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Direct Observation of Sub-Poissonian Number Statistics in a Degenerate Bose Gas
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We report the direct observation of sub-Poissonian number fluctuation for a degenerate Bose gas
confined in an optical trap. Reduction of number fluctuations below the Poissonian limit is observed for

average numbers that range from 300 to 60 atoms.

DOI: 10.1103/PhysRevLett.95.260403

The study of the quantum statistics of light has been at
the heart of modern quantum optics for many years, with
examples ranging from photon antibunching [1] and
squeezed states of light [2] to quantum communication
[3]. The emerging field of atom optics has now reached
the stage where the direct measurement of atom statistics
can have a similar impact. In particular, novel quantum
statistics have been predicted for quantum degenerate
gases under a wide range of conditions. Two recent ex-
amples are the prediction of sub-Poissonian statistics and
Fock state production in the Mott insulator transition [4]
and in the quantum tweezer [5], and atomic antibunching
in a one-dimensional gas of repulsive bosons (Tonks-
Girardeau gas) [6]. More generally, it is clear that the
controlled study of entanglement and quantum computing
with massive particles must be based on the detection at
single-atom or ion level.

Following this theoretical work, an early experiment
reported number squeezing in an optical lattice based on
the observation of increased phase noise [7]. Subsequent
experiments have provided clear and convincing evidence
of the Mott insulator state [8]. In parallel work, several
groups have observed novel behavior of a 1D gas in the
Tonks regime [9]. However, all of these experiments were
conducted with a large number of atoms and were therefore
not statistical in nature.

In order to directly probe the atom statistics of these
novel states, one must incorporate single-atom counting
with a Bose-Einstein condensate (BEC) apparatus. We re-
port in this Letter the experimental realization of such a
system and the first direct measurement of sub-Poissonian
atom number statistics in a degenerate Bose gas.

The fluctuations of atom number within a small volume
in a classical ideal gas is given by oy = N'/2, where N is
the mean atom number [10]. For the fluctuations of atom
number in a degenerate Bose gas this is not necessarily true
and has been the topic of intense theoretical debate. In the
case of an ideal Bose gas, number fluctuations have been
studied in a box [11] and, more recently, in a harmonic trap
[12,13] for microcanonical and canonical ensembles. For a
weakly interacting Bose gas, number fluctuations were first
investigated in Ref. [14]. The role of interactions was then
further studied by including the effect of the thermal
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excitation of phonons in the thermodynamic limit with
number-nonconserving [15] and number-conserving [16]
Bogoliubov methods. Most recently, an isolated system of
finite atom number was considered for studying number
fluctuations in a harmonic trap [17] and in a box [18]. The
result obtained in the latter case, in particular, predicted
number fluctuation proportional to N'/2.

In BEC experiments reported thus far, typical shot-to-
shot number fluctuations greatly exceed the Poissonian
limit, presumably due to technical noise. Here we report
on an ultrastable optical trap which has a controllable
trapping volume and depth. This trap can be used to
achieve sub-Poissonian number fluctuations by the follow-
ing mechanism: for a fully loaded trap, the potential depth
U, in the shallowest direction is equal to the chemical
potential p of the degenerate Bose gas if one neglects
tunneling out of the trap. In the Thomas-Fermi (TF) limit,
the atom number N is proportional to w/2 for a harmonic
trapping potential. The atom number is thus related to the
trap depth as N « U(S)/ 2. From this, it is clear that a precise
control of the trap depth can lead to a precise control of the
atom number. This conclusion remains valid even when
assuming tunneling and a realistic nonharmonic potential.

Our experimental apparatus for studying sub-Poissonian
number statistics is similar to our previous work [19]. A
BEC of 2 X 10° 3’Rb atoms is produced by evaporation in
a large volume optical dipole trap. The BEC is then com-
pressed and transferred to the final small-volume optical
trap. This trap is formed by five Gaussian sheets, with two
pairs propagating vertically and one horizontal sheet to
hold the atoms against gravity, shown pictorially in
Fig. 1(a). The calculated potentials given by the measured
beam parameters are shown in Figs. 1(b)—1(d) for the
respective directions. All beams originated from a 10 W
laser at A = 532 nm are tightly focused in one axis at the
position of the condensate. Each sheet pair is derived from
the first order deflections of multiple frequency acousto-
optical modulators, providing independent control of the
position and power [20]. The sheet pairs and the horizontal
sheet have a maximum power of Py = 25 mW, PJ'™* =
80 mW, PM* = 100 mW per sheet and a 1/e? radius of
2.5 pm X 100 um for the x and y axes and 3.4 um X
200 wm for the z axis, respectively; x, y, and z refer to the
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FIG. 1 (color online). The optical trap. (a) Beam pictorial.
Gravity points in —z direction in this pictorial. (b) This plot
shows the potential energy U at y = z = 0. In the x direction, the
atoms are confined by two Gaussian sheets with a separation of
I, =5 pm. (c) Confinement in the y direction is of similar shape
to the x direction but deeper. (d) In the z direction, gravity and a
Gaussian sheet form a gravito-optical trap. The dashed curves in
(c) and (d) show the same potentials for the different scales given
on the right axes. Each potential plot is calculated based on
measured beam characteristics and are appropriate for order

Two methods are employed for measurements of atom
numbers. For numbers of order 103 or larger, absorption
imaging is used yielding spatial and number information.
At lower atom numbers, however, fluorescence imaging is
used because of higher signal-to-noise ratio in this re-
gime. This is accomplished by transferring the atoms into
a small magneto-optical trap (MOT) [21]. The MOT uses
six beams with a diameter of 1 mm, an intensity of
65 mW /cm?, a detuning of about 10 MHz, and a magnetic
field gradient of 260 G/cm. Transfer from the optical trap
to the MOT shows a saturation behavior with MOT beam
intensity, indicating that all atoms are captured. The result-
ing fluorescence signal is detected by a charge-coupled-
device (CCD) camera for 100 ms and is calibrated against
an avalanche photodiode (APD). Because of the low den-
sity during exposure, there is little possibility for multiple
scattering events during detection. Therefore, the measured
fluorescence signal from the MOT is proportional to the
number of atoms present.

The calibration of the atom number obtained from fluo-
rescence imaging is accomplished by operating the MOT
in a regime [22] where discrete fluorescence levels of
different small atom numbers are observable on an APD,
as shown in Fig. 2. The MOT is then suddenly switched to
the typical operating settings described above and the new
fluorescence level is obtained for the same atom number.
This yields an absolute accuracy in atom number better
than =10% [23]. The result is consistent with calculations
of the ratio of scattering rates for the given settings [24].
Atom numbers may also be estimated by using the TF
approximation with u = U, and modeling the trap by a
harmonic potential. This yields a 35% deviation below the
measured atom numbers, indicating rough accuracy of this
model.

Because of inhomogeneity of the optical potential, after
the potential barrier is lowered, some atoms remain outside
of the trap. These atoms are removed before the final
number detection by raising the potential barrier to its
maximum intensity (U™ /kz = 3 wK) and using a sup-
plementary optical sheet pair to sweep the residual atoms
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potential axes of Fig. 1. For typical operating conditions,
the trap has a depth of Uy/kz = 22 nK (for P, = 0.2 mW)
with the weakest trapping potential in the x direction and a
geometric mean trapping frequency of @ = 27 X 300 Hz;
kg is Boltzmann’s constant. In the final evaporation stage
U, is ramped down adiabatically over a period of 1500 ms
with an exponential shape. U, being the lowest evapora-
tion barrier, determines the chemical potential and thus the
atom number. Its final value is varied to obtain different
atom numbers.
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FIG. 2 (color online). Step-wise signal of the APD. The atom
number from CCD fluorescence imaging is calibrated by an APD
operating in photon counting mode. The fluorescence counting
rate per atom is 10% s~! with a background of 2 X 10* s~!. The
signals shown are for random loading of the MOT from back-
ground vapor. The time step of fluorescence binning is 100 ms.
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away from the well. A magnetic gradient is also applied to
remove atoms outside the range of the sweeping beams.
Figure 3(a) shows the measured fluctuations normalized
to the Poissonian case oy /N'/2 (solid circles) as a function
of atom number. Sub-Poissonian fluctuations are observed
for atom numbers below 500, where the technical noise is
no longer dominant [25]. The measured fluctuation at N =
60 atoms is approximately 60% of the corresponding
Poissonian fluctuation. This series of 100 measurements
is shown as a histogram plot in Fig. 3(b). A Gaussian fit to
the data indicates a measured standard deviation of
on/N = 7.9% with a 99% confidence interval of [7.4%,
8.5%] [26]. This indicates a reliable measurement of de-
viation well below the Poissonian value of N'/2/N =
(12.9 = 0.5)%, where the error is given by absolute accu-
racy in atom number. Several possible technical noise
sources were measured and estimates of their contribu-
tion to the atom number fluctuation result in the following
[25]: 2.0% from P,, 2.4% from P, 0.1% from P, 2.2%
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FIG. 3 (color online). Observation of sub-Poissonian number
statistics. (a) The solid circles show the measured fluctuation
normalized to the Poissonian case as a function of atom number.
The vertical error bars are the 68% confidence intervals for each
measurement. The horizontal error bars represent the absolute
accuracy in atom number. Sub-Poissonian number statistics is
observed for atom numbers below 500 where the fluctuations due
to technical noise are not larger than the Poissonian fluctuation.
The dashed curve is the estimated fluctuation from technical
noise and background capture. The inset shows the measured
atom number as a function of the trap depth U,. (b) Histogram of
100 sample points shows sub-Poissonian statistics for mean atom
number N = 60. The solid curve is the Gaussian fit to the
distribution. The dashed curve is the Poissonian distribution
with the same mean atom number.

from [, and 2.0% from /. The overall contribution due to
technical noise gives an expected atom number fluctua-
tion of &, = 4.3%, which is very close to what is mea-
sured for larger atom numbers. For lower atom numbers,
background capture during the detection is a major con-
tribution to the measured fluctuation. The background
capture during the 100 ms image-taking process with no
atoms present is measured to have a mean of Ny, =5
atoms. This random process, which has Poissonian statis-
tics, broadens the measured atom number distribution. A
simple estimate of atom number fluctuation from both
technical noise and background capture, assuming a con-
stant background capture for different atom number N,

results in \/(8tech)2 + [(Nyg)'/?/NP, shown as the dashed

curve in Fig. 3(a). This result gives a similar increasing
tendency as for the measured fluctuations. A more detailed
calculation without TF approximation shows an increase in
sensitivity to trap fluctuations at lower atom numbers [27].

We have measured the dependence of atom statistics on
the ramp time, fyp, in order to probe the many-body
dynamics. The results are displayed in Fig. 4 where the
fluctuations (normalized to the Poissonian case) are plotted
as a function of 7,,,. We find that for time scales shorter
than 250 ms the atom statistics become super-Poissonian,
while for longer times they are sub-Poissonian. This result
provides the time scale for adiabatic following, a key
feature of the process. The theoretical analysis of our
system is yet to be completed and requires the development
of a time-dependent many-body theory without a mean-
field approximation. Surveying previous theoretical work,
the closest case we have found is the analysis of relative
number fluctuations between two condensates separated by
a tunnel barrier that is ramped up in time [28]. The authors
of that paper found sub-Poissonian fluctuations in the
relative atom number under appropriate conditions.
However, our system is considerably different, with a
single trap in a quantum degenerate regime undergoing
loss of atoms as the barrier is lowered. Recent work on
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FIG. 4. Atom number fluctuations (normalized to the
Poissonian case) as a function of ramp time. Adiabaticity breaks
down when the ramp time is shorter than 250 ms. The error bars
show the 68% confidence intervals for each measurement. The
horizontal line shows the level of Poissonian fluctuation.
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quantum kinetic theory may provide insights to the present
system [29] and finite-size trap effects are also being
considered [30].

In conclusion, we have observed sub-Poissonian number
statistics in a degenerate Bose gas prepared in an optical
dipole trap. By precisely controlling the chemical poten-
tial, we obtained a wide range of atom numbers starting at
several tens and going up to a few thousand atoms. For
atom numbers below a few hundred, we observed sub-
Poissonian number statistics. Future work will be to elimi-
nate sources of technical noise and to approach the N = 1
Fock state.
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