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1. INTRODUCTION

The meeting ground between quantum mechanics
and nonlinear dynamics has developed into a new field
of research known as quantum chaos. One of the key
predictions in this field is dynamical localization. This
striking effect is a quantum suppression of classical
(chaotic) diffusion, and has stimulated a great deal of
interest and discussion since it was first predicted
almost twenty years ago [1–7].

Quantum mechanics and nonlinear dynamics come
together naturally in atom optics with laser cooled
atoms. The nonlinear potential, created by a standing
wave of light, can be modulated to produce a system
that is classically chaotic. Since dissipation can be
made negligibly small in this system, quantum effects
can become important. These features led to a series of
experiments in our group on dynamical localization
and quantum chaos with cold sodium atoms, establish-
ing atom optics as a new experimental testing ground
for the field [8–12]. The simplest experimental config-
uration in that work was a standing wave of light that
was pulsed on periodically. This system was an experi-
mental realization of the kicked rotor, which has been a
paradigm for classical and quantum chaos for many
years.

To go beyond this first generation of experiments,
we have built a new experiment based on laser cooled
and trapped cesium. This paper describes our first
experiments in this new system, which is a realization
of the quantum kicked rotor, and presents a study of
boundary effects on dynamical localization. In Section 2
we give a theoretical background on atomic motion in
a far-detuned dipole potential, and provide a classical
analysis of the boundary in phase space. In Section 3
we describe the general experimental approach. In Sec-
tion 4 we discuss the new experimental results with
cesium. Finally, in Section 5 we describe some direc-
tions for future work.

2. THEORETICAL BACKGROUND
To describe our system we begin with a two-level
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pulsed standing wave of linearly polarized, near-reso-
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 (relative to the natural linewidth), the
excited state amplitude can be adiabatically eliminated
[13]. The atom can then be treated as a point particle.
This approximation leads to the following kicked-rotor
Hamiltonian for the center-of-mass motion of the atom:
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 is the electric field of a single
travelling wave component of the standing wave, 

 

F

 

(

 

t

 

) is
a pulse centered at 

 

t

 

 = 0 with duration 

 

t

 

p

 

, and 

 

T

 

 is the
period of the standing wave pulses. It is convenient to
rescale our coordinates and use the dimensionless
Hamiltonian
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, and we have
dropped the prime on H. In the quantized model, 
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 are conjugate variables that satisfy the commutation
relation [
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Abstract

 

—Atomic motion in a time-dependent standing wave of light provides an almost ideal experimental
system for the study of quantum chaos, due to the nonlinearity of the potential combined with negligible dissi-
pation. In our first experiments with sodium atoms we observed dynamical localization, a quantum suppression
of chaotic diffusion. To go beyond this work we have constructed an experiment with cold cesium atoms, and
report our first results from this system. The larger mass and longer wavelength push out the momentum bound-
ary in phase space that arises from the nonzero duration of the pulses. This feature should enable the study of
effects leading to delocalization.
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specifies the classical 

 

δ

 

-kicked rotor dynamics. For
K * 1 the classical δ-kicked rotor dynamics are glo-
bally chaotic, in the sense that there are no invariant tori
that prevent trajectories in the main chaotic region from
attaining arbitrarily large momenta. For K > 4 the pri-
mary resonances become unstable, and the phase space
is predominantly chaotic.

The effects of a nonzero pulse width can be seen by
rewriting the sequence of kicks as a discrete Fourier
series and analyzing the amplitudes of the primary res-
onances of the system. Applying this procedure to the
Hamiltonian (2),

(3)

where (2πr) is the Fourier transform of the pulse
function f(τ). This Hamiltonian has primary resonances
located at ρ = dφ/dt = 2πm. Therefore, the Fourier
transform evaluated at m = ρ/2π modifies the effective
stochasticity parameter Keff as a function of momen-
tum. For a square pulse, which approximates the pulse
used in our experiments, this factor can be written as
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where Keff(ρ = 0) = αk plays the role of the δ-kicked
rotor stochasticity parameter K. This dependence of Keff
on momentum is displayed in Fig. 1, which compares
several square-pulse cases to the δ-kick case. The
dynamics of the system undergo a transition as Keff
drops to ~1, because of the presence of KAM surfaces
that span the phase space and act as a barrier against
momentum diffusion.

A simple classical model of the boundary provides
us with relevant scaling parameters and makes clear the
advantage of using cesium rather than sodium. Con-
sider an atom with a momentum such that it travels one
period of the standing wave during a kick. Then the
momentum transferred to the atom by the potential
averages to zero, and the particle no longer diffuses.
This situation occurs when v tp = λ /2, and hence an esti-
mate for the boundary location is

(5)

Notice that this expression corresponds to the first zero-
crossing of (4). The larger mass and longer optical
wavelength of cesium provide a twelvefold increase
over sodium in the momentum boundary location for a
given pulse width.

3. EXPERIMENT

Our experimental setup (Fig. 2) is similar to that of
our earlier sodium-based quantum chaos experiments
[10]. The experiments are performed on laser-cooled
cesium atoms in a magneto-optic trap (MOT) [14, 15].

The atoms are trapped in a stainless steel UHV
chamber, in contrast to the earlier experiments in our
group that used a quartz interaction chamber. All opti-
cal viewports are anti-reflection coated on both sides to
reduce intensity fringes on the laser beams. An ampule
containing cesium metal is attached to the chamber
through a valve that is opened occasionally to leak
cesium vapor into the chamber. The valve is necessary
because of the rather high room temperature vapor
pressure of cesium. A pair of anti-Helmholtz coils sur-
rounding the chamber provides a magnetic field gradi-
ent of 11 G/cm for the MOT. When the current to the
anti-Helmholtz coils is switched off, the magnetic
fields decay exponentially after a brief transient, with a
1/e time of about 3 ms. This decay time is longer than
in the earlier sodium-based experiments because of
induced currents in the metal chamber.

Two single-mode diode lasers (L1, L2) at 852 nm
provide the light for cooling, trapping, and detection of
the cesium atoms. L1 is a 100 mW Distributed Bragg
Reflector diode laser locked via frequency-modulation
(FM) saturated-absorption spectroscopy to the
(6S1/2 , F = 4)  (6P3/2 , F' = 4, 5) crossover reso-
nance. The main beam from L1 is double-passed
through a tunable acousto-optic modulator (AOM1)
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Fig. 1. Classical calculation of the effective stochasticity
parameter Keff as a function of momentum for square pulses
of various temporal widths. The horizontal line represents
the δ-kick case. The other curves represent square pulses
with widths α = 0.014 (heavy solid line), α = 0.024
(dashed), α = 0.049 (dash-dot), and α = 0.099 (dotted). The
well depth is adjusted in each case to give the same maxi-
mum value of Keff = 10.5 at α = 0. The point where Keff
drops to ~1 in each case is the classical momentum bound-
ary. The typical limit of our momentum measurements is
|p/2"kL| ≈ 80. Note that we have suppressed the curves after
their first zero-crossing.
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centered at 80 MHz that provides fast control over the
intensity and detuning of the beam. During the trapping
stage of the experiment, the light from L1 is tuned
15 MHz to the red of the (6S1/2, F = 4)  (6P3/2, F' = 5)
cycling transition. The light from L1 passes through a
spatial filter (SF), is collimated with a waist of 1.4 cm,
and has a typical power of 23 mW at the chamber. The
beam is divided into three beams of equal intensity by
two beamsplitters with transmissions of 66 and 50%.
The three beams are retroreflected through the center of
the chamber in a standard six-beam MOT configura-
tion.

The repump laser, L2, is a 150 mW Littrow-cavity,
grating-stabilized diode laser. This beam is used to pre-
vent optical pumping into the F = 3 ground state during
the trapping and detection stages. This laser is electron-
ically locked to the center of the (6S1/2 , F = 3) 
(6P3/2 , F' = 4) saturated absorption resonance. The
beam has a typical power of 27 mW at the chamber and
a waist of 7.5 mm. The intensity is controlled by a
mechanical shutter (SH) with a rise/fall time of 1 ms.
The beam is combined with the vertical arm of the light
from L1 via a polarizing cube beamsplitter and retro-
reflected through the chamber. Optical isolators (ISO1,
ISO2) are used to minimize optical feedback to L1
and L2.

The entire experimental timing and data acquisition
sequences are computer controlled. After trapping and
initial cooling, the intensity of L1 is reduced for 1 ms
and the detuning is increased to 39 MHz to further cool
the sample. Typically, we trap 106 atoms from the back-
ground vapor. The momentum distribution of the atoms
is nearly Gaussian, although the tails of the distribution
are more populated than in a purely Gaussian distribu-
tion. The center of the distribution typically fits well to
a Gaussian distribution with σp/2"kL = 4.4, and 96% of
the atoms are contained in this Gaussian. The position

distribution of the atoms is also Gaussian, with σx =
0.1 mm.

After the final cooling, the trapping fields are turned
off, leaving the momentum distribution unchanged, and
the interaction potential pulses are then turned on. A
stabilized single-mode Ti : sapphire laser (L3) pumped
by an argon-ion laser provides the pulsed standing
wave. The light from L3 passes through a fixed-fre-
quency 80 MHz acousto-optic modulator (AOM2) that
controls the pulse sequence. The beam is spatially fil-
tered, centered on the atoms, and retro-reflected
through the chamber to form a standing wave. The
beam has a typical power of 290 mW at the chamber
and a waist of 1.44 mm. The absolute wavelength of L3
is measured with a scanning Michelson interferometer
wavemeter. A scanning confocal Fabry–Perot cavity
with a 1.5 GHz free spectral range is used to monitor
long-term drift of L3 during measurements.

For all the experiments described here we detuned
this beam 6.1 GHz to the red of the cycling transition,
with typical fluctuations of about 100 MHz. The pulse
sequence consisted of a series of fixed-length pulses
with a rise/fall time of 75 ns and less than 3 ns variation
in the pulse duration. Sequences using pulse widths
between 283 and 1975 ns (full width at half maximum)
were used in these experiments to demonstrate the role
of the momentum boundary. The period was 20 µs with
less than 4 ns variation per pulse period as measured
with a fast photodiode. The probability of spontaneous
scattering was less than 0.5% per kick period for all of
the parameters used. The phase noise of the standing
wave due to vibrations in the optical system resulted in
less than 8% of a standing wave period phase drift after
200 kicks, with a typical fluctuation timescale of 0.5
ms.

The detection of momentum is accomplished by a
time-of-flight method. The atoms drift in the dark for a
controlled duration, typically 15 ms. The trapping
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Fig. 2. Schematic diagram of the experimental setup. Two diode lasers provide the light for the MOT, and a Ti : sapphire laser pro-
vides the far-detuned standing wave.



268

LASER PHYSICS      Vol. 9      No. 1      1999

OSKAY et al.

beams are then turned on in zero magnetic field, form-
ing an optical molasses [14] that freezes the position of
the atoms. The final spatial distribution is recorded via
fluorescence imaging in a short (10 ms) exposure on a
cooled charge-coupled device (CCD) camera. The final
distribution and the free-drift time enable the determi-
nation of the momentum distribution. The maximum
momentum that we can measure is limited by the size
of the CCD. For a 15 ms drift time, we can detect
momenta within |p /2"L| ≈ 80. Using shorter drift times,
we could measure larger momenta at the expense of
resolution. The initial spatial distribution is not decon-
volved from the final momentum distributions, because
the effect on the RMS width of our final distributions is
on the order of one percent.

The pulse period was T = 20 µs, corresponding to
 = 2.08. The kick strength k was chosen to provide the

best exponentially localized momentum distributions.
For the shortest pulses, we used V0/h = 3.55 MHz,
yielding a classical stochasticity parameter of K = 13.1.
For the longest pulses we used V0/h = 0.94 MHz, cor-
responding to K = 24. The absolute uncertainty in K is
±10%, and the largest contributions are due to the mea-
surement of beam profile and the absolute laser power
calibration.

The momentum boundary due to the nonzero pulse
width is |p /2"kL| = 213 for our typical operating param-
eters. This value is a factor of four larger than in our
earlier sodium experiments. The corresponding reduc-
tion in the effective value of K is only 6% out to
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Fig. 3. Comparison of momentum distribution evolution for 4 different kick pulsewidths from 0.3 to 2 µs. Distributions for 5 differ-
ent times are shown on each graph: 0 kicks (heavy solid line), 17 kicks (dotted), 34 kicks (dashed), 51 kicks (dash–dot), and 62 kicks
(solid). This data shows the effect of the boundary on the evolution of the momentum distribution. The vertical scales are logarithmic
and in arbitrary units.
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|p /2"kL| = 40 and 25% at our maximum detectable
momentum of |p /2"kL| ≈ 80.

Figure 3 presents experimental data using three dif-
ferent pulse widths in order to study the effects of
momentum boundaries as predicted by (5). In each
case, the distributions are taken at increments of
17 kicks. In the first case, Fig. 3a, the boundary of
|p /2"kL| = 213 is three times larger than the |p /2"kL| =
70 resolvable width of our distribution. This situation is
ideal for experimental studies of the quantum kicked
rotor, since the momentum distribution remains well
within the boundary. In Fig. 3b, we see that although
the distance between the boundaries at |p /2"kL| = 125
is less than twice the width of the final distribution,
there is little effect on the shapes of the distributions. In
Fig. 3c, the boundary is located at |p /2"kL| = 61, and it
has a clear effect on the wings of the distributions.
Notice, however, that after 17 kicks the distribution still
looks exponential.

The dynamics near the center of the distribution
appear to be relatively insensitive to the location of the
boundary. Nevertheless, the energy of the distribution
can be strongly affected by the boundary, and is there-
fore less important than the momentum distributions
themselves. This point is significant because much of
the theoretical analysis of this system has been done
using the long-term diffusion in energy, which is espe-
cially sensitive to the high-momentum tails of the dis-
tribution.

4. SUMMARY AND FUTURE DIRECTIONS

We have constructed a new quantum chaos experi-
ment in cesium that is capable of a much wider range of
experiments than the first generation sodium-based
experiments. The primary advantage of this new exper-
iment lies in the physical characteristics of cesium,
which reduce the effects of the momentum boundary
and bring the experiment closer to the δ-kick limit. We
are now studying the effects of noise and decoherence

on localization and have obtained first experimental
results. We are also studying the effects of classical
structures in phase space on quantum transport. 
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