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Entangling identical bosons in optical tweezers
via exchange interaction’

Nathan S. Babcock, René Stock, Mark G. Raizen, and Barry C. Sanders

Abstract: We first devise a scheme to perform a universal entangling gate via controlled collisions between pairs of
atomic qubits trapped with optical tweezers. Second, we present a modification to this scheme to allow for the preparation
of atomic Bell pairs via selective excitation, suitable for quantum-information-processing applications that do not require
universality. Both these schemes are enabled by the inherent symmetries of identical composite particles, as originally
proposed by Hayes et al. Our scheme provides a technique for producing weighted graph states, entangled resources for
quantum communication, and a promising approach to performing a “loophole free” Bell test in a single laboratory.

PACS Nos.: 03.65.Ud, 03.67.Mn, 32.80.Pj, 42.50.Vk

Résumé : Nous développons une méthode pour agir comme une porte logique universelle d’enlacement via des collisions

controlées entre paires de qubits atomiques piégés avec des pinces optiques. Nous présentons ensuite une modification
de cette méthode pour permettre la préparation d’une paire atomique de Bell via une excitation sélective, adaptée a des
applications de traitement de I’information quantique qui ne requierent pas 1’universalité. Ces deux procédés sont permis
par les symétries inhérentes des particules composites identiques, tel que proposé initialement par Hayes et al. Notre
procédé donne une méthode pour produire des états de graphes pondérés, des ressources enlacées pour la communication
quantique, ainsi qu’une approche prometteuse pour réussir un test de Bell sans échapatoire dans un cadre simple.

[Traduit par la Rédaction]

1. Introduction

Entanglement plays an indispensable role in many quan-
tum information processing tasks, such as long-distance quan-
tum communication [1], teleportation-based quantum computa-
tion [2, 3], and one-way quantum computation [4]. While great
progress has been made entangling arrays of neutral atoms in
optical lattices en masse [5], the current approach to generating
such massive entangled states (via cold collisions) necessitates
state-dependent traps [6]. This state-dependency results in in-
creased noise sensitivity and decoherence of atomic qubits [5].
Other proposed approaches for entangling neutral atoms feature
encodings in vibrational rather than internal electronic states of
atoms [7, 8], but are subject to similar dephasing of qubits. Ap-
proaches based on atomic interactions other than ground-state
collisions have been suggested [9, 10], but none have been suc-
cessfully implemented and atomic collisions still hold the most

promise. Thus, there is a need for collisional quantum gates
that allow more flexible encodings in robust electronic states
— such as the clock states of Rb, Cs, or Group II atoms — that
are held in state-insensitive traps to minimize decoherence.

In this work, we examine schemes to entangle pairs of bosonic
atoms, this is analogous to the recently proposed Fermionic
spin-exchange gate [11]. Gates based on this exchange interac-
tion offer a natural resistance to errors and more flexibility due
to inherent symmetrization conditions. Furthermore, this ex-
change interaction allows the design of entangling operations
for atoms with state-independent (for example, Rb [5]) or par-
tially unknown interaction strengths (for example, Yb [12] or
Sr [13]). The underlying exchange interaction for these gates
has recently been experimentally demonstrated using bosonic
Rb atoms in a double-well optical lattice [14]. However, a ver-
ifiable entangling gate between an individual pair of trapped
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Fig. 1. The first three eigenstates of a single particle in a double-well potential for different well separations d.
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neutral atoms has not yet been demonstrated. Here, we provide
a detailed analysis of these operations as they may be carried
out using a pair of individually controlled atomic qubits trapped
via optical tweezers.

Our approach builds on disparate proposals and experiments
for preparing individual atoms from a Bose—Einstein conden-
sate [15-17], encoding qubits into long-lived electronic states,
coherently manipulating and transporting atoms using optical
tweezers [18, 19], and performing two-qubit operations on pairs
of atoms via collisional interactions [11, 14]. The combination
of these elements allows for the design of a tunable two-qubit
gate, which can create an arbitrary degree of entanglement be-
tween a pair of atoms. We also examine a scheme that exploits
symmetrization rules to produce Bell pairs via selective excita-
tion.

These entangling schemes may be realized using qubits stored
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in the electronic states of a pair of atoms trapped with move-
able optical tweezers. Trapping at a “magic wavelength” makes
the light shift potential state independent. Encoding in atomic
clock states — which are insensitive to fluctuations in the trap-
ping field — avoids dephasing and ensures qubit coherence dur-
ing the transport process. Unlike the case of a state-dependent
optical lattice, in which it is trivial to separate the atoms af-
ter interaction, we have state-independent potentials in which
the system’s dynamics determine the likelihood of the atoms
being separated into opposite wells. Under adiabatic condi-
tions, atom separation is guaranteed. We consider only the one-
dimensional case for simplicity. Multi-dimensional effects such
as trap-induced resonances cannot be captured by the one-
dimensional delta potential employed here [20] but could po-
tentially be used to enhance the atomic interaction further.

2. Hamiltonian for identical particles in separated tweezers

The Hamiltonian for two atoms with internal structure in a pair of optical dipole traps (a.k.a., “tweezers”) is given by,

2 2
H= Y {ﬁ V() + 52+ V. d) + 205018 xb)} ® lij)ijl (1)

2m
i,j=0,1

where x, and xy are the positions of atoms a and b, respectively, p, and py are similarly the momenta, a;; is the state-dependent
scattering length that depends on internal atomic states |i), and |j)p (using |ij) = |i)a®|j)b), w1 is the harmonic oscillation
frequency due to transverse confinement [21], and d is the time-dependent centre-to-centre distance between wells. For Yb, Sr, and
alkali atoms, one can usually choose a particular trap-laser wavelength (the “magic wavelength”) so that the light shift potential
becomes state-independent and each atom sees a double-well potential

2

—[x — 2 . 2
V(X, d) = _V() exXp [M] — V() exp [M]

202 202

Here, V,, > 0 is the depth of each Gaussian well and o2 is the variance.

The first three vibrational eigenstates of a single particle in this double-well potential are shown in Fig. 1 for varying d. In
general, the single-particle eigenstates are (VA ), [vB (@), |[vC(d)), ...} and d-dependence is assumed implicit (for example,
|2 = |¥A(d))) for notational simplicity. Note that as d increases, |*) and |1/®) become spatially delocalized and energetically
degenerate. Thus, when |d| > o we can write |/") = (JwA) — [vBY)/ V2 to represent a single particle localized in the ground
state of the left well, and similarly |yR) = (Jy?) + |¥B))/+/2 for the right well.

When a second particle is added to the double-well potential, the interaction term in the Hamiltonian may be treated as a
perturbation. Accordingly, the new two-particle eigenstates may be written as a sum of perturbed tensor products of one-particle
states. We will use a tilde to denote the perturbation to the terms composing the new symmetrized eigenstates. For a repulsive
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interaction between atoms (a;; > 0), the first six two-particle eigenstates are (see Fig. 2a),

d=0 d>o
By B) l(|z/waC> +[WCYA) — [YByYD) — |y DyB)) (3a)
1 1
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1 1 ——
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States that are antisymmetric under exchange are not affected by the interaction at any separation and the tildes have been
intentionally omitted from these states. States with atoms in opposite traps (for example, 3a, 3 f) are obviously not affected by the
interaction in the limit d — oo. Note that there is the usual on-site interaction penalty for putting two atoms in same trap, resulting
in an energy splitting at d >> o between states having atoms in opposite traps (3¢, 3 f) and those having atoms in the same trap
(3¢, 3d), as shown in Fig. 2a.

In case of attractive interaction (a;; < 0), the eigenstates are (see Fig. 2b),

d=0 d>»o
%(IWW/C) — Yyt %(WWQ L a)) (4a)
YBYE) s SUYAVO + YR + 19BYD) + [y DyB)) (4b)
%(WMC) LAY s %(WWM Ry 40)
%(WWB) N R %(Wﬁzf‘ﬂ — Ryt (4d)
%mﬁﬁ)wﬁtﬁ» — %(IW)—IW)) (4e)
VAVA) %(IW) + [WRYR) 4

The order of states in (4) is different from (3), since states with atoms in the same trap now posses a lower energy due to the
attractive interaction.

Until this point we have neglected the internal structure of the particles (i.e., the qubits). The eigenstates of the full Hamiltonian (1)
are tensor products of the vibrational wave functions and the symmetrized qubit states. For bosonic atoms, permissible eigenstates
are tensor products of external (i.e., vibrational) and internal (i.e., qubit) states of the same symmetry. Thus, antisymmetrized
spatial wave functions are permitted for a pair of composite bosons, so long as their internal structure is also antisymmetric.

We solve the Hamitonian (1) numerically for individual internal states. Examples of two-atom energy spectra as a function of
well separation are plotted in Fig. 2 for positive and negative interaction strengths a;;. We define E ";) (d) to be the energy of the nth

two-atom vibrational eigenstate with two-qubit internal state |) at well separation d. For example, the energy of [ Ay A)®|11)
is E |(1)1> (d). As we have already discussed, not all combinations of n and |¢) are possible. For example, E \(31:—) (d) is forbidden for
identical bosons. This reduction of the size of the Hilbert space makes it possible to perform quantum gates adiabatically without
losing coherence due to energetic degeneracies. Furthermore, the Hamiltonian’s inherent particle and parity symmetries lead to
selection rules that further enhance the fidelity of two-qubit operations.

3. Universal entangling gate

As shown by Hayes et al. [11], it is possible to exploit these symmetries to produce a two-qubit entangling operation. We begin
with a pair of identical atoms localized to opposite wells of the double-well Hamiltonian (1) in the far-separated case (d > o).
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Fig. 2. Adiabatic energy levels as a function of well separation d for (a) a;; = 0.1¢ and (b) a;; = —0.10. Well separation is in units
of o. Energies are in units of hw,, where w, is the harmonic oscillation frequency of one atom in the ground state of a single well.
Symmetric vibrational eigenstates are shown as continuous lines, antisymmetric as broken lines. Eigenstates for (a) and (b) are given
by (3) and (4), respectively. Notice that crossings between oppositely symmetrized states are unavoided because the Hamiltonian is
symmetric.
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We prepare the qubit on the left in the state |¢%) = («|0) + B|1)) and the qubit on the right in the state |@#) = (u|0) 4+ v|1)). The
initial wave function |;), written as a tensor product of external and internal states, is then

1
) = 5 (WH9R) @160") + 1WRYh) @ loe™) 5)
Using |W#) = Lz(|01) + [10)), we rewrite (5) to make the symmetrization explicit

N (1 LRy (R L av —pu LR\ L RL ap av+ B, By
i = (™) — 1wty >)®( | ))+(beLwRleRt/fL))@<ﬁ|00>+—2 v >+ﬁ|u>) (©)

As the wells are brought together and separated adiabatically, the external states evolve according to Fig. 2. That is, each vibrational
eigenstate at d > o evolves continuously into its respective eigenstate at d = 0. As d decreases, the degeneracies between

symmetric and antisymmetric eigenstates are lifted, resulting in a dynamic phase difference between (1/ fz)(wLwR) + [y RyLY)
and (1/ «/5)(|1prR) — |y Ryby), corresponding to the difference in respective energy curves (see energy curves 3e and 3 f in
Fig. 2a, or 4c and 4d in Fig. 2b). Furthermore, degeneracies between the even two-qubit states {|00), [11), %)} are removed if
the interaction strengths a;; differ, which is usually the case. This state-dependent interaction results in additional phase differences
between qubit states of the same symmetry [22]. Thus, each joint internal and external state acquires a unique phase, and the final
state |vf) upon reseparating the wells is,

(1L Ry R L av — B g o LR AL —igoo
) = (1™ - v w>)®( —he v >)+(|¢L¢R>+|¢R¢L>)®<ﬁe 100}

n Otvv;ﬂue

T ppty 4 %e—""’“ 11 >) 7)

For positive scattering lengths, the phases are given by,

_ 1 It 0 . 1 tf %$%
¢jj = ﬁ/z Ejj;y(d@)dr and ¢i = 7—1/[ Eyx, (d(2)) dt 8)

Equation (7) is also valid for negative scattering lengths, although different phases will be acquired since

L
V2

is not the vibrational ground state when a;; < 0.

(BAEE)
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Clearly, this evolution can be thought of as the identity acting on the vibrational subsystem tensored with a unitary U acting on
the qubit subsystem. Thus, we can discard the vibrational terms and examine the unitary evolution of the qubit subsystem by itself.

Using matrix notation,

we can write U as,

2e~i%0 0 0 0
U N 1 0 efl¢+ +efi¢* efid)#» _efiqb* 0
2 0 et —eTid-  oi¢+ L emif- 0
0 0 0 2e~io1
e~ 0 0 0
0 e ib+ 0 0 ¥
=T 0 0 it 0 T', where
0 0 0 e~iPn

This entangling operation is diagonal in the partial Bell ba-
sis {|00), [W*), [11)}. As noted in ref. 11, even if the interac-
tion strengths are state independent, the singlet state |‘11_) ac-
quires a phase different from the triplet states (except in the
limit as a;; — =00, when the gate is no longer feasible).
State-dependent traps or atomic interactions generally result
in state-dependent interactions with the environment as well,
making the qubits more sensitive to noise. Avoiding this state
dependence leads to the inherent robustness observed in initial
experiments [14], as compared to earlier experiments wherein
gate fidelities were severely limited because of dephasing due
to state-dependent traps [5]. Furthermore, this gate works for
a wide range of positive scattering lengths, as we show else-
where [22]. This is especially important for experiments em-
ploying atomic species with unknown or approximately known
scattering lengths (for example, Yb or Sr).

A “controlled phase” gate (i.e., e ~*7I1D{11l) in the computa-
tional basis can be obtained by combining single qubit phase
gates S(0) = eVl with a pair of U gates

G=U(S(m)®S0)U

e Zid0o 0 0 0

0 e~ i (P++0-) 0 0

= 0 0 _e—i@r+oo) 0
0 0 0 e 2ion

(1D

G is locally equivalent to the “tunable controlled-phase” gate
e~V subject to the constraint

1
¢00+¢11—¢+—¢_=<2n:|:5) y, VYneZ (12)

While a simple controlled-phase gate is itself a universal
entangling gate, many quantum algorithms (for example, the
quantum Fourier transform) can be performed more efficiently
when tunable controlled-phase gates are available. Here, the
value of y can be easily tuned, simply by adjusting the speed
at which the optical tweezers are combined and separated. The

®)

_Sk-e
- o oo

(10)

o O O =
SRR
=l

inherent robustness and easy tunability of this gate make it a
highly desirable one for quantum-information processing.

4. Alternative entanglement preparation

For some quantum-information-processing applications, uni-
versal entangling gates are not necessary and an ability to pre-
pare entangled pairs will suffice. Atomic quantum repeaters
based on entanglement swapping [23] provide an example of
one such application. We next examine a scheme that uses sym-
metrization requirements and a selective excitation to produce
Bell pairs.

We begin with two bosonic atoms in the ground state of a
single well, both with internal state |0). The energy of this state
is E |%0> (0). It is then possible to perform a coherent transition,

selectively exciting to the eigenstate with energy Eloqﬁ)(O). It
the interaction for atomic qubits in the state |W™) is signif-
icantly different than that of |11), one can deterministically
excite only to the |¥T) qubit eigenstate, since the state |11) is
off-resonant and the overall state must remain symmetric. An
excitation to the antisymmetric state |¥ ™) is not possible as
long as the two atoms are in the symmetric vibrational ground
state. Thus, any initial population in antisymmetric vibrational
states (for example, due to heating) must be avoided to keep
the fidelity of entanglement generation high. Furthermore, the
vibrational spacing and sidebands due to the interaction energy
must be spectroscopically resolvable. With typical vibrational
energies on the order of kHz and on-site interaction shifts of
close to 100 Hz (dependent on atomic species but tunable by
the tightness of traps), this selective excitation process is gener-
ally slow, but nevertheless viable. The final state after separating
the atoms adiabatically is

1 —_~— —_~—
Whinat) = 5 (Il/leﬂR)-i-WRlﬁL)) ® (|01)+]10)) 13)
This operation provides a novel way of creating Bell states

deterministically, but does not constitute a universal two-qubit
entangling gate. It does, however, allow for fundamental tests

© 2008 NRC Canada



554

Can. J. Phys. Vol. 86, 2008

Fig. 3. Snapshots of the magnitude of the two-atom vibrational wave function (||/)| = ||V (xa, Xb, 1))|) as a function of the position
of each atom. Plot (a) shows the initial wave function, |V,) = (IW) + IW)) / V2. Plots (b—d) show the wave function after
the wells have been brought together and separated. Initial conditions are the same for all figures, and only the well speed (in units of
v, = how?,/V,) is varied. The resulting vibrational state fidelities f = [{¥in|¥r)|? are as follows: (b) v & 0.01v,, f = 0.9997.

(¢) v~ 0.1v,, f =0.491. (d) v~ v,, f =0.002.

0.08

0.04

of quantum mechanics and Bell-inequality violations, as well
as basic quantum-information processing and communication
tasks.

5. Speed constraints for adiabaticity

An approximation to the general adiabaticity criterion is given
in [24]:

y
‘“'3_7'“ < hed, Y la) £ |b) (14)

where wyp = min(|Ep(t) — E,(t)| /k) and where |a) and |b)
are time-dependent eigenstates of an arbitrary Hamiltonian.
Since our specific Hamiltonian is invariant under exchanges
of both symmetry and parity, transitions between vibrational
states of different symmetry or parity are suppressed. Thus, in
our case wyy is determined by the energy gap of the two closest
states having both equal symmetry and parity. This restriction
contributes significantly to the robustness of this gate. Since
only the double-well potential is time dependent, the left side
of the equation reduces to |0V (x, d(¢))/d¢|. Assuming constant

0.08 v ,f

0.04

v and maximizing |0V (x, d(t))/dt| with respect to x, we obtain
the adiabaticity criterion

2
ho w?,

v <K (15)

o

Time-dependent numerical simulations confirm the validity
of this simple criterion over a wide range of values of V,, and
a;j (including a;; < 0). Plots of the two-particle wave function
comparing adiabatic and nonadiabatic evolutions are shown in
Fig. 3. Under adiabatic conditions, we recover both atoms in
separate wells. Under nonadiabatic conditions both atoms may
end up in the same well with nonnegligible probability, result-
ing in an erroneous gate. However, time-dependent simulations
have also shown significant revivals, with both atoms ending up
in opposite wells with large probability even under nonadiabatic
conditions. This suggests the very real possibility of producing
a fast, coherent, nonadiabatic gate via optimal control.

6. Conclusion

In summary, we have proposed two schemes for preparing
pairs of entangled atoms. We have shown it possible to construct
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a tunable universal entangling gate via the exchange interaction
between identical bosons, promising high-fidelity operation for
positive (repulsive) and even negative (attractive) interaction
strengths. This is of particular importance for quantum infor-
mation processing applications that use novel species of atoms,
such at Group II-like atoms (for example, Yb and Sr) [22], for
which the collisional interaction parameters are partially un-
known. In addition, we have introduced a novel entanglement
scheme allowing the creation of Bell pairs. This scheme could
prove useful for quantum communication schemes and funda-
mental tests of quantum mechanics. The use of this entangle-
ment operation for Group II-like atoms and its application to
fundamental tests of quantum mechanics are studied in detail
in other work [22].
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