
NUMERICAL SIMULATION OF A TWO-LEVEL

ATOM IN A MODULATED STANDING WAVE

by

CYRUS BHARUCHA, B.A., B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN

August, 1994

Copyright

by

Cyrus Bharucha

c©1994

NUMERICAL SIMULATION OF A TWO-LEVEL

ATOM IN A MODULATED STANDING WAVE

APPROVED BY

SUPERVISORY COMMITTEE:

Supervisor:
Mark G. Raizen

Greg O. Sitz

To all my teachers.

Acknowledgments

I am indebted to my advisor, Professor Mark Raizen, for all of his

encouragement, guidance, and support for my training as a physicist. Dr. Paul

Williams started our analyses of this system and wrote the initial versions of

the software used for these calculations. Sincere thanks to Dr. Fred Moore for

all his advice and generous help on this and many other projects. Thanks also

go to John Robinson for being an unending source of useful discussions and

for introducing me to Chocolate Infinity ice cream. Georgios Georgakis and

Martin Fischer have my gratitude for their help in laying out this thesis.

And I am deeply grateful to my family for its love and support in all

of my endeavors.

Cyrus Bharucha

The University of Texas at Austin

August, 1994

v

ABSTRACT

NUMERICAL SIMULATION OF A TWO-LEVEL

ATOM IN A MODULATED STANDING WAVE

by

CYRUS BHARUCHA, M.A.

The University of Texas at Austin, 1994

SUPERVISOR: Mark G. Raizen

The motion of a particle in a one-dimensional moving potential well

was modeled by integrating the Schroedinger equation for the system. This

potential well is sinusoidal in space, φ, and its velocity is modulated in time,

giving it the form V (φ, t) = k cos(φ− λ sin(t)).

This potential can be generated by placing a two-level atom in a

standing wave of light whose propagating and counter-propagating components

are differentially modulated in frequency. The calculation demonstrates that

this system exhibits dynamical localization of the particle’s momentum for large

values of λ. This model was used in preliminary analyses of a system which

has now been experimentally realized in our laboratory.

vi

Table of Contents

Acknowledgments v

ABSTRACT vi

Table of Contents vii

1. Introduction 1

2. Integration of the Schroedinger Equation 3

3. Program Operation 10

3.1 Input to the Program . 10

3.2 Program Output . 11

3.3 Truncation of the Wavepacket 11

3.4 Evolving the Wavepacket . 12

4. Sample Runs 15

A. Relationship to the Experimental System 20

B. Program Source Code 23

B.1 Main Routine . 23

B.2 The qmap Subroutine . 25

B.3 Temporal Dependance of k . 33

vii

BIBLIOGRAPHY 35

Vita 36

viii

Chapter 1

Introduction

In this thesis I will describe the numerical simulation of a quantum

mechanical system which exhibits chaotic behavior in the classical limit. Such

systems have been the subject of theoretical studies for the striking differences

between their classical and quantum behaviors [1]. The system studied in this

work is described by the one-dimensional, single particle Hamiltonian,

Ĥ =
p̂2

2
− k cos(φ̂− λ sin(t)) . (1.1)

Here p̂ and φ̂ are the conjugate momentum and position of the particle, with

the commutation relation [p̂, φ̂] = −ik−. All quantities in this equation are in

dimensionless units. The evolution of the wavefunction Ψ(φ, t) for this particle

is governed by the Schroedinger equation

ik−
∂

∂t
Ψ(φ, t) =

[
−k
−2

2

∂2

∂φ2
− k cos(φ− λ sin(t))

]
Ψ(φ, t). (1.2)

In this representation the operator p̂ is given by −ik−∂/∂φ and φ̂ is the scalar, φ.

The system’s behavior is that of a particle in a sinusoidal potential

well V (φ, t) = −k cos(φ − λ sin(t)). The well has an amplitude k and moves

back and forth with a maximum excursion λ. The antinode originally at the

origin moves from φ=0 to φ=λ. It then turns around and moves to φ=−λ,

and it returns to φ=0 at t=2jπ (j = integer). The other nodes and antinodes

1

2

of the well also oscillate sinusoidally in time around their central positions.

The quantities k, λ, and k− are dimensionless parameters of the system. As

can be seen from the Hamiltonian, k and λ indicate respectively the depth

and excursion of the potential well, and k− is the rescaled Planck’s constant.

This system is of special interest because it can be realized experimentally with

an atom in a modulated standing wave [2,3]. In the experimental realization,

the standing wave consists of two counter-propagating beams of coherent light

detuned from a transition frequency of the atom. In this environment, the atom

can be modeled as a two-level system. When illuminated by this standing wave,

the dipole interaction of the atom with the electric field induces a potential

energy with an amplitude that is sinusoidal in displacement along the axis

of the standing wave. If the frequencies of the two beams are differentially

modulated, the standing wave moves back and forth along its axis, and the

atom experiences a potential energy of the form seen in Eqn. 1.1.

The detuning of the light beams from the atomic transition can be

made large enough to neglect dissipation due to spontaneous emission from

the excited state of the transition. In addition, all the parameters that deter-

mine the system’s behavior, namely the maximum excursion of the potential

well (λ), the well depth (k), and the rescaled Planck’s constant (k−), can be

experimentally adjusted.

Chapter 2

Integration of the Schroedinger Equation

The Schroedinger equation presented in the Introduction is the gov-

erning equation for the system described in Eqn. 1.1. For clarity, Schroedinger’s

equation is repeated here,

ik−
∂

∂t
Ψ(φ, t) =

[
−k
−2

2

∂2

∂φ2
− k cos(φ− λ sin(t))

]
Ψ(φ, t). (2.1)

The purpose of the software developed for this work was to solve this equation

for specific values of k, k−, and λ accessible by the experiment. This chapter

presents the method used to derive a recursion relation to describe how Ψ(φ, t)

evolves over a small step in time τ , assuming boundary conditions with the

periodicity of the potential energy term.

The operator p̂ = −ik−∂/∂φ has eigenstates ψm(φ) = 1√
2π
eimφ, with

p̂ψm(φ) = mk−ψm(φ). The wavefunction Ψ(φ, t) can be expanded in these

momentum eigenstates,

Ψ(φ, t) =
∞∑

m=−∞
Am(t) ψm(φ) =

∞∑
m=−∞

Am(t)
eimφ√

2π
. (2.2)

The complex coefficients Am(t) represent the amplitudes of the momentum

eigenstates which make up Ψ(φ, t). These coefficients are given by

Am(t) = 〈ψm(φ)|Ψ(φ, t)〉 =
∫ 2π

0
dφ Ψ(φ, t)

e−imφ√
2π

. (2.3)

3

4

Note that |Am(t)|2 is the probability at time t of the particle being in eigenstate

ψm(φ). Note also that the above two equations identify the Am(t)’s as the

coefficients in a Fourier series expansion of Ψ(φ, t). As will be seen in the next

chapter, these properties of the momentum coefficients are used extensively by

the program.

Following the suggestion of Martin Schlautmann [4], we approximated

the Hamiltonian, Eqn. 1.1, by discretizing the potential term. The new poten-

tial term,

V (φ, t) = −k cos(φ− λ sin(t))
∞∑

j=−∞
δ(
t

τ
− j), (2.4)

is zero except for delta-function pulses at discrete times t= jτ , where j is an

integer. This model assumes that the particle evolves freely except for pulses

acting at time intervals separated by τ .

This assumption is equivalent to making an impulse approximation.

In general, the change in the momentum of a particle over a time interval τ is

given by the time integral of the force over the interval,

p(t+ τ)− p(t) =
∫ t+τ

t

(
−∂V
∂φ

)
dt′ . (2.5)

In the impulse approximation, the force is assumed to be constant for the

duration of the interval. The resulting expression for the change in momentum,

p(t+ τ)− p(t) =

(
−∂V
∂φ

)
t+τ

τ , (2.6)

is the same result as obtained by applying Eqn. 2.5 to the discretized potential

in Eqn. 2.4.

5

Using the discretized potential, the Schroedinger equation becomes

ik−
∂

∂t
Ψ(φ, t) =

−k−2

2

∂2

∂φ2
− k cos(φ− λ sin(t))

∞∑
j=−∞

δ(
t

τ
− j)

 Ψ(φ, t) , (2.7)

(τ � 1) .

The evolution of the wavefunction over one time interval τ can be

studied in two parts. The first part of the evolution occurs between successive

impulses from t1 =(jτ)+ to t2 =((j+1)τ)−. The second part occurs across an

impulse from t2 =((j+1)τ)− to t3 =((j+1)τ)+ = t1+τ .

In the first part of the evolution of Ψ(φ, t) (between the impulses) the

potential term of the Hamiltonian is zero, and Eqn. 2.7 becomes an equation

for a particle undergoing free evolution. Substituting the Fourier expansion

for Ψ(φ, t) (Eqn. 2.2), we get the following series equation for the momentum

amplitudes Am,

ik−
∞∑

m=−∞

∂Am(t)

∂t

eimφ√
2π

=
∞∑

m=−∞

k−2m2

2
Am(t)

eimφ√
2π

. (2.8)

By applying
∫ 2π

0 dφ e−inφ to both sides the sum is eliminated, leaving an equa-

tion for An(t),

ik−
∂

∂t
An(t) =

k−2n2

2
An(t) . (2.9)

By dividing both sides of this equation by An(t) and integrating over t from t1

to t2, we get an expression which gives the value of the coefficient An at t2 in

terms of its value at t1,

An(t2) = An(t1) e
−ik−n2τ/2 . (2.10)

6

In the second part of the evolution, across a delta function pulse, the

first term in the square brackets of the Schroedinger equation (Eqn. 2.7) is

negligible compared to the pulse. The equation then becomes

ik−
∂

∂t
Ψ(φ, t) =

−k cos(φ− λ sin(t))
∞∑

j=−∞
δ(
t

τ
− j)

 Ψ(φ, t). (2.11)

By dividing both sides of this equation by Ψ(φ, t) and integrating over t from

t2 =((j+1)τ)− to t3 =((j+1)τ)+, we get an expression for the value of Ψ(φ, t)

after the pulse in terms of its value before the pulse,

Ψ(φ, t3) = Ψ(φ, t2) exp

(
i
kτ

k−
cos(φ− λ sin(t3))

)
. (2.12)

This equation can be expanded in the momentum basis using the Fourier ex-

pansion in Eqn. 2.2:

∞∑
m=−∞

Am(t3)
eimφ√

2π
=

∞∑
m=−∞

Am(t2)
eimφ√

2π
exp

(
i
kτ

k−
cos(φ− λ sin(t3))

)
. (2.13)

To find the behavior of a particular Am, the right side of this equation

can first be rewritten so that its φ-dependence is expressed only in terms of

einφ’s. This expansion can be done with the identity eix cos θ =
∑∞
l=−∞ i

lJl(x)e
ilθ:

∞∑
m=−∞

Am(t3)
eimφ√

2π
=

∞∑
m,l=−∞

Am(t2)
eimφ√

2π
ilJl(

kτ

k−
)eilφ e−ilλ sin(t3) . (2.14)

By again applying
∫ 2π

0 dφ e−inφ to both sides, the sum over l is eliminated,

leaving an equation for An(t) after the pulse in terms of the Am(t)’s before the

pulse,

An(t3) =
∞∑

m=−∞
Am(t2)i

n−mJn−m

(
kτ

k−

)
e−i(n−m)λ sin(t3) . (2.15)

7

Since t3 and t1 are instants in time after subsequent pulses (t3 = t1+τ),

Equation 2.10 can be substituted into 2.15 to get a recursion relation which

gives the value of the coefficients An(t+τ) in terms of their earlier values Am(t).

An(t+ τ) =
∞∑

m=−∞
Mn,m(t)Am(t) , (2.16)

Mn,m(t) = e−ik
−m2τ/2 in−m Jn−m

(
kτ

k−

)
e−i(n−m)λ sin(t+τ) . (2.17)

This formulation, in principle, can be used to calculate the wavefunction for

this system at any given time. Given an initial wavefunction Ψ(φ, t=0) with

momentum amplitudes Am(t=0), the amplitudes at a time t=jτ later can be

found by j iterations of Eqn. 2.16. Unfortunately, Eqn. 2.16 poses a computa-

tional difficulty: it requires an accurate evaluation of the Bessel functions Jm.

This problem became apparent to us when the computation would not preserve

probability as it stepped forward in time: as the iterations were performed, the

sum
∑
n |An(t)|2 would wander from its initial value of 1. The computational

tools available to us did not provide sufficient accuracy of these functions at

high orders m to correct the problem.

An alternative recursion relation was used which is not as straight-

forward to implement as Eqn. 2.16, but which is not as susceptible to errors

in special functions. To derive this relation, we first define the functions Bn(t)

and β(φ, t):

Bn(t) = An(t) e
−ik−n2τ/2 , (2.18)

β(φ, t) =
∞∑

n=−∞
Bn(t)

einφ√
2π

. (2.19)

8

Then the equation describing the evolution of An between pulses (Eqn. 2.10)

can be rewritten as

An(t2) = Bn(t1), (2.20)

and the expansions for Ψ(φ, t) and β(φ, t) (Eqns. 2.2 and 2.19) can be combined

into a relationship between Ψ(φ, t) and β(φ, t):

Ψ(φ, t2) =
∞∑

m=−∞
Am(t2)

eimφ√
2π

=
∞∑

m=−∞
Bm(t1)

eimφ√
2π

= β(φ, t1) . (2.21)

This relationship can be used to rewrite the equation describing the evolution

of Ψ(φ, t) across a delta function pulse (Eqn. 2.12):

Ψ(φ, t3 = t1+τ) = β(φ, t1) exp

(
i
kτ

k−
cos(φ− λ sin(t3))

)
. (2.22)

Using the definition of the Am’s (Eqn. 2.3) here leads to the first of two equa-

tions which relate the momentum amplitudes at a time t+τ to the amplitudes

at t:

Am(t+ τ) =
1√
2π

∫ 2π

0
dφ β(φ, t) e−imφ exp

(
i
kτ

k−
cos(φ− λ sin(t+ τ))

)
.

(2.23)

The second of the two equations results from combining the definitions of Bn(t)

and β(φ, t) (Equations 2.18 and 2.19) to get an expression for β(φ, t) as a

function of An(t),

β(φ, t) =
1√
2π

∞∑
n=−∞

An(t) e
−ik−n2τ/2 einφ . (2.24)

9

Substituting this expression for β(φ, t) into the previous equation (2.23) pro-

vides the recursion relation for the coefficients An, making it possible to find

An(t+τ) in terms of An(t). Given an initial wavefunction Ψ(φ, t = 0) with

momentum amplitudes Am(t = 0), the coefficients at a time t = jτ later can

be found by j iterations of this process. As will be seen in the next chapter,

the similarity of this recursion relationship to a Fourier transform makes it the

heart of the computational scheme used in the program.

Chapter 3

Program Operation

This chapter describes how the programs use the recursion relation-

ship derived in the last chapter to evolve the wavefuntion Ψ in time.

3.1 Input to the Program

The system parameters k, k−, and λ are read by the program from

an input file. This file also contains the number of time steps τ to evolve the

wavefunction. A second input file contains the initial values of the complex

momentum amplitudes, An(t=0).

Since these amplitudes are the coefficients of the momentum eigen-

states in Eqn. 2.2, |An(t)|2 is the probability at time t that the particle has a

momentum p=k−n. The complex coefficients An(0) therefore specify the initial

momentum distribution of the particle wavepacket. Note that since the ampli-

tudes are also the coefficients of the Fourier series for Ψ(φ, t), the vector An(t)

specifies the spatial distribution of the wavepacket as well as its momentum

distribution.

10

11

3.2 Program Output

The program takes the initial An’s as a vector of complex numbers

and uses the recursion relation developed in the previous chapter to calculate

their value at t= τ . This calculation is repeated to evolve the wavepacket in

time. After each iteration, information about the momentum distribution is

recorded in an output file. In its current configuration, the program records

the time t, the expectation value of the wavepacket’s momentum, 〈p〉, and the

RMS spread of its momentum, ∆p. (The program can easily be modified to

record other information about the An’s after each time step.) These quantities

are found by using |An|2 as a probability distribution function:

〈p〉 =
∞∑

n=−∞
|An|2 nk−, (3.1)

∆p =

[∞∑
n=−∞

|An|2 (nk− − 〈p〉)2

] 1
2

(3.2)

As the program is executed, it creates an output file containing three

columns of numbers. The first column indicates the elapsed time in the simula-

tion. The next two columns give the values of 〈p〉 and ∆p at those times. When

the program is finished running, it creates a second output file containing the

final momentum distribution. This file contains two columns: the first column

is a list of m’s, and the second column lists the corresponding |Am|2’s.

3.3 Truncation of the Wavepacket

One of the questions involved in a calculation like this is the number of

terms to keep from the infinite series of An’s which represents the wavepacket.

12

This number is a parameter in the program which can be chosen to make the

calculation run in the minimum amount of time without sacrificing accuracy.

In our runs so far we have typically chosen to keep N = 64 terms: keeping An’s

with |n|> 32 does not make the calculation more accurate since those terms

do not get significantly populated for the values of k, k−, and λ we have been

using.

Truncating the series of An’s has the effect of changing the Fourier

series in equations Eqns. 2.2 and 2.3 into a discrete Fourier transform pair,

Ψ(φm, t) =
1√
N

N/2−1∑
n=−N/2

An(t) e
imn2π/N , (3.3)

An(t) =
1√
N

N−1∑
m=0

Ψ(φm, t) e
−imn2π/N . (3.4)

Here φ becomes the discrete variable φm,

φm = m∆φ ,
(
∆φ ≡ 2π

N
, m = integer

)
. (3.5)

This discrete Fourier transform pair preserves probability better than the pre-

vious truncated Bessel expansion.

3.4 Evolving the Wavepacket

Just as |An(t)|2 is the probability of finding the particle in a momen-

tum eigenstate ψn(φ), the quantity |Ψ(φm, t)|2 is the probability of finding the

particle in the interval φ ∈ [φm, φm+∆φ). In this discretized basis the inte-

gral over φ in the recursion relation 2.23 becomes a sum over φm’s. The new

13

recursion relation for finding the An(t+ τ)’s in terms of the An(t)’s is then

An(t+ τ) =
1√
N

N−1∑
m=0

β(φm, t) e
−imn2π/N exp

(
i
kτ

k−
cos(m

2π

N
− λ sin(t+ τ))

)
,

(3.6)

where β is now given by

β(φm, t) =
1√
N

N/2−1∑
n=−N/2

An(t) e
−in2k−τ/2 eimn2π/N . (3.7)

This algorithm preserves the phase coherence between the An’s as it steps

through time, so the vector An(t) remains a complete description of the

wavepacket.

These two equations express the vectors An(t) and β(φm, t) as dis-

crete Fourier transforms of each another with an additional phase term. They

prescribe six steps for calculating the evolution of the momentum amplitudes

over one step in time. These steps, which transform An(t) into An(t+τ), are

performed inside a program loop in the following manner.

1. Multiply each An(t) by e−in
2k−τ/2.

2. Perform a fast Fourier transform (FFT) [5] on the An’s to construct the

β(φm, t)’s.

3. Multiply each β(φm, t) by exp
(
ikτ
k− cos(m 2π

N
− λ sin(t+ τ))

)
.

4. Calculate the An(t+ τ)’s by an inverse FFT of the β(φm, t)’s.

5. Record the time t and information on the new distribution in a file.

6. Increment the time t by τ , and loop back to step 1.

14

This process is repeated a given number of times as specified by the

program’s input. The time step we used for each iteration was typically τ =

1
300

; test runs indicated that smaller values of τ did not seem to affect the

calculations.

Chapter 4

Sample Runs

In this chapter I will present examples of data produced by the pro-

gram under two sets of input conditions. The first set of conditions, with

k = 15.0 and k− = 1.58, is the same as presented by Graham et. al. [2]. The

second set of conditions, with k = 0.36 and k− = 0.16, corresponds to an ex-

periment with Sodium atoms in a modulated standing wave which we recently

performed [3].

For both simulations, the initial wavefunction had a Gaussian distri-

bution in momentum with a mean momentum 〈p〉 = 0 and an RMS momentum

spread of ∆p = 0.5k−. Figure 4.1 shows how 〈p〉 and ∆p evolved under the first

set of conditions. This plot was generated directly from the first output file of

the program. The second output file was used to generate Figure 4.2, which

shows the terminal momentum distribution |An|2 for this simulation.

15

16

-2

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

〈p〉
k− ,

∆p
k−

Time (modulation cycles)

〈p〉/k−
∆p/k−

Figure 4.1: Plot of 〈p〉 and ∆p versus time for the conditions k = 15.0, k− =
1.58, λ = 85.

Some interesting aspects of this system can be seen in Figure 4.1. The

jagged appearance of the curve 〈p〉 vs. t indicates that the particle’s momentum

undergoes sharp changes at certain times. This phenomenon can be understood

as “resonant kicks.” When the well’s velocity (λ cos t) matches the velocity

of the particle (φ̇), the particle “rolls” down the stationary potential well,

experiencing a resonant kick. When the well’s velocity is not the same as the

particle’s velocity the average force on the particle goes to zero. The system

crosses this fundamental resonance (φ̇(t) = λ cos t) twice during each period

T = 2π, so the particle can receive two such kicks during each modulation

period.

Figure 4.1 also shows a saturation of the momentum spread. After

a rapid initial spread, this wavepacket slows its expansion in the momentum

17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-15 -10 -5 0 5 10 15

|An|2

n

3333333333
333

33

3

33

3

3

33333333333

Figure 4.2: Momentum distribution of the wavepacket in Figure 4.1 at t = 48.

basis and ultimately reaches a maximum RMS spread of ∆p ≈ 6k−.

Figure 4.3 shows how the saturation of ∆p depends on λ for the values

of k and k− used in this first simulation (15.0 and 1.58, respectively). For λ less

than a critical value, the saturated ∆p increases roughly linearly with λ. This

behavior is because the resonant kick phenomenon described above does not

occur for particles with a speed faster than the maximum speed of the well.

According to the dimensionless Hamiltonian in Eqn. 1.1, this maximum speed

is λ. A particle with speed greater than λ will not experience any further

resonant kicks, so the speed of the particle does not increase much beyond the

maximum speed of the well: |φ̇|max ≈ λ. Since Hamilton’s equations for this

system equate φ̇ and p (φ̇ ≡ ∂H/∂p = p), the values of p accessible by resonant

kicks is limited to

|p|max ≈ λ. (4.1)

18

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

∆p/k−

λ

3

3

3

3

3
3

3

3

3

3

3

3

3
33

3

3

3

3

3

3

3

3

3
3

3

3

3

1√
3k−
λ

√
2 π

(
k
k−

)2
1
λ

Figure 4.3: Saturation values of ∆p as a function of λ for k = 15.0 and k− = 1.58.

If the wavepacket is uniformly distributed over this range of p, it will have an

RMS spread in momentum of λ/
√

3. This value is represented by the dotted

line in Figure 4.3; it approximates the behavior observed in the simulation for

λ < 35.

For larger values of λ, other limits on the wavepacket’s spread in

momentum become apparent. The wavepacket is composed of Floquet states,

the eigenstates of a time-dependent Hamiltonian. These Floquet states can be

localized in p-space, where each Floquet state is constructed from a finite num-

ber of neighboring p-states. Once the initial conditions are set, this wavepacket

never spreads to p-states outside those needed to construct the initial Floquet

state distribution. Graham et. al. used a standard-map approximation of this

system to estimate the saturation values of ∆p in this regime. Their estimate

of the saturated ∆p/k− =
√

2π(k/k−)2/λ is plotted in Figure 4.3. This exhibi-

19

0

2

4

6

8

10

0 1 2 3 4 5 6 7

∆p/k−

λ

3
3

3

3

3 3

3

3
3

3

3

3 3

3

3

3

3

3

3

3
3

1√
3k−
λ

√
2 π

(
k
k−

)2
1
λ

Figure 4.4: Saturation values of ∆p as a function of λ for k = 0.36 and k− = 0.16.

tion of a saturation of ∆p due to the Floquet distribution which makes up the

wavepacket is an example of dynamical localization.

Figure 4.4 was generated in the same way as Figure 4.3, by finding

the saturation values of ∆p for various values of λ with k and k− fixed. The

k and k− used here (0.36 and 0.16) correspond to the parameters used in our

initial experimental realization of this system [3]. These values of k and k− were

experimentally accessible, as was the range of λ (0 to ≈ 7) needed to see the

localization. In addition the peak value of ∆p (≈ 9k−) was also large enough

to make it visible over our background ∆p of ≈ 2k−. As indicated by this

figure, the simulation predicted that an experiment done under these feasible

conditions would demonstrate the same effects described above.

Appendix A

Relationship to the Experimental System

This section shows how an atom in a spatially modulated standing

wave can be modeled as a particle obeying the Hamiltonian in Eqn. 1.1. We

start with two counter-propagating laser beams with matched intensities and

polarizations. The electric field along their axis ~x is then,

E(x, t) = Eo cos(ωLt− kLx+ θ1) + Eo cos(ωLt+ kLx+ θ2) , (A.1)

where Eo is the magnitude of each beam’s electric field, ωL
2π

is the optical fre-

quency, kL = ωL
c

, and θ1 and θ2 are the relative phases of the beams. If the

beams are phase-modulated so that θ1 = −θ2 = kL∆L sin(ωmt), then the field

becomes

E(x, t) = 2Eo cos(ωLt) cos(kL(x−∆L sinωmt)) . (A.2)

Here ωm
2π

is the modulation frequency of the beams, and ∆L is the maximum

displacement of the standing wave nodes from their central positions.

If ωL is near a transition frequency of the atom, the atom can be

modeled as a two-level system consisting of a ground (|g〉) and an excited (|e〉)

state of the atom. In reference [2], Graham et. al. started with a spatially

modulated standing wave with the above form. They used the dipole, two-

level atom, and rotating wave approximations. They then perform an adiabatic

elimination of the excited state amplitude to show that the Hamiltonian for an

20

21

atom in this field is approximated by,

H =
p2
x

2M
− h̄Ωeff

8
cos [2kL(x−∆L sin(ωmt))] . (A.3)

The adiabatic elimination of the excited state is valid provided that the lasers

are sufficiently detuned from the atom’s resonance frequency. Here px is the

momentum of the atom along the x-axis,M is its mass, and Ωeff = (2µEo)
2/h̄2δ

is the effective Rabi frequency. µ is the dipole matrix element of the transition

between the ground and excited states of the atom, |〈g|ex|e〉|, and δ/2π is the

detuning of the laser frequency from the atomic transition.

To transform this Hamiltonian into the unitless form of Eqn. 1.1, we

first make the following definitions of k, k−, and λ:

k ≡ h̄k2
L

2Mω2
m

Ωeff =
ωrΩeff

ω2
m

,

k− ≡ 4k2
L

Mωm
h̄ = 8

ωr
ωm

,

λ ≡ 2kL ∆L, (A.4)

where ωr ≡ h̄k2
L

2M
is the recoil frequency of the atom. Then by scaling the

variables t, x, px, and H into their unitless counterparts,

t′ = ωmt ,

φ = 2kLx ,

p =
2kL
Mωm

px ,

H ′ =
4k2

L

Mω2
m

H , (A.5)

we can transform the Hamiltonian for the atom in the standing wave into the

form of Eqn. 1.1:

H ′ =
p2

2
− k cos(φ− λ sin(t′)) . (A.6)

22

And multiplying the standard Schroedinger equation,

ih̄
∂

∂t
Ψ = HΨ , (A.7)

by
4k2
L

Mω2
m

leads to the unitless Schroedinger equation of Eqn. 1.2:

ik−
∂

∂t′
Ψ =

[
p2

2
− k cos(φ− λ sin(t′))

]
Ψ . (A.8)

Appendix B

Program Source Code

B.1 Main Routine

PROGRAM qmapMain

c The real work in this program is done by the subroutine ’qmap’.
c ’qmap’ calculates the evolution of the momentum amplitudes
c (contained in the vector Psi(n)), and prints the output files.
c This main routine serves merely as a humble interface between
c ’qmap’ and the outside world.

cccccc Information to be read from the input file cccccc

real*4 k, kbar, lambda
c { Parameters of the system }

real*4 tMax
c { Total time for the simulation }

real*4 tau
c { Amount of time to step in }
c { each iteration }

character*15 initCondFile
c { File from which to read }
c { initial conditions }

character*15 outputFileExt
c { Extension for output files }

character*7 date
c { Run date to use in marking }
c { the output files: YYMonDD }

cccccc Information for the output file "finalProb.dat" cccccc

23

24

real*4 finalProb
c { Sum of |psi(n)|*2 at the end }
c { of each run }

cccccc Internally used variables cccccc

integer simCount
c { Counter for the number of }
c { different simulations to run }

character*15 inputFile, finalProbFile
parameter(inputFile = ’input.dat’)
parameter(finalProbFile = ’finalProb.dat’)

c { Files to read input parameters}
c { and to write the total final }
c { probability after each run. }
c { These files are only used here}
c { in the main routine }

character*15 dummyString

cccccc Read in the various simulation conditions cccccc
cccccc and perform the calculation for each of them. cccccc

c Read in a set of input parameters and perform the calculation
c for them. Record the finalProb returned from the subroutine
c in the finalProbFile. Repeat until you reach the end of the
c input file.

open(unit=1, file=inputFile, status=’old’)
rewind(1)

open(unit=2, file=finalProbFile, status=’unknown’)

simCount = 0

90 read(1,*,END=100) dummyString, k
read(1,*) dummyString, kbar
read(1,*) dummyString, lambda
read(1,*) dummyString, tMax
read(1,*) dummyString, tau
read(1,*) dummyString, initCondFile

25

read(1,*) dummyString, outputFileExt
read(1,*) dummyString, date

nsteps = int(tMax/tau)

call qmap(k, kbar, lambda, nsteps, tau,
1 initCondFile, outputFileExt, date,
2 finalProb)

simCount = simCount + 1

write(2,*)’totProb(Simulation #’,simCount,’)=’,finalProb
goto 90

100 continue
close(2)
close(1)

end
c {main}

CC

B.2 The qmap Subroutine

SUBROUTINE QMAP (ko, kbar, lambda, nsteps, tau,
1 initCondFile, outExt, date,
2 finalProb)

cccccc INPUT: cccccc

real*4 ko
C { ko = Nominal well depth in the Graham, }
C { Schlautmann, and Zoller Hamiltonian. }
C { It’s used by the subroutine kInTime }
C { to find the }
C { instantaneous well depth k. }

real*4 kbar
C { kbar= transformed h-bar in the }
C { GSZ Hamiltonian }

26

real*4 lambda
C { lambda = maximum spatial displacement of }
C { the potential well. }

integer nsteps
C { nsteps = total # of iteration steps }

real*4 tau
C { tau = amount of time to step in each }
C { iteration }

character*15 initCondFile, outExt
C { name of the file holding the initial }
C { amplitudes, and the extension to use on }
C { the output files }

character*7 date
C { used in the output file’s headers }

cccccc OUTPUT: cccccc

C file ’.n_vs_t.outExt’
C { <n> AND <n**2>-<n>**2 vs. (time in }
C { modulation periods) }

C file ’.p2_vs_n.outExt’
C { |psi(n)|**2 vs. n at the end of the }
C { calculation }

real*4 finalProb
C { finalProb = total |psi|**2 at the end of }
C { the calculation }

cccccc DESCRIPTION cccccc

C QMAP

C By Paul Williams and Cyrus Bharucha, 1993.

C This subroutine iterates the quantum map for the chaotic

27

C deflection experiment, using a spectral method.
C It sets up the wave function in a momentum representation
C as a 1-d array with successive entries being the real and
C imaginary parts in order to facillitate the use of the FFT
C routine "four1" from Numerical Recipies. The length of the
C array will be set as a power of 2. The initial conditions
C are read from a the file specified in ’initCondFile’. The
C map is iterated for a total nuber of steps given as an
C input parameter. The iteration of the map is as follows.
C First the map is iterated for free evolution of the
C momentum between kicks. Then an FFT of the wavefunction
C to a space representation is computed, and the wave
C function is evolved across the kick. The wave function is
C then transformed back to a momentum representation.
C Other input parameters include the well depth, k, and the
C modulation strength, lambda.
C As the map is iterated, the values navg=<p>/kbar and
C delta-n=delta-p/kbar are calculated and written to a file.
C After the map is finished, the final probability distribution
C in momentum is written to a second output file.
C This subroutine evaluates k at each step in time using the
C subroutine ’kInTime’. ’ko’ is the nominal potential, and ’k’
C is the instantaneous potential found by multiplying ’ko’ and
C the function given by ’kInTime’.

CCCCCC Internally used variables CCCCCC

parameter (nn=128)
C { the number of terms to keep in the }
C { basis set of Psi }

integer n
C { index for the vector psi(n) }

real *4 navg, n2avg
C { navg = <p>/kbar }
C { n2avg = <p**2>/kbar**2 }

real *4 psi(2*nn), pstmpr, pstmpi
C { psi(n) is the complex vector which holds }
C { alternately }
C { A(n, t) = momentum amplitudes, and }
C { Beta(phi(n), t) }

28

real *4 psi2, sum
C { used for calculating |psi|**2 }

real *4 pevolc(nn), pevols(nn), arg
C { intermediate values in the calculation }

real *4 k, k1
C { k = instantaneous value of k, calculated}
C { in each iteration. }
C { k1 = k*tau/kbar }

integer printInterval
parameter(printInterval = 20)

C { printInterval = how often to write }
C { a line of output, in iteration steps }

parameter(psi2minimum=1.0e-30)

CCCCCC Fundamental constants CCCCCC

parameter(pi=3.1415927)
parameter(twopi=2*pi)

CCCCC open output files and write the headers CCCCCC

open(unit=4, file=’n_vs_t.’//outExt, status=’unknown’)
write(4,10) ’# ’,date
write(4,11) ’# k= ’,ko
write(4,11) ’# kbar= ’,kbar
write(4,11) ’# tau= ’,tau
write(4,11) ’# lambda= ’,lambda
write(4,12) ’# File extension = ’//outExt
write(4,13) ’# ’
write(4,14) ’# T(mod cycles), <n>, sqrt(<n**2>-<n>**2)’
write(4,14) ’#--’

10 format(a2, a7)
11 format(a10, 1G11.5)
12 format(a34)
13 format(a2)
14 format(a41)

29

open(unit=5, file=’p2_vs_n.’//outExt, status=’unknown’)
write(5,20) ’# ’,date
write(5,21) ’# k= ’,ko
write(5,21) ’# kbar= ’,kbar
write(5,21) ’# tau= ’,tau
write(5,21) ’# lambda= ’,lambda
write(5,22) ’# File extension = ’//outExt
write(5,23) ’# ’
write(5,24) ’# n |psi(n)|**2’
write(5,24) ’#--------------------’

20 format(a2, a7)
21 format(a10, 1G11.5)
22 format(a34)
23 format(a2)
24 format(a20)

CCCCCC Read the initial condition from the input file CCCCCC
c write (*,*) ’aa’

open(unit=7, file=initCondFile, status=’old’)
rewind(7)
do i=1,2*nn

read(7,*) psi(i)
end do
close(7)

CCCCCC Calculate the vectors to time evolve CCCCCC
CCCCCC the free evolution
c print *,’bb’

do i = 1, nn
n = i-nn/2
pevolc(i)=cos(n**2*kbar*tau/2)
pevols(i)=-sin(n**2*kbar*tau/2)

end do

C Do loop to iterate the map
c print *,’cc’

Do i= 1,nsteps

30

c print *,’beginning time step’,i

CCCCCC Get the current value of k CCCCCC

c ko = the nominal well depth,
c T = the elapsed time (in modulation periods), and
c Ttotal = the total time for the complete simulation.

call kInTime(ko, k, i*tau/twopi, nsteps*tau/twopi)
k1=k*tau/kbar

CCCCCC Calculate the time evolution of the momentum state CCCCCC
c print *,’dd’

do j = 1, 2*nn-1,2
pstmpr=psi(j)
pstmpi=psi(j+1)
psi(j)=pstmpr*pevolc((j+1)/2)-pstmpi*pevols((j+1)/2)
psi(j+1)=pstmpr*pevols((j+1)/2)+pstmpi*pevolc((j+1)/2)

end do

CCCCCC Now FFT to a postion representation, and then CCCCCC
CCCCCC calculate the evolution across the delta function. CCCCCC
c print *,’ee’

call four1(psi,nn,1)

CCCCCC Remove the oscillation due to the momentum offset CCCCCC
c print *,’ff’

do j=1,2*nn-1,2
cc=cos(pi*(j-1)/2.)
psi(j)=psi(j)*cc
psi(j+1)=psi(j+1)*cc

end do

CCCCCC Calculate the time evolution across CCCCCC
CCCCCC the delta function
c print *,’gg’

C ... psi(theta=0)

31

pstmpr=psi(1)
pstmpi=psi(2)

psi(1)=pstmpr*cos(k1*cos(-lambda*sin(i*tau)))
* - pstmpi*sin(k1*cos(-lambda*sin(i*tau)))

psi(2)=pstmpr*sin(k1*cos(-lambda*sin(i*tau)))
* + pstmpi*cos(k1*cos(-lambda*sin(i*tau)))

C ... psi(theta=(0..pi))

do j=3,nn-1,2
pstmpr=psi(j)
pstmpi=psi(j+1)
arg=k1*cos(twopi*(j-1)/(2.0*nn)-lambda*sin(i*tau))

psi(j)=pstmpr*cos(arg) - pstmpi*sin(arg)
psi(j+1)=+pstmpr*sin(arg) + pstmpi*cos(arg)

end do

C ... psi(theta=(-pi..0))

do j=3,nn-1,2
pstmpr=psi(j+nn)
pstmpi=psi(j+nn+1)
arg=k1*cos(twopi*(j-1-nn)/(2.0*nn)-lambda*sin(i*tau))

psi(j+nn)=pstmpr*cos(arg) - pstmpi*sin(arg)
psi(j+1+nn)=pstmpr*sin(arg) + pstmpi*cos(arg)

end do

C ... psi(theta=pi)

pstmpr=psi(nn+1)
pstmpi=psi(nn+2)

psi(nn+1)=pstmpr*cos(k1*cos(pi-lambda*sin(i*tau)))
* - pstmpi*sin(k1*cos(pi-lambda*sin(i*tau)))

psi(nn+2)=pstmpr*sin(k1*cos(pi-lambda*sin(i*tau)))
* + pstmpi*cos(k1*cos(pi-lambda*sin(i*tau)))

CCCCCC Reintroduce momentum offset CCCCCC
c print *,’hh’

32

do j=1,2*nn-1,2
cc=cos(pi*(j-1)/2.)
psi(j)=psi(j)*cc
psi(j+1)=psi(j+1)*cc

end do

CCCCCC Inverse FFT to momentum space CCCCCC
c print *,’ii’

call four1(psi,nn,-1)

CCCCCC Renormalize psi CCCCCC
c print *,’jj’

do j = 1,2*nn
psi(j)=psi(j)/nn

end do

CCCCCC Done with calculating psi. Now calculate the total CCCCCC
CCCCCC psi**2 average n, and average n**2 CCCCCC

if(i/printInterval*printInterval.eq.i) then
navg=0.0
n2avg=0.0
sum=0.0
psi2=0.0

do j=1,2*nn-1,2
psi2 = psi(j)*psi(j)+psi(j+1)*psi(j+1)
n = (j+1-nn)/2.0
sum = sum + psi2
navg = navg + psi2 * n
n2avg = n2avg + psi2 * n**2

end do

write(4,*) i*tau/twopi, navg, sqrt(n2avg - navg**2),k

end if

CCCCCC End of time iteration CCCCCC
c print *,’ending time step’,i

33

end do

finalProb=sum

CCCCCC Write the terminal probability distribution CCCCCC
c print *,’ll’

do j=1,2*nn-1,2
psi2 = (psi(j)**2 + psi(j+1)**2)
if (psi2 .lt. psi2minimum) then

psi2 = psi2minimum
end if
n=(j+1-nn)/2.0
write(5,*) n , psi2

end do

CCCCCC close output files and end CCCCCC
c print *,’mm’

close(4)
close(5)
close(6)

end

CCC

B.3 Temporal Dependance of k

This subroutine allowed the potential well’s depth k to be have a dependence
on the elapsed time of the simulation. The implementation below was used to model our
experimental conditions, which started with a linear rise in well depth over approximately
one modulation period, maintained a constant value for some time, and then dropped back
down to zero.

SUBROUTINE kInTime(ko, k, T, Ttotal)

CCCCCC INPUTS: CCCCCC

real*4 ko

34

c { nominal well depth }
real*4 T

c { elapsed time in modulation cycles }
real*4 Ttotal

c { total time for the simulation in }
c { modulation cycles }

CCCCCC OUTPUT: CCCCCC

real*4 k
c { the well depth at this iteration }

CCCCCC DEFINITION OF THE TEMPORAL BEHAVIOR OF K CCCCCC

C This function determines how k changes in time

C In this implementation, k is initially zero. It ramps up to
C ko at in risetime, and during the last falltime of the
C simulation it ramps back down to zero.

real*4 risetime, falltime
parameter (risetime = 1.0)
parameter (falltime = 1.0)

k = ko

if (T .lt. risetime) then
k = ko * T/risetime

end if

if ((Ttotal-T) .lt. falltime) then
k = ko * (Ttotal-T)/falltime

end if

end

BIBLIOGRAPHY

[1] L. E. Reichl, The Transition to Chaos, Springer-Verlag, 1988.

[2] R. Graham, M. Schlautmann, and P. Zoller, Dynamical localization of

atomic-beam deflection by a modulated standing light wave, Physical Re-

view A 45(1), R19 (Jan. 1992).

[3] F. Moore, J. Robinson, C. Bharucha, P. Williams, and M. Raizen, Obser-

vation of Dynamical Localization in Atomic Momentum Transfer: A New

Testing Ground for Quantum Chaos, Submitted to Physical Review Let-

ters, June 1994.

[4] M. Schlautmann, On integrating Schroedinger’s equation, Personal com-

munication, Sept. 1992.

[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipies in C, Cambridge University Press, second edition, 1981.

35

