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4.2 Poincaré surface of section for the sin2 interaction with a value
of Vo leading to resonance overlap. . . . . . . . . . . . . . . . . 32

4.3 rms momentum for sin2 and square pulses. . . . . . . . . . . . . 33

5.1 Digitized temporal profile of the pulse train. . . . . . . . . . . . 52
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Chapter 1

Introduction

The past few years have seen a resurgence in the use of classical mechanics in

the description of strongly perturbed and strongly coupled quantum systems

in atomic physics [13, 14], where the traditional perturbative treatment of the

Schrödinger equation breaks down. In particular, recent advances in classical

nonlinear dynamics and chaos have had important applications in the descrip-

tion of the photo-absorption spectrum of Rydberg atoms in strong magnetic

fields [15], the microwave ionization of highly excited hydrogen atoms [16], and

the excitation of doubly excited states of helium atoms [17]. These examples

together with recent work on mesoscopic systems [18] explore classical-quantum

correspondence in situations where the classical limit exhibits chaos, an area

of study referred to as “quantum chaos” [19].

Parallel developments in laser cooling and trapping techniques has led in

recent years to spectacular advances in the manipulation and control of atomic

motion [20]. At the ultra-cold temperatures that are now attainable, the wave

nature of atoms becomes important. These advances have lead to the develop-

ment of the new field of atom optics [21]. Until recently, the primary focus in

atom optics has been the development of optical elements such as atomic mir-

rors, beamsplitters and lenses for atomic de Broglie waves. Our work, reviewed
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in this dissertation, has emphasized the novel regime of time-dependent poten-

tials and hence dynamics in atom optics. In particular, we study momentum

distributions of ultra-cold atoms exposed to time-dependent, one-dimensional,

optical dipole forces that are typically highly nonlinear. Thus, the classical

motion can become chaotic. As dissipation can be made negligibly small in

this system, quantum effects can become important. Our work has established

that these features together make atom optics a simple and controlled setting

for the experimental study of quantum chaos [5].

As this work deals with momentum transfer from light to atoms, it is

important to review some basic concepts. The relevant unit of momentum is

one photon recoil (h̄kL), the momentum change experienced by an atom when

it absorbs or emits a photon. For sodium atoms, this velocity change is 3 cm/s.

The desired process for atom optics is stimulated scattering, where the atom

remains in the ground state and coherently scatters the photon in the direction

of the incident laser beam. Spontaneous scattering, on the other hand, is a dis-

sipative process and must be minimized. In a single beam (traveling wave), the

atom scatters coherently in the forward direction and there is no net momen-

tum transfer. However in a standing wave of light, created by the superposition

of two counter-propagating beams, the atom can also back-scatter. This pro-

cess leads to a momentum change of two photon recoils, or a 6 cm/s velocity

change for sodium. The effective dipole potential that the atom experiences

scales with intensity (irradiance) I and detuning δL from atomic resonance as

I/δL while spontaneous scattering varies as I/δ2
L [22]. Therefore, by detuning

further from resonance, it is possible to make the probability of spontaneous

scattering negligible, while still having a substantial dipole potential.



Chapter 2

Background: A Two-Level Atom in a

Standing-Wave Potential

In the experiments presented here, we subject our atoms to time-dependent,

one-dimensional optical dipole forces created by a pair of counter-propagating

laser beams. How does one understand the interaction between these beams

and the sample of atoms?

Consider a two-level atom of transition frequency ωo interacting with

a standing wave of near-resonant light. If the standing wave is composed of

two counter-propagating beams, each with field amplitude Eo and wavenumber

kL = 2π/λL = ωL/c, then the atom is exposed to an electric field of the form

~E(x, t) = ŷ[Eo cos(kLx)e−iωLt + c.c.] and its Hamiltonian in the rotating-wave

approximation is given by

H(x, p, t) =
p2

2M
+ h̄ωo|e〉〈e|+

[
µEo cos(kLx)e−iωLt|e〉〈g| + H.c.

]
. (2.1)

Here |g〉 and |e〉 are the ground and excited internal states of the atom, x and

p are its center of mass position and momentum, M is its mass, and µ is the

dipole moment coupling the internal states.

The wavefunction for this atom can be written in the position repre-

sentation as |ψ〉 = ψg(x, t)|g〉 + ψe(x, t)e−iωLt|e〉; it evolves according to the

3
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Schrödinger equation (ih̄∂/∂t)|ψ〉 = H|ψ〉. By combining these two equations

with Eq. 2.1 and then operating from the left with 〈g| we get an expression for

the evolution of the ground state amplitude

ih̄
∂ψg(x, t)

∂t
= − h̄2

2M

∂2

∂x2
ψg(x, t) +

h̄Ω

2
cos(kLx)ψe(x, t) , (2.2)

where Ω/2 ≡ µEo/h̄ is the Rabi frequency of an atom interacting with just one

of the light beams. Similarly, by operating from the left with 〈e|, we get

ih̄
∂ψe(x, t)

∂t
= − h̄2

2M

∂2

∂x2
ψe(x, t) +

h̄Ω

2
cos(kLx)ψg(x, t) + h̄δLψe(x, t) . (2.3)

Here spontaneous emission from the excited state is neglected; this approxi-

mation is valid for the case of large detunings δL ≡ ωo − ωL from the atomic

resonance. The large detuning also permits an adiabatic elimination of the

excited state amplitude; for sufficiently large detuning the excited state am-

plitude can be neglected and the atom remains in the ground state. In this

regime the two derivative terms of Eq. 2.3 are small compared to h̄δLψe, and

the two equations can be decoupled into a single equation for the ground state

amplitude:

ih̄
∂ψg
∂t

= − h̄2

2M

∂2

∂x2
ψg +

h̄Ω2

4δL
cos2(kLx)ψg . (2.4)

This has the form of a Schrödinger equation ih̄∂Ψ(x, t)/∂t = HΨ(x, t) with a

Hamiltonian

H(x, p, t) =
p2

2M
− Vo cos 2kLx . (2.5)

A uniform potential offset from Eq. 2.4 has been dropped here by shifting the

phase of the wavefunction: Ψ ≡ exp(iΩ2t/8)ψg . Equation 2.5 describes a point

particle in a one-dimensional sinusoidal potential. The potential has a period
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of one-half the optical wavelength and an amplitude Vo that is proportional to

the intensity of the standing-wave and inversely proportional to its detuning:

Vo =
h̄Ω2

8δL

=
I

h̄δLcεo
µ2

=
I

h̄δLcεo

2

3

3πΓεoh̄c3

ω3
o

=
2

3

h̄(Γ/2)2

δL

I

Isat
. (2.6)

Here Γ is the linewidth of the transition and µ is its dipole matrix element.

I is the intensity (irradiance) of each of the beams comprising the standing

wave and Isat ≡ πh̄ωoΓ/3λ2
L = 6 mW/cm2 is the saturation intensity for the

transition. Equation 2.6 was derived for a standing wave composed of two

counterpropagating beams of equal intensities. If the two beams are not per-

fectly matched the potential amplitude is still given by this equation, with I

taken as the geometric mean of the two intensities.

The classical analysis of Eq. 2.5 is the same as for a pendulum or rotor,

except that the conjugate variables are position and momentum rather than

angle and angular momentum. A Poincaré surface of section for this system

is shown in Fig. 2.1. The position coordinate is shown for one period of the

standing wave. This is a textbook system with a stable fixed point at the center

corresponding to the bottom of the potential well, and an unstable fixed point

corresponding to the top. The closed orbits represent oscillatory motion for

particles with energy less than the total well depth 2Vo, while the continuing

paths describe the unconfined motion of higher-energy particles.

The sinusoidal potential of the pendulum equation is a starting point in
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the study of nonlinear dynamics. The optical system represented by Eq. 2.5 is

a valuable realization of this one-dimensional Hamiltonian. Unlike the periodic

potentials in condensed matter systems, this realization is effectively free from

dissipation mechanisms such as phonon scattering and imperfections in the

lattice periodicity.

We can exploit the control available in the experiment on the optical

standing wave to achieve more interesting systems. By adding a time depen-

dence to the laser intensity, we can vary the amplitude of the potential as a

function of time. By differentially shifting the optical frequencies of the beams

that compose the standing wave, we can also vary its position (or phase) in

time. With these considerations, we see that the electric field of the standing

wave takes the form ~E(x, t) = ŷ[EoF1(t) cos{kL[x − F2(t)]}e−iωLt + c.c.]. The

time scales for these controls ranged between ∼ 25 ns (the response time of

our optical modulators) and milliseconds (the duration of the experiments).

The amplitude and phase modulations were therefore slow compared to the

parameters ωo and δL relevant to the derivation of Eq. 2.5, so they change

that equation by simply modifying the amplitude and phase of the sinusoidal

potential. The generic time-dependent potential is thus

H(x, p, t) =
p2

2M
+ VoFamp(t) cos [2kLx− Fph(t)] . (2.7)

In our experiment we expose sodium atoms to a standing wave of light

that is near-resonant to the D2 transition with λL = 589 nm. To what extent is

Eq. 2.7 a good representation of a sodium atom exposed to an optical standing

wave in the laboratory? The two-level atom and rotating-wave approximations

are well justified for this optical-frequency transition. The adiabatic elimina-
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tion of the excited-state amplitude is appropriate for detunings that are large

compared to the linewidth Γ and to the recoil shift frequency ωr, both of which

are characteristics of the atomic transition. For the sodium D2 transition the

values for these quantities are

Γ

2π
= 10 MHz (2.8)

and

ωr
2π

≡ 1

2π

h̄k2
L

2M
= 25 kHz. (2.9)

Our detunings of several GHz placed the experiment well within this regime. It

is also important to note that for the sodium D2 transition in linearly polarized

light, the light shift is the same for all the mF sublevels.

The one-dimensional nature of Eq. 2.7 comes from the assumption that

the laser beams have spatially uniform transverse profiles. In these experiments

the width of the atomic cloud (σxo ∼ 0.15 mm rms) during the illumination by

the standing wave was small compared to the width of the laser profile (which

had a 1/e field waist of wo ∼ 1.9 mm), so the transverse variations in the

potential were small.

The periodicity of this potential is limited only by the coherence length

of the laser that produces it. Since this length is large compared to the differ-

ence in optical pathlength taken by the two beams that make up the standing

wave, the potential has a coherent periodic structure over the entire spatial

extent of the atomic sample.

For simulations [23] and theoretical analyses it is helpful to write Eq. 2.7

in dimensionless units. We take xu = 1/2kL to be the basic unit of distance, so

the dimensionless variable φ ≡ x/xu = 2kLx is a measure of the atom’s position
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along the standing-wave axis. Depending on the time dependence of the inter-

action, an appropriate time scale tu is chosen as the unit of time; the variable

τ ≡ t/tu is then a measure of time in this unit. The atomic momentum is

scaled accordingly into the dimensionless variable ρ ≡ p tu/Mxu = p 2kLtu/M .

This transformation preserves the form of Hamilton’s equations with a new

(dimensionless) Hamiltonian H(φ, ρ, τ ) = H(x, p, t) · t2
u/Mx2

u = H · 8ωrt2
u/h̄.

With this scaling, Eq. 2.7 can be written in the dimensionless form

H(φ, ρ, τ ) =
ρ2

2
+ kfamp(τ ) cos [φ− fph(τ )] , (2.10)

where the variables τ , φ, and ρ are dimensionless measures of time, displace-

ment along the standing wave, and the atomic momentum:

τ = t/tu , (2.11)

φ = 2kLx ,

ρ = p 2kLtu/M .

The scaled potential amplitude here is k ≡ Vo · 8ωrt2
u/h̄. In these transformed

variables, the Schrödinger equation in the position representation becomes

ik̄
∂

∂τ
Ψ(φ, τ ) =

[
− k̄2

2

∂2

∂φ2
+ kfamp(τ ) cos [φ− fph(τ )]

]
Ψ(φ, τ ) . (2.12)

Here the dimensionless parameter k̄ depends on the temporal scaling used in

the transformation

k̄ ≡ 8ωrtu . (2.13)

As with the classical analyses of this system, the quantum analysis is

similar to that of a pendulum. In the quantum picture there is a distinc-

tion between our system and a pendulum. Because of its periodic boundary
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conditions, a pendulum’s wavefunction has the same spatial periodicity as its

potential. Since an atom in the optical potential can be localized in space, its

wavefunction does not have this imposed periodicity.

In the transformation outlined here, the commutation relation between

momentum and position becomes [φ, ρ] = ik̄. Thus k̄ is a measure of the

quantum resolution in the transformed phase-space. Another general note on

this transformation concerns the measure of the atomic momentum. Since

an atom interacts with a near-resonant standing wave, its momentum can be

changed by stimulated scattering of photons in the two counter-propagating

beams. If a photon is scattered from one of these beams back into the same

beam, the result is no net change in the atom’s momentum. But if the atom

scatters a photon from one of the beams into the other, the net change in its

momentum is two photon recoils. The atom can thus exchange momentum

with the standing wave only in units of 2h̄kL = 2 recoils = 6 cm/s ·M . The

momentum is naturally measured in this unit of momentum transfer. In the

transformed, dimensionless units, this quantity is

p

2h̄kL
=

ρ

k̄
. (2.14)

For a sample of atoms initially confined to a momentum distribution

narrower than one recoil, the discreteness of the momentum transfer would

result in a ladder of equally spaced momentum states. In our experiments

the initial momentum distributions were significantly wider than two recoils

(σpo/2h̄kL ∼ 2.3), so the observed final momenta had smooth distributions

rather than discrete structures.



10

p/
2h

kL

φ/π

Figure 2.1: Poincaré surface of section for a single resonance. Momentum and
position are in the dimensionless units defined in the text.



Chapter 3

Experimental Method

The experimental study of momentum transfer in time-dependent interactions

consists of three important components: the initial conditions, the interaction

potential, and the measurement of atomic momentum. The initial distribution

ideally should be narrow in position and momentum, and should be sufficiently

dilute so that atom-atom interactions can be neglected. The time-dependent

potential should be one-dimensional, for simplicity, with full control over the

amplitude and phase. In addition, noise must be minimized to enable the study

of quantum effects. Finally, the measurement of final momenta after the inter-

action should be highly sensitive and accurate. It is possible to realize all these

conditions using the techniques of laser cooling and trapping. This chapter de-

scribes the apparatus and techniques used in our experiments. Further details

on the realization of these experiments can be found in [6].

3.1 Initial Conditions

Our initial conditions were a sample of ultra-cold sodium atoms that were

trapped and laser-cooled in a magneto-optic trap (MOT) [20, 24]. The atoms

were contained in a glass ultra-high-vacuum cell at room temperature. This

cell was attached to a larger stainless steel chamber connected to a 20 l/s

11
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ion pump. The source of atoms was a small sodium ampoule contained in a

copper tube attached to the chamber. The ampoule was crushed to expose the

sodium. Although the partial pressure of sodium at room temperature is below

10−10 Torr, there were enough atoms in the low-velocity tail of the thermal

distribution to sufficiently fill the trap. The trap was formed using three pairs of

counter-propagating, circularly polarized laser beams with diameters of roughly

2 cm. These beams intersected in the center of the glass cell, together with

a magnetic field gradient provided by current-carrying wires arranged in an

anti-Helmholtz configuration. This σ+ − σ− configuration is standard and is

used in many laboratories.

As shown in shown in Fig. 3.1, a Coherent 899-21 dye laser supplied

the MOT beams. A NIST wavemeter with a resolution of 50 MHz and a

scanning Fabry-Perot cavity (indicated by Monitor Cavity in the figure) aided

in the initial coarse tuning of this laser. The laser was then locked by satu-

rated absorption FM spectroscopy to a frequency 65 MHz to the blue of the

(3S1/2, F = 2) −→ (3P3/2, F = 3) sodium transition at λL = 2π/kL = 589 nm.

Note that since an acousto-optic modulator (AOM1) subsequently downshifts

this beam by 80 MHz, the light incident on the atoms was 15 MHz to the red

of the transition. As the atoms cycle in this transition, they can be lost to the

(3S1/2, F = 1) ground state with a decay time that we measured as roughly

30 µs. To prevent this loss, some of the optical power was shifted into side-

bands at 1.712 GHz. The higher-frequency sideband served to repump atoms

from the (3S1/2, F = 1) state up to (3P3/2, F = 2), from where they could

re-enter the cycling transition. These sidebands were generated by an electro-

optic modulator (EOM1). This device was a 3 mm x 3 mm x 25.4 mm LiTaO3
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crystal from Crystal Technology, around which we built a split-ring cylindrical

resonator. With 28 dBm of applied power it could modulate the light so that

the first-order sidebands each had 50% as much power as the fundamental, but

we found that 15% sidebands were optimal for a cold MOT.

The acousto-optic modulator AOM1 provided a mechanism for turning

on and off the MOT light by diffracting it into a series of deflected modes;

only the first-order downshifted mode was transmitted to the atoms in the vac-

uum cell. This downshifted light was monitored continuously on a photodiode

(Power Lock PD) whose signal provided feedback to AOM1; thus AOM1 also

served to lock the intensity of the MOT beams. The residual fluctuations were

less than 1% of the average intensity.

To spatially filter the MOT light, we then coupled it into a single-mode

polarization-preserving fiber. This fiber also divided the optical alignment of

the experiment into two independent regions; the frequency-conditioning ele-

ments upstream of the fiber could all be optimized without affecting the align-

ment of the downstream beamsplitters, mirrors, waveplates, and apertures that

trained the light onto the atoms in the vacuum cell. These downstream ele-

ments split the light into 6 beams, each of which had a diameter of 2 cm and

a uniform intensity of typically 2 to 5 mW/cm2.

Using this scheme, we trapped approximately 105 atoms into a cloud

that had a Gaussian distribution in position with an rms width of σxo =

0.12−0.17 mm. The atoms also had a Gaussian distribution in momentum, with

a spread of σpo = 4.6− 6h̄kL, corresponding to a temperature 50−90 µK. This

confined, cold distribution defined the initial conditions of the atoms before

they were exposed to the interaction potential.
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3.2 Interaction Potential

A second dye laser (the home-built laser in Fig. 3.1) provided the optical stand-

ing wave that formed the interaction potential. This laser was typically tuned

5 GHz red of resonance. Different beam configurations were used in the experi-

ments described here, with acousto-optic and electro-optic modulators control-

ling the time-dependent amplitude and phase.

Figure 3.2(a) shows the configuration for the modulated standing wave

experiment. An acousto-optic modulator (AOM3 in the figure) turned the in-

teraction potential on and off with a 10%-90% switching time of 25 ns. The

beam’s power was monitored on a photodiode (PD1). The light was then split

into a pair of spatially filtered beams that overlapped to form a standing wave

intersecting the trapped atoms in the vacuum cell. These beams were consid-

erably wider than the distribution of atoms, with typical waists of 1.9 mm. An

electro-optic modulator (EOM3) shifted the phase of one of the beams, and

hence the position of the standing wave along its axis. The magnitude of this

shift was determined by inserting the Mach-Zehnder interferometer indicated

by the dashed lines in Fig. 3.2(a) and analyzing the PM sidebands in the het-

erodyne signal on photodiode PD2 as described in Chapter 6. The velocity of

the standing wave in the lab frame also could be varied by introducing a dif-

ferential frequency shift between the two beams with two more acousto-optic

modulators (AOM4 and AOM5).

For the single-pulse interaction and delta-kicked rotor experiments de-

scribed in Chapters 4 and 5, a simpler configuration was used. In these ex-

periments, the position of the standing wave was fixed, and the amplitude was

varied to produce the time-dependent interactions. The configuration for these
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experiments is depicted in Fig. 3.2(b). The standing wave was formed here

by training the beam directly onto the atomic sample and retro-reflecting the

beam with mirror M2, effectively doubling the available power while providing

a fixed node in the standing wave at the surface of the retro-reflecting mirror.

The initial element (AOM6) is an acousto-optic modulator that can diffract

80% of the optical power into the first-order spot. This fast modulator, with a

10% to 90% rise time of 25 ns, provided the amplitude modulation of the inter-

action beam. The next acousto-optic modulator (AOM7) provided additional

amplitude control for preliminary experiments in which we studied the effects

of amplitude noise on the dynamics. Photodiode PD1 monitored the pulse pro-

files during the experiments. These profiles were digitized and stored for later

analyses. To measure the phase stability of the standing wave, a Michelson

interferometer was constructed by inserting a beam splitter as shown by the

dashed marks in Fig. 3.2(b). This measurement indicated that the standing-

wave phase at the atomic sample was stable to within a few percent of a period

for times up to 100 µs.

In general, it was desirable to draw as much power as possible from

this laser. The amplitude of the interaction potential varies directly with its

intensity and inversely with its detuning from the atomic resonance. Since

the probability of spontaneous emission has a Lorentzian dependence on the

detuning from resonance, this dissipative effect can be reduced by increasing the

laser detuning. Raising the laser intensity by the corresponding amount allows

the amplitude of the interaction potential to remain fixed. In our experiments,

we had typical laser powers of 0.7 − 1.2 W at the laser head. Subsequent

modulating, shifting, and filtering in the different experiments led to powers of
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200− 500 mW at the atomic sample.

3.3 Measurement of the Atomic Momentum

Our original vision of these experiments involved an atomic beam whose trans-

verse momentum distribution would be affected by interactions with the stand-

ing wave. The interactions could then be characterized by observing the trans-

verse spatial distribution of the atomic beam some distance after it had passed

through the standing wave. A very important simplification in the design of

these experiments was the formulation of an alternative scheme for measuring

the momentum transferred to the atoms from the standing wave.

The method we developed to make this measurement greatly simplified

the data collection and obviated the need for an atomic beam altogether. After

being exposed to the interaction potential in our experiments, the atoms had

a new momentum distribution, but the duration of the interactions was short

enough that their spatial distribution remained essentially unchanged. They

were then allowed to drift in the dark for a controlled duration tdrift of a few

milliseconds. During this time, the atoms underwent ballistic motion and their

momentum distribution resulted in a widened spatial distribution. At this point

we measured the spatial distribution of the atoms. Their motion was frozen by

turning on the optical trapping beams in zero magnetic field to form optical

molasses [20]. Under these conditions of “freezing molasses” the atoms’ motion

is rapidly damped, and for short times (tens of ms) their motion is negligible

in comparison to the dimensions of the cloud. This damping is described in

Fig. 3.3 which shows the spatial width of a sample of atoms after different drift

times and exposures to the optical molasses. A charge-coupled-device (CCD)
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camera was used to image the fluorescence of the atoms in this molasses. The

resulting image recorded the new spatial distribution of the atoms; thus since

we knew the time of flight tdrift, we were able to derive the atomic momentum

distribution. The entire sequence of the experiment was computer-controlled.

Figure 3.4 shows the sequence of timing signals that the controlling

computer generated to coordinate events in the experiment. An analog signal

controlled the optical sidebands by driving an RF switch that regulated the

1.712 GHz power for EOM1. For experiments in which we used relatively small

detunings, a pulse generator provided a delayed copy of this signal so there

could be an adjustable optical pumping time before the trapping beams were

themselves turned off. During this time (roughly 30 µs) the atoms were pumped

into the (3S1/2, F = 1) state. Having all the atoms in this one state (rather than

a mix of this and the (3S1/2, F = 2) state allowed a better characterization of

the detuning from resonance experienced by the sample. Immediately after the

trapping beams were turned off, another analog signal turned off the MOT’s

magnetic gradient fields. These fields remained off throughout the time the

atoms were illuminated by the interaction beams, the subsequent ballistic drift

time, and later when the trapping beams were turned back on to freeze the

sample in optical molasses. Since the magnetic fields had a decay time of

approximately 100 µs, the atoms were exposed to some residual magnetic field

during the time the interaction beams were on. Although this field perturbs

the internal structure of the atoms, the effect is insignificant in the calculation

of the interaction potential in Eq. 2.5 because the detuning of the laser beams

(GHz) is much larger than the Zeeman shifts (MHz) from the magnetic field.

The computer also provided a trigger signal at the appropriate time to switch
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on the interaction beams and another trigger for the CCD camera to capture

the resonant fluorescence of the ‘frozen’ sample.

In Fig. 3.5, typical 2-D images of atomic fluorescence are shown. In

Fig. 3.5(a) the initial MOT was released, and the motion was frozen after a

2 ms free-drift time. The distribution of momentum in Fig. 3.5(a) is Gaus-

sian in both the horizontal and vertical directions. The vertical direction was

integrated to give a one-dimensional distribution as shown in Fig. 3.6(a). In

Fig. 3.5(b), the atoms were exposed to a particular time-dependent potential.

The vertical distribution remains Gaussian, but the horizontal distribution be-

comes exponentially localized in this case due to the interaction potential, as

shown in Fig. 3.6(b). The significance of this momentum distribution and other

characteristics are analyzed in the following Chapters.
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Figure 3.1: Schematic of the lasers and frequency control systems. A dye-jet
laser with an argon-ion pump supplies the light for the magneto-optic trap
(MOT) and optical molasses beams. A second dye laser provides the far-
detuned interaction beam for the standing-wave potentials. The acousto-optic
modulators (AOM) are used for frequency shifts and as fast shutters while
the electro-optic modulators (EOM) are used as phase shifters and frequency
modulators.
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Figure 3.2: Beam configurations for the experiments. The MOT/molasses
beams from Fig. 3.1 illuminate the atoms in the vacuum chamber in a standard
σ+ − σ− configuration, and the interaction beam is the source of the standing
wave. For the experiment of Chapter 6, the standing wave was constructed
of two counterpropagating beams with separate frequency shifts as depicted
in part (a) of this figure. A differential shifting of the two beams provided
the required control on the position (phase) of the standing wave. For the
experiments of Chapters 4 and 5, the layout in (b) was used to provide the
required control over the standing-wave amplitude.
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Figure 3.3: rms spatial width as a function of free drift time. The constant
slope of the curves for freeze times of 5 to 10 ms demonstrates the validity of
this technique for measuring momentum. The rms velocity of the distribution
can be read from the slope of these curves. For longer freeze times there is
significant atomic motion during the illumination by the molasses beams and
the curves do not extrapolate to the initial condition. For this reason, the
exposure on the camera was limited to 10 ms.
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Figure 3.4: Timing diagram for various events in the experimental procedure.
The initial loading of the magneto-optic trap is done with the atoms exposed
to a magnetic field gradient and to cooling beams in the σ+−σ− configuration.
Optical sidebands return the atoms to the cycling transition during the trap-
ping, and are turned off shortly before the experiment to pump all the atoms
into the F = 1 ground state. With the cooling and trapping fields turned off,
the cold atoms are illuminated by the interaction beam, which forms a standing
wave. The AC Stark shift from this standing wave provides a time-dependent
potential which we control as described in the text. The signature of these in-
teractions is a new atomic momentum distribution that translates into a spatial
distribution after the period of free drift during which all the fields are turned
off. The atomic sample is then frozen in optical molasses and imaged on a
CCD camera. This record of the spatial distribution is then used to calculate
the momentum distribution that resulted from the interaction.
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(a)

(b)

Figure 3.5: Two-dimensional atomic distributions after free expansion. (a) Ini-
tial thermal distribution with no interaction potential. (b) Dynamically local-
ized distribution after interaction with the potential.
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Figure 3.6: One-dimensional atomic momentum distributions. They were ob-
tained by integrating along the vertical axes of the 2−D distributions in the
previous figure. The horizontal axes are in units of two recoils, and the vertical
axes show fluorescence intensity on a logarithmic scale. (a) Initial thermal dis-
tribution with no interaction. (b) Localized distribution after interaction with
the potential. The significance of the characteristic exponential distribution is
discussed in the text.



Chapter 4

Resonance Overlap in a Single-Pulse

Interaction

4.1 Introduction

The simplest time-dependent potential is the turning on and off of an interac-

tion, and one expects that for slow turn on/off the evolution will be adiabatic.

The conditions for adiabatic behavior are usually very clear for linear potentials

(the harmonic oscillator is an example) since there are only a few relevant time

scales to consider. The difficulty with nonlinear potentials such as that occur-

ring in the pendulum is that there are many time scales, so the conditions for

adiabaticity must be examined much more carefully. The opposite extreme of

fast passage is generally simpler to understand. We show that for time-scales

intermediate to those of fast passage and adiabatic conditions, mixed phase

space dynamics and chaos can be seen even with the mere act of turning an in-

teraction on and off. In the context of atom optics, this type of time-dependent

interaction is ubiquitous and occurs, for example, whenever an atomic beam

passes through a standing wave of light.

The generic time-dependent Hamiltonian in this case is

H =
p2

2M
+ Vof(t) cos(2kLx) . (4.1)

25
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A common form of the pulse is f(t) = exp[−(t/tp)
2], which corresponds to an

atomic beam traversing a Gaussian beam waist [25]. We consider here the case

f(t) = sin2(πt/Ts), where the interaction is turned on for a single period Ts.

This Hamiltonian can be expanded as

H =
p2

2M
+ Vo sin2 (ωmt/2) cos(2kLx)

=
p2

2M
+

Vo
2

cos(2kLx)

−Vo
4

cos(2kL(x− vmt))− Vo
4

cos(2kL(x + vmt)) , (4.2)

where ωm ≡ 2π/Ts is the angular frequency of the pulse, and vm ≡ λL/2Ts. The

effective interaction is that of a stationary wave with two counter-propagating

waves moving at ±vm. The potential in this equation is composed of three

terms, each having the form of a pendulum (Eq. 2.5), but with velocity offsets

of −vm, 0, and vm. Classically, there are now three resonance zones each of

width proportional to
√

Vo and separation in momentum proportional to T−1
s .

A Poincaré surface of section for this Hamiltonian is shown in Fig. 4.1. Keeping

Vo constant and increasing Ts leads to the overlap of these isolated resonances

and the subsequent diffusion of the classical momentum distribution. This

condition is the well known Chirikov resonance overlap criterion for global

chaos in Hamiltonian systems [26, 27]. An example of a surface of section in

that case is shown in Fig. 4.2. The parameters for resonance overlap are easily

accessible experimentally [4].

4.2 Experimental Apparatus

To realize this system experimentally, we fixed the phase of the standing wave

as described in Chapter 3 and Fig. 3.2(b). As in the delta-kicked rotor ex-
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periments, AOM6 provided the control over the standing wave amplitude. To

form the sin2 amplitude pulse, we utilized the response characteristics of the

acousto-optic modulator. The first-order diffraction efficiency of an AOM is

proportional to the square of the sine of the applied voltage, that is, the inten-

sity of this diffracted light is I = Imax sin2(π
2
V/Vsat), where V is the applied

voltage and Vsat is the saturation voltage. The desired pulse shape can therefore

be produced by a linear ramp up and down in the applied voltage.

4.3 The Resonance Overlap Criterion

To determine the resonance overlap criterion, we consider the widths of the

three resonances in this system and their spacing from each other in phase

space. There are three resonances in Eq. 4.2 that are centered (according to

the stationary phase condition) at

p

2h̄kL
= 0 , (4.3)

and
p±

2h̄kL
= ± ωm

8ωr
,

with widths of

∆po
2h̄kL

=

√
Vo
h̄ωr

, (4.4)

and
∆p±
2h̄kL

=

√
Vo

2h̄ωr
.

If the islands are wide enough to meet the condition

∆po + ∆p±
2

>
2

3
|p± − po| , (4.5)

then the neighboring resonances overlap [26, 27], and the particle can diffuse in

phase space over a bounded region demarcated by Kolmogorov-Arnold-Moser
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surfaces. This condition can be met experimentally by increasing the well depth

with a fixed-pulse duration to broaden the resonances in Eq. 4.4. Alternatively,

Eq. 4.3 indicates that the pulse duration can be increased with a fixed well

depth to bring the resonances closer together.

The latter approach was used in our experiments for the practical con-

sideration that it is generally more straightforward to lock the laser intensity

and finely adjust the pulse duration than the converse. The critical pulse du-

ration T cr
s for the onset of resonance overlap can be estimated by combining

Eqs. 4.4 and 4.5:

T cr
s =

2
√

2

3(2 +
√

2)

(
8ωr
2π

Vo
h

)− 1
2

. (4.6)

For durations Ts longer than this critical value, a particle exposed to the sin2

pulse can diffuse chaotically over an expanded region of phase space.

To experimentally determine the threshold tpcr for overlap, we must

distinguish between the momentum growth associated with spreading within

the primary resonance and diffusion that can occur after resonance overlap.

This distinction is accomplished by contrasting the momentum transfer from

the sin2 pulse to the momentum transfer from a pulse of the same duration but

with a constant amplitude

V ′(x) =
Vo
2

cos(2kLx) . (4.7)

This square-pulse interaction has a single resonance equivalent to the central

resonance at ρo = 0 in the sin2 interaction,

V (x) = V ′(x)− Vo
4

[cos(2kL(x− vmt)) + cos(2kL(x + vmt))] . (4.8)

Under conditions that do not lead to resonance overlap, a sample of atoms that

starts with an initial momentum of zero will be confined to the same region of
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phase space in both of these interactions. The key to the interpretation of the

experimental results is the realization that for values of Ts below the threshold

for resonance overlap V ′(x) and V (x, t) should give the same result. Under

conditions that lead to resonance overlap, a larger region of phase space can

be explored by the atoms exposed to the potential V (x, t). For values of Ts

greater than the overlap threshold, V (x, t) will therefore result in significantly

larger momentum transfer than V ′(x).

4.4 Experimental Results

The experimental results in Fig. 4.3(b) show the rms momentum for both cases

as a function of pulse duration (rise and fall times of 25 ns are included in the

square-pulse duration). These measurements agree well with numerical classical

simulations shown in Fig. 4.3(a), as well as with the estimated resonance overlap

threshold [4].

How does the predicted quantum behavior compare with experiment and

classical simulations? As seen from the dashed curve in Fig. 4.3(c), we find close

agreement among all three for the square-pulse potential V ′(x). This result is

interesting in its own right, since the coherent oscillations that occur for short

times are seen in the experiment with a large ensemble of independent atoms

as well as in the quantum simulation, which uses a single-wavepacket approach.

For the case of V (x, t) there is also good agreement among the three cases over

the entire range of pulse times. However, the quantum widths are slightly lower

than the corresponding classical values near the large peak in the rms width.

Although this difference is too small to be of quantitative significance, it is

nevertheless the precursor for differences in quantum and classical behavior that
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can occur when the classical dynamics are globally chaotic. These differences,

which form the basis for the study of quantum chaos, are the focus of the next

experiments we discuss.
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Figure 4.1: Poincaré surface of section for the sin2 potential. In this case there
are three isolated resonances at p/2h̄kL = 0 and ± 25.
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Figure 4.2: Poincaré surface of section for the sin2 interaction with a value of Vo
leading to resonance overlap. In contrast with the previous figure, the system
here has a bounded region of global chaos.
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Figure 4.3: rms momentum computed from (a) classical simulations for sin2

(solid line) and square (dashed line) pulses; (b) experimentally measured mo-
mentum distributions for sin2 (solid) and square (open) pulses; (c) correspond-
ing quantum simulations. Here Vo/h = 5.1 MHz. The threshold estimated from
resonance overlap is indicated by the arrow. A clear deviation occurs at a pulse
duration close to the predicted value.



Chapter 5

The Kicked Rotor

5.1 Introduction

The classical delta-kicked rotor, or the equivalent standard mapping, is a text-

book paradigm for Hamiltonian chaos [26, 19]. The Hamiltonian for the prob-

lem is given by

H =
ρ2

2
+ K cos φ

∞∑
n=−∞

δ(τ − n) . (5.1)

The evolution consists of resonant-kicks that are equally spaced in time, with

free motion in between. The quantity K is called the stochasticity parameter,

and is the standard control parameter for this system. As K is increased, the

size of each resonant-kick grows. Beyond a threshold value of K ≈ 4 it has been

shown that phase space is globally chaotic [28]. The quantum version of this

problem has played an equally important role for the field of quantum chaos,

and a wide range of effects has been predicted [28]. In our realization, we have

the cosine potential of the standing wave multiplied by a train of pulses with

finite amplitude and pulse width. This system was analyzed previously in the

context of molecular rotation excitation [29].

To achieve a system of the form in Eq. 5.1, we fixed the phase of our

standing wave but turned its amplitude on and off in a series of N short pulses

with period T . The optical arrangement was described in Chapter 3 (Fig. 3.2b).

34
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The result was an interaction that can be described by the Hamiltonian of

Eq. 2.7 with Famp =
∑N
n=1 F (t− nT ) and Fph = 0,

H =
p2

2M
+ Vo cos(2kLx)

N∑
n=1

F (t− nT ) . (5.2)

Here the function F (t) is a narrow pulse in time centered at t = 0 that modu-

lates the intensity of the standing wave. The sum in this equation represents

the periodic pulsing of the standing wave amplitude by multiplying Vo with a

value in the range 0 ≤ F (t) ≤ 1.

The fast acousto-optic modulator (AOM6 in Fig. 3.2) provided the am-

plitude modulation of the standing wave to form the pulse train
∑

F (t). This

modulator had a 10%-90% rise and fall time of 25 ns. To take advantage of

the fast response of this modulator, its input signal was generated by a pulse

generator with faster rise and fall times (4 ns). The computer that controlled

the experiment downloaded the desired number of pulses and pulse period to a

programmable arbitrary waveform generator, which in turn triggered the fast

pulse generator.

A sample trace of the pulse profiles recorded on photodiode PD1 is

shown in Fig. 5.1. The programmed profile had a constant amplitude, but

because of signal limitations in the pulse generator and in AOM6, each pulse

typically has a rounded but non-Gaussian profile. The consequences of this

rounding are discussed below.

With the scaling introduced in Chapter 2 and the unit of time taken to

be T , the period of our pulse train, the Hamiltonian for this system becomes

H =
ρ2

2
+ K cos φ

N∑
n=1

f(τ − n) . (5.3)
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The train of δ-functions in Eq. 5.1 has been replaced here by a series of normal-

ized pulses f(τ ) = F (τT )/
∫∞
−∞ F (τT )dτ . Note that the scaled variable τ = t/T

measures time in units of the pulse period. As described earlier, φ = 2kLx is

a measure of an atom’s displacement along the standing wave axis and ρ is its

momentum in units of 2h̄kL/k̄.

An ideal realization of the delta-kicked rotor would have pulses of in-

finite amplitude and infinitesimal duration. Obviously this limit is beyond a

practical realization, but (as discussed below) if the atoms do not move signif-

icantly during a pulse, the finite-pulse system is an excellent approximation of

the delta-kicked rotor. Aside from the temporal profile of the pulses, all the

experimental parameters that determine the classical evolution of this system

are combined into one quantity, the stochasticity parameter K. As we will see,

the quantum evolution depends additionally on the parameter k̄. These two

dimensionless quantities thus characterize the dynamics of Eq. 5.3. In terms of

the physical parameters of Eq. 5.2, they are

K ≡ 8VoαT tpωr/h̄ (5.4)

k̄ = 8ωrT . (5.5)

Here tp is the fwhm duration of each pulse, and α≡
∫∞
−∞ F (t)dt/tp is a shape

factor that characterizes the integrated power for a particular pulse profile: it is

the ratio of the energy in a single pulse to the energy of a square pulse with the

same amplitude and duration. For a train of square pulses, α=1; for Gaussian

pulses, α = (π/4 ln 2)1/2 = 1.06. For the roughly square pulses realized in our

experiments, α was within a few percent of unity.
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5.2 Classical Predictions and Consequences of the Finite

Pulse Duration

Atoms with low velocities do not move significantly during the pulse, so their

classical motion can be described by a map. By integrating Hamilton’s equa-

tions of motion over one period, we obtain the change in an atom’s displacement

and momentum:

∆φ =
∫ n+ 1

2

n− 1
2

dt ρ = ρ (5.6)

∆ρ =
∫ n+ 1

2

n− 1
2

dt K sinφ
∑

f(τ − n) = K sinφ .

The discretization of these relations is the classical map,

φn+1 = φn + ρn+1 (5.7)

ρn+1 = ρn + K sinφn ,

that is known as the Taylor-Chirikov or “standard” map [28, 30]. For small

values of K, the phase space of this extensively studied system shows bounded

motion with regions of local chaos. Global stochasticity occurs for values of

K greater than ∼ 1, and widespread chaos appears at K >∼ 4, leading to

unbounded motion in phase space [31]. Correlations between kicks in the spatial

variable φ can be ignored for large values of K, so this map can be iterated

to estimate the diffusion constant. After N kicks, the expected growth in the

square of the momentum is

〈(ρN−ρ0)
2〉 = K2

N−1∑
n=0

〈sin φ2
n〉 + K2

N−1∑
n6=n′
〈sin φn sinφn′〉 (5.8)

=
K2

2
N . (5.9)
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The diffusion in momentum is thus

〈ρ2〉 = DN, with D ≡ K2

2
. (5.10)

Note that this description, which follows from the discretization into the

standard map, requires the duration of the pulses to be short. To understand

the effects of a finite pulse-width, consider the case where the pulse profile f(τ )

is Gaussian with an rms width τrms. In the limit of a large number of kicks N ,

the potential in Eq. 5.3 can be expanded into a Fourier series:

H =
ρ2

2
+ K cos φ

∞∑
m=−∞

eim2πτe−(m2πτrms)2/2 (5.11)

=
ρ2

2
+

∞∑
m=−∞

Km cos(φ−m2πτ )

with

Km ≡ K exp
[
−(m2πτrms)

2/2
]

. (5.12)

The nonlinear resonances are located (according to the stationary phase condi-

tion) at ρ = dφ/dτ = m2π. This expansion is similar to the resonance structure

of the delta-kicked rotor, in which the Km are constant for all values of m. In

Eq. 5.11, however, the widths of successive resonances fall off here because of

the exponential term in the effective stochasticity parameter Km. This fall-off

is governed by the pulse profile; the result of Eq. 5.11 was derived particu-

larly for a Gaussian pulse shape, but in general Km is given by the Fourier

coefficients of the periodic pulse train.

The nonzero pulse widths thus lead to a finite number of significant

resonances in the classical dynamics, which in turn limits the diffusion that

results from overlapping resonances to a band in momentum. However, by
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decreasing the pulse duration and increasing the well depth, the width of this

band can be made arbitrarily large, approaching the δ-function pulse result.

This can be seen in the result derived above. In the limiting case of τrms → 0

with K fixed (infinitesimal pulse width and large well depth), we recover the

resonance structure expected for the δ-function limit in Eq. 5.1: Km = K. In

practice however, it is not necessary to have an infinitesimal pulse width. To

model the delta-kicked rotor, the pulse width only needs to be small enough that

the band of diffusion is significantly wider than the range of atomic momenta in

the experiment and that the effective diffusion constant Km is approximately

uniform over this range.

An example of the bounded region of chaos that arises from the finite

pulse duration is illustrated by the classical phase portrait shown in Fig. 5.2,

for typical experimental parameters. The central region of momentum in this

phase portrait is in very close correspondence with the delta-kicked rotor model

with K = 11.6. This stochasticity parameter is well beyond the threshold for

global chaos.

The boundary in momentum can also be understood using the concept

of an impulse. If the atomic motion is negligible while the pulse is on, the

momentum transfer occurs as an impulse, changing the momentum of the atom

without significantly affecting its position. Atoms with a sufficiently large

velocity, however, can move over several periods of the potential while the pulse

is on. The impulse for these fast atoms is thus averaged to zero, and acceleration

to larger velocities is inhibited. The result is a momentum boundary that can

be pushed out by making each pulse shorter.

Classically, then, the atoms are expected to diffuse in momentum until
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they reach the momentum boundary that results from the finite pulse width.

Equation 5.10 indicates that the energy of the system 〈1
2
(p/2h̄kL)

2〉 thus grows

linearly in time. In terms of the number of pulses N , this energy is〈
1

2

(
p

2h̄kL

)2
〉

=

〈
1

2

(
ρ

k̄

)2
〉

=
1

2k̄2

K2

2
N . (5.13)

The delta-kicked rotor is an especially important system in the study of quan-

tum chaos because the classical analog has been so well studied and because

its time-evolution operator can be found analytically [28].

5.3 Quantum Predictions

This system can be expected to show quantum behaviors that are very differ-

ent from those predicted by classical analyses. Indeed, the kicked rotor bears

a striking resemblance to the physical model of a particle passing through a

series of diffraction gratings, which is intrinsically quantum mechanical. In the

diffraction problem, a particle undergoes intervals of free flight that are inter-

rupted by short periods of interaction with a grating. During these interactions

its transverse motion is modified by a periodic potential; this modification can

lead to interference between the set of possible paths through the gratings.

The properties of the resulting interferometer depend on the periodic structure

of the gratings and time of flight between successive gratings. Likewise, in

the kicked-rotor a particle is repeatedly subjected to brief periodic potentials,

between which it undergoes free evolution. The structure of the sinusoidal po-

tential is given by its amplitude K, and the kicking period T is characterized

by the dimensionless parameter k̄ ≡ 8ωrT . As in the case of an interferometer

constructed from a series of diffraction gratings, the kicked rotor has important
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features that require a quantum description. We discuss here two of these fea-

tures, dynamical localization and quantum resonances. Dynamical localization

is the quantum suppression of chaotic diffusion, which can be modeled in var-

ious systems but is most cleanly studied in the delta-kicked rotor. Quantum

resonances are a quantum feature particular to the delta-kicked rotor.

A quantum analysis of this system starts with the Schrödinger equation,

Eq. 2.12. For the pulsed modulation of Eq. 5.3, this becomes

ik̄
∂

∂τ
Ψ(φ, τ ) =

[
−k̄2

2

∂2

∂φ2
+ K cos φ

∑
n

f(τ − n)

]
Ψ(φ, τ ) . (5.14)

The periodic time dependence of the potential implies that the orthogonal

solutions to this equation are time-dependent Floquet states. This system

has been studied extensively in the ideal case of f(τ ) = δ(τ ) with an infinite

train of kicks (n = 0,±1,±2, ...) [32]. An analysis of this system by Chirikov,

Izrailev, and Shepelyansky [33] shows that this system diffuses classically only

for short times during which the discrete nature of the Floquet states is not

resolved. As shown in Ref. [28], Eq. 5.14 can be transformed into the form

of the tight-binding model of condensed-matter physics. An analysis of that

system indicates that the Floquet states of Eq. 5.14 are discrete and exponen-

tially localized in momentum. Since these states form a complete basis for the

system, the initial condition of an atom in the experiments can be expanded in

a basis of Floquet states. Subsequent diffusion is limited to values of momen-

tum covered by those Floquet states that overlap with the initial conditions of

the experiment. If the initial conditions are significantly narrow in momentum,

the energy of the system should grow linearly with the number of kicks N , in

agreement with the classical prediction in Eq. 5.13, until a “quantum break
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time” N∗. After this time, the momentum distribution approaches that of the

Floquet states that constituted the initial conditions, and the linear growth of

energy is curtailed. This phenomenon is known as dynamical localization.

The Floquet states are typically localized with an exponential distribu-

tion in momentum. They are characterized by a “localization length” ξ with

|Ψ(ρ/k̄)|2 ∼ exp(−|ρ/k̄|/ξ). The momentum distribution then has a 1/e half-

width given by p∗/2h̄kL = ρ∗/k̄ ≡ ξ̄, where ξ̄ is the average localization length

of the Floquet states [28, 34]. The number of Floquet states that overlap the

initial condition (and therefore the number of Floquet states in the final state)

is roughly ξ̄, so the average energy spacing between states is ∆ω ∼ 1/ξ̄. The

quantum break time is the point after which the evolution reflects the discrete-

ness of the energy spectrum, hence N∗∆ω ∼ 1, or N∗ = ξ̄. By combining

these estimates with Eq. 5.13, we see that ξ̄ is proportional to K2/2k̄2. The

constant of proportionality has been determined numerically to be 1
2

[34], and

the localization length is thus

p∗

2h̄kL
= ξ̄ =

K2

4k̄2 . (5.15)

In our experiments it is the rms momentum that is recorded, since its definition

applies as well to the pre-localized Gaussian distributions as to the exponen-

tially localized ones. For an exponential distribution, this quantity is larger

than the localization length by a factor of
√

2:

p∗
rms

2h̄kL
=
√

2
p∗

2h̄kL
=

K2

2
√

2k̄2
(5.16)

Since ξ̄ is also a measure of the number of kicks before diffusion is limited by

dynamical localization, we have for the quantum break time

N∗ = ξ̄ =
K2

4k̄2 . (5.17)
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An inherent assumption in the derivation of Eqs. 5.15-5.16 is the lack

of structure in the phase space of the system. Small vestigial islands of sta-

bility, however, do persist even for values of K greater than 4. This structure

introduces in the dynamics a dependence on the the location of the initial con-

ditions in phase space. Nonetheless, this analysis provides a useful estimate of

the localization length and the quantum break time.

5.4 Experimental Parameters

It is important to consider these last two relations in choosing experimental

parameters. In order for a localized distribution to be observable, p∗ must

be significantly smaller than the region enclosed by the classical boundary

to diffusion. Thus there is a constraint between the duration of the kicks

(parameterized by its fwhm value tp) and the localization length. As de-

scribed above, the simplest estimate for this condition requires that the dis-

tance traveled by a particle during a pulse be much less than a period of the

standing wave: p∗
rms

tp/M << λL/2. A better estimate comes from Eq. 5.12,

which indicates the effective stochasticity parameter for a particle with mo-

mentum p/2h̄kL = m2π/k̄ in a train of Gaussian pulses with fwhm duration

tp =
√

8 ln 2 τrmsT . From this equation we see that the effective stochastic-

ity parameter drops below 4, resulting in islands of stability for atoms with

momenta greater than pmax/2h̄kL = (ln 2 ln K
4
)

1
2 /2ωrtp. The resonance overlap

criterion can provide a more accurate expression, but this estimate is sufficient

for determining the range of operating parameters. The experimental condi-

tions should be chosen so that the localized momentum width p∗
rms

is much

smaller than this limit. On the other hand, the localized momentum distribu-



44

tion needs to be several times wider than the initial distribution so that it can

be distinguished from the initial conditions. The atoms in our MOT started

with an rms momentum of σpo= ∼4.6 h̄kL, imposing a lower limit on the local-

ization length of p∗
rms

/2 h̄kL > σpo/2 h̄kL = 2.3. Combining these two bounds

gives,

σpo
2 h̄kL

<
p∗

rms

2 h̄kL
<

√
ln 2 ln K

4

2ωrtp
. (5.18)

Another constraint on the localization length comes from its relation to

N∗, the number of kicks required for the localization to manifest. This time

must be short enough to be observable in the experiment. Indeed, the experi-

ment should continue for a time significantly greater than N∗ so that it is clear

that the early period of diffusive growth has ended. An upper limit on the du-

ration of the experiment, and therefore on the localization length, comes from

the increased probability of spontaneous emission events with longer exposures

to the standing wave. Spontaneous emission can randomize the phase of an

atomic wavefunction, thereby destroying the coherence necessary for the quan-

tum phenomena under observation. The probability of a spontaneous event

during N∗ kicks of duration tp is 1 − e−γspontN
∗tp. To preserve the coherent

evolution of the atomic sample, we require this probability to be small:

γspontN
∗tp << 1 . (5.19)

Here γspont =(VoδL/h̄)(Γ/2)[δ2
L + (Γ/2)2]−1 is the probability per unit time for

an atom to undergo a spontaneous event, and Γ/2π (=10 MHz) is the linewidth

of the sodium D2 transition.

In addition to these constraints relating to the localization length, there

are several other restrictions on the experimental parameters. To ensure that
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the atoms are all subject to the same well depth, the light field cannot vary

greatly over the sample of atoms, and thus a lower limit to the beam waist

is given by the spatial width of the atomic sample. In our experiments the

interaction times were short enough and the initial temperatures cold enough

that the sample of atoms did not spread significantly from its initial MOT

width of σxo ∼ 0.15 mm (rms), so it was sufficient for the beam waists to be

large in comparison to this initial value,

wo >> σxo . (5.20)

In order to observe dynamical localization, the classical phase space

must be characterized by extended regions of chaos evident in the classical

phase portraits for values of the stochasticity parameter greater than 4. The

experiment needs to be a realization of the kicked rotor in this regime,

K > 4 . (5.21)

According to Eq. 5.4, this constraint introduces a relationship among the well-

depth Vo, the pulse period T , and the pulse duration tp.

The most important constraint on the experimental realization of this

system is the maximum power available in the beams that make up the standing

wave. In fact, the greater this available power, the less restrictive most of the

previous constraints become. For example, with unlimited laser power, Eqs.

5.18 and 5.19 can be satisfied by making tp sufficiently small, and the well depth

can be increased as necessary to satisfy this last constraint (K > 4). Large

laser powers also help satisfy Eq. 5.20, since the beams can then be made wide

while maintaining the desired irradiance at the center of the beam profile. In
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practice, however, the laser power in each beam (P ) is of course limited and the

other experimental control parameters of beam waist (wo), detuning (δL), pulse

period (T ), and pulse duration (tp) must all be chosen to satisfy the criteria

enumerated here.

The fact that Eq. 5.19 can be satisfied is an especially valuable aspect

of this experiment. Spontaneous emission is the only significant avenue of en-

ergy dissipation from the dilute sample of atoms. By making this dissipation

negligible, we effectively realize a conservative Hamiltonian system. It is inter-

esting to note the features of the system that make this realization possible.

To keep the probability of spontaneous emission small, we take advantage of

the different dependencies of the well depth Vo and the spontaneous emission

rate γspont on the detuning. The well depth is a relatively soft function of the

detuning; according to Eq. 2.6 it is proportional to the intensity of the standing

wave and inversely proportional to the detuning,

Vo =
2

3

h̄(Γ/2)2

δL

I

Isat
(5.22)

∝ P

w2
o δL

.

Although the spontaneous emission rate is also proportional to the intensity, it

varies as the inverse square of the detuning,

γspont =
VoδL
h̄

Γ/2

δ2
L + (Γ/2)2

(5.23)

' Vo
δL

Γ/2

h̄

∝ P

w2
o δ2

L

.

Within the limits of available laser power, a large detuning can therefore provide
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negligible spontaneous emission during the experiment without too much loss

in the well depth.

Having a large detuning also satisfies one of the approximations in the

derivation of Eq. 5.2, that is, that the detuning δL needs to be large in compar-

ison with the linewidth and recoil frequency of the sodium D2 transition. The

detuning also needs to be larger than the spacing between the F =1 and F =2

sublevels of the ground state (1.7 GHz) to minimize the effects of incomplete

optical pumping. These conditions were well satisfied by the more stringent

detunings needed to make the probability of spontaneous emission small.

A maximum limit on the detuning comes from the need to avoid exciting

other transitions that would affect the calculation of the well depth Vo. The

nearest competing transition in our system was the sodium D1 line, approxi-

mately 500 GHz to the red of the D2 transition.

To sort through the various requirements and limitations on the multi-

dimensional space of the experimental control parameters, we created spread-

sheets that listed ranges of the parameters and displayed the relevant quantities

that resulted from them. We then identified combinations of the various con-

trol parameters that satisfied the above criteria and were accessible to our

experimental set-up.

Typically, each counter-propagating beam had a power of P = 0.2−

0.4 W; the waists were in the range of wo = 1.2−2.2 mm, and the detunings

from resonance δL/2π were between 5 and 10 GHz. These operating conditions

led to well depths in the range of Vo/h = 5−15 MHz, and to spontaneous

emission probabilities of about 1% per kick. The pulse periods and durations
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were in the ranges 1−5 µs and 0.05−0.15 µs, respectively.

5.5 Experimental Results

We subjected the cooled and trapped atoms to the periodically pulsed standing

wave of Eq. 5.2 and recorded the resulting momentum distributions as described

in Chapter 3. To study the temporal evolution of the atomic sample under the

influence of the periodic kicks, these experiments were repeated with increasing

numbers of kicks (N) with the well depth, pulse period, and pulse duration

fixed. These successive measurements provided the momentum distributions at

different times in the atomic sample’s evolution. Such a series of measurements

is shown in Fig. 5.3. Here the pulse had a period of T = 1.58 µs, and a fwhm

duration of tp = 100 ns. For these conditions, k̄ has a value of 2.0. The

largest uncertainty in the experimental conditions is in the well depth, Vo, which

depends on the measurement of the absolute power of the laser beams that make

up the standing wave and their spatial profile over the sample of atoms. To

within 10%, the well-depth for these data had spatial rms value of Vo/h =

9.45 MHz. The pulse profile was nearly square, leading to a stochasticity

parameter of K = 11.6, the same value as for the phase portrait in Fig. 5.2.

The distributions clearly evolve from an initial Gaussian at N = 0 to

an exponentially localized distribution after approximately N = 8 kicks. We

have measured distributions out until N = 50 and find no further significant

change. The small peak on the right side of this graph is due to nonuniformities

in the detection efficiency. As discussed in Chapter 3, the relative numbers of

atoms with different momenta is measured by their fluorescence intensity on a

CCD camera. Factors such as spatial variations in the illuminating light and
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unevenness in the chamber windows between the atomic sample and the CCD

camera lead to minor limitations like this on the resolution of the momentum

measurements.

The growth of the mean kinetic energy of the atoms as a function of

the number of kicks was calculated from the data and is displayed in Fig. 5.4.

It shows an initial diffusive growth until the quantum break time N∗ = 8.4

kicks, after which dynamical localization is observed [3]. The solid line in this

figure represents the classical diffusion predicted in Eq. 5.13. The data follow

this prediction until the break time. The dashed line in the same figure is the

prediction for the energy of the localized distribution from Eq. 5.16. Though

not shown here, classical and quantum calculations both agree with the data

over the diffusive regime. After the quantum break time, the classical growth

slows slightly due to the fall-off in K predicted by Eq. 5.12 for non-stationary

atoms. The observed distribution would lead to a reduction of only 15% in the

stochasticity parameter. Thus, the classically predicted energy would continue

to increase diffusively. The measured distributions, however, stop growing as

predicted by the quantum analysis.

The deviations in the data of Fig. 5.4 from the predicted values underline

some of the limitations in the derivations of the diffusion constant (Eq. 5.10)

and localization length (Eq. 5.15) of the delta-kicked rotor. The classical and

quantum derivations that led to these analytic results assumed that the phase

space of the system had no underlying structure, that is, that there were no

correlations in the motion between successive kicks. This assumption is strictly

true only in the limit of infinite K [35]. For finite values of the stochasticity

parameter, these expressions cannot be considered exact values since the true
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dynamics would have some dependence on the location of the initial conditions

in phase space. They do, however, provide useful estimates for the diffusion rate

and localization length of the delta-kicked rotor. Indeed, an important feature

of the delta-kicked rotor is that these estimates can be adapted to other systems

whose dynamics are characterized locally by overlapping resonances.

This experimental realization of the delta-kicked rotor is significant for

its striking demonstration of a departure from the classical prediction of con-

tinued diffusion. In addition to this information about the system’s energy,

the experiment provides a picture of the entire momentum distribution. The

observed exponentially localized distributions are the hallmark of dynamical

localization. These experimental results are in good absolute agreement with

theoretical predictions, and this agreement is obtained without the fitting of

any adjustable parameters. These results are the first experimental observa-

tion of the onset of dynamical localization in time, and of the quantum break

time [3].

5.6 Quantum Resonances

Between kicks, the atoms undergo free evolution for a fixed duration. The

quantum phase accumulated during the free evolution is e−ip
2T/2Mh̄. An initial

plane wave at p = 0 couples to a ladder of states separated by 2h̄kL. For

particular pulse periods, the quantum phase for each state in the ladder is a

multiple of 2π, a condition known as a “quantum resonance” [28]. More gen-

erally, a quantum resonance is predicted when the accumulated phase between

kicks is a rational multiple of 2π. We have scanned T from 3.3 µs to 50 µs and

find quantum resonances when the quantum phase is an integer multiple of π
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. For even multiples, the free evolution factor between kicks is unity; for odd

multiples, there is a flipping of sign between each kick. Quantum resonances

have been studied theoretically, and it was shown that instead of localization,

one expects the energy to grow quadratically with time [36]. This picture,

however, is only true for an initial plane wave. A general analysis of the quan-

tum resonances shows that for an initial Gaussian wavepacket, or for narrow

distributions not centered at p = 0, the final momentum distribution is ac-

tually smaller than the exponentially localized one, and settles in after a few

kicks [37]. Our experimental results are shown in Fig. 5.5. Ten quantum res-

onances are found for T ranging between 5 µs (corresponding to a phase shift

of π) and 50 µs (10π) in steps of 5 µs. The saturated momentum distribution

as a function of T are shown in Fig. 5.5(a). The narrower, non-exponential

profiles are the resonances between which the exponentially localized profiles

are recovered. The time evolution of the distribution at a particular resonance

is shown in Fig. 5.5(b), from which it is clear that the distribution saturates

after very few kicks.
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Figure 5.1: Digitized temporal profile of the pulse train as measured on a fast
photodiode. The vertical axis represents the power in one beams of the standing
wave. The pulse profile f(t) and the well depth Vo are derived from this scan.
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Figure 5.2: Poincaré surface of section for the kicked rotor using a train of
Gaussian pulses of width tp/T = 1/15.8 (fwhm) to simulate the experimental
sequence. The stochasticity parameter in this calculation is K = 11.6. The
central region of the portrait shows the chaotic motion expected for this value
of the stochasticity parameter. Bounding regions due to the finite pulse width
are also evident.
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Figure 5.3: Experimental time evolution of the momentum distribution from
the initial Gaussian until the exponentially localized distribution. The break
time is approximately 8 kicks. Fringes in the freezing molasses lead to small
asymmetries in some of the measured momentum distributions as seen here
and in the inset of Fig. 5.4. The vertical scale is measured in arbitrary units
and is linear.
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Figure 5.4: Energy 〈(p/2h̄kL)
2〉/2 as a function of the number of kicks. The

solid dots are the experimental results. The solid line shows the calculated
linear growth from the classical dynamics. The dashed line is the saturation
value computed from the theoretical localization length ξ. The inset shows an
experimentally measured exponential distribution on a logarithmic scale that
is consistent with the theoretical prediction.
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(a)

(b)

Figure 5.5: Experimental observation of quantum resonances: (a) Occurrence
as a function of the period of the pulses. The surface plot is constructed from
150 momentum distributions measured, for each T , after 25 kicks. This value of
N ensures that the momentum distributions are saturated for the entire range
of T shown. On resonance, the profiles are non-exponential and narrower than
the localized distributions that appear off-resonance. Note that the vertical
scale is linear. (b) Time evolution of a particular resonance (T = 10 µs).



Chapter 6

The Modulated Standing Wave

6.1 Introduction

We now consider subjecting atoms to a standing wave of near-resonant light,

where the displacement of the standing wave nodes is modulated at a frequency

ωm and with an amplitude ∆L. Once again, a large detuning is used to elimi-

nate the upper level dynamics of the two-level-atom model. With this form of

the modulation [38] the effective Hamiltonian (Eq. 2.7) becomes

H =
p2

2M
+ Vo cos[2kL(x−∆L sinωmt)] . (6.1)

Although this Hamiltonian may look somewhat different than the delta-kicked

rotor, it also displays the phenomenon of dynamical localization, as discussed

below.

6.2 Experimental Apparatus

To modulate the phase of the potential, we vary the phase of one of the two laser

beams that make the standing wave. The electro-optic modulator EOM4 in

Fig. 3.2(b) provided this control. For a phase shift of π at 589 nm, this modula-

tor required an applied voltage of Vπ = 271 V. By applying an oscillating drive

VEO sinωmt we modulated the phase of the beam with an amplitude πVEO/Vπ

57
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and gave the phase of the standing wave a time dependence λ sin ωmt, with

λ ≡ 2kL∆L = 1
2
πVEO/Vπ . To provide the high voltage (Vpp = 2VEO = 2400 V)

required for the phase shifts in this experiment, the signal was stepped-up in a

helical resonator [39]. This resonator was designed so that when connected to

the capacitive EOM it formed a tuned circuit that had an input impedance of

50 Ω at a resonance frequency of 1.3 MHz. This was the desired modulation

frequency ωm/2π. The circuit had a Q of 108 and the output voltage across

the EOM was stepped-up by a factor of 77.

6.3 Classical Analysis

The Hamiltonian of Eq. 6.1 can be expanded as a sum of nonlinear resonances

using a Fourier expansion. By expanding the temporal dependence of the

potential, we obtain the resonance structure of the system,

H =
p2

2M
+ Vo[J0(λ) cos 2kLx

+ J1(λ) cos 2kL(x− vmt) + J−1(λ) cos 2kL(x + vmt)

+ J2(λ) cos 2kL(x− 2vmt) + J−2(λ) cos 2kL(x + 2vmt) + · · ·]

= Vo
∞∑

n=−∞
Jn(λ) cos 2kL(x− nvmt) , (6.2)

where Jn are ordinary Bessel functions, vm ≡ ωm/2kL is the velocity difference

between neighboring resonances, and λ = 2kL∆L is the modulation index.

As in the case of the delta-kicked rotor, the resonances are located at

regular intervals in momentum. The amplitudes of these resonances, however,

depend on a controllable experimental parameter, the modulation index λ.

The dependence on λ allows this system to be tuned between regimes where
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the classical dynamics is integrable (for example, λ = 0) to those in which it is

chaotic.

The classical resonances are evenly separated in momentum with central

values of

pn = nMvm , (6.3)

and widths of

∆pn = 4
√

MVo|Jn(λ)| . (6.4)

There are substantial resonances only for n ≤ λ, so for momenta greater than

Mλvm the phase space is characterized by essentially free evolution. These re-

gions of free evolution confine the motion of atoms with small initial momentum

to the portion of phase space spanned by the resonances. For certain ranges

of λ, these resonances overlap, leading to a band of chaos with boundaries in

momentum that are proportional to λ. A sample of atoms starting with initial

conditions within this band will remain within it, confined to momenta in the

range ±Mλvm. A simple estimate of the atomic momentum after a long time

is a uniform distribution within these bounds [38]; such a distribution would

have an rms momentum of

prms

2h̄kL
=

Mλvm√
3 2h̄kL

=
λ√
3

ωm
8ωr

. (6.5)

The classical dynamics also can be understood in terms of resonant kicks

that occur twice during each modulation period. Consider an atom subjected

to the modulated standing wave of Eq. 6.1. When the standing wave is moving

with respect to the atom, the time-averaged force is zero, since the sign of the

force changes as the atom goes over “hill and dale” of the periodic potential.
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Momentum is transferred to the atom primarily under conditions when the

standing wave is stationary in the rest frame of the atom. These resonant kicks

occur twice in each modulation period, but they are not equally spaced in time;

they occur when the velocity of the standing wave λvm cos(ωmt) matches that

of the atom. The magnitude and direction of the resonant kick depends on

where the atom is located within the standing wave at that time.

As shown in the simulation in Fig. 6.1, the most significant changes

in the momentum distributions occur during these kicks. The boundary in

momentum can be understood from this picture, since for each value of λ there

is a maximum velocity of the standing wave. Once an atom is moving faster

than this maximum velocity, the resonant kicks cannot occur, and the atom is

essentially free.

The calculated variation of the rms momentum width as a function

of λ is shown in Fig. 6.2 for ωm/2π = 1.3 MHz and Vo/h = 3.1 MHz. The

estimate of Eq. 6.5 is shown by the solid line. For values of λ < 3, this estimate

agrees roughly with an integration of the classical Hamilton’s equations [2]

(shown in the figure) calculated for an interaction time of 20 µs. For larger

values of λ, the simulation is lower than the estimate, because in only 20 µs

the initial distribution (with prms/2h̄kL ∼ 2.3) does not have time to diffuse

up to the limit represented by the solid line. Except for values of λ close to

7.0 (explained below), the longer-duration classical simulation presented in the

figure agrees with the estimate over the entire range of λ shown. The 20 µs

classical simulation also shows oscillations in the diffusion rate as a function

of λ: peaks in the rms momentum correspond to values of λ leading to large

diffusion rates, while dips indicate slow diffusion.
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To understand this variation in diffusion rates, we examine the reso-

nances in Eq. 6.2. The dependence of the diffusion rate on λ is due to os-

cillations in Jn(λ), the amplitudes of the resonances. The variation of these

amplitudes is shown in Fig. 6.3. The various resonances grow and shrink as the

modulation index λ is increased. For certain values of λ, a resonance can be

significantly diminished, or even removed in the case where λ is a zero of one

of the Bessel functions. As shown in the computer-generated phase portraits of

Fig. 6.4 (top panel), this variation in the amplitudes of the resonances strongly

influences the dynamics of the system. In general, the phase spaces are mixed,

with islands of stability surrounded by regions of chaos. Atoms from the initial

distribution that are contained within an island remain trapped, while those

in the chaotic domain can diffuse out to the boundaries. In the case of a di-

minished resonance, the islands of stability from neighboring resonances might

not be destroyed by resonance overlap. This is the case with λ = 3.8, for which

J1(λ) has its first zero. The final momentum spread in this case is governed

largely by the surviving island due to the resonance at p0 = 0, and the system

is nearly integrable. The stability of this system causes the reduced diffusion

shown by the dip in the classical simulation of Fig. 6.2 at λ = 3.8. Indeed, all

of the dips in this simulation occur at values of λ that are near zeroes of Bessel

functions; the dynamics of the corresponding systems are stabilized by the di-

minished resonances. This stabilization even affects diffusion in the long-time

classical simulation: for values of λ close to 7.0 (the second zero of J1(λ)), the

initial conditions are trapped in a large island of stability at p = 0. For these

values of λ, the diffusion is limited by the width of the island to a value much

smaller than that given by the resonant-kick boundary.



62

Note that the oscillations of the Bessel functions are reflected in the ex-

change of the location of hyperbolic and elliptic fixed points. At λ = 0, there is

only one resonance in the expansion of Eq. 6.2 centered at p0 = 0 with an am-

plitude Vo J0(0) = +Vo. The potential minima for this resonance are located in

space at even multiples of π/2kL, so the island of stability is centered at x = 0

in the phase portrait. The phase portraits for λ = 3 and λ = 3.8 also have is-

lands of stability centered in momentum at p0 = 0, but the amplitudes for these

resonances are negative: Vo J0(3) = −0.40Vo, and Vo J0(3.8) = −0.26Vo. The

reversal of sign exchanges the location of the potential minima and maxima,

so the islands in these portraits are centered in position at x = π/2kL.

Notice also that the overall amplitude of the oscillations decreases as λ is

increased due to the reduction in the size of each resonant-kick. This effect can

be understood from the impulse approximation, since the maximum classical

force is fixed but the time that the standing wave potential is stationary in the

rest frame of the atom is inversely proportional to λ. The classical diffusion

rate is therefore reduced by increasing λ, although the classical saturation value

of prms increases with λ.

6.4 Experimental Results: Quantum Mechanical Effects

Also shown in Fig. 6.2 are experimental data points (diamonds) for interaction

times of 10 and 20 µs. The 20 µs data match the classical simulations well for

small values of λ and for values of λ that are close to zeroes of Bessel functions.

For other values of λ, however, the experimentally measured distributions are

much narrower than those predicted classically. What causes this reduction in

the width of the observed momentum distributions?
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As discussed in Chapter 5, it is well known that classically diffusive be-

havior can be suppressed quantum mechanically by a mechanism analogous to

Anderson localization [28]. Referred to as dynamical localization, this mecha-

nism predicts saturation in the energy transfer (momentum, in our case) and

a resulting exponential distribution with a characteristic localization length ξ

(in momentum). In the experiments, we have to ensure that the location of the

resonant-kick boundary is much further than ξ to observe this distribution. As

this boundary scales linearly with λ, we expect to see the appearance of dynam-

ical localization only beyond some value of λ. This experimental requirement is

similar to the considerations of the classical boundary in the delta-kicked rotor

experiments. There, however, the boundary was due to an effective reduction

in K by the motion of an atom over several wells during a single pulse. Here

the classical boundary arises from the maximum velocity that can be imparted

to an atom by resonant kicks.

In Fig. 6.2 the empty and solid diamonds are experimental data for two

different interaction times showing that these results are close to saturation for

the range of λ shown. Note that for small values of λ there is good agreement

with the classical prediction. At λ = 0 the system is integrable and momentum

is trivially localized. As λ is increased the phase space becomes chaotic, but

growth is limited by the resonant-kick boundary. Our measured momentum

distributions (in Fig. 6.4, bottom panel) are characteristically “boxlike” in this

regime (0 ≤ λ ≤ 2). This observation is consistent with the picture of a uniform

diffusion limited by the boundaries in momentum.

As λ is increased beyond a critical value, there are oscillations in the

observed rms momentum. For certain ranges of the modulation index λ, the ob-
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served values deviate substantially from the classical prediction. These ranges

correspond to conditions of large diffusion rates — the peaks in the classical

prediction. For these values of λ the classical phase space is predominately

chaotic. An example of the resulting dynamics is shown in Fig. 6.4 for λ = 3.0.

The classically predicted distribution (middle panel) is roughly uniform, but

the experimentally observed distribution is exponentially localized [1, 2]; hence

the rms value is reduced. As in the experiments of Chapter 5, this result is an

observation of dynamical localization.

As λ is increased further, the oscillations in the resonance amplitudes

lead to phase portraits with large islands of stability, as in the case λ = 3.8.

For these values of λ the classical phase space becomes nearly integrable and

the measured momentum is close to the classical prediction.

Quantum analyses under the conditions of the experiment as well as an

asymptotic (long-time limit) Floquet analysis [12] are shown along with the

classical simulations and experimental data in Fig. 6.2. The predicted distri-

butions from the Floquet analysis are displayed along with the experimentally

observed ones in the lower panel of Fig. 6.4. It is clear that there is good

quantitative agreement between experiment and the effective single particle

analysis [2, 40].

The modulated system is characterized in general by a mixed phase

space. In certain regimes, such as for λ = 3.0, the stable regions become very

small and dynamical localization can be observed. The main focus for future

work with the modulated system is, however, the study of quantum dynamics

in a mixed phase space. These experiments will require better-defined initial

conditions that are localized in position as well as in momentum, and will be
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the main emphasis of a cesium-based experiment that is now being constructed

in our laboratory.

Mixed phase space dynamics inherently complicate the analysis of dy-

namical localization and it is useful to realize a system where the chaos is more

widespread. Also, there is a characteristic time scale, the “quantum break

time”, beyond which the saturation effects of dynamical localization are pre-

dicted to occur. With a further modification of the basic experimental setup,

we can both realize globally chaotic behavior and track the time evolution of

the localization phenomena.
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Figure 6.1: Simulation of resonant kicks. This quantum simulation tracks the
evolution of a Gaussian wavepacket exposed to the Hamiltonian of Eq. 6.1. The
mean and rms widths of the resulting wavepacket’s momentum distribution are
plotted here as a function of time. Twice during each modulation period the
atomic wavepacket is subjected to a resonant kick. The most significant changes
in momentum occur during these kicks. In this simulation, the wavepacket’s
initial width in momentum was σpo/2h̄kL = 3.
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λ, for ωm/2π = 1.3 MHz and Vo/h = 3.1 MHz. Experimental data are denoted
by diamonds and have a 10% uncertainty associated with them. The empty
diamonds are for an interaction time of 10 µs and the solid diamonds are for
20 µs. The straight line denotes the resonant-kick boundary. The four curves
indicate numerical simulations. Two integrations of the classical model are
shown, one for a simulation time of 20 µs, and one for the long time limit
that shows the maximum diffusion in momentum. The observed data lie well
below these curves for some values of λ. A 20 µs integration of the Schrödinger
equation is also presented for comparison with the corresponding experimental
data. Also shown is a long-time quantum calculation in which the system’s
solution was found in terms of its Floquet states.
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Chapter 7

Future Directions

This work establishes a new experimental testing ground for quantum chaos,

in which it should be possible to study many aspects of this field. These exper-

iments introduce a method of studying 1−D quantum systems with virtually

ideal spatial periodicity and no noise. The experiments allow direct compar-

isons to theoretical predictions with no adjustable parameters, and direct con-

trol over all experimental parameters.

Some topics for future study include noise-induced delocalization [41, 42]

and localization in two and three dimensions [32]. Using recently developed

techniques of atom cooling and manipulation it should be possible to prepare

the atoms in a localized region of phase space. This state preparation technique

would enable a detailed study of quantum transport in mixed phase space.

Other interesting topics to study would be tunneling from islands of stability,

chaos-assisted tunneling, and quantum scars [43].
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