu

k̄ ≡ ~

~u
= 8ωrtu (1.23)
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Now, by substitution Eq. (1.16) becomes

H =
ρ2

2
+ κ cos(φ), (1.24)

resulting in the simplified classical equations of motion

φ̇ =
∂H
∂ρ

= ρ and ρ̇ =
−∂H
∂φ

= κ sin(φ). (1.25)

The term well depth usually refers to the value of 2κ or 2V0, since this is the

the energy at the separatrix, below which particles would be classically bound.

Notice the effect of the choice of time unit. This scales the momen-

tum, the energy, and the phase space volume. Although this scaling some-

times distorts our intuition of the system when connecting it to experimental

parameters, it has a very useful consequence in the quantum mechanical in-

terpretation of the variables. Now the quantum commutators will depend on

the quantity k̄, such that

[φ, ρ] = [τ,H] = ik̄. (1.26)

Thus k̄, and hence, the chosen unit of time, determine the quantum scale of

the phase space, and the size of a minimum uncertainty state. Typically, T

will correspond to some periodic drive in the potential that we can control.

Therefore, in terms of the correspondence principle, we can control the degree

to which our system should be more quantum or more classical by changing T ,

and thus changing k̄. This study of the correspondence between classical and

quantum behavior, especially in the context of chaos, decoherence, and its

dependence on the quantum scaling, is at the heart of this research.

For the case of the pendulum, there is no single time scale to use. In

fact, this is one of the important properties of the pendulum; it has a wide

spectrum of oscillation frequencies. Therefore, for the pendulum and other

such cases where there is no obvious characteristic timescale, it is convenient
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to choose T = 1/8ωr so that k̄ = 1. For cesium this sets the following natural

units, which gives an indication of the scales involved.

tu = 9.63 µs

2πxu = 426 nm *

Mu = 132.905 amu *

pu = M 7.0 mm/s= M×two photon recoil velocities

Eu = 16.531 kHz ·h = 6.834 × 10−11 eV

k̄ = 1 (1.27)

∗ independent of the choice of time unit

Typically our interaction beam can attain peak intensities of 8.5 W/cm2, and

detunings of ∆L/2π ∼ 6 GHz. This generates the following well depths:

2V0 = 4.8 × 10−8 eV = 1.2 × 104 kHz ·h

2κ = 700.

For this well depth, the libration period for the ground state of the well is

about 0.33 tu = 3.2 µs. The frequency is ω =
√

κ = 18.7, corresponding to

300 kHz, which means that if this were a harmonic well we would have more

than 37 bound states (up to the well depth). Even though quantum mechan-

ically the states near the separatrix break up into bands as the transition to

the continuous energy spectrum of the unbound states is made, the harmonic

approximation is quite close. Fig. 1.2 shows the actual Bloch state band struc-

ture for the range of well depths attainable in our experiment. Our minimum

uncertainty ground state wave function has width of

σφ/2π =
1

2π(4κ)1/4
∼= 0.026 ⇒ σρ =

1

2σφ

∼= 3. (1.28)
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1.3 Chaos and the Kicked Rotor

Chaos describes the apparently random behavior of a deterministic system

in which the separation of nearby trajectories grows exponentially in time.

Since this only occurs in non-integrable systems, the only way to determine

the long-time position of a trajectory is to numerically iterate the solution

to the desired time. From a practical standpoint, it means that regardless of

the precision of a calculation, each minute error will cause an exponentially

increasing deviation from the trajectory intended, thereby making the time

dependence seem unpredictable, despite the deterministic nature of the system.

Nonetheless, there are many universal characteristics of chaotic systems that

are predictable, and the existence of chaotic behavior in the fields of mechanics,

electrical engineering, laser physics, biology, fluid flows, and others, makes

understanding these characteristics an important endeavor [22].

For the work described here, I will point out some important relevant

characteristics of classically chaotic systems, which can be found in several

standard textbooks [22, 23, 24]. This description will start off with the pen-

dulum Hamiltonian which we encountered in the last section. We use this

to demonstrate some basic principles of the phase space, or surface of sec-

tion views of a system’s long-term behavior, and to show how the (completely

integrable) pendulum is a good starting point to study chaos.

1.3.1 The Pendulum Phase Space

Any N -“degree of freedom” (N -DOF) Hamiltonian system which has N con-

stants of motion is completely integrable. Therefore, any 1-DOF, autonomous

system (like the pendulum, for example) has the Hamiltonian as a constant

of the motion, and is therefore integrable. Trajectories of the canonical coor-

dinates, p(t) and q(t), in an integrable system move along smooth continuous

curves in time (except for fixed points). If we plot the two variables, p(t) and
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A

Figure 1.3: Example of a classical pendulum phase space. The trajectories
near A show unbounded rotation in q. Trajectories near B show the stable
oscillations that make up the island around the central stable fixed point.
The points at C are the unstable fixed points which are the limit points for
separatrix trajectories.

q(t), against each other for all t, and for a representative set of initial condi-

tions, we get a phase space plot. This type of plot is shown for the pendulum

in Fig. 1.3 and shows, in a useful way, all of the possible types of motion for

the system. It is important to understand this particular plot, not only be-

cause of the close relationship that the phase space plot has to the Poincaré

surface of section plot, which is used extensively to characterize chaotic sys-

tems, but because of the central role that the pendulum plays in the analysis

of near-integrable systems [23].

The phase space plot shows three important types of motion, each

corresponding to a different energy/momentum regime. Each is represented
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by a different contour (trajectory) in the phase space. The first type connects

the effect of the potential to the free motion of the rotor, and the last two are

related to the hyperbolic and elliptical fixed points of the system.

The first type, which occurs at large momentum values where the total

energy is larger than the maximum potential energy, is unbounded rotation

(“A” in Fig. 1.3). One can see that as the kinetic energy gets higher, the effect

of the potential becomes more and more just a perturbation to free motion of

the rotor, represented by the flattening of the trajectories.

The second type of motion is related to the elliptic or stable fixed point

at the center (“B”). This is the normal resting point of a pendulum. The

closed contours surrounding this point represent periodic trajectories in phase

space corresponding to the simple small amplitude swinging or libration of the

pendulum. This collection of closed curves is called an island for that fixed

point. On each curve, p and q oscillate with exactly the same frequency. Near

the fixed point at the center this frequency approaches a fixed value, that of

the harmonic oscillator approximation to the pendulum ω = K1/2. Toward

the edge of the island ω approaches zero.

The edge of the island is defined by the separatrix (”C”), which directs

the third type of motion. The separatrix is the trajectory which connects the

hyperbolic, or unstable, fixed points on either side of the stable fixed point.

The separatrix divides the two previous regions, and it’s the unstable nature

of its endpoints which provide the seed for the growth of stochastic behavior

under the slightest perturbative provocation.

We should note that these curves are trajectories, and that the arrows

on each represent a direction of flow. Also note that trajectories cannot cross

themselves or each other, due to the deterministic nature of the motion. Fi-

nally note that if we consider the set of points inside a closed curve in the
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phase space, the trajectories of these points will remain inside the trajectory

of the closed curve and the area spanned by these points will remain constant

as they flow in the phase space.

1.3.2 The Perturbed Pendulum

Now suppose we consider a T -periodic time modulation of this interaction

potential, where T sets the time unit, such that

H =
ρ2

2
+ κ cos(φ)

∑
n

f(τ − n), (1.29)

where f(τ) is the single period form of the unit amplitude modulation function.

We assume that

∞∫
−∞

f(τ)dτ =

1/2∫
−1/2

f(τ)dτ = α ≤ 1. (1.30)

We have two points to make about this modulation.

First, a time-dependent, 1-DOF system is equivalent to a two degree

of freedom time independent system. This is accomplished by extending the

phase space to include τ and H as another canonical position/momentum

pair. We can then apply all of the usual analysis done for autonomous 2-DOF

Hamiltonian systems.

One of the most important tools in this analysis is the surface of sec-

tion plot, which we mentioned previously. We begin with an integrable sys-

tem such as the now extended pendulum, which has a four-dimensional phase

space. First we fix H, to make it three dimensional. Then we consider the

position of a trajectory in the ρ − φ coordinate plane once every period of τ .

The unperturbed pendulum is a trivial case of this, where the periodicities

of τ and (φ, ρ) are uncoupled, and so this is simply a stroboscopic version of

the continuous phase space plot shown earlier. However, in the presence of a
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periodic perturbation at frequency Ωp, such a plot will reveal resonances be-

tween the periodic motion of the plot coordinates and the plotting frequency,

when the ratio of the frequencies (or periods) is rational. Such a plot is shown

for the unperturbed pendulum in Fig. 1.4 for an arbitrarily-chosen temporal

period. In comparison to the phase-space plot, we can see that it shows all

of the same structure, but now we can see that trajectories with periods that

are rational multiples of the strobe period appear as fixed points. Meanwhile,

the irrational trajectories quickly fill in the invariant curves, or tori, on which

they started. In the unperturbed (integrable) case, however, it doesn’t matter

where you start on the rational trajectory, you will still get the same number

of fixed points on a given curve, but their positions on the curve will just be

shifted by the difference in starting points. These are, in reality, the same

invariant curves.

The second point relates the resonances to chaos and the pendulum.

Because the pendulum is nonlinear, the oscillation frequency ω is a function

of amplitude. This means that there are an infinite number of resonant tra-

jectories where ω = (r/s)Ωp, for any integers r and s. Unlike the unperturbed

case, the Poincaré-Birkhoff Theorem states that rational tori, in the case of

a small perturbation, will have 2ks fixed points (k integer), alternating be-

tween hyperbolic and elliptical. Each elliptic fixed point generates an island

around it, essentially the same as the main island of the original pendulum,

and each of these, again, have a similar structure on a smaller scale, and so

on. Thus this rational torus has become a chain of ks islands. The creation

of these island chains and their resemblance to the pendulum is very general

in near-integrable systems. Because it can be used to analyze the behavior

near resonances of these systems, much like the harmonic oscillator is used

in linear dynamics, the pendulum Hamiltonian has been called the standard

Hamiltonian. This makes our standing wave very useful since we can use it to
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Figure 1.4: Example of a classical pendulum surface of section, demonstrating
how rational winding numbers appear as fixed points in this stroboscopic view.

readily model variations of the pendulum system.

The hyperbolic fixed points are where the action is. Each one looks

similar to the original separatrix intersection, except that these regions are no

longer regular. One should refer to the previously given sources for details

of the phase space structure around the perturbed hyperbolic points, as it is

quite complex. The trajectories in this region no longer remain on smooth

one-dimensional trajectories in the two-dimensional phase space, but instead

fill some area of stochasticity. This is where the chaos begins, and it continues

to grow and engulf more of the phase space as the perturbation increases.

The coexistence of these two regions of behavior give rise to the description

of islands of stability in a sea of chaos for cases like that shown in Fig. 1.5.
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ρ

φ

Figure 1.5: Delta-kicked rotor surface of section for K=1, showing a globally-
chaotic mixed phase space.

The chaotic nature is normally defined by the exponential divergence of two

nearby trajectories in the phase space. Mathematically, this rate of separation

in time is often described by a positive Lyapunov exponent, λ [25].

What keeps these regions somewhat structured for small perturbations

are the irrational tori that fill the space inbetween the rational ones. Some of

these can remain as intact, continuous trajectories, only slightly distorted from

the original unperturbed trajectories. A theorem by Kolmogorov, Arnold,

and Moser guarantees the existence of these invariant tori for certain near-

integrable conditions. Therefore these remaining curves are called KAM tori.
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Like their unperturbed versions, they cannot be crossed by any other tra-

jectories, and hence confine the chaotic regions they surround. When the

perturbation gets too large, and the last KAM torus is broken, we have global

chaos. At this point it is possible for a stochastic trajectory to drift unre-

stricted (except by islands) through the phase space. Fig. 1.5 shows a globally

chaotic phase space just after the last KAM torus is broken. Its remains can

just barely be seen in the plot as two curvy horizontal lines above and below

the center islands.

1.3.3 The Delta-Kicked Rotor

Now we consider a specific and important variation of the pendulum Hamil-

tonian: the delta-kicked rotor. A realization of this system is the starting

point for all of our experiments. It is a paradigm system for studying chaotic

behavior.

The simplicity of the DKR, as shown in Eqs. (1.31 - 1.35), lends itself

readily to experimental and numerical reproduction. Mathematically it can be

described by a discrete map, often called the standard map for the same reason

the pendulum is called the standard Hamiltonian. It locally describes other

more complex chaotic maps, and its properties can be used to study general

characteristics of chaotic behavior near a perturbed resonance. Casati et al.

named it the simplest Hamiltonian system known to display chaotic behavior

when they chose it to study quantum chaos [26]. For now let us consider its

classical properties. It will be helpful to keep in mind a physical picture to

understand the delta-kicked rotor, its relation to the pendulum, and why it is

chaotic.

In Fig. 1.6 we can see that the pendulum is just a freely rotating rigid

mass where the constant force of gravity provides torque of T = mgr sin(φ).

In the DKR we turn this gravitational force on at discrete times, independent



23

∑
∞

−∞=

−

=

n

nrmg

Torque

)()sin(0 τδφ
φ

)(tg

r

t

Figure 1.6: The physical picture of a rotor can provide intuition on many of
the characteristics of the DKR.

of the position of the rotor, and so, can apply a different impulse each time

step depending on where the rotor is when the kick arrives. Notice that the

scaled DKR is 2π periodic in both ρ and φ, and is therefore normally plotted

modulus 2π. The surface of section plots for the DKR all reflect this.

Clearly if the rotor doesn’t move very far between pulses, the position

will be very predictable and in the limit of continuous small pulses, will look

like the pendulum. However, if a single kick is large enough to change the

momentum enough to make the position change significantly before the next

kick, then the sin(φ) dependence allows the subsequent kick to be completely

different in size and direction. A series of such kicks, though technically well

determined, will have the appearance of a random walk in phase space. This

explains why the degree of chaos depends both on the well depth V0 and the
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period T in the unscaled units, since both conspire to increase the displacement

between kicks.

In the case where f(τ) in Eq. (1.29) is a Dirac delta function, then we

get

H =
ρ

2
+ K cos(φ)

∑
n

δ(τ − n). (1.31)

This is the Hamiltonian for the delta-kicked rotor.

The sum of delta functions provides an instantaneous impulse, or kick,

once every period, where we have chosen the time unit to be T so that the

scaled period T ′ = 1. The kick strength, K , is called the stochasticity param-

eter, and is proportional to V0T in the MKS system. In general K = κ/T ′

in the scaled units, where for many references where the preference is to set

k̄ = 1 rather than T ′ = 1.

The resulting equations of motion are then

φ̇ = ρ, (1.32)

ρ̇ =

{
K sin(φ) if τ = (0,±1,±2, . . . )

0 if otherwise.
(1.33)

This suggests a simple iterative map to describe the dynamics of a given

trajectory. By integrating the equations of motion over one period we find

ρn+1 = ρn + K sin(φn) (1.34)

φn+1 = φn + ρn+1. (1.35)

This is the standard map which was used to generate Fig. 1.7, and other

surfaces of section for the DKR in this work.

Notice that the single parameter K completely determines the behavior

of this system, and thus its phase space, as shown in Fig. 1.7. For K = 0

we see lines of constant momentum (KAM-tori) corresponding to the free



25

rotor. Then, as we increase K, we see the KAM-tori distort and break apart

as resonances form. By K = 2 we see large regions of chaos with isolated

islands. At K ≈= 4 the primary island has become unstable, making the

phase space for K > 4 predominently chaotic. Our experiments work in this

range, 5 < K . 25, where except for a few special exceptions, no structure is

large enough to see on these phase space plots. A plot for K = 10 is shown

in Fig. 5.1. The uniform stochasticity in this region makes it reasonable to

consider the average motion of a phase space distribution. In particular, it

is most common to consider the evolution of momentum distributions as a

function of K.

In the absence of large islands we consider the average energy E of a

distribution of trajectories, which is proportional to the variance 〈ρ2〉 of the

momentum distribution. Calculations show that the random walk nature of

the trajectories leads to diffusive growth in energy following the Fokker-Planck

equation. The momentum distribution grows as a Gaussian whose variance

increases linearly in time such that

E =
〈ρ2〉
2

= Dt, (1.36)

where D is the diffusion coefficient. These characteristics are depicted in Fig.

1.8. D is actually a very complicated function of K which we will discuss later

in Chapter 5, but to first order

D(K) =
K2

4
. (1.37)

is called the quasi-linear approximation.

Studying the energy growth turns out to be a very practical form of

analysis, since most experiments lend themselves to measurement of the aver-

age energy of a distribution, rather than individual trajectories. For example,
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K=0 K=0.5 K=1 K=2

Figure 1.7: Evolution of DKR phase space as a function of the stochasticity
parameter, K. K ≈ 1 marks the onset of global chaos which is seen at K = 2
by the diffuse “sea of chaos” surrounding the stable islands, and allowing
unbounded transport through the phase space. Note that each tile is 2π wide
in φ, and 8π high in ρ, with (φ, ρ) = (0, 0) corresponding to the lower left
corner of each. K = 10 is shown in Fig. 5.1.

the field intensity dependence of microwave ionization of highly excited hydro-

gen observed in the mid 70’s showed that ionization can take place below the

one photon ionization threshold [27]. This was later found to have an expla-

nation in classical chaos. Considering the orbits classically, the effect was just

due to the onset of global chaos leading to a diffusion to higher orbital energy

levels until ionization occurred [25].

Other Rydberg experiments consider the distribution of the excited



27

t

E
ne

rg
y

σp

DtE =
2

2
pE

σ=

Momentum distributions

Linear 
growth

Initial:  t=0 t > 0

Energy Growth

Figure 1.8: Characteristics of classical diffusion

states rather than the just the energy [28]. Our work with trapped atoms looks

at both changes in the form of the momentum distribution, and the growth of

the average energy over time. Our results show that classical modeling is not,

in general, sufficient to describe the observed distributions. Quantum effects

interfere.
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1.4 Quantum Chaos

There is much debate over what is meant by “quantum chaos.” The differences

between quantum mechanics and classical mechanics raise questions about

whether chaotic behavior exists in quantum mechanics, how one would define

it if it does, and how one could measure it [22]. Blümel would claim that not

only does it exist, but that there are three different categories, all of which

have valid examples [25]. These are:

a) A completely quantum system which shows exponential sensitivity to

initial conditions.

b) A semiclassical system in which both quantum and classical variables

can behave chaotically due to the quantum coupling to at least one

classical degree of freedom.

c) A quantum system for which the classical analog is chaotic.

(This is the most common case)

If we believe that quantum mechanics can, in some limit, describe

macroscopic, classical systems like the delta-kicked rotor, then it must allow

chaotic behavior. With this assumption, one might wonder what conditions

are necessary to see classically chaotic behavior. In our work we consider

the third category of quantum chaos by studying the quantum kicked rotor.

We experiment in regimes where the classical dynamics would be chaotic, but

where quantum effects should be apparent. Much theoretical research has al-

ready been done on the classical DKR. It is very familiar to researchers in the

field of nonlinear dynamics and quantum chaos, and its simplicity allows for

reasonable numerical simulations. For these reasons it is an ideal system with

which to compare the quantum and classical behavior of a classically chaotic

system. We observe the differences from the classical kicked rotor, attempt to
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Figure 1.9: Depiction of typical signatures of dynamical localization showing
the suppression of classical diffusion, and the exponentially localized momen-
tum distribution. The inset on the left shows the exponential distribution in
a semilog plot usually used in the analysis of these distributions.

find any quantum signatures of the underlying classically chaotic dynamics,

and look for conditions under which the classical behavior might be recovered.

The primary difference between the quantum and classical cases is dy-

namical localization. This is a suppression of the previously described classical

diffusion which was shown in Fig. 1.8. It was first observed in simulations

of the DKR in 1979 by Casati et al. [26], and later connected to Anderson

localization by Fishman et al. in 1982 [29]. This connection supported the

expectation of exponentially localized eigenstates, which is a hallmark for An-

derson localization [30]. These two characteristics, suppressed diffusion and

exponential distributions, are considered the signatures of dynamical localiza-

tion and are depicted in Fig. 1.9.

Several quantities are important for the characteriztion of the quan-

tum dynamics shown in Fig. 1.9. I will follow the notation of Fishman and
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Cohen [31, 32], though others present the similar material [33, 34]. Because

of the periodic time dependence, the quantum kicked rotor system can be

described by a Floquet basis of quasienergy eigenstates (analagous to Bloch

states), designated by quasienergy ω. It has been shown that these states are

exponentially localized in momentum space with some localization length ξ.

Note that this is the 1/e value for the quasienergy states Ψω. The momentum

distribution 〈Ψ∗
ωΨω〉 will have a characteristic length of ξ/2. The argument

for the dynamics of localization assumes that the quantum effects will become

important after the time that is required to resolve the separation between

the quasienergy states. This time is called the quantum break time, usually

denoted by t∗. Scaling arguments lead to the conclusion that in the dimen-

sionless units t∗ ≈ ξ. Before this time the quantum evolution will closely

follow the classical diffusion, growing with an initial rate D0. After this time,

quantum localization will set in to halt the momentum growth, settling into

some quasiperiodic state with an average length ξ.

Localization is a purely quantum effect and depends on the coherent

interaction of the quasienergy states involved. Therefore, if some effect were

present to destroy this coherence it seems likely that the localization should be

destroyed as well. This thought has prompted many predictions regarding the

effect of noise on dynamical localization, which is the subject of our research

presented in Chapter 4. This problem presents two other quantities shown in

Fig. 1.9, the coherence time tc and the quantum diffusion rate D(t). The first

is the characteristic time over which the state can maintain coherence (this

should be longer than t∗ in order to observe localization), and the second is a

noise dependent diffusion function which characterizes the transition after the

break time from the initial rate D0 to some final quantum diffusion rate lying

between 0 and D0.
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Together, these characteristics determine the conditions neccessary to

see dynamical localization. First we must have an initial condition small com-

pared to the localization length. We must also have an interaction time longer

than the break time. Finally, we must have a sufficiently isolated system to

have a coherence time longer than the break time, and a quantum diffusion

rate less than D0.

The effects of dynamical localization were first considered experimen-

tally in 1988-89, where the suppression of microwave ionization of Rydberg

atoms was attributed to dynamical localization [35, 36]. Subsequently, our

research group produced textbook examples of dynamically localized momen-

tum distributions from cold sodium atoms in a periodically driven standing

wave. Our current experiments use the localized momentum distributions as a

reference from which we start to look for deviations. Discovering these varia-

tions from localized behavior enables us to better understand the mechanisms

involved in creating or destroying dynamical localization, and the correspon-

dence (or lack thereof) between classical and quantum dynamics.



Chapter 2

Experimental Method

2.1 Introduction

The experimental setup to study the physics described previously has several

requirements. First, we need atoms isolated in a vacuum. Second, we need

trapping and cooling lasers to create the initial conditions. Third we need the

interaction beam to create the desired potential. Fourth, we need a method of

measurement to analyze the initial and final conditions. Finally, it is highly

desirable to have computer automation to coordinate all the steps and help in

the analysis. The overall table layout for this experiment is shown in Fig. 2.1,

indicating the major components that will be described in this chapter.

32
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Figure 2.1: Schematic diagram of the experimental setup. Two diode lasers
provide the light for the MOT, and a Ti:sapphire laser provides the far-detuned
standing wave.
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2.2 The Cesium Chamber

I will give a detailed description of the chamber since it has several character-

istics which directly impact the quality of our experiment. Relevant factors

include the size of the chamber, the stainless steel construction, the coated

windows, and the control of the cesium supply.

Our ultra-high vacuum (UHV) chamber is based on a modified 6-way

stainless steel cross, custom manufactured by HPS (Fig. 2.2). The six main

ports are capped with 4.5 inch diameter viewport flanges, with the four hor-

izontal windows defining the x- and y-axes of the MOT, and the other two

defining the (vertical) z axis. Four 2.75 inch diameter horizontal ports form

a cross 45 degrees off from the MOT x-y axes. Two of these ports define the

1-D interaction axis, with one of the perpendicular ports providing the camera

viewing window. The final port supplies a dark background for viewing of the

MOT, and provides access to the chamber for the Cs source, the 20 l/s Star-

Cell Vac-Ion Plus 20 pump from Varian (model 919-0236), and the HPS model

10000 5836 tungsten filament hot cathode ion gauge. We used a SensaVac 919

controller from HPS for the gauge.

All of the viewports were antireflection coated on both sides for less

than 1% reflection per surface. This was one important improvement over

previous experiments where the bare surface reflections caused interference

fringes in the MOT. Even with the anti-reflection coating, we observed effects

of the window reflections creating a weak standing wave from our Hamiltonian

beam.

The entire chamber is surrounded by three large pairs of Helmholtz

coils for nulling the DC magnetic field at the center of the MOT. They are

roughly square, 15 inches to a side, and the coils in each pair are separated by

about 8 inches. These have about 44 turns of 0.020” diameter copper magnet
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Helmholtz coils Anti-Helmholtz coils

Figure 2.2: Picture of the stainless steel UHV chamber, looking into the in-
teraction beam input window. Large Helmholtz coils can be seen surrounding
the apparatus, while the smaller anti-Helmholtz coils can be seen attached to
the upper and lower windows.

wire, with a total resistance of 6 ohms in each coil. These produce nearly 2

gauss/Amp of homogeneous magnetic field along each of their respective axes.

Surrounding the large windows on the top and bottom of the chamber

are mounted the anti-Helmholtz configured coils for the magneto-optic con-

finement of the atoms. These coils are each 6.2 inches in diameter, with 202

turns of the same wire. The resistance of each coil is about 8.7 ohms. Typical

operating currents of about 3 Amps provide gradients of 11 G/cm along the

coil pair axis, and half that perpendicular to the axis. Under these operating
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conditions, each coil dissipates about 80 watts of power. To cool these coils,

the wire is wrapped around an anodized aluminum housing through which we

run chilled water.

The current in each coil is driven independently by its own pair of LM12

36 volt, high power op-amps in a push-pull configuration as shown in Fig. 2.3.

The push-pull circuit allows a coil to be driven in either direction with a single

high power source. The independent drives allow us to electronically move the

zero point of the trapping field in order to reposition the MOT. In order to

electronically switch the coils on and off we installed a TTL input on the coil

control box. This acts as an inhibit switch to set the current control signal

to zero when TTL input is high. The circuit brings the 3 Amps of current

in each coil to zero in about 100 µs. Unfortunately, the actual magnetic field

does not shut down so fast because of our chamber design.

The use of large conflat windows on a stainless steel chamber has a

significant drawback. First, it made the overall size of our chamber much

larger than the glass chamber used in the previous experiments with sodium

[7]. Therefore the anti-Helmholtz coils had to be roughly 50% larger. This,

in turn, meant that we needed roughly twice the current in the coils to create

the same confinement, and hence twice the magnetic field near the chamber.

Combined with the large conductive mass of the steel chamber, we found that

the eddy currents generated in the chamber housing slowed our magnetic field

ring-down time to nearly 10 ms (Fig. 2.4). In contrast, the glass chamber field

had shut off in about 200 µs. The effect of this magnetic field persistence will

be discussed more in the description of our cooling. Additionally, the high

current demanded the elaborate water cooling scheme for the coils.

We introduced cesium to the chamber via two UHV all-metal bakeable

1-1/2 inch diameter valves (Varian model 951-5027). One gram of the cesium

was stored in a glass ampule attached to the outermost valve (Fig. 2.5). The



37

MOT CURRENT SOURCE

-

+

1/2 Vref

-

+1/2 Vref

TO MOT COIL 

5 k• 5 k•

250 pF

0.1 •, 25W

10 k•

10 k•

10 k•

10 k•

TO MOT 1 CURRENT METER

+

-

+

1/2 Vref

-

+1/2 Vref

TO MOT COIL 2

5 k• 5 k•

250 pF

0.1 •, 25W

10 k•

10 k•

10 k•

10 k•

TO MOT 2 CURRENT METER

+

-

+

1/2 Vref

20 k•, 
10 turn

R17 
20 k•

R16 
10 k•

1/4 IC2 
LF347

R15 
10 k•

BALANCE 
ADJUST

Vin (MOT)

LM12

LM12

LM12

LM12

CW

+

-

+

-

OUTPUT CONNECTOR 
CONXALL P/N 4282-4SG-300 

(4 PIN FEMALE PANEL MOUNT) 
VIEW FROM OUTSIDE PANEL

COIL 1 COIL 2

+ +

- -

(NOTE:   Polarity of  Coil 1 
  output is opposite to the  
  polarity of Coil 2 output,  
  i.e. current flows opposite 
  in the two coils with the 
  marked directions.)

Figure 2.3: Schematic for the MOT coil current driver circuit (D. A. Steck).
Vref is set by a precision voltage reference to 17.5 volts. The input signal
can swing from positive Vref/2 to negative Vref/2 to completely reverse the
magnetic field direction. The “balance adjust” is included to vary the relative
amplitude of the upper and lower coils in order to vary the vertical position
of the MOT center.

inner valve was left wide open and will only be used in the event that we want

to remove the cesium without breaking vacuum. The outer valve was normally

left lightly closed (full closure would shorten the limited lifetime of the valve

seal), and just opened one or two turns to allow cesium to enter the chamber

as needed. The room temperature cesium vapor pressure of 2× 10−5 torr was

adequate to fill the chamber through these valves [21]. Our ion pump current

of 45 µA indicates that our chamber pressure was typically 8 × 10−8 torr.
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Figure 2.4: Display from a digital oscilloscope showing the ringdown time of
the magnetic field for the MOT. The top trace is the signal from a wire loop
placed just above the top chamber viewport, and represents the derivative of
the magnetic field as it is shut down. For reference, the bottom trace (1)
shows the signal from a photodiode measuring the molasses beam intensity.
Various steps of the measurement cycle are labled on this trace, showing that
the B-field is switched off at the beginning of the free drift time. Comparison
with exponential curve shows a ringdown time constant of about 3 ms.

Originally we tried a variable leak valve (Varian 951-5106) to let the

cesium in but we had to bake the ampule at nearly 100 ◦C in order to get
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Cesium Ampule

Figure 2.5: Picture of our Cs source attached to the chamber via two ultra-high
vacuum all metal valves.

enough throughput to overcome the pumping rate (there seems to be a dra-

matic increase in cesium evaporation at around 90 ◦C). Since an initial coating

of the chamber was required to achieve an equilibrium pressure high enough

to obtain a visible cloud of atoms in the MOT, we left this valve full open for

one week with the heaters on and still could not see any sign of cesium atoms.

Over a month later we detected trapped atoms, but very few. We switched to

the large-aperature two-valve system to avoid using heaters, although it was

still required to heat the ampule to 100 ◦C for a few days to initialize the

chamber.
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2.3 The MOT Lasers

As stated previously one of the great advantages of using cesium is that the

wavelength is accessible with currently available diode lasers. The reliability

and ease of use that diode lasers provide made the day-to-day operation of our

trap a nearly turn-key operation.

2.3.1 The Trapping Laser

Our main trapping laser for the MOT uses an SDL-5712-H1 Distributed Bragg

Reflector (DBR) laser diode (L1 in Fig. 2.1). It is rated for 100 mW CW oper-

ation at 852 nm, and the product characteristics are listed in Table 2.3.1. It is

mounted to an SDL-800-H, 5 W passive heatsink, with the active temperature

control from an internal thermoelectric cooler. The thermistor lock point of

∼ 15 kΩ indicated a temperature of ∼ 15◦C for the diode.

We collimate the beam with a Rodenstock 5 mm AR coated lens (N.A. = 0.5).

The lens is mounted on a Line Tool x-y-z micropositioner in order to precisely

position the lens. A high degree of stability and sensitivity is required of this

micropositioner, since the lens is the most important and sensitive element of

this laser setup. The horizontally elongated elliptical beam is then shaped by

an anamorphic prism pair to be roughly circular and about 1 mm in diameter.

We put this through two Conoptics model 713 optical isolators, which we

measured to have isolation values of 40 dB and 37 dB, leaving us roughly 80

mW of light to work with.

We split 10% of this light off to a saturated absorption FM spectroscopy

setup (FM Lock in Fig. 2.1), similar to that used in our previous experiments

[7]. This method has the advantage that it does not modulate the beam

that is actually going to the experiment. The setup is shown schematically in

Fig. 2.6. With this we lock the DBR using the crossover transition between
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Table 2.1: DBR Data

Data for SDL-5712-H1 DBR Laser Diode

Tuning a

Temperature 0.07 nm/deg
Current 0.003 nm/mA

1.24b GHz/mA
Mode hop seperation 0.08 nm

27 mA
Efficiency and Electronic Characteristics c

Differential Q.E. 0.47
Slope Efficiency 0.68 mW/mA
Ith 29 mA
Imax 179 mA
Pmax 100 mW
R 3.21 ohms

Beam Characteristics d

Beam Divergence θFWHM

⊥ to facet 30 deg
‖ to facet 10 deg

Bandwidth 3 MHz

aSDL Operators Manual
bconversion @ 852 nm
cLaser Data Sheet
dSDL Catalog

the (6S1/2, F = 4) −→ (6P3/2, F
′ = 4) transition and the (6S1/2, F = 4) −→

(6P3/2, F
′ = 5) molasses cycling transition (fct in Fig. 2.6).

The locking is achieved via direct modulation of the laser current in

response to the error signal generated by the FM setup. This error signal is

sent to a homebuilt lock box which generates an output voltage using both

proportional and integrated feedback from the input. This box can lock to the

zero point, or a manually selected offset, and provides a modulation input and

control for sweeping of the spectrum.
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The output from the lock box goes to a NIST-built laser diode cur-

rent controller, mounted in a Canberra 1400 NIM crate. Next to the current

controller is the NIST Type II temperature controller which controls the tem-

perature via the TE cooler and thermistor in the laser. The crate also contains

identical current and temperature controllers for the repump laser described

below, and an alternative homebuilt lock box used for the repump laser.

Due to the 140 MHz frequency shift from the double-passed AOM in the

FM lock, and the use of the crossover transition, the output of the DBR is set

195 MHz to the red of the F = 4 → F ′ = 5 cycling transition (fct−195 MHz).

This is compensated by AOM1 in Fig. 2.1, which is a tunable, double-passed

AOM centered at 80 MHz. This gives us the ability to electronically detune the

molasses beam from the cycling transition over the range fct−75 MHz to fct+

5 MHz. We typically use fct − 15 MHz for cooling and trapping.

At this point we have 36 mW of light in a 1 mm diameter beam whose

spatial quality is roughly Gaussian, but still contains some residual distortion.

We obtain a large Gaussian beam by putting it through a Newport model 900

spatial filter with a 15 µm pinhole. The output is a rapidly diverging Gaussian

beam with some faint rings that we block with an iris. We collimate this beam

using a 200 mm focal length, 2 inch diameter lens, leaving a 26 mW beam with

a Gaussian 1/e2 radius of w0 = 1.4 cm. This gives a maximum intensity of 8.5

mW/cm2, which is roughly 3 times the resonant saturation intensity for the

atomic transition. While this power is not always desirable for cooling, it is

important for uniform imaging of the atomic sample.

The molasses is formed by splitting this beam with two 2 inch beam

splitters (T = 50%, T = 60%) into three beams of equal intensity for the x, y,

and z axes of the molasses. Each beam is passed through a quarter-wave plate

oriented 45◦ to the beam polarization, through the chamber, through an iden-

tically oriented quarter-wave plate on the other side, and then retroreflected
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back. Along with the previously described magnetic field coils, this generates

the σ+ − σ− beam configuration for the molasses.

2.3.2 The Repump Laser

Although the molasses is tuned near the (6S1/2, F = 4) −→ (6P3/2, F
′ = 5)

transition, there is still about a 0.01% chance per scattering event of making a

transition to the (6S1/2, F = 3) ground state. This undesired transition would

remove atoms from the molasses interaction, and therefore cause the MOT to

decay. We measured the time constant for the MOT decay to be about 3 ms.

Therefore we follow the standard practice of illuminating the MOT with some

light tuned to repump atoms out of this lower ground state. In our case we

built a separate laser (L2 in Fig. 2.1) which supplies light tuned on resonance

to the (6S1/2, F = 3) −→ (6P3/2, F
′ = 4) absorption line.

The repumping laser that we built is Littrow-configured grating-stabi-

lized diode laser system, shown in Fig. 2.7. These are popular items in physics

labs and have many designs, including several commercial models. Useful

review articles on such devices are cited in References [37] and [38]. Our

system was modeled after a design used in Konstanz, Germany. The rotation

points for the grating adjustments in this design depend on thin metal flexible

joints rather than ball-bearing joints (Fig. 2.8). The hope was that a more

monolithic design would be simpler to assemble and have better stability. We

have found that once aligned, this laser may be used for months without

making any mechanical adjustments.

The laser source used in the repumping laser is a 150 mW, single mode

SDL model 5421-G1 diode laser. The specifications for this laser are shown

in Table 2.3.2. The G1 9 mm housing is mounted in a Thorlabs LT230P-B,

f = 4.5 collimation tube system, with a numerical aperture of 0.55. This tube

is then mounted in the 954 aluminum bronze housing as shown in Fig. 2.8.
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Figure 2.7: Photograph of grating stabilized diode laser for the repump beam

The bronze used for the laser mount and grating adjustment parts was cho-

sen as a compromise between the resilient springiness of steel, needed for the

flexible joints, and the high thermal conductivity of copper, needed for respon-

sive temperature stabilization. The bronze base plate sits on top of a Melcor

CP1.0-127-05L thermoelectric cooler which is controlled by the second NIST

Type II temperature controller. The feedback comes from a 50 kΩ thermistor

inserted into the bronze baseplate.

The entire bronze assembly is mounted on the aluminum base of the

housing. There is a Lucite cover over the top to provide some degree of thermal

and acoustical isolation, as well as protection from dust. The housing is bolted

to the optical table with steel posts.

The optical design is a simple Littrow configured grating feedback sys-
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Table 2.2: Repump Diode Data

Data for SDL-5721-G1 Single Mode Laser

Diode
Tuning a

Temperature (between hops) 0.07 nm/deg
Temperature (including hops) 0.3 nm/deg
Current 0.005 nm/mA

2.07b GHz/mA
Efficiency and Electronic Characteristics c

Differential Q.E. 0.6
Slope Efficiency 0.87 mW/mA
Ith 23 mA
Imax 197 mA
Pmax 150 mW
R 2.86 ohms

Beam Characteristics d

Beam Divergence θFWHM

⊥ to facet 30 deg
‖ to facet 9 deg

Bandwidth 15 MHz

aSDL Operators Manual
bconversion @ 852 nm
cLaser Data Sheet
dSDL Catalog

tem. This means that the m = −1 order interference peak is directed directly

back into the laser, forming a cavity with the rear facet of the laser. The angu-

lar dependence of the frequency dispersion of this diffracted light means that

the maximum Q of this cavity will be at a frequency that depends on small

deviation of the grating angle around this peak. This narrow band tunable

feedback then tunes and narrows the frequency output of the laser.

Our grating is an inexpensive Edmund Scientific ruled aluminum grat-

ing with 1200 grooves/mm, a 500 nm (17◦) blaze, and a size of 25 mm × 25

mm. For improved efficiency we evaporated a 500 Å gold coating over the alu-
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minum (with chromium underneath for better adherence to the aluminum).

The results of our efficiency tests are shown in Table 2.3, indicating a small

improvement in the efficiency due to the gold coating. Since we only need a

half-inch wide grating for the laser, we divided the grating into 4 half inch

squares by coating the large square with fingernail polish, cutting it with a

diamond saw, and then soaking it in acetone to remove the polish.

Table 2.3: Gold Coating Data

Reflectivity of gold coating versus thickness a

Coating thickness b Incident power 0th order 1st order

8 Å 9.4 mW 6.0 mW (64%) 1.6 mW (17%)

250 Å 9.4 mW 6.3 mW (67%) 2.0 mW (21%)

500 Å 9.4 mW 6.3 mW (67%) 2.0 mW (21%)

aSet up in Littrow autocollimation configuration
b60 Å of Cr over under gold

We designed the tuning angle plane to be horizontal. Therefore, we mounted

the grating as shown in Fig. 2.8 with the with the grooves vertical and the

blaze towards the laser. The laser diode then had to be oriented so the long

axis of the elliptical far-field cross section is horizontal in order to maximize

the number of grooves used on the grating. Fortunately, this also orients

the polarization in the S-direction (vertical in this case), which significantly

increases the diffraction efficiency in comparison to P-polarized light.

Electronic control of the grating position is done with a stack of three

American Piezo Ceramics piezoelectric discs. They are 8 mm in diameter by

2.54 mm thick with an expansion coefficient of d33 = ∆l/V = 450 × 10−12

m/V. Our Trek model 601B high voltage amplifier is set to a gain of 50 for an
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input range of -5 V to +5V. This give us a displacement capability of 675 nm,

which translates to about 8 GHz of frequency sweep.

In order to maximize the continuous electronic tuning range, we de-

signed the rotation point of the grating mount to be at the intersection of

plane of the diode facet and the plane of the grating. This condition main-

tains the phase of the cavity as the grating angle sweeps the wavelength, and

thus minimizes the mode hops that would otherwise occur at the free spectral

range of ∼ 6 GHz [39, 40].

The current is controlled with the same type of NIST controller as the

DBR laser, but the locking scheme is slightly different. In this case we use

the saturated absorption scheme shown in Fig. 2.9 which feeds back to the

grating rather than the current for frequency control. Since we use the 100.5

MHz AOM1 as a shutter to electronically control the repump laser, we must

compensate for the +100 MHz frequency shift by locking the laser output

100 MHz red of the repump transition. By using the (6S1/2, F = 3) −→
(6P3/2, F

′ = 3, 4) crossover line of the saturated absorption spectrum (100.5

MHz red of the resonance) for the locking error signal, we not only obtain

the proper frequency, but have a stronger signal to lock to. This can be seen

in the spectrum in Fig. 2.9. A differential photodiode subtracts the Doppler

background from the absorption signal, giving the relatively flat spectrum

shown in the figure. We obtain a dispersive error signal by dithering the laser

frequency via a small 20 kHz modulation of the grating piezo stack. We then

feed this into an EG&G model 5204 lock-in amplifier, and lock to the resulting

dispersive signal with a home built NIM mounted lock box.

Driving the laser diode at 93 mA produces an output from the grating

of about 40 mW. After the beam is passed through AOM1 it is filtered and

expanded in a similar fashion as the molasses beam (Fig. 2.1), and combined

with the vertical component of the molasses light to intersect with the MOT.
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This configuration provides approximately 16 mW of repumping light in a 2

cm diameter beam.
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Figure 2.8: CAD drawings of grating stabilized diode laser used for repump
beam. The top view is shown in (a), with the beam path of the laser depicted.
The rotation point of the grating arm is shown to be in the optimum position
for maximum continuous tuning. The side view is depicted in (b), and shows
the mounting assembly. In drawing (c) we can see another horizontal view of
the laser which shows the tilt adjustment for the grating. The parts in (c) are
all of the aluminum bronze parts. Views (a) and (c) show, respectively, the
horizontal and vertical flexible joints and the associated 1/4 - 80 adjustment
screws
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′ = 3, 4)
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2.4 The Interaction Laser

The interaction beam comes from a home built Ti:sapphire laser (L3 in Fig.

2.1), pumped with 8 W of blue and green light from a multi-line Coherent

Innova 90 argon-ion laser (Pump laser in Fig. 2.1). The overall cavity layout

is shown in Fig. 2.10. The main structure was originally used as a dye laser

fashioned after the one used in our sodium experiments and described by

previous students [7, 41]. We replaced the mirrors and the optical diode with

elements coated for 852 nm. We also replaced the entire dye jet assembly with

an adjustable mount for a Ti:sapphire crystal shown in Fig. 2.11 based on a

crystal holder design by Jim Bergquist at NIST in Boulder Colorado.

The Ti:sapphire crystal, from Union Carbide, is 6 mm in diameter by

20 mm long. It is doped with 0.05% titanium, Brewster cut and polished on

both ends for 852 nm, and has a guaranteed figure of merit ≥ 450.

We mounted it in a copper disk as shown in Fig. 2.11. A hole was cut

through the disk at a 60◦ angle of incidence, and 0.002” smaller in diameter

than the crystal. We then split the disk through almost the entire diameter of

the disk with an electron drilling machine wire cut, 0.010” wide. This allowed

the hole to spring open enough to insert the crystal, and then hold it in place.

Unfortunately, copper is not soft enough to deform around the crystal,

so it only makes contact at three points. This is certainly not ideal for heat

transfer, and probably applies some uneven stresses to the crystal as well. A

suggestion for improvement would be to completely split the ring, and lay the

crystal in an over-sized hole with some soft metal, such as indium, as a contact

surface, then attaching the other half with some light tension.

We were able to cool the crystal somewhat by attaching a small copper

tube to the top of the copper disk with thermal epoxy, and then running 10◦C

water through it. When the laser is off, the temperature of the copper disk
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stabilizes at about 17◦C, then quickly (< 5 min) restabilizes to 26◦C when the

laser is turned on.

We tried several different output couplers to find the best reflection

coefficient. We tried R = 90, 92, 95 and 97 percent values and ended up using

the 6◦ P-polarized flat mirror with R = 97.3% at 852 nm. This ultimately

gave us a total output power of 480 mW in a 1.5 mm diameter Gaussian

beam, tunable around 852 nm.

The laser is tuned and stabilized in the same way as the dye lasers of

the previous experiments mentioned earlier. The laser cavity is locked via the

Hänsch-Couillaud lock scheme to a stable Invar reference cavity with a free

spectral range of 1.5 GHz [42]. We then sweep tune the reference cavity with

an internal Brewster plate attached to a galvo.

In order to accurately determine our wavelength, we first split part of

the light to a NIST LM10 wavemeter which allows us to measure to within 500

MHz of the absolute wavelength. Then we split another beam into a 1.5 GHz

free spectral range (FSR) scanning Fabry-Perot cavity (“Monitor Cavity” in

Fig. 2.1), along with a collinear beam from the DBR laser which is locked

195 MHz below the (6S1/2, F = 4) −→ (6P3/2, F
′ = 5) transition. Since

the Ti:sapphire laser is shifted up by 80 MHz before going to the chamber,

aligning the two Fabry-Perot signals assures us that the Ti:sapphire is 115

MHz below the line, plus some multiple of the 1.5 GHz FSR. Combining the

fine Fabry-Perot measurement and the coarse wavemeter measurement gives

us the absolute wavelength to within approximately 200 MHz. There is some

drift of the reference cavity on the order of 100 MHz per hour, but this is small

compared to the 6 GHz detuning we typically use and can be easily monitored

and corrected. By default, the beam is directed to these devices whenever

AOM3 is not switching the Ti:sapphire beam toward the chamber.
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The beam that is used for the interaction is focused through a 50 µm

pinhole for spatial filtering and collimated to produce a nearly Gaussian beam

with a 1/e2 radius at the chamber of w0 = 1.5 mm ± 10%.
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Figure 2.11: Drawings of design for Ti:sapphire crystal mount.
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2.5 Measurement

Our observations of the dynamics of the atoms in the MOT all come from mea-

surements of the atomic momentum distributions. The procedure for obtaining

these atomic momentum distributions is outlined in Fig. 2.12. It consists of

generating the initial conditions of a small cloud of cold trapped atoms, ap-

plying the desired interaction with the modulated standing wave, allowing the

atoms to expand ballistically, and imaging them with a CCD camera.

2.5.1 Initial Conditions

We collect, localize, and cool our atoms in a magneto-optic trap (MOT) [18].

We use the trapping beams, repump beams, and magnetic trapping fields

described previously to collect about 106 atoms in a radius of σx = 150 µm.

This initial load time takes about 5 to 7 seconds.

The momentum distribution is 94% Gaussian, as shown in Fig. 2.13.

The remaining 6% forms a wide pedestal which raises the standard deviation

of the distribution from the 4 × 2~kL width of a Gaussian fit, to the roughly

9 × 2~kL standard deviation which is seen in the analysis of our data in the

following chapters. Previous work with molasses cooling has also produced

non-Gaussian distributions [43]. While this pedestal is important for analysis

of the momentum distributions, we use the Gaussian fit to characterize our

temperature.

Our temperature measurement is done with a LabVIEW program,

which automatically repeats the expansion sequence with no interaction phase,

for a sequence of drift times ranging from about 10 to 30 ms. For each time

step a Gaussian is fit to the integrated intensity distribution to extract the

standard deviation width σx(t). These values are recorded and plotted in the

program versus the drift time, and then this data is fit to a function that
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Figure 2.12: Experimental sequence for measurement of the momentum trans-
fer caused the applied interaction.
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Figure 2.13: Example of our typical initial conditions and a comparison with
a Gaussian fit. 94% of the atoms lie within the Gaussian profile.

includes the Gaussian convolution with the initial spatial width σx0.

σx(t) =

√
σx0

2 +
(σp

M
t
)2

(2.1)

An example of this measurement is shown in graph “G” in Fig. 2.14.

It can be seen that the function is very linear after 15 ms, justifying the

assumption that the initial spatial width of the MOT has little effect on our

time-of-flight momentum measurements. We can get some measure of the

consistency of our shot-to-shot temperature from the scatter of the data in

the graph. Additionally, the program tracks the vertical centroid of the cloud

to verify that it freefalls, and the total fluorescence to see that this is not

critically dependent on the location or expanded width of the MOT.
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Figure 2.14: Example of a LabVIEW temperature measurement. Shows the
last of a series of CCD pictures as the MOT expands (A), the measurement pa-
rameters (B), and the x (horizontal) and y (vertical) momentum distributions
(C,D). Shown as a function of drift time are the vertical position of cloud (E),
the total fluorescence (F), and the standard deviation of the x and y spatial
distribution of the cloud as measured by the camera (G). The linearity of the
data in (G) shows that the neither the magnetic field ringdown, nor the initial
spatial width of the MOT are affecting the measurement. Also note that the
overlay of the x and y data in (G) shows a uniform expansion.

The loading period leaves the atoms with a temperature of about 25 µK.

During this time the trapping lasers are at full power, with the DBR detuned

by 15 MHz. After this period we turn off the trapping fields, reduce the power

of the DBR to about 40%, and increase the detuning to 40 MHz. Leaving this

weakened molasses on for 1 ms produces some degree of polarization gradient
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cooling, and reduces our temperature to a typical value of 12 to 16 µK [17, 44].

Others have shown that this molasses cooling can reach less than 3 µK in

cesium, but it depends on having residual magnetic fields of around 10 mG

[43]. This is where the long decay time of our trapping field hurts us since

most of our atoms are experiencing fields of hundreds of mG.

2.5.2 Interaction

Immediately after the final cooling stage the interaction sequence begins. Since

the interaction beam detuning is roughly 10,000 times larger than the Zeeman

shift due to the residual magnetic fields, and since the dipole force for the

standing wave is independent of orientation or magnetic sublevel, the slow

decay of our magnetic field should not affect the interaction. However, there

are many other considerations associated with the interaction beam which

are critical to characterizing the dipole potential in our Hamiltonian. We

must characterize the temporal modulation, the spatial profile, the absolute

power, and the quality of the standing wave both in the noise of the phase and

amplitude, and the spatial purity (likeness to a perfect 1-D sinusoid). Finally,

we must also consider the degree to which this is not a perfectly elastic dipole

force interaction (i.e., the spontaneous emission rate).

The modulation of the interaction beam is accomplished using an 80

MHz AOM (AOM3 in Fig. 2.1) from IntraAction, which is specified to have

a rise/fall time of 25 ns with its ME802 driver. In actuality we measure

about 75 to 100 ns rise/fall time for the optical signal on a fast photodiode.

This is primarily due to the 50 ns rise/fall time of the Stanford Research

Systems DS345 arbitrary waveform generator creating our pulses, and to the

AOM alignment being optimized for diffraction efficiency rather than speed.

We anticipate improving this by incorporating a 2 ns RF switch between the

oscillator and amplifier in the AOM driver. This modification would also
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Figure 2.15: Example of actual pulse profile for delta kick

ensure that the RF signal driving the AOM is completely off, so that there

is not any residual leakage of light through the AOM. We normally program

square pulses of 300 ns, resulting in the pulse shape shown in Fig. 2.15, which

has a FWHM of around 280 to 300 ns. The effect of this pulse shape will be

discussed in the next chapter.

The absolute amplitude of our interaction beam is measured with a

Newport 1825C power meter and a calibrated (±5%) 818SL attenuated detec-

tor. In order to monitor the pulse amplitude during the experiment we split
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off 1% of the interaction beam before it enters the chamber and focus it into

the 50 MHz Thorlabs photodiode shown in Fig. 2.19. The diode is calibrated

against the power meter using a dedicated LabVIEW program which simula-

neously reads the analog output from each device as it steps through the entire

power range of the interaction beam with AOM3. It then fits a line to this

data and extracts a calibration value for the diode signal in mW/mV.

The pulse sequence for each interaction is stored by a Tektronix TDS

524A digital oscilloscope, and read via GPIB into the LabVIEW program

controlling the experiment for analysis. Since the maximum kick strength

Keff , depends on the total pulse energy, as we will see in equation 3.4, we want

to be able to extract a value for the average integrated energy per pulse. In

order to store an entire 70 kick pulse sequence we had to decrease the scope

resolution to a level which only sampled a few points per pulse. Therefore,

rather than use this trace to integrate the pulse sequence, which would likely

underestimate the true pulse energy because of the few data points, we made

a reference table of pulse energy versus pulse amplitude for pulses of various

pulse widths that were measured at high resolution. Hence, we needed only to

extract the pulse amplitude from the low resolution trace. This can be done

very reliably.

The inherent pulse-to-pulse amplitude noise on the laser can be de-

termined from the standard deviation of the pulse amplitude measurements.

This σ seems to be consistently less than 1% of the maximum pulse amplitude

available.

We measure the beam radius in two ways. The first is with an improved

”knife edge” method from the one described in detail by Robinson [7]. The

second is with a home-made beam profiling system.

Our knife edge consists of two razor blades mounted perpendicular to

each other on a 2-D translation device placed in the interaction beam path
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shortly after the spatial filter. We place a power meter after the razors, and

then read the analog output into the computer via another LabVIEW program

as we translate the razors through the beam. We do this first in one direction,

and then in the other. The signals represents a 1-D integration of the beam

profile in each direction, and the program fits an integrated 2-D Gaussian to

the data as shown in Fig. 2.16. These fits suggest that the profile in each

direction is nearly Gaussian with some overall ellipticity.

Our beam profiling system requires directing a split-off and attenuated

beam right on to the chip of a small CCD camera, and then recording and

analyzing the crossection with a frame grabber device and the computer. This

has the advantage of analyzing both directions at the same time and directly

comparing the results to a Gaussian fit. Measurements from the knife edge

method and the CCD method are shown in Figs. 2.16 and 2.17. We complete

this analysis for both the input and the retroreflected beams in order to see

that it is not substantially converging or diverging on its way to the chamber.

While the CCD measurement of the beam width generally agrees with

the knife edge to within 10%, it seems less reliable due to the pronounced

interference pattern that reflections of the chip generate from the coherent

input beam. These patterns distort the image, making the data harder to

fit. Additionally the image seems sensitive to variation of laser intensity and

location on the chip.

Once the beam profile was determined, we examined noise effects.

Retroreflection of the interaction beam by an external mirror creates the stand-

ing wave and defines its spatial phase. The mirror is in an adjustable mirror

mount attached to the opposite side of the chamber with four steel posts.

Any motion of this mirror due to acoustic vibration during the interaction

will constitute phase noise, the effect of which we have not yet been able to
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Horizontal knife
edge measurement

Vertical knife
edge measurement

Figure 2.16: Example of knife edge program in LabVIEW for measuring the
interaction beam profile is shown for both the horizontal and vertical direc-
tions. The squares are data points obtained from measuring power as the
knife edge cuts accross the beam. The diamonds plot the Gaussian function
obtained from the fit to the squares.
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Figure 2.17: Example of a beam profile measurement using a CCD camera.

characterize. We have, however, attempted to characterize the level of phase

noise present.

To do this we set up a Michelson interferometer on a large damped

post (from Newport) set where the interaction beam enters the chamber. One

arm is sent through the chamber to the retroreflecting mirror and the other

to a mirror on the post. A helium-neon laser was used to generate the fringes,

which were measured by a photodiode and viewed on an oscilloscope. The

results showed that over the time of our longest interactions (100 kicks, or 2

ms) there was a phase shift of less than 8% of a spatial period of 0.5×852 nm,

with the highest frequency oscillations being on the order of 600 Hz. This

should represent an upper bound since the interferometer could not distinguish

between motion of the retroreflecting mirror or motion of the other elements.

We have since replaced a mechanical shutter, which was on the table and
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was the source of much of the acoustic noise during these measurements, with

AOM1.

Finally, we consider the quality of the standing wave. Problems in

the spatial profile can come from stray reflections, phase front distortion, or

mismatch of the counter propagating beams. Recent work has shown that

these experiments can be very sensitive to imperfections in the standing wave

[45]. Also, the conservative interaction can be made dissipative by spontaneous

emission events.

The 4σ radius of our MOT is about 0.5 mm, so we want the phase front

to not change much over this transverse distance. For a beam radius of 1.5

mm, the radius of curvature of the phase front, even if the MOT is 4 m from

the waist, is 20 m. This means that at most the phase shift in a given plane

at this distance from the beam axis is 0.7%, which reduces the standing wave

intensity by less than 1%. So curvature is not a problem. Our mirrors have

flatness on the order of λ/10 so this also is less than a 1% change over this

distance.

The coherence length of our interaction beam is at least xc = c/δνc ≈ 30

m. This assumes an upper limit on the bandwidth of our Ti:sapphire laser of

δν = 10 MHz, as determined by a Fabry-Perot cavity with 10 MHz resolution.

There is about a 3% drop in intensity in the retroreflected beam due to

optical losses, which corresponds to a 1% drop in the standing wave amplitude.

Reflections from the anti-reflection coated windows are on the order of 0.5%

each, and so should only produce very weak fringes if any.

Ideally, our standing wave potential is non-dissipative. Any deviation

from this would also have to be considered a degradation of our ideal interac-

tion. Therefore we must consider to what degree residual spontaneous emission

is present for our experimental parameters.
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Spontaneous emission caused by the far-detuned, linearly polarized

standing wave is given by Eq. (2.2) [21].

Rsc =

(
Γ

2

)
(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
, (2.2)

where Isat = 1.65 mW/cm2.

For our maximum power P ∼ 300 mW. Including both beams, the

average intensity is about Iav = 1.4 × 104 mW/cm2, giving a scattering rate

of Rsc = 32 kHz, or 0.9% probabilty of spontaneous emission per 285 ns pulse

for each atom. Our normal operating parameters use about 50% - 60% of that

power, inducing a 0.4% - 0.5% probability of spontaneous emission per pulse.

2.5.3 Free Drift

The next step in the sequence after the interaction is the ballistic expansion

(free drift) time. With all of the lasers off, the atoms are allowed to freefall

and spread out in space in accordance with their respective velocities. There

were two requirements here. The first is that the atoms are allowed to drift

long enough to achieve a spatial spread much larger than the initial spatial

width of the MOT, or any expansion occuring during the interaction. The

second requirement was that they must not expand beyond the view of the

camera or the uniform region of the detection molasses.

We typically use 15 ms of drift time, measured from the beginning of

the interaction. We have already seen that the initial MOT size was insignif-

icant for this expansion, but there was some error in the measurement from

momentum gained toward the end of the interaction time. If atoms are largely

accelerated toward the end of the 1.6 ms interaction time, they will have drifted

with this added momentum for 10% less time than we are assuming (the ratio

of the interaction time to the drift time). If the acceleration from the diffusion

in momentum was constant during the 1.6 ms interaction time, a 5% error in
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the momentum calculation (10% in the energy) would result. In our kicked

rotor experiments, however, most of the momentum is gained in the begin-

ning of the interaction time, due to localization effects, so this error is reduced

somewhat.

2.5.4 Imaging

The free drift time is terminated by switching on the molasses beams, this

time without the magnetic fields. Without the B-field there is no restoring

force, so the molasses simply cools the atoms in place down to the initial

MOT temperature. The resulting fluorescence is imaged by a CCD camera.

The imaging is done with a TE/CCD-5122TK/1UV thermoelectrically

cooled CCD camera from Princeton Instruments. The CCD chip itself is cooled

to -50◦C. It has a 512×512 pixel array, and each pixel is about a 20 µm square.

A Nikon 105 mm f/2.8D lens provides a 1:1.8 magnification for about 36 µm

resolution. There is a shutter opening/closing time of about 5 ms, so for

accurate exposure timing we depend on the switching of the molasses with

AOM1 and AOM2.

Sample images are shown in Fig. 2.18. Above each image is a graph of

the vertically integrated intensity distribution, which gives the 1-D momentum

distribution along the direction of the standing wave. The horizontal scale for

the momentum is determined in the same way as for the temperature mea-

surement; by appropriately considering the drift time that led to the expanded

distribution.

Our large, powerful molasses beam, described earlier, ensures that we

have a sufficiently uniform atomic fluorescence rate over the entire 1.8 cm

image. In fact, at a distance of 9 mm from the center, the intensity has

dropped by 35%. Because of the very small percentage of the distribution
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outside of the central region of the beam, this intensity drop has little effect

on the distributions, and less than 10% reduction in measured average energy.
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Figure 2.18: Examples of CCD images taken at the end of the experimental
sequence, and the associated 1-D integrated intensity graphs. The unexpanded
atomic cloud in the first frame represents the actual spatial dimensions of the
MOT, and is clearly much smaller than the expanded clouds in the next two
frames, which are used for the momentum measurements.
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2.6 Computer Control

The entire measurement procedure was necessarily automated because of the

need for precise timing. Our computer control chain is shown in Fig. 2.19.

We use a Power Macintosh 7100/80 computer running LabVIEW 4.0. Three

internal NuBus I/O boards provide the connection to all external instrumen-

tation. The timing for the signals produced in the control sequence is depicted

in Fig. 2.20.

The last of the three boards in the control diagram in Fig. 2.19 is a

buffer board for the Princeton Instruments CCD camera. It has a serial con-

nection to the ST-138 camera controller through which it passes programming

commands to the camera, and receives image data from the camera. Once

programmed, the camera shutter control is actually accomplished by an inde-

pendent timing signal to the external trigger input on the controller.

The middle board is a National Instruments NB-MIO-16L-9 multipur-

pose I/O board. It is connected to a buffered interface panel which provides

protection for the MIO board, and easy BNC connections to the various I/O

data lines. While we often use the analog inputs for automated measurements,

the actual experiment just uses two of this board’s programmable clocks for

timing signals. One controls the MOT coils, and the other provides the main

trigger for initiating the experiment.

The first board is our GPIB interface. It is a National Instruments

NB-DMA2800 which programs all of our timing and control devices, and reads

our interaction beam waveform from the oscilloscope. We use three Stanford

Research System DS345 arbitrary waveform generators to control the AOMs

that precisely modulate the amplitudes of all of the laser beams used in the

experiment. A SRS DG535 pulse generator provides two pulses which directly

control the camera shutter and the molasses detuning frequency via AOM2.
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Figure 2.19: Diagram of experimental control organization.
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The edges of these pulses provide triggers for the DS345s.

LabVIEW provides a fast, easy, and flexible graphical programming

language for automating the experiment. We have created a set of modular

programs, each corresponding to a different type of experiment. Each program

is designed to perform a sequence of experiments with preprogrammed param-

eter steps, displaying, analyzing, and storing the data as it goes. In addition

to the main programs used for taking the data presented here, we regularly

construct many other programs to automate calibration and analysis outside

the experiment.

We eventually hope to upgrade the computer to a PC.
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Figure 2.20: Timing diagram. Once the main trigger is given by the com-
puter, the high resolution timing and signal generation is accomplished by the
Stanford Research Systems components.



Chapter 3

Pushing Back the Boundaries

3.1 Introduction

The first series of experiments with cesium were designed to demonstrate our

ability to study quantum chaos in regimes that were out of reach of the previous

experiments in sodium. There were two important differences. First, we made

significant technical improvements which gave us a better quality signal with

a higher signal-to-noise ratio. Second, fundamental differences in the new

system, which will be explained shortly, allowed us to push out the classical

momentum boundary imposed by the finite pulse duration of our interaction

beam [13].

Figure 3.1 demonstrates the effectiveness of our new apparatus on a

typical data run. The momentum distribution on the top is from the sodium

experiment and shows a dynamic range of about 40 in the measured fluo-

rescence intensity. The bottom distribution from the new experiment has a

dynamic range of about 400, and a much cleaner signal. Most of this im-

provement can probably be attributed to the chamber windows being larger,

facilitating the use of larger trapping beams, and having anti-reflection coat-

ings. Both changes contribute to less fringes being imposed on the beams due

to diffraction and multiple reflection interference (responsible for the shoulder

on the sodium distribution), and both reduce the amount of scattered light

in the chamber, improving the signal-to-noise ratio. What cannot be seen on

75
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Figure 3.1: Comparison of sodium data (a) [7] to cesium data (b). Both
distributions are localized momentum distributions. The vertical axes are
intensity in arbitrary units. The horizontal axes are in momentum units of
two double-photon recoils (w.r.t. each element). Notice that the signal to
noise ratio is significantly improved in the lower graph, and a much wider
momentum range is possible.

here is the effect of the boundary.
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3.2 Classical Analysis of the Momentum Boundary

It turns out that even if the apparatus were the same, the sodium data shown

here could not have extended any further because there was a classical mo-

mentum boundary in phase space, at p/2~kL = 50, beyond which the classical

dynamics are predominantly regular. The origin of this boundary can be ex-

plained with a simple classical model which provides us with relevant scaling

parameters and makes clear the advantage of using cesium rather than sodium.

Consider an atom with a velocity v such that it travels one period of the

standing wave during a kick of duration tp. Then the momentum transferred to

the atom by the potential averages to zero, and the particle no longer diffuses.

This situation occurs when vtp = λ/2, and hence provides an estimate for the

boundary location given by

pboundary

2~kL
=

Mλ2

8π~tp
. (3.1)

From this equation we see that the larger mass of cesium and longer optical

wavelength of the cesium transition provide a twelve-fold increase over sodium

in the momentum boundary location for a given pulse width.

A more precise description of the boundary and its dependence on pulse

width can be obtained from a Fourier analysis of the interaction potential.

We accomplish this by rewriting the sequence of kicks as a discrete Fourier

series and analyzing the amplitudes of the primary resonances of the system.

Applying this to the scaled Hamiltonian (1.31), we have

H = ρ2/2 + κ
∞∑

m=−∞
f̃(2πm) cos(φ − 2πmτ), (3.2)

where f̃(2πr) is the Fourier transform of the pulse function f(τ). This Hamil-

tonian has primary resonances located at ρ = dφ/dt = 2πm. Therefore, the

Fourier transform evaluated at m = ρ/2π modifies the effective stochasticity

parameter Keff as a function of momentum such that



78

0 25 50 75 100 125 150 175 200 225
0

2

4

6

8

10

12

 

 

K
ef

f

p/2´k
L

Figure 3.2: Classical calculation of the effective stochasticity parameter Keff

as a function of momentum for square pulses of various temporal widths. The
horizontal line represents the δ-kick case. The other curves represent square
pulses with widths α = 0.014 (heavy solid line), α = 0.024 (dashed), α = 0.049
(dash-dot), and α = 0.099 (dotted). The well depth is adjusted in each case
to give the same maximum value of Keff = 10.5 at p/2~kL = 0. The point
where Keff drops to ∼1 in each case is the classical momentum boundary. The
typical limit of our momentum measurements is |p/2~kL| ≈ 80. Note that we
have suppressed the curves after their first zero-crossing.
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Keff(ρ) = κf̃(ρ) (3.3)

Notice that for ρ = 0 this is just the Fourier transform evaluated at the

origin, which is the area under the pulse. Recalling Eq. 1.30 for α we have

Keff(0) = κf̃(0) = κ

∞∫
−∞

f(τ)dτ = κα. (3.4)

Therefore, the effective stochasticity parameter for small momentum values is

proportional to the total energy in each pulse of the interaction beam, inde-

pendent of the shape.

For a square pulse, which approximates the pulse used in our experi-

ments, the effective kick strength can be written as

Keff = αk
sin(αρ/2)

αρ/2
, (3.5)

where Keff(ρ = 0) = ακ agrees with the general estimate above for the stochas-

ticity parameter K of the δ-kicked rotor.

This dependence of Keff on momentum is displayed in Fig. 3.2, which

compares several square-pulse cases to the δ-kick case. Notice that the first

zero-crossing of this expression corresponds to the value obtained from Eq. (3.1).

Recall from Section 1.3.3 that as the stochasticity parameter increases from

zero the last KAM surface bounding the momentum transport is broken at

K ∼ 1. Therefore the dynamics of the finite pulse system undergo a transition

as Keff drops to ∼1, because of the presence of these KAM surfaces that span

the phase space and act as a barrier against momentum diffusion.

This momentum boundary is illustrated in Fig. 3.3, which shows clas-

sical phase portraits for the δ-kicked rotor (Fig. 3.3a) and two square-pulse

cases (Figs. 3.3b and 3.3c). The phase portrait of Fig. 3.3b is typical of our
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Figure 3.3: Classical phase portraits for the kicked rotor with K = 10.5,
comparing δ-kicks (a) to square pulses of widths α = 0.014 (b) and α = 0.049
(c). Case (b) is typical for our localization experiments. This case mimics
the δ-kicked rotor for a momentum region much larger than that used in our
experiments (|p/2~kL| . 80).

current cesium experiment, and the boundaries are well outside the range of

detectable atomic momenta, |p/2~kL| . 80. Our group’s previous experimen-

tal work in sodium was limited to a bounded chaotic region similar to that

in Fig. 3.3c. While this situation enabled the observation of the transition

from the short time classical diffusion to the exponential localization of the

momentum distribution after the quantum break time, it could not be used to

explore any continued momentum growth beyond that point which might be

caused by some source of delocalization.

Fig. 3.4 shows momentum distributions from classical Monte-Carlo sim-
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ulations (with 2×105 particles) of the same systems as in Fig. 3.3. The momen-

tum distributions after 68 kicks are plotted here. The distributions are similar

in the central region, but the boundary suppresses diffusion in the wings of the

distributions in the square-pulse cases, especially in the case with the widest

pulses (α = 0.049). The nearly Gaussian initial momentum distribution is also

plotted, and it corresponds to the initial distribution in the experiments.



82

-100 -50 0 50 100
10-5

10-4

10-3

10-2

 

In
te

ns
ity

p/2´kL

Figure 3.4: Comparison of momentum distributions from classical simulations
for different pulse widths after 68 kicks, with K = 10.5. The nearly Gaussian
initial condition is shown as a dotted line. Notice that even for α = 0.014
(dashed), the classical growth is slowed. For α = 0.049 (light solid) the initial
condition is unaffected outside the boundary. The heavy line is a classical
simulation for the δ-kicked rotor. The vertical scale is logarithmic and in
arbitrary units.
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3.3 Experimental Parameters

The experiments are conducted as described in Chapter 2, with the momentum

given in units of 2~kL. The maximum momentum that we can measure is

primarily limited by the size of the CCD detector in our camera. For a 15 ms

drift time, we can detect momenta within |p/2~kL| ≈ 80. Using shorter drift

times, we could measure larger momenta at the expense of resolution.

The pulse period was T = 20 µs, corresponding to k̄ = 2.08. The

kick strength κ was chosen to provide the best exponentially-localized mo-

mentum distributions. For the shortest pulses (tp = 0.283 µs) we used V0/h =

3.55 MHz, yielding a classical stochasticity parameter of K = 13.1. For the

longest pulses (tp = 1.975 µs) we used V0/h = 0.94 MHz, corresponding to

K = 24. The absolute uncertainty in K is ±10%, and the largest contribu-

tions are due to the measurement of beam profile and the absolute laser power

calibration.

The momentum boundary due to the nonzero pulse width is |p/2~kL| =

213 for our typical operating parameters. This value is a factor of four larger

than in our group’s earlier sodium experiments. The corresponding reduction

in the effective value of K is only 6% out to |p/2~kL| = 40 and 25% at our

maximum detectable momentum of |p/2~kL| ≈ 80.

We can also estimate the effects of collisions from the experimental

work of Dalibard and coworkers [46], who measured a collision cross section

of 5 × 10−11 cm2 for cesium atoms prepared in the F = 4, mF = 4 ground

sublevel with a temperature of 5 µK. In our initial distribution, the density

is about 1011 cm−3, and the mean velocity is 5 cm/s. These figures lead to

a collision probability of only 2.5% in 1 ms, or 0.05% per kick period. This

result actually overestimates the collision probability because our atoms are

distributed among the various mF sublevels, and so the actual collision cross
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section is smaller than the figure used here.
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3.4 Results

The results presented here illustrate the capabilities of the cesium setup. As

a starting point we needed to reproduce dynamical localization in the kicked

rotor system. We then used this as a baseline to characterize the effects of the

momentum boundary. The resulting momentum distributions are compared

with classical simulations.

In Fig. 3.5 we see the time evolution for a typical kicked rotor exper-

iment, from the initial distribution through 68 kicks. The momentum distri-

bution starts out with a Gaussian profile, which makes a rapid transition to a

broader, exponential distribution. We observe a continued slow growth in the

momentum distribution until the end of the experiment, with the distributions

remaining exponential.

An overlay version of five momentum distributions for an experiment

with similar parameters, taken at increments of 17 kicks, is shown in Fig. 3.6a.

Note that the distribution remains exponential over the nearly three orders of

magnitude in intensity that are resolvable in our experiment. The slow growth

of the localized distribution is also evident in this figure.

Fig. 3.6 compares experiments using four different pulse widths with

the corresponding momentum boundaries as predicted by Eq. (3.1). In the

first case, Fig. 3.6a, the boundary of |p/2~kL| = 213 is three times larger than

the |p/2~kL| = 70 resolvable width of our distribution. This situation is ideal

for experimental studies of the quantum kicked rotor, since the momentum

distribution remains well within the boundary.

In Fig. 3.6b, we see that although the distance between the boundaries

at |p/2~kL| = 125 is less than twice the width of the final distribution, there

is little effect on the shapes of the distributions.

In Fig. 3.6c, the boundary is located at |p/2~kL| = 61, and it has a
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Figure 3.5: Time evolution of a typical kicked rotor experiment for K =
11.5 ± 10%, T = 20 µs, 0.283 µs pulse width, and k̄ = 2.08. The initial
distribution is nearly Gaussian with σp/2~kL = 4.4. The final distribution
is exponential with a localization length of 13. Note that the vertical axis is
linear and in arbitrary units, and the time increment between distributions is
2 kicks.

clear effect on the wings of the distributions. Notice, however, that after 17

kicks the distribution still looks exponential.

Finally, Fig. 3.6d shows a case where the boundary at |p/2~kL| = 30

is well within the exponential distributions shown in Fig. 7a. In this case,

the distribution quickly reaches the boundary, and the diffusion process halts

before quantum localization sets in.

It is also interesting to note that the portions of the initial distributions
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Figure 3.6: Comparison of momentum distribution evolution for 4 different
kick pulsewidths from 0.3 µs to 2 µs. Distributions for 5 different times are
shown on each graph: 0 kicks (heavy solid line), 17 kicks (dotted), 34 kicks
(dashed), 51 kicks (dash-dot), and 62 kicks (solid).
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Figure 3.7: Comparison of experimental momentum distributions after 51
kicks for two different pulse widths, α = 0.014 (heavy line) and α = 0.049
(thin line). In the α = 0.014 case, also shown in Fig. 7a, the boundary is at
|p/2~kL| = 213. This boundary width is much larger than the width of the
distribution, and hence the boundary does not significantly affect the exponen-
tial distribution. In the α = 0.049 case, also shown in Fig. 7c, the boundary
is located at |p/2~kL| = 61. This boundary width is clearly inside the base
of the exponential distribution; the momentum distribution is now distorted
in its wings, while the shape at the center is nearly identical to the first case.
Note that the vertical scale is logarithmic and in arbitrary units.

that are outside the boundary in Figs. 7c and 7d remain stationary. This be-

havior is a result of the presence of the invariant curves past the boundary, as

shown in Fig. 2, that strongly inhibit momentum transport. These observa-

tions are consistent with a previous theoretical study of the kicked rotor with

finite pulses [47].

The dynamics near the center of the distribution appear to be relatively

insensitive to the location of the boundary. Fig. 3.7 compares the distribu-

tions after 51 kicks from Figs. 3.6a and 3.6c. It is clear that the portion of

the distribution in the central region remains unaffected by the boundary, but
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Figure 3.8: Growth of energy with time for the cases in Fig. 8. The momentum
boundaries are |p/2~kL| = 213 for the case α = 0.014 (circles) and |p/2~kL| =
61 for the case α = 0.049 (triangles). Note that the initial growth rate is the
same until the distributions diffuse out to larger momenta where Keff begins
to drop sharply for the α = 0.049 case.

there is substantial deviation between the two cases in the wings of the dis-

tributions. Fig. 3.8 shows that the initial energy growth rate is the same for

the two boundary locations in Fig. 3.7. It is only as the distribution nears the

boundary that further growth is inhibited. This point is significant because

much of the theoretical analysis of this system has been done using the long-

term diffusion in energy, which is especially sensitive to the high-momentum

tails of the distribution.

In Fig. 3.9 we compare the intermediate case of Fig. 3.6c (α = 0.049) to

the classical simulation shown in Fig. 3.4. The distributions shown correspond

to 68 kicks. There are several important features in this comparison. First, the
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Figure 3.9: Comparison of experimental momentum distributions after 68 kicks
to the classical simulations of Fig. 3.4. Both square-pulse cases, the experiment
(light solid line) and the simulation (dashed line), have the same pulse width
α = 0.049 and hence the same boundary, although K is slightly different
between the two cases (K = 11.1 and 10.5, respectively). The experimental
data clearly manifests its quantum nature through a characteristic exponential
profile in the central region. The classical square-pulse simulation instead
matches the classical δ-kicked rotor simulation (heavy solid line) in the central
region. The initial distribution (dotted line) remains unchanged outside the
boundary. Note that the vertical scale is logarithmic and in arbitrary units.
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classical square-pulse case follows the δ-kick case out to the boundary. Second,

the experimental distribution is characteristically exponential near its center,

and then it drops off at the boundary as in the classical simulation. Finally, the

initial conditions in both the classical simulation and the experiment remain

unchanged outside the boundary. Therefore, in the central region, both the

classical simulation and the experiment behave as they would in the limit of

δ-kicks, displaying classical diffusion and quantum localization, respectively.

Their behavior near the boundary, however, is quite similar.

The presence of a boundary in the classical phase space provides a

purely classical suppression of momentum diffusion. Recalling the discussion

in Section 1.4, one of the requirements to observe dynamical localization was

that we need to work in a predominantly chaotic (classical) phase space. If

diffusion is suppressed classically by residual stable islands, or by KAM bound-

aries, identification of the suppression quantum effects would be ambiguous.

Likewise, the investigation of any phenomenon that is expected to show en-

hanced momentum growth from that of a localized distribution requires that

there is no fundamental barrier to this growth.

The following chapters address two such topics. The first is to study

the effects of noise and dissipation on dynamical localization. The signature

in this case is the destruction of localization, with subsequent diffusive growth

in momentum [48, 49, 50]. The second is the study of quantum dynamics

in a region of classical anomalous diffusion. Here the prediction is that the

localization length of the quantum system will increase in correspondence to

the enhanced classical diffusion in these regions [16, 51, 52].



Chapter 4

Noise and Dissipation

4.1 Introduction

The role of noise and dissipation in quantum evolution has become an impor-

tant area of study in recent years. The destruction of quantum interference,

referred to as decoherence, is thought to be responsible for the classical nature

of the macroscopic world [53]. Decoherence in the context of quantum chaos

is particularly intriguing, because it exposes subtle questions about the corre-

spondence limit, and so this topic has been the focus of much theoretical work

[32, 48, 49, 50, 54].

On the experimental side, the effects of nonzero temperature on con-

ductance fluctuations in mesoscopic structures [55] and the effects of noise on

ionization of Rydberg atoms in microwave fields [28, 56, 57] have been stud-

ied. Nevertheless, there remain many open questions, and new experiments on

decoherence in quantum chaos are clearly needed. In this chapter we present

the results of our initial investigation into the effects of noise and dissipation

momentum transport in the quantum kicked rotor. We found that in both

cases dynamical localization was destroyed for sufficiently large perturbations,

resulting in nearly Gaussian momentum distributions [14].

92
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4.2 Experimental Parameters

We now consider two important modifications to the interaction described in

the last chapter. The first is to replace the fixed kick amplitude κ with a

random, step-dependent kick amplitude kn, to introduce amplitude noise in

the kicks. The second change, carried out in a separate experiment, is to

add a weak, resonant interaction that will induce a small number of sponta-

neous scattering events, primarily between kicks. The latter change introduces

dissipation into the system.

We introduce amplitude noise with random pulse intensities kn, which

have a uniform distribution on an interval centered about the zero-noise in-

tensity level as depicted in Fig. 4.1. The width of this interval represents the

amount of amplitude noise and is given as a percent of this mean level. In the

dissipation experiments we introduced a small amount of near-resonant (mo-

lasses) light, still detuned by 39 MHz, is leaked into the chamber by AOM1

during the interaction with the pulsed light. We calculated photon scattering

rates from the measured intensities based on the assumption that the atoms

are illuminated uniformly with all polarizations, so that the result is indepen-

dent of how the magnetic sublevels are populated. Using this assumption we

can use Eq. 2.2 with Isat = 2.70 mW/cm2 corresponding to a near-resonant

beam at the (6S1/2, F = 4) −→ (6P3/2, F
′ = 5) transition. The intensities

used in the experiment were 0, 27, 94, and 246 µW/cm2 ±20%, corresponding

to 0%, 1.2%, 5.0%, and 13.0% probability of a spontaneous emission event per

kick.

The pulse period for both cases was T = 20 µs, corresponding to k̄ =

2.08. The kick strength κ was again chosen to provide the best exponentially-

localized momentum distributions in the zero-noise case. For the amplitude

noise data we used V0/h = 3.3 MHz, corresponding to K = 12.8. For the

dissipation case we used V0/h = 3.12 MHz, corresponding to K = 11.9. For
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Intensity

Pulse sequence without noise

Pulse sequence with amplitude noise

Figure 4.1: Depiction of amplitude noise. The normal pulse sequence on top is
altered to produce the noisy sequence shown on the bottom by programming
random amplitudes distributed uniformly within the chosen range, ±%V0/2.
Four different random sequences were done at each time step to obtain an
average.

these experiments the reduction in the effective K value was as described in the

last chapter. It was only 6% out to |p/2~kL| = 40 and 25% at our maximum

detectable momentum of |p/2~kL| = 80.
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4.3 Results

We first consider the momentum evolution with no added noise or dissipa-

tion, shown in Fig. 4.2(a). The initial distribution is Gaussian except for

the pedestal described in Section 2.5. The distribution is also shown at later

times, where it takes on the exponential profile characteristic of dynamical

localization.

The corresponding growth of energy as a function of time is shown in

Fig. 4.3. It is important to note that the calculation of the energy, 〈p2〉/2, from

a distribution is highly sensitive to the behavior at large p. For this reason

we exclude from the calculation any points below a chosen cutoff, representing

the noise floor that dominates at high momenta. Our cutoff level is at 0.25%

of the peak value, representing a 400:1 signal-to-noise ratio. We checked the

validity of our 〈p2〉 calculation by comparing it to the 〈p2〉 of an exponential

fit to our localized distributions. These values typically agree to within 5%.

The energy measurements presented here suffer from a timing problem

discovered near the time of this writing. The repump laser had been shutting

off during the MOT load time allowing 10% to 20% of the atoms to transfer

to the F = 3 ground state. These atoms therefore did not interact as strongly

with the interaction beam and consequently did not diffuse out as far in mo-

mentum. This effect would cause the average energy to be lower by an amount

roughly proportional to the amount in the F = 3 state. This does not affect

the qualitative interpretation of these measurements. Since it did affect the

appearance of the momentum distributions, we repeated the measurements

to produce the momentum distributions presented here after the problem was

remedied [58].

Although the distribution in Fig. 4.2(a) is exponential, we find that as

the kicks continue, the sides start to “bulge out.” This continued momentum
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Figure 4.2: Comparison of the momentum distribution evolution for the cases
of (a) no noise, (b) 62.5% amplitude noise, and (c) dissipation from 13%/kick
spontaneous scattering probability. Time steps shown are 0 kicks (light solid),
17 kicks (dash-dot), 34 kicks (dashed), 51 kicks (dotted), and 68 kicks (heavy
solid) for (a) and (c), and 0, 16, 32, 52, and 68 kicks, respectively, for (b). The
vertical scale is logarithmic and in arbitrary units.
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Figure 4.3: Energy vs. time plots for increasing amounts of amplitude noise (a)
and spontaneous scattering probability (b). The values for (a) are 0%, 25%,
50%, and 62.5% noise (circles, filled triangles, open triangles, and diamonds,
respectively). The values for (b) are 0%, 1.2%, 5.0%, and 13% per kick (cir-
cles, filled triangles, open triangles, and diamonds, respectively). Error bars
indicate a statistical uncertainty of 1 standard deviation, but do not account
for the ±8% systematic uncertainty in the measured energy. Solid lines are
curve fits using the model (4.1). Also shown are classical simulations of the
δ-kicked rotor (heavy solid line) and the square-pulse kicked rotor (dashed)
corresponding to the fit parameters. Inset shows the cooling effect when the
molasses beams are added after the interaction time (same symbols); the solid
line indicates the reference case of no added interaction.
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diffusion, also seen in the corresponding plot of the energy growth in Fig. 4.3,

may be due to a variety of systematic noise sources mentioned in Section 2.5.

For our operating parameters, effects due to the fluctuating dipole force [59]

and atom-atom collisions are negligible.

The effects of external noise and dissipation are shown in Fig. 4.2(b,c).

In Fig. 4.2(b), noise in the kick amplitude was imposed, with a peak-to-peak

deviation of 62.5% about the mean. In Fig. 4.2(c), the probability of sponta-

neous scattering was 13% per kick, with an absolute uncertainty of 20%. Both

cases exhibit clear deviations from the exponential form.

Fig. 4.3(a) displays the growth of energy as a function of time for differ-

ent noise levels. The data plotted here represents an average over four distinct

random kick sequences. Fig. 4.3(b) displays the growth of energy as a function

of time for different levels of spontaneous scattering.

To quantify the growth of energy, we analyzed the data in Fig. 4.3 by

employing a diffusion model suggested by Cohen [60]

D(t) = D0τ

[
1

tc
+

1

t∗
exp

(
− t

τ

)]
, (4.1)

where τ−1 = tc
−1 + t∗−1, and fit the data to E(t) =

∫ t

0
D(t′)dt′. In this

model, D0 is the initial diffusion rate, t∗ is the quantum break time, and tc is

the coherence time [32]. We take D0 and ln tc as our fitting parameters, and

we make the ansatz D0 = t∗β−1, where β is an additional fitting parameter

constrained to be the same among the four simultaneous fits to the data sets in

each of Figs. 4.3(a) and (b). The initial energy in each fit was constrained to be

the average of the zero-kick measurements, which was 16.6 for the amplitude

noise data and 19.1 for the spontaneous scattering data. The results of our

fits to the data are shown in Table 4.3.

In order to compare our results to the predicted behavior we use some

higher order terms to describe the dependence of D on K, rather than simply



99

Table 4.1: Fit results for the data presented in Fig. 2. Note that the fitting
errors were typically around 5% in the noise experiments, and were around 2%
in the dissipation experiments. However, these fitting errors do not include
the systematic uncertainties discussed in the text.

Amplitude noise Spontaneous Scattering
Noise level D0 ln tc Probability D0 ln tc

0% 6.98 3.78 0% 4.61 3.91
25% 7.00 3.45 1.2% 4.70 3.79
50% 9.14 3.65 5.0% 4.82 3.69

62.5% 9.70 3.62 13% 5.19 3.45
β = 1.40 β = 3.32

the quasilinear term given in Eq. (1.37). These terms, and the k̄ dependence

are discussed in the next chapter. The result is that the fits for D0(K) =

Dcl[K sin(k̄/2)/(k̄/2)] [16, 32] give K = 13.8 and 12.9 for the amplitude noise

and spontaneous scattering data, respectively. Here, we have used Dcl(K) '
(K2/2)(1/2 − J2(K) + J 2

2 (K)) [61], where J2 is an ordinary Bessel function.

These values for K are within the uncertainty of those determined from the

experimental parameters. Also, the fitted values of D0 are relatively insensitive

to the noise level, and the coherence time tc decreases with increasing noise,

except for the two largest amplitude noise cases. In these cases the fitted

values for D0 are anomalously high compared to the case with no noise, and

the coherence times are longer than in the 25% case, indicating a breakdown of

the fits for large amplitude noise levels. Recall also that these data suffer from

the problem of having a fraction in the F = 3 state which reduces the average

measured energy. This is not accounted for in the fit, but the main purpose

of the fit at this point is to demonstrate a qualitative agreement with theory.

Future work will attempt to provide better quantitative measurements.

In order to claim that the increased diffusion for the case of spontaneous

scattering is due to decoherence, it is essential to characterize the role of recoil
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heating, which could also lead to momentum diffusion. To address this ques-

tion experimentally, we measured the effect of turning on the molasses beams

after the kick sequence instead of during the kick sequence. This measurement

was repeated at each level of spontaneous scattering for the same durations as

the kick sequences. The results are displayed as an inset of Fig. 4.3(b). We

find that the molasses beams produce a weak cooling effect that is substan-

tially smaller than the growth seen when they are concurrent with the kicks.

Hence, our observations provide clear experimental evidence for decoherence.



Chapter 5

Anomalous Diffusion

5.1 Introduction

In this chapter we consider the effects of small structures of the classical kicked

rotor phase space on the global momentum transport in various quantum

regimes. One particularly interesting aspect of the kicked rotor system is

the existence of accelerator modes, which lead to Lévy flights in generic phase-

space trajectories [62, 63]. These Lévy flights can have a strong influence on

the global transport properties of a system, and have been recently employed

in the understanding of a subrecoil laser cooling scheme for atoms [64] and

the motion of particles in a nonuniform fluid flow [65]. In the classical kicked

rotor, accelerator modes become important in the long-time limit, because

they account for a small area in phase space. Our data, however, suggests

that they may play a role even in the short time for the quantum case.

This experiment studies the time evolution of atomic momentum dis-

tributions as a function of the pulse amplitude and period. We observe the

oscillations in the momentum distribution widths that are expected from the-

ory. We also observe that for certain kick amplitudes where accelerator modes

are present in the classical phase space, the momentum distributions do not

have the expected exponential form over the time scale of our experiment [15].

These results suggest a correlation between classical anomalous diffusion and

the observed quantum dynamics.

101
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5.2 Theory and Background

In the scaled units the variations of pulse amplitude and period correspond

to variations in the system parameters K ∝ V0T and k̄ ∝ T . Although the

classical phase space is predominantly chaotic for K > 4, there are many

small stable structures that influence the system dynamics, even for large K

values. In particular, when K is near 2πj, where j is a positive integer, there

exist stable accelerator modes that result from the periodicity of the phase

space in momentum [23]. Note that other smaller accelerator modes exist for

other values of K, a number of which have been catalogued by Karney [66].

A trajectory inside one of these accelerator modes changes its momentum by

|∆ρ| = 2πj at each kick. This acceleration (p(t) ∝ 2πjt) manifests itself as a

streaming behavior along the momentum direction of the phase space.

An example of a phase space containing the largest accelerator modes

(K ≈ 2π) is shown in Fig. 5.1 where it is compared to a more generic phase

(K = 10). The figure shows the phase space extended to several periods

in momentum in order to illustrate the effect of the accelerator modes. At

K = 10 an initial distribution at the bottom of the figure would spread to

higher momenta values via diffusion only, a random walk type process. At

K ≈ 2π the figure depicts both the diffusion of the population in the stochastic

sea, and the streaming behavior of trajectories starting in accelerator modes as

they find themselves kicked to the next higher island in momentum. Fig. 5.1 is

a little misleading because at the momentum values of 2πj of these accelerator

modes a trajectory also, of course, moves over j spatial periods before the next

kick. Our experiment is not sensitive to spatial movement on the order of even

hundreds of standing wave periods.

There are actually two sets of accelerator modes, the set on the left

accelerate toward positive momentum, and the set on the right toward negative

momentum. Understanding existence of these large accelerator modes at K =
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2πj is intuitively simple if one considers that they are located at ρ = 2πjρ,

and φ = (π/2)(2jφ + 1), (jρ, jφ integers). This is where the standing wave has

its highest gradient, applying an impulse of the full ±2πj in momentum at the

next kick. Likewise, the momentum of 2πjρ will translate the position by jρ

spatial periods keeping the trajectory trapped in the accelerator mode. The

equations of motion (1.34) for the DKR bear this out directly.

This streaming is not the whole story however. Additionally, trajecto-

ries that begin outside the accelerator modes will eventually wander near them

and “stick” to their boundary for a finite, but possibly large number of kicks.

This is conjectured to be due to the very complicated self-similar structure

of the phase space at the boundary of regular orbits [62]. This sticking re-

sults in the Lévy-flight-like trajectories mentioned above, where random-walk

behavior is interspersed with strings of many correlated steps in the same di-

rection. The suffix like is added to include trajectories where the statistics of

the flight lengths may not correspond to the strict definition of Lévy-flights

given elsewhere [67]. We are more interested in the generic behavior. An ex-

ample of this type of behavior is shown in the single particle DKR trajectory

in Fig. 5.2. This trajectory was initiated in the stochastic region of a phase

space containing accelerator modes. Notice that the motion is dominated by

a few large flights in momentum. Thus, directly or indirectly, the accelerator

modes change the global nature of phase-space transport from diffusion, char-

acterized by random-walk trajectories, to anomalous diffusion, characterized

by Lévy-flight trajectories and streaming.

The diffusive behavior is described by a linear growth in energy, E ≡
〈(p/2~kL)2/2〉 = Dt, where D is the diffusion coefficient, whereas anomalous

diffusion has a modified dependence E = Dtµ, where µ 6= 1. A classical cal-

culation of the diffusion coefficient results in a series of time step correlations.

The first few of these were calculated by Rechester, Rosenbluth, and White
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Figure 5.1: DKR surface of sections for K = 6.4 and K = 10. This figure
illustrates size and location of accelerator modes and shows homogeneity of
the phase space at K = 10.
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Figure 5.2: Simulation of a single particle DKR trajectory showing Levy flights

and show an oscillatory dependence on K [23, 61],

D(K) =
K2

2

(
1

2
− J2(K) + J 2

2 (K) + O(K−3/2)

)
, (5.1)

where J2(K) is an ordinary Bessel function. This function, which is valid

both in the absence of accelerator modes and for short times in the presence

of accelerator modes, is plotted in Fig. 5.5. The maxima of this function

coincide with the existence of the stable accelerator modes. As higher order

correlations are added, corresponding to longer times, the dominance of the

accelerator modes becomes more apparent where they exist.

Although the DKR is presented as general model for many aspects
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of chaotic dynamics, accelerator modes are a particular characteristic of the

DKR, and only exist because of the periodicity in momentum. It was shown

in Chapter 3 that because of the non-zero duration of the pulses used in our

experiment, the phase space is not exactly periodic in momentum, and hence

our system does not have true accelerator modes. However, our system has

“quasiaccelerator modes” [23], which behave like accelerator modes over a

bounded region of phase space. A graph of a classical simulation, including

finite pulses, is shown in Fig. 5.3 in comparison to the approximation in Eq.

(5.1). This demonstrates the effect that the pulsewidth used in our experiment

is expected have on the oscillations in the momentum diffusion.

The quantum mechanical case, which applies to our experiment, ex-

hibits behavior that is quite different from the classical case. In contrast to

the long-time diffusion or super-diffusion of the classical case, the quantum

system diffuses for only a short time and then stops when the momentum

distribution reaches a characteristic exponential form [10]. Shepelyansky has

predicted that the initial quantum diffusion rate D0, and hence the character-

istic length l of the localized distributions (the “localization length”), follows

the classical case when K is replaced by Kq, with [16, 32]

Kq = K

(
2

k̄

)
sin

(
k̄

2

)
. (5.2)

In this case D0(K) = D(Kq)/k̄
2 and l = 2βD0, where β has been determined

to be ∼1/2 via numerical simulations [16]. Notice that the zero-crossings of

(5.2) for integer k̄/2π correspond to quantum resonances, where a plane wave

at p = 0 undergoes ballistic growth in momentum, and exponential localization

does not occur [10].

The quantum dynamics of the kicked rotor in the presence of accelera-

tor modes has been studied theoretically by Hanson, Ott, and Antonsen [52].

In this work, the authors observed that any population contained within an
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solid). Both simulations take the average diffusion after 50 kicks.
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accelerator mode would decay exponentially due to tunneling, and they devel-

oped a model for global momentum transport in the presence of accelerator

modes. However, their simulations used small values of k̄, typically an order

of magnitude smaller than those used in our experiment. A more recent the-

oretical investigation by Sundaram and Zaslavsky [68] focused on values of k̄

comparable to those used in our experiment as well as smaller values. In this

work, the authors found evidence that accelerator modes enhance fluctuations

in the localization length of the quasienergy states.
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5.3 Experimental Parameters

This experiment was run like the boundary experiments except that instead

of varying the pulse width and number of kicks, we varied the pulse period

and kick amplitude. For the experiments presented here the pulse period was

varied from T = 10 to 60 µs, corresponding to the range k̄ ∼ 1 to 2π, with

less than 4 ns variation per pulse period. The pulse width was fixed at 283 ns

and the number of kicks for a given run was generally set at 35. Two special

cases used values of 24 and 28 kicks, as described in Fig. 5.5.

As in the noise experiment, our energy data suffers from a systematic

reduction due to a fraction of atoms in the F = 3 ground state. For the energy

data in Fig. 5.5, the F = 3 ground state is again around 10-20% populated;

however, this mixed population leads only to a systematic reduction in the

measured energy (on the order of 10-20%), and does not affect the locations of

the observed peaks. This energy data has additional systematic uncertainties

of as much as 20-30% due to the high K values used in some cases. These worst-

case errors correspond to measurements where Kq > 15, since the distribution

tails reach the edge of our detection system. This again contributes to an

underestimate of the true energy.

The momentum distributions, as opposed to the energy measurments

in Fig. 5.5, were accomplished as in Chapter 4 by turning off the repump laser

light 100 µs after the trapping laser light. This ensured that all of the atoms

were in the F = 4 state at the beginning of the interaction.
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5.4 Results

A typical exponentially localized momentum distribution for Kq = 9.1 is shown

in Fig. 5.4(a). This distribution is what one would expect for dynamical local-

ization. Fig. 5.4(b), which corresponds to Kq = 7.9, shows a typical example

of the observed distributions that are clearly not exponential. We observe the

exponential distributions near the minima of the D(Kq) function from Eqs.

(5.1, 5.2), while nonexponential distributions like that of Fig. 5.4(b) occur

near the maxima. Also, in the case of Fig. 5.4(b), it is interesting to note

that the momentum distribution at short and intermediate times grows signif-

icantly more quickly than in the exponentially localizing case of Fig. 5.4(a).

This behavior is especially evident from the “shoulders” on the distribution in

Fig. 5.4(b) after 10 kicks, which are absent in the corresponding distribution

in Fig. 5.4(a).

In order to observe the oscillations of the distribution widths versus

Kq, we measured the distribution energies after 35 kicks as a function of K for

several different values of k̄. We note that although the theory is given in terms

of localization length l, the presence of nonexponential distributions at the

maxima of D(Kq) make meaningful fits of the localization length questionable.

However, the distribution energy E scales as l2, so the energy is a sensible

measure of the momentum distributions for comparison with theory. The

results are shown in Fig. 5.5, where the energy is plotted against Kq. The

classical diffusion curve from Eq. (5.1) is also shown for comparison. Because

the maxima of the energy curves match for the different k̄ cases, these data

show that these classical oscillations are present in the quantum kicked rotor

and closely match the estimated quantum scaling factor in Eq. (5.2). The

data in Fig. 5.5 that is “bunched” near Kq = 0 corresponds to k̄ = 6.24, which

is near the quantum resonance. In this case, as in our earlier work [10], we

observe little growth in these momentum distributions. We also note that one
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Figure 5.4: Comparison of the momentum distribution evolution with k̄ = 2.08
for the cases (a) Kq = 9.1, (b) Kq = 7.9. Time steps shown are 0 kicks (light
solid), 5 kicks (dash-dot), 10 kicks (bold), 20 kicks (dashed), 45 kicks (dotted),
and 70 kicks (heavy bold). The vertical scale is logarithmic and in arbitrary
units.



112

0 2 4 6 8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

0

25

50

75

100

125

150

175

 C
la

ss
ic

al
 D

iff
us

io
n 

C
on

st
an

t

 

E
ne

rg
y

K
q

Figure 5.5: Oscillations in the growth of energy as a function of Kq for various
values of k̄. Data shows the average energy after 35 kicks for the cases k̄ = 1.04
(inverted triangles), 1.56 (crossed squares), 2.08 (triangles), 3.12 (open circles),
4.16 (filled squares); 28 kicks for k̄ = 5.20 (filled diamonds); and 24 kicks for
k̄ = 6.24 (filled circles). The solid line is a plot of Eq. (3), the classical
energy diffusion rate, showing the peaks related to anomalous diffusion. The
correspondence of energy growth in the quantum case to the classical diffusion
constant is consistent for all values of k̄, supporting the validity of the scaling
of the quantum kick strength Kq.

may expect the energy data to have an overall growth as K 4
q because, as noted

above, the localization length l grows as K 2
q . However, we do not observe this

scaling behavior in our experiment, and in fact our data has a similar overall

growth to that of D(Kq), which grows as K 2
q . This observed behavior is

partly a result of the nonzero duration of our pulses, which inhibits momentum

transport at large momenta and hence reduces the energies measured at larger

Kq as shown in Fig. 5.3. Additionally, the reduction in the measured energy
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due to the F = 3 population problem will be largest for the widest distributions

(i.e., the highest energy values).

In conclusion, we have studied quantum transport in the quantum

kicked rotor. We have observed the oscillatory dependence of the average

energy growth on the kick strength and period. To our knowledge, this is the

first experimental observation of these periodic variations in momentum trans-

port in this system and the first experimental confirmation of the predicted

quantum scaling of K. While the dependence of energy growth on K and k̄

is in good qualitative agreement with theoretical expectations, the observed

deviation of the momentum distributions for certain intervals in K from their

expected, exponentially localized form was both surprising and interesting.

We hope that this work will stimulate better theoretical understanding of the

momentum distributions in the quantum kicked rotor.
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