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We propose a scheme that allows us to coherently extract cold atoms from a reservoir in a deterministic way.
The transfer is achieved by means of radiation pulses coupling two atomic states which are object to different
trapping conditions. A particular realization is proposed, where one state has zero magnetic moment and is
confined by a dipole trap, whereas the other state with nonvanishing magnetic moment is confined by a steep
microtrap potential. We show that in this setup a predetermined number of atoms can be transferred from a
reservoir, a Bose-Einstein condensate, into the collective quantum state of the steep trap with high efficiency in
the parameter regime of present experiments.
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I. INTRODUCTION

Recent experimental progress with ultracold atomic gases
has opened exciting directions in the study of many-body
systems, aiming at the full coherent control of structures of
increasing complexityf1g. Applications, like realizations of
quantum information protocols, are very promising and pres-
ently investigatedf1–6g. Moreover, these systems allow one
to study the frontiers between the quantum and classical
worlds f7g.

In this perspective increasing interest has lately been at-
tracted by the possibility of disposing single or a few cold
atoms by deterministic extraction from a reservoir, thereby
allowing one to control and manipulate them. This realiza-
tion of tweezers applied to quantum objects has been called
quantum tweezers. A recent proposal exploited tunneling
from a condensate to a moving quantum dot in order to re-
alize this scenariof8g.

In this work we discuss an implementation of quantum
tweezers, where trapping potentials, whose steepness de-
pends on the atomic magnetic moment, are coupled by
means of radiation. This procedure has been utilized for ma-
nipulating cold atomic cloudsf9,10g, and it has been pro-
posed for engineering collective states of atoms in optical
lattices f11g. Here, it is applied in order to coherently load
atoms from a condensate into a steep trap by suitably cou-
pling the atom electronic states. A sketch of the setup is
shown in Fig. 1 and can be summarized as follows. Atoms
are initially in a hyperfine state of zero magnetic moment,
which we denote byubl, where the atomic center of mass is
confined by a dipole trapf12g, and form a Bose-Einstein
condensatesBECd. The stateubl is coupled with radiation to
the hyperfine stateual, which has nonvanishing magnetic
moment and is subject to the steep potential of a magnetic
trap, like the ones implemented inf2,3,13–15g. The atoms
are selectively transferred by means of radiative coupling

between the condensate and a collective quantum state of the
tweezers. The two traps can be found in the same spatial
region and then coherently separated spatially after the trans-
fer has occurredf10,16g.

We investigate the dynamics and efficiency of quantum
tweezers using radiation and show that their efficiency for
transferring a certain number of atoms into the quantum state
of a trap can be larger than 99% for experimentally acces-
sible parameter regimesf17g. We study three implementa-
tions of atom transfer into the quantum tweezers:sid by
means of the adiabatic passage by adiabatically ramping the
radiation frequency across the resonancef18g, sii d by com-
bining adiabatic and diabatic passages by means of laser
pulsesf19g, and siii d by resonant coupling using pulses of
well-defined area. The various techniques are compared and
their efficiency is discussed in the parameter regime of ex-
periments with microtrapsf17g.

This article is organized as follows. In Sec. II the theoret-
ical model is introduced and the relevant parameters are
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FIG. 1. Extracting atoms on demand from a Bose-Einstein con-
densatesBECd: Atoms are transferred from the ground state of a
BEC, confined by the potentialVb, into the one- or two-atom
ground state of a steep potentialVa sthe tweezersd. The horizontal
lines indicate the corresponding energy levelssin arbitrary unitsd.
The transfer is implemented by radiative coupling the electronic
statesubl and ual, undergoing different trapping conditions. The
number of atoms transferred into the tweezers is controlled by spec-
trally resolving the energy splitting between the one- and two-atom
ground states of the tweezers.
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identified. In Sec. III the efficiency of the transfer for differ-
ent realizations of the radiation coupling between the two
hyperfine states is discussed. In Sec. IV the conclusions are
drawn and outlooks are discussed. In the Appendexes a de-
tailed analysis of the parameter regime, where the quantum
tweezers can be implemented, is presented.

II. THEORETICAL DESCRIPTION

We considerN ultracold atoms of massM whose relevant
internal degrees of freedom are the stable hyperfine statesual
and ubl. The atomic center of mass experiences at position
x=sx,y,zd a harmonic potentialVjsxd of the form

Vjsxd =
1

2
Msn jx

2 x2 + n jy
2 y2 + n jz

2 z2d, s1d

wheren jx, n jy, andn jz are the frequencies along each Carte-
sian direction andj =a,b labels the atomic state. The poten-
tial Vasxd is steeper thanVbsxd: namely, the frequencies
nax,nay,naz@minsnbx,nby,nbzd. At time t=0 the atoms are all
in the stateubl and constitute a Bose-Einstein condensate.
The aim is to coherently transfer a predetermined number of
atoms from the condensate, which acts as a reservoir, into a
collective quantum state of the atoms in the steep potential
Vasxd.

Transfer of atoms into the quantum tweezers is imple-
mented by suitably driving the statesual and ubl with radia-
tion pulses, which can be in the microwave or optical re-
gime, thereby implementing a Raman transition. Coherent
and selective transfer is achieved provided the radiation
pulses are sufficiently short, so that incoherent dynamics dur-
ing the interaction is negligible and sufficiently long to spec-
trally resolve a selected atomic transition. This latter state-
ment will be quantified in Sec. II B In the frame rotating at
laser frequency, the relevant dynamics describing the inter-
action of the atom with radiation is given by the Hamiltonian
H, which we write as

H = Ha + Hb + Hsc+ Hintstd. s2d

Here, the termsHa and Hb describe the dynamics of the
atom’s center of mass in the statesual and ubl, respectively,
and have the form

H j =E dxc j
†sxdF−

"2

2M
¹2 + VjsxdGc jsxd

+
1

2
gjj E dxc j

†sxdc j
†sxdc jsxdc jsxd, s3d

wherec jsxd fc j
†sxdg is the field operator annihilatingfcreat-

ingg an atom at positionx in the internal stateu jl, the term
gjj =4p"2ajj /M represents the interaction strength of two-
body collisions of atoms in the stateu jl, andajj denotes the
s-wave scattering lengths j =a,bd. Collisions between atoms
in different hyperfine states are described by the term

Hsc= gabE dxca
†sxdcb

†sxdcasxdcbsxd, s4d

wheregab=4p"2aab/M is the interaction strength, with the
s-wave scattering lengthaab for collisions between one atom
in state ual and one atom in stateubl. The coupling with
radiation is described by the time-dependent term

Hintstd = − "Dstd E dxca
†sxdcasxd

+
1

2
"VLstd E dxfca

†sxdcbsxd + H.c.g, s5d

whereVLstd is the real-valued Rabi frequency andDstd is the
detuning of the radiation at timet from the resonance fre-
quency of the transitionubl→ ual.

All atoms are initially in the internal stateubl and form a
condensate. We denote this collective state, the ground state
of Hb for N atoms, byu0l. By means of a radiation pulse a
number n of atoms swith n!Nd are transferred into the
lowest-energy state ofHa. We denote byunl the state of the
system after the transfer, corresponding toN−n atoms in the
ground state ofHb and n atoms in the ground state ofHa.
The efficiency of the procedure is measured by the probabil-
ity P0→nsTd, which corresponds to the probability at timeT,
at the end of the pulse, of findingn atoms in the ground state
of Ha. It is defined as

P0→nsTd = uknuUsTdu0lu2, s6d

with

UsTd = T expS 1

i"
E

0

T

dtHstdD s7d

and T indicates the time ordering. In Sec. III we describe
strategies of varying the coefficientsDstd andVLstd in Hint as
a function of time in order to achieve unit efficiency.

A. Basic assumptions and approximations

In order to study the dynamics and the efficiency of the
tweezers, we decompose the field operator in a convenient
basis. Here, we use the Fock decomposition of the field op-
eratorcasxd: namelyf20g,

casxd = o
nWa

fa
nWasxdanWa

, s8d

where nWa labels the excitations of the harmonic oscillator
with Hamiltonianp2/2M +Vasxd, fa

nWasxd is its wave function,
andanWa

is the field operator annihilating an atom in the cor-
responding stateunWal. We remark that the stateunWal describes
single-particle eigenstates; hence, they are not the eigenstates
of Ha when two or moresinteractingd atoms are inside the
tweezers. Nevertheless, in this case it still provides a plau-
sible ansatz for estimating the order of magnitude of the
physical parameters.

Since the number of atoms which are extracted from the
condensate is negligibly small compared withN, we replace
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the field operator for atoms in the hyperfine stateubl by a
scalar. Att=0 the atoms are assumed to be in the condensate
ground state with macroscopic wave functionfbsxd and
chemical potentialm. These quantities are assumed to be
constant and negligibly affected by the transfer of atoms into
the tweezers. The condensate is hence a reservoir of atoms at
given densitynbsxd=Nufbsxdu2. The condensateexcitations
are accounted for by theslow-energyd collective modes at
frequenciesvq, and the part of HamiltonianHb which may
limit the efficiency of the quantum tweezers takes the form
Hb=oq"vqbq

†bq, where bq and bq
† are the annihilation and

creation operators of a phonon of energy"vq. In addition,
the quantum tweezers overlap spatially with the condensate,
and collisions between the atom inside the tweezers and con-
densate, described by Eq.s4d, can be detrimental for the
coherence of the process. Their influence on thetweezers ef-
ficiency is discussed in Sec. II B. Below, we treat the Hamil-
tonian terms4d as a small perturbation, whose effect is to
introduce small shifts of the energy levels.

In the situations we consider the condensate ground state
is coupledsquasidresonantly with the ground state ofHa for
n atoms and one or two atoms at a time are transferred into
the steep potential. The states which are relevant to the dy-
namics are denoted byu0l, u1l, andu2l, corresponding to 0, 1,
and 2 atoms in the ground state of the quantum tweezers,
respectively. Their energy isEsnd=knuHunl with n=0,1,2.
By settingEs0d=0, they take the form

Esnd = Easnd + Escsnd − nm, s9d

whereEasnd is the energy ofn atoms in the ground state of
the HamiltonianHa andEscsnd is the interaction energy due
to the terms4d, while the term −nm accounts for the extrac-
tion of n atoms from the condensate. The explicit expres-
sions forEasnd andEscsnd are found from the overlap integral
between the condensate wave function and the wave function
describing the ground state ofHa for n atoms. We evaluate
them by approximating the latter with the wave function ofn
noninteracting atoms in the ground state of the oscillator and
find

Easnd = nS1

2 o
j=x,y,z

"naj − "DD + DEn s10d

and

Escsnd < gabnNE dxufasxdu2ufbsxdu2. s11d

Here, we have denoted byfasxd the statefa
nWasxd with nWa

=s0,0,0d andDEn is an energy shift due to particle-particle
interactions in stateual, which can be decomposed into the
termsDEn=DEcoll+DEdipolestd. The termDEcoll accounts for
the collisions of atoms in the ground state, which we esti-
mate forn=2 as

DEcoll < gaaE dxufasxdu4, s12d

while the termDEdipolestd is due to dipole-dipole radiative
interactions between the atoms inside the tweezers and it is

proportional to the dissipative rate associated with the radia-
tive transferf21g.

The coupling due to radiation between the statesunl and
un+1l is described by the matrix elementsknuHun+1l=kn
+1uHunl* , with n=0,1. Wedenote by

Vn
s1d =

2

"
knuHun + 1l s13d

the corresponding Rabi frequency, which takes the explicit
form

Vn
s1d = VL

ÎNsn + 1d E dxfb
*sxdfasxd. s14d

We assume that atoms are extracted from the center of the
condensate, which here corresponds with the center of the
tweezers. For a very steep tweezers trap, whose size is much
smaller than the size of the condensate, the integral in Eq.
s14d is approximated by

Vn
s1d < VL

Înbsn + 1d E dxfasxd, s15d

wherenb=nbs0d is the density at the center of the conden-
sate.

The resonant coupling between the statesu0l and u2l can
be characterized by the Rabi frequency

V2
s2d =

V1
s1dV2

s1d*

E2/2"
, s16d

where the denominator corresponds to the value of the de-
tuning for which the two states are resonantly coupled and

E2 = o
j=x,y,z

"naj + DE2 + Escs2d − 2m. s17d

The coupling, Eq.s16d, has been evaluated in the limitV1
s1d

!E2/" in second-order perturbation theoryf22g.
For later convenience, we denote byD=E1/" the detun-

ing for which the statesu0l and u1l are resonantly coupled,
with

E1 =
1

2 o
j=x,y,z

"naj + Escs1d − m. s18d

B. Values of the parameters

In this section we estimate the order of magnitude of the
energy terms and check the consistency of our assumptions
for experiments where the tweezers trap is a magnetic mi-
crotrap. In particular, we consider a magnetic trap with
spherical symmetry and an oscillation frequency of 30 kHz
along each direction. Similar parameter regimes have been
discussed inf17g.

We first focus on the spectrum of one atom inside the
tweezers. According to Eqs.s9d and s10d, the energy of the
vibrational ground stateu1l reads Es1d=Eas1d+Escs1d−m
with
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Eas1d =
3

2
"na − "D. s19d

For na=2p330 kHz andnb=2p3100 Hz and a condensate
of N<103 Rb87 atoms with density nb<3
31013 atoms/cm3, one findsm /"<1.8 kHz whileEscs1d /"
is orders of magnitude smaller. For the given value ofna the
size of the tweezers ground-state wave function isaTweezers
<60 nm. Moreover, the energy distance between the ground
and first excited states is of the order of"na. Thus, the fre-
quency of the steep trap sets a fundamental limit for selec-
tively addressing the ground state of the one-atom tweezers,
thereby avoiding the excitation of other single-atom states.

The ground state of two atoms inside the tweezers has
energyEs2d=Eas2d+Escs2d−2m with

Eas2d = 3"na − 2"D + DE2, s20d

where Escs2d,2Escs1d. The termDE2=DEcoll+DEdipole de-
scribes the energy shift due to atom-atom interactions inside
the tweezers. The term due to collisions isDEcoll /"<2p
32 kHz. When the coupling between the hyperfine states is
achieved with coherent Raman transitions and radiation in
the optical range, the term due to dipole-dipole interaction is
of the order of the excitation rate of the stateual and it is
negligible for the considered setup. Hence, the frequency of
the steep trap is the largest frequency scale, which deter-
mines also the size of the energy separation between the
ground and first excited states of the two-atom tweezers.

From Eq.s10d it is visible that selective addressing of the
statesu1l and u2l requires one to resolve frequencies of the
order ofDE2/": namely, the interaction energy of the atoms
inside the tweezers. This sets a fundamental limit on the
parameters for implementing the transfer and, consequently,
on the time for implementing the transition.

As in this parameter regimeDE2@Esc, it is justified to
treat the Hamiltonian termHsc, Eq. s4d, as a small perturba-
tion. Neglecting the coupling of the stateual with the exci-
tations of the condensate is more delicate. This coupling can
be neglected when the pulses spectrally resolve the conden-
sate excitations. This assumption may be reasonable when
the trap frequencynb.2p31 kHz. In this work we will
neglect this coupling, although in general its effect must be
taken into account for smaller values ofnb. Its systematic
study in such regime will be object of future investigations.

We discuss now the approximation on the ground-state
wave function ofunl. It is in fact questionable whether one
can approximate the wave function of the stateunl, with n
ù2, with the product of single-particle wave functions. We
note, however, that the size of the ground-state wave func-
tion in the steep trap we consider here is still larger than the
s-wave scattering length. Numerical studies have shown that
two-bodys-wave scattering is still a reasonable approxima-
tion in relatively steep trapsf23–25g. Hence, although the
ansatz we use is not reliable for exact results, it is still plau-
sible for gaining insight into the efficiency of the tweezers.
Nevertheless, it is understood that the application of the
schemes discussed below to a certain experiment requires

accurate knowledge of the relevant parameters, which have
to be evaluated for the specific atomic species and trapping
conditions.

III. TWEEZING ATOMS WITH LASERS

In this section we discuss three methods of shaping radia-
tion pulses in order to transfer a definite number of atoms
from the condensate into the microtrap. The first method uses
adiabatic ramping of the frequency of the radiation coupling
un−1l→ unl sadiabatic passaged f11,18g. The second method
is based on the combination of two pulses, which induce a
sequence of adiabatic and diabatic passagesf26g. The third
method uses resonant pulses with well defined pulse area
f18g.

A. Adiabatic passage

We consider the transfer ofn atoms from the condensate
into the quantum tweezers by adiabatically ramping the fre-
quency of radiation coupling the two atomic states. The fre-
quency of the pulse—namely, the detuningDstd in Eq.
s5d—is slowly varied as a function of time from the initial
value Di to the final detuningD f, allowing the system to
follow adiabatically the evolution.

Figure 2 displays the energy eigenvalues ofH as a func-
tion of the detuningD. Adiabatically sweeping the detuning
through these resonances corresponds to remaining in an in-
stantaneous eigenstate of the HamiltonianH. Transfer of one
atom is implemented by ramping the detuning between the
valuesDi andD f in Fig. 2, corresponding to change the en-

FIG. 2. sColor onlined Extraction by adiabatic ramping the laser
detuning D through atomic resonance. The solidscoloredd lines
show the energiesEsnd when n atoms are inside the tweezers
ground state as a function of the detuning. The energiesEsnd cross
the energyEs0d, horizontal line, at different values ofD, corre-
sponding to the interaction energy ofn atoms inside the tweezers.
The dashed lines are the dressed state energies, obtained by radia-
tive coupling between the BEC and the tweezers. When the atoms
are all initially in the BEC and the detuning is ramped adiabatically,
the system dynamics follow correspondingly the lower dashed line.
Transfer of one atom into the ground state of the tweezers is
achieved by ramping through the avoided crossing betweenEs0d
andEs1d.
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ergy eigenstate along the dashed curve. Adiabatic evolution

is preserved when the frequency ramping rateḊ fulfills the
relation

uḊst0du !
psDE2/"d2

2ulns1 − P0du
, s21d

whereDE2 is the two–atom interaction energy andP0 is the
threshold transfer probability, such that forP0→1. P0 the
transfer into the tweezers has been successfully imple-
mented. The derivation of inequalitys22d is shown in Appen-
dix A.

The upper quadrants of Fig. 3 display the transfer effi-

ciencyP0→1 as a function of the rate of rampinguḊu for two
values of the microtrap frequenciesna=2p330 kHz and
na=2p3100 kHz. Here thessolidd red curve has been ob-
tained from numerical simulations, and the shaded region
denotes the range where the transfer probability is larger than
0.99. The dashed curve corresponds to the prediction of the
Landau-Zener formula in the adiabatic regime, namely for
large transfer efficienciesf19,27–29g and discussed in Ap-
pendix A. This takes the form

P0→1
sLZd = 1 −e−aad, s22d

with aad=pd2/2"2uḊst0du the adiabaticity parameter and

Ḋst0d and d the rate of ramping and the energy splitting,
respectively, at the avoided crossing betweenEs0d andEs1d.
Efficiencies of the order of 99% are achieved for transfer
times of the order of milliseconds. The results show that
faster transfer is achieved at larger trap frequencies. In fact,
the interaction energyDE2 increases withna, thereby allow-
ing for larger values of the ramping rate according to Eq.
s21d.

The transfer of two atoms into the tweezers can be
achieved starting from the stateu0l by adiabatically ramping
the detuningD either sid subsequently across the resonances
Es0d=Es1d and thenEs1d=Es2d slower dashed line in Fig. 2d
or sii d across the resonanceEs0d=Es2d. The first case corre-
sponds to transferring one atom at a time. In the second case
two atoms are transferred simultaneously. This latter imple-
mentation has a drawback due to the small value of the ra-
diative coupling between the statesu0l and u2l. In fact, the
corresponding Rabi frequency, estimated in Eq.s16d, is in
general rather smaller than the Rabi frequencyV1

s1d, Eq.s14d,
describing the transfer of one atom into the tweezers. This
smaller value leads to smaller energy splitting at the avoided
crossing between the levelsu0l and u2l, therefore imposing
much stricter limits on the ramping speed. The lower quad-
rants of Fig. 3 depict the results of the simulation for the
sequential adiabatic transfer of two atoms into the microtrap.
The efficiencies and transfer times are comparable with the
efficiencies reached for transferring a single atom, showing
that two atoms can be transferred into the ground state of a
tweezers trap withna=2p330 kHz in few milliseconds. The
dashed curve corresponds to the Landau-Zener prediction,
which in the adiabatic region is to good approximation the
product of the transfer probabilities at the single avoided
crossings, and takes the formP0→2

sLZd < P0→1
sLZd P1→2

sLZd . HereP1→2
is found from Eq. s22d, where the energy splittingd is
"uV2

s1du.

B. Adiabatic passage using pulses

We discuss now the transfer of atoms into the tweezers by
means of the so-called Stark-chirped rapid adiabatic passage
sSCRAPd techniquef26g. Here, population transfer between
two quantum states is achieved by suitably varying the Rabi
frequencyVLstd and the detuningDstd in Eq. s5d, thereby
combining adiabatic and diabatic transitions. In this scheme,
two pulses of finite duration are utilized, which are a time-
delayed one with respect to the other. One pulse is far-off
resonance and induces an ac Stark shiftDstd on the transition
ubl→ ual, while the second pulse, which we denote by “pump
pulse,” couplessquasidresonantly the statesual and ubl and
has Rabi frequencyVLstd. The detuning is shaped in order to
fulfill the resonance conditionDstd=E1/" at two instants of
time t1 and t2. The shaping and time delay between the two
pulses is such that att1 the system undergoes an adiabatic
passage of the same type as the one discussed in Sec. III A,
while at t2 the transition is diabatic, thereby ensuring that at
the end of the pulses the transfer between the statesu0l and
u1l is achieved.1 A possible realization of the pulses as a
function of time and the corresponding dynamics are dis-
played in Fig. 4. Here, the energy levelsEs0d andEs1d cross
at the instantt1=0 and t2=t. At these instants, the system
undergoes an adiabatic and diabatic transition, respectively.
As a result, if initially all atoms are in the condensate, then

1In fact, if both transitions would be adiabatic, there would be no
transfer at the end of the pulses as the transition att2 would reverse
the transition att1, bringing the system back to the initial state.

FIG. 3. sColor onlined Transfer efficiencyP0→1 stopd andP0→2

sbottomd as a function of the ramping rateuḊu for sad na=2p
330 kHz and VL=4 kHz and sbd na=2p3100 kHz and VL

=30 kHz. The solidsredd curves show the numerical result, the
black curves display the theoretical predictions of the Landau-Zener
formula. The shaded areas denote the regions where the theoretical
success probability, according to Eq.s22d, is above 99%. Efficient
transfer can be achieved in few milliseconds.

EXTRACTING ATOMS ON DEMAND WITH LASERS PHYSICAL REVIEW A71, 053601s2005d

053601-5



finally one atom is transferred into the ground state of the
tweezers.

Since at least at one avoided crossing the dynamics must
be adiabatic, the bounds on the values of the Rabi frequency
and on the time variation of the ac Stark shift are basically
the same as for the adiabatic passage in Sec. III A. Moreover,
the finite size of the pulses and the requirement that a diaba-
tic transition take place at one of the crossings introduces a
further parameter—namely, the width of the pump pulseTV,
on which the transfer efficiency depends. The parameter re-
gime for the applicability of this technique is discussed in
detail in Appendix B.

Figure 5sad displays the transfer efficiency as a function

of TV and V̂, the maximum Rabi frequency of the pump
pulse, as obtained from a numerical simulation for a tweezers
trap with na=2p330 kHz. Transfer efficienciesP0→1
.99% are achieved in the white region, corresponding to
transfer times of the order of some milliseconds. High effi-
ciencies are reached for a relatively wide range of param-
eters, showing that the method is robust to fluctuations of the
parameters of the pulses. These data have been evaluated
under the condition for which the pump pulse achieves its
maximum value at the same instant of time at which the
detuning pulse fulfills the resonance condition, as depicted in
Fig. 4. In this case the ideal conditions for adiabaticity are
reached. The effect of a time lagdt between these two
events is shown in Fig. 5sbd, which reports the dependence
of the transfer efficiency ondt. The transfer efficiency ex-
hibits awide plateau arounddt=0, which is of the order of a
millisecond, showing that the method is also very robust

against this kind of fluctuations. Note that the curve exhibits
a second maximum atdt<−4 ms, corresponding to the case
in which the pump pulse is centered at the second instantt2
at whichD fulfills the resonance conditionD=E1/": namely,
to the situation in which the sequence of diabatic and adia-
batic passages is reversed. Ideally, the two maxima should be
symmetric. Asymmetry here arises from the fact that the dy-
namics at the crossing corresponding to the resonance for
simultaneous transfer of two atoms into the tweezersfdashed
vertical line in Fig. 4sbdg is not perfectly diabatic. This intro-

FIG. 4. sColor onlined Sketch of the dynamics when implement-
ing the SCRAP technique for transferring one atom into the twee-
zers.sad Pump pulsefVLstdg and ac Stark shiftfD1stdg as a function
of time. sbd Corresponding spectrum. The lines insbd are the ener-
gies Esnd as evaluated at the corresponding value ofD1std. The
dashed curves indicate the dressed-state energies. The vertical solid
sdashedd lines indicate the instants at which the transitionu0l
→ u1l su0l→ u2ld is driven resonantly.

FIG. 5. sColor onlined sad Contour plot for the transfer probabil-

ity P0→1 as a function of the coupling pulse maximumV̂ and width
TV. The tweezers trap frequency isna=2p330 kHz and the ac
Stark shift pulse has widthTD=2TV. Pump and detuning pulses

have a Gaussian envelope. The cross indicates the parametersV̂
=15 kHz andTV=1 ms, which are used in evaluating the curve in
sbd. sbd Probability P0→1 as a function of the time variationdt
between the instant of time at which the resonance condition is
achieved by the ac Stark pulse and the instant of time at which the
pump pulse reaches its maximum value. The maximum atdt<
−4 ms corresponds to the dynamics for which the temporal se-
quence of adiabatic and diabatic passages is exchanged. The asym-
metry between the two peaks is discussed in the text.
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duces a fundamental difference in the efficiency of transfer,
which depends on whether this transition point is crossed:
namely, on whether the diabatic transitions occur before the
adiabatic one.

Similarly to the adiabatic passage in Sec. III A, transfer of
two atoms by means of SCRAP is better implemented
sequentially—i.e., by transferring one atom at a time. Figure
6 shows a pulse sequence and the corresponding energy
spectrum as a function of time for transferring sequentially
two atoms inside the tweezers. The ideal dynamics follow
the lower dashed line in Fig. 6sbd. The transfer efficiency as

a function ofTV andV̂ is displayed in Fig. 7. Here, efficient
transfer of two atoms, larger than 99%, is achieved in times
of the order of several milliseconds. The relatively broad
range of values for whichP0→2 exceeds 99% shows that the
method is robust against parameter fluctuations.

C. Transfer by population inversion

We finally discuss transfer of atoms into the tweezers by
radiation pulses of chosen areas, coupling resonantly the
states u0l and u1l. Perfect transfer is achieved whenD
=E1/" and when the the pulse area fulfills the relation
edtV1

s1dstd=p. The limitations are on the choice of the Rabi
frequency, whose value is bound by the interaction energy in
order to have negligible coupling to off-resonant statesssee
Appendix Ad, and on the pulse duration, which must be suf-
ficiently long to guarantee the spectral resolution of the twee-

zers energy levels. In Fig. 8 the transfer efficiencyP0→1 is
plotted for Gaussian pulses as a function of the pulse maxi-
mum intensity and duration. Efficiencies close to unity are
realized with pulses of millisecond duration.

Efficient transfer of two atoms is achieved by sequentially
sending two pulses, each transferring one atom into the twee-
zers. Here, the first pulse is resonant with the transitionu0l
→ u1l, thereby implementing ap rotation. A p rotation on
the transitionu1l→ u2l is achieved by coupling it with a sec-
ond pulse with detuningD=sE2−E1d /" and suitable pulse
area. The spectral resolution, at the level ofDE2/", avoids
that during the second pulse the atom in the tweezers is
transferred back to the condensate, as the transitionu0l
→ u1l is far-off resonance. Transfer efficiencies exceeding
99% are achieved on time scales of the order of several mil-
liseconds.

IV. DISCUSSION AND CONCLUSIONS

We have investigated the feasibility of a scheme that em-
ploys radiation, thereby achieving the deterministic extrac-
tion of atoms from a Bose-Einstein condensate and their
transfer into the quantum state of a steep trap. We have
shown that a high transfer efficiency can be achieved in
times of the order of some milliseconds in parameter regimes
which are within reach of present experiments with mi-
crotrapsf17g. The radiation used for implementing the ex-
traction can be either in the microwave regime, thus coupling
directly, say, a magnetic dipole transition like inf9,10g, or in

FIG. 6. sColor onlined Sketch of the dynamics when implement-
ing the SCRAP technique for transferring sequentially two atoms
into the tweezers.sad Pump pulsefVLstdg and ac Stark shiftfD1stdg
as a function of time.sbd Corresponding spectrum. The lines insbd
are the energiesEsn,td as evaluated at the corresponding value of
D1std. The dashed curves indicate the dressed-state energies. The
vertical lines indicate the instants at which the transitionu0l→ u1l
and u1l→ u2l are driven resonantly. Transfer of two atoms is
achieved when the dynamics start at the blue solid curve.

FIG. 7. Contour plot for the transfer probabilityP0→2 as a func-

tion of the coupling pulse maximumV̂ and widthTV. The tweezers
trap frequency isna=2p330 kHz and the ac Stark shift pulse has
width TD=2TV. The detuning pulse has a Gaussian envelope, and
the pump pulse is given bysV0/2dhtanhfst+2trampd / trampg−tanhfst
−TV−2trampd / trampgj, wheretramp is the time in which the pulse is
ramped up to the maximum value.
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the optical domain, thereby implementing Raman transitions.
Their application depends on the specific details of the sys-
tem.

The results presented here refer to ideal conditions, where
at t=0 all atoms are in the condensate ground state and the
coupling with the other excited states of the condensate can
be neglected. The presence of noncondensed atoms and the
coupling of the stateual to the condensate excitations have
not been considered. The presence of noncondensed atoms
introduces a source of noise into the process, giving an in-
determination in the transfer efficiency of the order of the
noncondensed fraction. The coupling of the stateual to the
condensate excitations constitutes a further source of noise

which limits the efficiency of the tweezers. Its effect can be
eliminated by resolving spectrally the condensate excitations.
This is possible when the condensate is confined in a suffi-
ciently steep trap. In this case, the condensate excitations
must be taken into account when setting the parameters, as
they determine the spectral resolution to be achieved and
eventually the transfer duration.

Our analysis has been restricted to the transfer of one and
two atoms into the corresponding tweezers ground state.
Similar considerations apply for the transfer into one- and
two-atom excited states. In this case, the parameters must be
carefully set, so to spectrally resolve the desired level. The
process, in this case, may take advantage of symmetries, rul-
ing out the coupling to states which may be close but or-
thogonal to the initial state. The procedure discussed in this
paper can be as well extended to the transfer of three or more
atoms into the tweezers. In this case, we expect that the
scheme is efficient when transferring sequentially one atom
at a time. When confining three or more atoms into the steep
trap, however, one must consider many-body effects which
can give rise to instabilities. The dynamics and time scales
on which they manifest themselves depend on the trap pa-
rameters and atomic species and have to be analyzed case by
case.

To conclude, the possibility of extracting atoms on de-
mand from a condensate realizes the deterministic coupling
of an atom trap to a reservoir, thereby finding several analo-
gies in quantum optical systems, and opens interesting per-
spectives in the study and control of coherent matter waves.
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APPENDIX A: LIMITS FOR THE APPLICATION OF THE
ADIABATIC PASSAGE

In this appendix we discuss the parameter regimes for
which the dynamics described in Sec. III A apply. We first
summarize the dynamics of the adiabatic passage by discuss-
ing the transfer of one atom into the tweezers. The consider-
ations madehere can be directly extended to the transfer ofn
atoms. We assume that the detuning is swept between the
initial value Di and the final valueD f in the interval of time
T, such thatDs0d=Di and DsTd=D f. Efficient transfer from
u0l to u1l is achieved when at these values of the detuning the
statesu0l, u1l are eigenstates ofH to good approximation.
The value of the Rabi frequency is bound from the constraint
that the relevant dynamics must involve only the statesu0l
and u1l. When these conditions are fulfilled, the dynamics

FIG. 8. sColor onlined Transfer of one atom by resonantp ro-
tation. sad Contour plot ofP0→1 by means of Gaussian pulses with

D=E1/" as a function of the maximum pulse valueV̂ and of the
pulse widthTV for na=2p330 kHz. The black regions correspond
to the parameter regime, where the efficiency is below 80%.sbd
P0→1 as a function of the pulse strengthV̂ for constant pulse width
TV=1.5 ms. The corresponding parameters are indicated by the ver-
tical line in sad.
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can be restricted to the subspace of stateshu0l, u1lj and the
eigenvalues of the reduced Hamiltonian at a given instantt,
0ø tøT, are

e±s1,td =
1

2
"D1std ±

1

2
"ÎD1std2 + uV1

s1du2, sA1d

with

D1std = Dstd − E1/". sA2d

The corresponding eigenstates take the form

uF+stdl = sinQstdu0l + cosQstdu1l, sA3ad

uF−stdl = cosQstdu0l − sinQstdu1l, sA3bd

where the mixing angleQ is defined by the relation

tan 2Qstd =
V1

s1d

D1std
, 0 ø Qstd ø p. sA4d

We denote byt0 the instant of time at which the transition
is resonantly driven: namely, when the detuning fulfills the
relation Dst0d=E1/". The minimum valued of the energy
splitting is reached att= t0 and takes the form

d = ue+s1,t0d − e−s1,t0du = "uV1
s1du. sA5d

We now identify the parameter regime for which one may
restrict the dynamics to the levelsu0l and u1l. This approxi-
mation is justified whensid coupling to single-particle exci-
tations of the one-atom tweezers is negligible—i.e.,uV1

s1du
!na—andsii d when the stateu2l contributes negligibly to the
dynamics—namely, when the condition

uV1
s1du ! DE2/" sA6d

is fulfilled. This condition onV1
s1d ensures also a complete

adiabatic transfer by ramping the detuning across the reso-
nanceEs0d=Es1d while keepingVL constant. In fact, in this
limit the final detuningD f can be chosen sufficiently far
away from the resonanceE2/2" and at the same time be
sufficiently large so that atD f the unperturbed statesu0l and
u1l are to good approximation eigenstates of H.

We now evaluate the probabilityP0→1 of transferring one
atom into the ground state of the tweezers when the dynam-
ics can be restricted to the levelsu0l and u1l. In the adiabatic
regime the probabilityP0→1 can be evaluated by using the
Landau-Zener formula, which at the asymptotics—i.e., for
large transfer efficiencies—takes the form

P0→1
sLZd = 1 − e−aad. sA7d

Hereaad is the adiabaticity parameter, defined as

aad=
pd2

2"2uḊst0du
. sA8d

The parameteraad is proportional to the energy splittingd,
defined in Eq.sA5d, and is inversely proportional to the time
derivative of the detuningD at the level crossing. Hence, the
probability P0→1

sLZd approaches unity for large values of
aad—i.e., for large values of the energy splitting and/or small

values of the rateḊ.

We fix now the threshold valueP0, such that forP0→1
ù P0 the transfer is considered successful, and we evaluate

the rateḊ, and thus the minimum time, required for transfer-
ring successfully one atom into the tweezers. From Eq.s22d
we find thatP0→1

sLZd ù P0 when

uḊst0du ø
psd/"d2

2ulns1 − P0du
. sA9d

Using Eqs.sA5d and sA6d we rewrite this condition as

uḊst0du !
psDE2/"d2

2ulns1 − P0du
. sA10d

Hence, the timet1 needed for transferring one atom into the
tweezers must fulfill the relation

t1 = UD f − Di

Ḋst0d
U @

2

p
U lns1 − P0d

DE2/"
U , sA11d

where we have takenuD f −Diu,DE2/". With the parameters
of Sec. II B, forDE2/"=2p32 kHz and a success probabil-
ity P0=99%, the transfer time must fulfill the relationt1
@0.2 ms.

APPENDIX B: LIMITS FOR THE APPLICATION
OF SCRAP

In this appendix we discuss the parameter regimes for
which the dynamics described in Sec. III B applies. For sim-
plicity we consider the case in which both the pump and the
far-off-resonance pulse have Gaussian envelope and are
given by

VLstd = V̂ expF−
t2

TV
2 G sB1ad

and

D1std = Doffset+ D̂ expF−
st − td2

TD
2 G , sB1bd

whereTV andTD are the pulse widths, and the termsV̂ and

D̂ denote the pulse maxima, and the offset valueDoffset is
such that at the instantst1 and t2 the resonance conditions
Dst1d=Dst2d=E1/" are fulfilled. Here, we have chosent1
, t2, so that the adiabatic passage occurs at the first crossing,
and sett1=0 andt2=t.

The system dynamics can be reduced to the two levelsu0l
and u1l provided that the relation in Eq.sA6d is fulfilled,

which sets an upper bound to the maximum valueV̂ that the
pump pulse reaches. The dynamics is adiabatic around the
point t1 provided that the pulses time variation is sufficiently
smooth such that the adiabaticity parameter in Eq.sA8d is
very large. For this reason, ideally the pump pulse should
reach its maximum att1, such that the level splitting is maxi-
mum at the avoided crossing. The adiabaticity of the transfer
at t1 can be evaluated by checking for which parameters the
adiabaticity parameteraad of Eq. sA8d is much larger than
unity. From Eqs.sA6d andsA8d one finds a condition for the
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temporal variation of the detuning. For Gauss pulses as in
Eq. sB1bd this condition takes the form

p

4

DE2
2

"2 @
D̂t

TD
2 expF−

t2

TD
2 G , sB2d

where heret1=0.
Ideally, the adiabatic transition between two eigenstates of

Ha+Hb—say, u0l to the stateu1l—is implemented over an
infinite time. As the pump pulse has a finite durationTV, then
TV must exceed a minimum valuetjump in order to achieve
sufficiently large transition probabilities at the instantt1. Us-

ing the relationtjump,2V̂1/ uḊst1du f30g, whereV̂1 is the larg-
est value of the coupling betweenu0l and u1l, this condition
corresponds to

TV ù V̂1
s1d TD

2

tD̂
expF t2

TD
2 G , sB3d

which fixes a relation between the widths and maxima of the
two pulses and their relative delay. Simple algebra shows
that this condition is consistent with the condition in Eq.
sB2d provided thatDE2TV /"@1.

Finally, the transition is diabatic att2=t when the pump
pulse is very small at this instant—i.e.,TD.TV and, more
specifically,t.TV. A condition for diabaticity is derivable
imposing that the adiabaticity parameter att2 be aadst2d!1,
thereby finding a bound on the time lagt= t2− t1 which also
depends on the form of the pulse envelopes.
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