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Abstract. We study experimentally quantum effects in atomic motion for a classically chaotic

regime. A standing wave is pulsed on periodically in time, and the resulting atomic momentum
is measured. Momentum grows diffusively until the quantum break time, after which dynamical
localization is observed. Quantum resonances are observed for certain pulse durations.

1. Introduction

The study of quantum systems that are classically chaotic has been a topic of active
research in recent years. Examples include atoms in strong fields [1, 2], electrons in a one-
dimensional metal [3], scattering of electrons in mesoscopic structures [4], and molecular
excitation [5]. The paradigm theoretical system in this field has been the quarkicked

rotor (QKR), and a broad range of universal effects have been predicted in this model. In this
paper we report the first direct experimental realization of the QKR [6], and the observation
of dynamical localization, which is a key prediction of the theory. Our system consists of
laser-cooled sodium atoms that are exposed to a one-dimensional periodic potential formed
by a standing wave of near-resonant light. The standing wave is pulsed on periodically in
time with the duration of the pulse much shorter than the period between pulses, and atomic
momentum is measured as a function of interaction time and the pulse period. We observe
diffusive growth of energy until a ‘quantum break time’ after which dynamical localization
sets in [6-8]. We also observe ‘quantum resonances’ when the pulse period is a multiple of
the natural period. The conceptual simplicity of this system and the high degree of control
over the interaction potential make it an ideal testing ground for the field of quantum chaos.

2. Model system

We begin with a two-level atom interacting with a near-resonant laser beam. If the atom is
excited into the upper state, it will then spontaneously emit a photon and the atomic recoil
will be in a random direction. When the laser is sufficiently detuned from resonance, a
coherent scattering process dominates over the absorption and spontaneous emission. This
coherent scattering occurs along the direction of the beam. In a standing wave of light
formed from two counterpropagating laser beams, scattering from one beam into the other
leads to a two-photon recoil, which corresponds to a velocity change of 6 trfos

sodium atoms. In this limit, the atom remains in the (internal) ground state, and changes
its momentum in units of two recoils. This system is described by a one-dimensional
Hamiltonian

H = p?/2M — V(1) cos[Z.x — ¢ (1)] @)
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Figure 1. lllustration of the experimental set-up. Sodium atoms are trapped and cooled in a
MOT. The trapping beams are then turned off, and a second, detuned laser is turned on in a
train of short pulses. The intensity is controlled with the AOM, the beam is spatially filtered,
overlapped with the atoms and retroreflected from a mirror to form a standing wave. The pulse
sequence is shown as an inset in the figure. The pulse duration is 110 ns and the period between
pulses is 158 us for this trace. These are the pulse parameters used in all the figures shown.

whereV () is the AC Stark shift [9] that is proportional to the laser intensity and inversely
proportional to the detuning of the laser from atomic resonancekatglthe wavenumber.
The period of this potential is half the laser wavelength. We consider the general case where
the amplitudeV (¢), and phaseg(z), are time dependent.

Our first measurements of momentum transfer in a time-dependent potential were done
with a periodically modulated standing wave. In this case the Hamiltonian had the following
form [8]:

H = p?/2M — V cos[X. (x — AL sinw,1)] . (2)

The standing wave’s position is modulated at a frequengywith an amplitudeAL. This
Hamiltonian describes a periodically driven pendulum. Although this system can be locally
described by the QKR, for the regime that is most easily accessible experimentally, it has
the complication of island structure in the classical phase space associated with zeros of
Bessel functions [10, 11]. Dynamical localization was predicted for this system in a regime
that is predominantly chaotic (classically), and was observed in our experiments [10].

To obtain a more direct experimental realization of the QKR we pulse the standing wave
on periodically in time, instead of modulating the phase. This system is described by the
Hamiltonian

H = p?/2M — Vf(t) co2k, x) (3)

where f(¢) is a sequence aV pulses with period” and durationz, as shown in figure 1.

A similar model was previously proposed for rotational excitation of diatomic molecules
[5]. For small momenta, motion across the standing wave potential (while the pulse is
on) is negligible. This results in an integrated impulse which is the same as that due to a
delta function, and can be directly compared with the QKR stochasticity paramet&r
classical phase portrait for this Hamiltonian (figure 2) exhibits global chaos for momenta
in a bounded regime. The boundary in this system is due to the fact that for large enough
atomic momenta the atom can move a significant portion of a well period, leading a smaller
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Figure 2. Classical phase portrait for the parameters of the experiment. The vertical axis is
momentum in units of two recoils. The horizontal axis is position in units of well period. For
momenta in the region-{6, 6] the impulse approximation is good and the system is nearly
identical to the classical kicked rotor. The effective stochasticity parametes=id1.6.

effective kick. The associated variation in the stochasticity parameter results in islands of
stability and KAM surfaces as the boundary is approached. By making the duration of the
pulse shorter, the delta-function approximation is valid for larger values of momenta. In
the work described here, the momentum remained localized in a regime which is far from
the boundary so that the variation in the impulse was small. In the quantized ncated,

p are operators satisfying the commutation relationg{] = —ik. In scaled dimensionless
units, ¢ = 2k, x, p = (2k, T/M) p, and the scaled Planck’s constant 8w, T wherew, is

the recoil frequencyd, /2r = 25 kHz for sodium).

3. Experimental results and discussion

To study this time-dependent interaction experimentally, there are three important
components: initial conditions, interaction potential and detection of momentum transfer.
A schematic of the experimental set-up is shown in figure 1. Our initial conditions are a
sample of ultra-cold sodium atoms which are trapped and laser-cooled in a magneto-optic
trap (MOT) [9]. The atoms are contained in an ultra-high vacuum glass envelope at room
temperature. The trap is formed using three pairs of counterpropagating, circularly polarized
laser beams (B cm beam diameter) which intersect in the middle of the glass envelope,
together with a magnetic field gradient which is provided by current-carrying wires arranged
in an anti-Helmholz configuration. These beams originate from a dye laser that is locked
20 MHz to the low-frequency (red) side of tl{8S;», F = 2) — (3P3/2, F = 3) sodium
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Figure 3. Two-dimensional atomic distributions after free expansiora) lfitial thermal
distribution with no interaction;h) localized distribution after interaction with the potential.

transition at 589 nm. Approximately $@Gtoms are trapped in a cloud which has an RMS
size of 012 mm, with an RMS momentum spread ob/k;. The interaction potential is
provided by a second dye laser that is tuned to 5 GHz red of the resonance. The output
of this laser is aligned through a fast acousto-optic modulator (25 ns rise time) which is
driven by a pulse generator. This device controls the laser intensity in time. The beam is
then spatially filtered to ensure a Gaussian intensity profile, and is centred on the atoms.
The beam is retro-reflected from a mirror outside the vacuum chamber to create a standing
wave.

The detection of momentum is accomplished by allowing the atoms to drift in the dark
for a controlled duration, after the interaction with the standing wave. Their motion is
‘frozen’ by turning on the optical trapping beams in zero magnetic field to form optical
molasses [9]. The position of the atoms is then recorded via their fluorescence signal on
a charged coupled device (CCD) and the time of flight is used to convert position into
momentum. The entire sequence of the experiment is computer controlled.

In figure 3, typical 2D images of atomic fluorescence are shown. In figapetl3¢ initial
MOT was released, and the motion was frozenraft@ msfree-drift time. This enables
a measurement of the initial momentum distribution. The distribution of momentum in
figure 3@) is Gaussian in both the horizontal and vertical directions. The vertical direction
is integrated to give a one-dimensional distribution as shown in figuake 4 figure 3p),
the atoms were exposed to a sequence of kicks along the horizontal axis which imparted
momentum in that direction. In that case the vertical distribution remains Gaussian, but the
horizontal distribution becomes exponentially localized due to the interaction potential, as
shown in figure 4§). The parameters for this case @&re-2.0 andx = 11.6.

By varying the number of kicks and measuring the resulting momentum distribution,
we have mapped out the evolution in time. We observe an initial growth in energy which
is linear in time corresponding to chaotic diffusion until a quantum break time after which
we observe dynamical localization. The experimental results are in good agreement with
no adjustable parameters with a direct integration of &tinger's equation, and with the
predictions for the quantum standard map [6,12]. The measured momentum distribution
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Figure 4. One-dimensional atomic momentum distributions. They were obtained by integrating
along the vertical axes of the 2D distributions in the previous figure. The horizontal axes are
in units of two recoils, and the vertical axes show fluorescence intensity on a logarithmic scale
(a) Initial thermal distribution with no interaction;b} localized distribution after interaction

with the potential. The exponential lineshape is clearly seen and is in close agreement with the
theoretically predicted localization length (straight line).

shown in figure 4f) is exponentially localized and the straight line shows the prediction
for dynamical localization in the kicked rotor [12]. This result is well within the quoted
10% error bar inc arising from uncertainty in absolute laser intensity calibration.

In the QKR there is a well defined period of kicks. The evolution can therefore be
separated into kicks with free propagation in between. When the kicking period is adjusted
so that the free evolution phasg?T /2R M, is a multiple of Zr, a unique situation occurs
that does not have a classical analogue. This condition is equivaldht®rn /4w, for
integern. We observe a dramatic change in the momentum distribution for integer and
half-integer values of: ranging from 05 to 5 in Q5 steps. The half-integer resonances
correspond to a quantum phasengfresulting in an alternating sign of adjacent kicks. The
momentum profile on resonance is substantiallyrower than the exponentially localized
distribution. This is considerably different from the textbook prediction and has been shown
to result from non-plane-wave initial conditions [13]. The observed quantum resonances
are in good agreement with the modified theoretical analysis [13].

4. Conclusion

We have shown that atom optics can be a simple testing ground for the field of quantum
chaos. In the work described here, a direct experimental realization of the quéukioked

rotor was reported. This work should open many new possible directions for future studies
of the role of quantum mechanics in driven systems.
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