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We construct a scheme for the preparation, pairwise entanglement via exchange interaction, manipulation,
and measurement of individual group-II-like neutral atoms �Yb, Sr, etc.�. Group-II-like atoms proffer important
advantages over alkali metals, including long-lived optical-transition qubits that enable fast manipulation and
measurement. Our scheme provides a promising approach for producing weighted graph states, entangled
resources for quantum communication, and possible application to fundamental tests of Bell inequalities that
close both detection and locality loopholes.
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I. INTRODUCTION

Entanglement is a vital resource for most quantum infor-
mation processing �QIP� tasks, including long-distance quan-
tum communication �1�, teleportation-based quantum com-
putation �2,3�, and one-way quantum computation �1WQC�
�4�. An underappreciated but crucial aspect of QIP is the
need for speed of single-qubit operations, to enable applica-
tions including synchronization of quantum communication
networks, measurement and feedforward in 1WQC, and tests
of local realism. For example, in 1WQC, the processor speed
primarily depends on the time needed for measurement and
feedforward, whereas the entanglement operation may be
slow and accomplished simultaneously before commence-
ment of the computation. In atomic systems, single-qubit
fluorescence measurements are limited to microseconds due
to auxiliary state lifetimes, and in alkali metals single-qubit
rotation times are hampered by the gigahertz spectroscopic
separations of hyperfine states. In this work, we overcome
these obstacles by encoding in long-lived optical clock tran-
sitions �e.g., 1S0↔ 3P0� of group-II-like neutral atoms, with-
out sacrificing the advantages of other atomic schemes.
Group-II-like atoms such as Yb and Sr have long been con-
sidered for atomic clocks and much recent experimental and
theoretical effort has been dedicated to this group of atoms
�5–12�. The recent cooling of Yb into a Bose-Einstein con-
densate �BEC� �9� and the ongoing study of interactions �12�
make Yb an especially tantalizing candidate for atomic qu-
bits. Our approach for entanglement and measurement of
group-II atoms offers promising techniques for the high-
speed synchronization needed for quantum communication
and computing, and also for the near-term violation of a Bell
inequality in a single laboratory, without any assumptions
about signaling, sampling, or enhancement �13–16�.

Significant experimental progress has been achieved to-
ward entangling atoms in optical lattices �17�, which could
lead to the creation of an initial state for 1WQC. Here we
take a complementary approach, considering the entangle-
ment of individual pairs of atoms on demand, comparable to

other addressable neutral atom architectures �18�. Rather
than creating a generic cluster state, we propose the creation
of computation-tailored weighted graph states as a resource
for 1WQC and other QIP tasks. Our technique combines ef-
forts to prepare individual atomic qubits from a BEC �19�,
coherently manipulate and transport atoms �20,21� using op-
tical tweezers at a “magic wavelength,” entangle atoms via
an inherently robust exchange interaction �22,23�, rotate
single qubits via a three-photon optical dipole transition �10�,
and perform fast ��nanosecond� measurements via reso-
nantly enhanced multiphoton ionization �REMPI�. A
“loophole-free” Bell inequality test imposes stringent re-
quirements on detector separation �15� and efficiency �see,
e.g., the experimental work in �16,24��, and presents an en-
ticing testbed for fast measurements with applications to QIP.
We study the limits of fast measurement for encoding in the
optical clock states of Yb and Sr, which can be resolved
spectroscopically and measured on a �10 ns time scale,
thereby admitting spacelike separation over a few meters �as
opposed to large spatial separations considered in �24��. We
show that such Bell tests in a single laboratory should be
feasible via a detailed theoretical analysis accompanied by
comprehensive numerical simulations.

II. QUBIT PREPARATION AND TRANSPORT

Clock transitions in ions have been considered for effec-
tively encoding qubits for ion trap quantum computing due
to extremely low decoherence rates �25,26�. Similarly, in the
case of neutral atoms, optical clock transitions in alkaline-
earth-metal and group-II-like atoms are appealing candidates
for encoding qubits. Single atoms have been experimentally
isolated �19� and transported in optical dipole traps �20,21�.
By trapping at a magic wavelength �7,8�, the light shift po-
tential is made effectively state independent, ensuring phase
stability of the qubits for several seconds. For example, for
the clock states of Sr, the light shift dependencies on the trap
laser frequency � differ by d� /d�=2.3�10−10 �7�. Therefore
light shift fluctuations can be kept to less than 0.1 Hz by
using a trap laser with linewidth of 100 MHz. Furthermore,
the magic wavelength at 813.5 nm �easily accessible using
commercial lasers� is far detuned from the excited states so*restock@physics.utoronto.ca
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that photon scattering rates are on the order of 10 s for trap
light intensities of 10 kW /cm2 �7�. This ensures a coherence
time of 10 s or more for trapping and transporting atoms.

III. ENTANGLING OPERATION

We devise a universal entangling operation for bosons,
analogous to the recently proposed fermionic spin-exchange
gate �22�. This gate is based on the exchange interaction
recently demonstrated for bosonic Rb atoms in a double-well
optical lattice �23�. Because of inherent symmetrization re-
quirements, gates based on this exchange interaction offer a
natural resistance to errors and greater flexibility for encod-
ing atoms, thereby enabling an entangling operation even for
atoms with interaction strengths that are state independent
�e.g., Rb �23�� or partially unknown, as is the case for most
group-II-like atoms �e.g., Yb �12��.

The entangling operation is achieved by temporarily
bringing together a pair of atomic qubits via mobile optical
tweezers. Unlike state-dependent optical traps wherein atoms
are trivially separated into opposite wells after interaction,
we have state-independent traps in which the dynamics of
the system generally determine the likelihood of a successful
separation. However, under adiabatic conditions the atoms
definitely end up in opposite wells. We assume a strong con-
finement to one dimension �1D� by higher-order Hermite
Gaussian beams according to �19�. All the essential physics
is captured in the 1D model we employ here, although per-
formance could conceivably be enhanced by exploiting mul-
tidimensional effects such as trap-induced resonances �27�.

The Hamiltonian for two trapped atoms a and b with in-
ternal structure ��i�a , �j�b� ��0� , �1�	� is given by

H = 

i,j=0,1

�Ha + Hb + 2aij�����xa − xb�� � �ij��ij� �1�

for Ha,b� pa,b
2 /2m+V�xa,b−d /2�+V�xa,b+d /2�, with xa,b and

pa,b the position and momentum of atom a or b. The tweezer
potential V�x�=−V0 exp�−x2 /2�2� describes a Gaussian trap
of depth V0 and variance �2. The two wells are separated by
a distance d, �� is the harmonic oscillation frequency of the
transverse confinement �28�, and aij is the state-dependent
scattering length for the two-qubit states �ij���i�a � �j�b. We
numerically solve the Hamiltonian dynamics of individual
qubit states using a split-operator method. Two-atom energy
spectra are plotted as a function of well separation �Fig. 1�
for different interaction strengths.

Due to symmetrization requirements, not all combinations
of vibrational and qubit states are allowed. For example, a
pair of composite bosons cannot share the ground state if the
qubits are in the antisymmetric state �	−�, defining �	
�
���01�
 �10��
2. As in the fermionic case �22�, it is possible
to exploit these symmetrization requirements in order to pro-
duce a two-qubit entangling operation for bosonic atoms �see
�29� for details�. Consider a pair of identical bosons, one
localized in the left trap ���L�� and carrying a qubit in the
state ��
�=
�0�+��1�, the other in the right trap ���R�� and
carrying a qubit in the state ����=��0�+��1�. The initial
symmetrized wave function �as a tensor product of vibra-
tional and qubit states� is then ��i�= ���L�R� � ��
���
+ ��R�L� � ����
�� /
2.

As the wells are brought together and separated adiabati-
cally, the energies evolve as shown in Fig. 1, and each two-
qubit state �00�, �11�, and �	
� acquires a phase �00, �11, and
�
, depending on its respective energy curve. Adiabaticity
can be satisfied even for negative scattering lengths, since
transitions between vibrational states of different symmetry
or parity are suppressed. For constant tweezer speed v, the
adiabaticity criterion is v����ab

2 /V0. Here, ��ab is the en-
ergy difference between any coupled states. Time-dependent
numerical simulations confirm the validity of the adiabatic
approximation over a wide range of values of V0 and aij �29�.
The final state after an adiabatic change of separation is

��f� = ��−� � �
� − ��


2
e−i�−�	−�� + ��+� � �
�e−i�00�00�

+ ��e−i�11�11� +

� + ��


2
e−i�+�	+�� , �2�

using ��
�����L�R�
 ��R�L�� /
2.
Evidently this process corresponds to a tensor product of

the identity acting on the vibrational state and a unitary U
acting on the qubit state. Thus, the internal qubit evolution
simplifies to

U = e−i�00�00��00� +
e−i�+ + e−i�−

2
��01��01� + �10��10��

+
e−i�+ − e−i�−

2
��01��10� + �10��01�� + e−i�11�11��11� .

�3�

As in �30�, a controlled-phase gate can be obtained even if
�+��− by sandwiching a single-qubit phase gate between a
pair of U operations. That is, G�U�S��� � S�0��U for S���
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FIG. 1. �Color online� Adiabatic energy levels as a function of
well separation. Energies are measured in units of ��0, where �0 is
the harmonic oscillation frequency of one atom in a single well. �a�
Lowest six energy levels for aij =0.1�. Energy levels correspond to
symmetric or antisymmetric external eigenstates. The antisymmet-
ric curves �red� are the lower of the two curves at E�−7��0 and
the lowest of the three curves at E�−5.8��0 for d=0. �b� Lowest
two levels of �a� for different scattering lengths. The lowest three
energy curves �from bottom to top� correspond to aij =0, 0.1�, and
� and asymptote to the antisymmetric �topmost� curve for infinite
aij. The antisymmetric eigenstates are not affected by the interaction
and hence the topmost �red� curve does not shift for different aij.
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=exp�i��1��1��. Thus defined, G is locally equivalent to
exp�−i��11��11�� if

�00 + �11 − �+ − �− = �2n 

1

2
��, ∀ n � Z . �4�

As shown in Eq. �2�, the phases critical to this entangling
operation are acquired in a nonseparable basis. This leads to
the inherent robustness observed in initial experiments �23�.
In standard schemes, the important nonseparable phase is
usually acquired due to the internal state dependence of the
interaction strengths aij. In the case of this exchange-
symmetry-based gate, however, there always is an energy
gap between symmetric and antisymmetric curves. The sin-
glet state �	−� therefore acquires a phase different from the
triplet states even if the interaction strengths are state inde-
pendent �except as aij→ 
��. This substantial phase differ-
ence enables the exchange gate to operate faster than stan-
dard collisional gates that rely on the difference in aij.
Furthermore, this gate works over a large range of scattering
lengths �see Fig. 1�b��, which is especially important when
designing experiments for atomic species with any currently
unknown scattering lengths �e.g., Yb or Sr�. Current studies
of Yb interactions �12� already promise a wide applicability
of this entanglement gate for different isotopes. �For 168Yb,
a00�13 nm and for 174Yb, a00�5.6 nm. a01 and a11 are not
yet known.�

IV. SINGLE-QUBIT ROTATION AND MEASUREMENT

Recent attempts to cool and trap neutral Yb and Sr have
been very successful, and we therefore consider them prima-
rily. Optical clock states in Yb and Sr have extremely low
decoherence rates, due to the fact that electric dipole one-
and two-photon transitions between 1S0 and 3P0 states are
dipole and parity forbidden, respectively �see Figs. 2�a� and
3�a� for energy levels and transition wavelengths�. While af-
fording long lifetimes, the selection rules also present a sig-
nificant challenge to fast coherent manipulation and mea-
surement of qubits. To overcome this challenge, we employ a
coherent three-photon transition to perform single-qubit op-
erations, utilizing the excited 3S1 and 3P1 states �10�. The
three transitions 1S0→ 3P1, 3P1→ 3S1, and 3S1→ 3P0 are
electric-dipole allowed �see �5,6� for transition matrix ele-
ments�. Because three beams can always be arranged in a
plane such that the transferred recoil cancels, this three-
photon transition has the benefit of being recoil-free �10�.
For Sr, the need for three lasers may be reduced to two, as
explained below.

We model this three-photon transition by a master equa-
tion using the Liouvillian matrix given in �10�. Its fidelity is
limited by the short-lived intermediate 3S1 state, which de-
cays primarily to the 3P1 state. The fast coherent rotation of
qubits is followed by the fast readout of the 3P0 state via
REMPI on a nanosecond or even picosecond time scale. Re-
using the 3S1 excited state, photoionization can then be ac-
complished in a two-step process. An on-resonant 3P0 to 3S1
transition is followed by a final ionization step at �
�563 nm for Yb and ��592 nm for Sr. The main errors in

this readout scheme are due to population in the 3P1 to 3S1
states. During readout, any population in 3P0 and 3S1 will be
counted as logical �1� �ionized�. Population in 1S0 and 3P1
will be counted as logical �0� �not ionized�.

The case of Sr is particularly interesting: the transitions
1S0→ 3P1 and 3P1→ 3S1 are close in energy difference �689
and 688 nm, respectively� so that a resonant two-photon
transition 1S0→ 3S1 utilizing a single laser is possible. This
reduces the laser requirement from three to two. Figure 2�b�
shows fidelities for qubit rotation for wavelengths in the
range 688–689.5 nm. The time for a � rotation is minimized
by tuning to 688.7 nm. Figure 2�c� shows the fidelity and
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FIG. 2. �Color online� �a� Energy levels of Sr and three-photon
transition for manipulation of the qubit encoded in 1S0 and 3P0. �b�
Minimum fidelity Fmin of single-qubit operation in Sr �solid red
line� and time scale for � pulse �dashed blue line� as a function of
�1 �=�3� using a peak laser pulse irradiance of 109 W /cm2. �2 is
determined by the on-resonance condition for the three-photon tran-
sition. �c� Minimum fidelity Fmin of single-qubit operation �solid
red line� and time scale for � pulse �dashed blue line� as a function
of laser irradiance Ipeak. Detuning is fixed to �1=688.7 nm. �d�
Resulting expectation value of the Bell operator �B� and threshold
for a local hidden variable model �solid black line�.
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FIG. 3. �Color online� �a� Energy levels of Yb and three-photon
transition for manipulation of the qubit encoded in 1S0 and 3P0. �b�
Expectation value of the Bell operator for imperfect single-qubit
rotations in Yb as a function of timescale of the measurement for
Ipeak=109 W /cm2.
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time scales for a � rotation as a function of laser powers. For
fairly realistic mode-locked laser powers, 109 W /cm2

�roughly 1 kW pulse peak power focused onto 100 �m2�,
rotations within a few nanoseconds are possible with better
than 90% fidelity. Higher fidelities of 99.99% can be reached
for the same detuning by using lower laser powers of
106 W /cm2.

V. TESTS OF LOCAL REALISM

We show the efficacy of our fast measurement scheme by
applying it to a test of local realism. This is expressed in the
usual Clauser-Horne-Shimony-Holt �CHSH� form �13�,

�B� = �QS� + �RS� + �RT� − �QT� � 2, �5�

for local realistic theories, whereas Tsirelson’s quantum up-
per bound is 2
2. For a �	+� entangled state, the quantum
bound is saturated for Q=Z, R=X, S= �X−Z� /
2, and T
= �X+Z� /
2, with X, Y, Z the Pauli operators. These mea-
surements are obtained via basis rotations R���
=exp�+i�Y /2� applied to the state, followed by measure-
ments in the z basis. This corresponds to measurements of
the form Q=UQ

† ZUQ with UQ=1, UR=R�� /2�, US
=R�3� /4�, and UT=R�� /4�.

Inequality �5� is tested by first preparing an entangled Bell
state via a controlled phase gate as discussed above, then
separating the atoms by a few meters. In a far-off-resonance,
magic wavelength trap, qubit coherence times are on the or-
der of 10 s or longer. For accelerations of 200 mm /s2 or
faster �21�, separations of a few meters should be feasible. At
this distance, synchronous measurements on a nanosecond
time scale are required to ensure spacelike separation. Within
this time window, the measurement basis is chosen ran-
domly, qubits are rotated to reflect the choice of measure-
ment basis, and qubit states are measured in the computa-
tional basis using REMPI. Fast random basis selection can
be accomplished by using a light-emitting diode �LED� as in
�15�. The time necessary for this random basis selection can
be minimized �e.g., by using shorter signal paths and
custom-built electro-optic modulators �EOMs�� to ensure ba-
sis selection times of less than 10 ns. Rotation of the mea-
surement basis is achieved via a coherent coupling of the

qubit states via three-photon Raman transitions. The pres-
ence of the ion �i.e., the freed electron� will be detected via a
single-channel electron multiplier with above 99% efficiency
�31�.

As in a typical single-channel experiment �16�, the mea-
surement outcome can be only “ion”��1� or “no ion”��0�.
No data are discarded, and no assumptions are made about
“fair sampling” �13� or “enhancement” �14�. Loss of an atom
will result in a “no ion”��0� count, which reduces the degree
of Bell inequality violation but does not open any loopholes.
High transport and detector efficiencies are necessary to en-
sure that a violation occurs. A calculation of the CHSH-type
Bell inequality violation �13�, including errors in rotation and
ionization readout, is shown in Fig. 2�d� for Sr and Fig. 3�b�
for Yb. To achieve an average value of the Bell operator
larger than 2, as required for a violation, measurements on a
time scale of a few nanoseconds �including signal processing
times� should be possible with either atomic species.

VI. CONCLUSIONS

We propose schemes for fast recoil-free manipulation and
measurement of qubits in Sr or Yb, and discuss an entangling
operation for identical bosons in optical tweezers based on
the exchange interaction first discussed for fermions in �22�.
We furthermore show that it is possible to simultaneously
close both spacelike separation and detection loopholes for
group-II-like atomic qubits separated on only a laboratory
scale. This lays the groundwork for future exploration of
measurement-based computation. Finally, our work identifies
major challenges and provides concrete guidelines for ex-
periments utilizing bosonic Yb or Sr for quantum informa-
tion processing applications.
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