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Extracting atoms on demand with lasers
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We propose a scheme that allows us to coherently extract cold atoms from a reservoir in a deterministic way.
The transfer is achieved by means of radiation pulses coupling two atomic states which are object to different
trapping conditions. A particular realization is proposed, where one state has zero magnetic moment and is
confined by a dipole trap, whereas the other state with nonvanishing magnetic moment is confined by a steep
microtrap potential. We show that in this setup a predetermined number of atoms can be transferred from a
reservoir, a Bose-Einstein condensate, into the collective quantum state of the steep trap with high efficiency in
the parameter regime of present experiments.
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I. INTRODUCTION between the condensate and a collective quantum state of the

, ) , tweezers. The two traps can be found in the same spatial
Recent experimental progress with ultracold atomic gasegygion and then coherently separated spatially after the trans-

has opened exciting directions in the study of many-bodyg, 155 occurred10,16.
systems, aiming at the full coherent control of structures of \ye investigate the dynamics and efficiency of quantum
increasing complexity1]. Applications, like realizations of yyeezers using radiation and show that their efficiency for
quantum information protocols, are very promising and preSyansferring a certain number of atoms into the quantum state
ently investigated1-6]. Moreover, these systems allow one of 5 rap can be larger than 99% for experimentally acces-
to study the frontiers between the quantum and classicaljpje parameter regimgd7]. We study three implementa-
worlds[7]. o o tions of atom transfer into the quantum tweeze(i$: by

In this perspective increasing interest has lately been aiyeans of the adiabatic passage by adiabatically ramping the
tracted by the po_s.f,lb]llty of dls_posmg single or a few cold ;adiation frequency across the resonafit8l, (i) by com-
atoms by deterministic extraction from a reservoir, therebyoining adiabatic and diabatic passages by means of laser
a_lllowmg one to contrpl and mampulate' them. This real|za-pu|ses[19], and (iii) by resonant coupling using pulses of
tion of tweezers applied to quantum objects has been callegg||defined area. The various techniques are compared and
quantum tweezersA recent proposal exploited tunneling theijr efficiency is discussed in the parameter regime of ex-
from a condensate to a moving quantum dot in order to réperiments with microtrapEL7].
alize this scenarig]. This article is organized as follows. In Sec. |l the theoret-

In this work we discuss an implementation of quantumjca model is introduced and the relevant parameters are
tweezers, where trapping potentials, whose steepness de-

pends on the atomic magnetic moment, are coupled by
means of radiation. This procedure has been utilized for ma-
nipulating cold atomic cloud§9,10], and it has been pro-
posed for engineering collective states of atoms in optical
lattices[11]. Here, it is applied in order to coherently load
atoms from a condensate into a steep trap by suitably cou-
pling the atom electronic states. A sketch of the setup is
shown in Fig. 1 and can be summarized as follows. Atoms
are initially in a hyperfine state of zero magnetic moment,
which we denote byb), where the atomic center of mass is
confined by a dipole trajpl2], and form a Bose-Einstein FIG. 1. Extracting atoms on demand from a Bose-Einstein con-
condensat¢BEC). The statdb) is coupled with radiation to densateBEC): Atoms are transferred from the ground state of a
the hyperfine statda), which has nonvanishing magnetic BEC. confined by the potentidVs, into the one- or two-atom
moment and is subject to the steep potential of a magneti@round state of a steep potenti4 (the tweezers The horizontal
trap, like the ones implemented [2,3,13-15. The atoms lines indicate the corresponding energy levels arbitrary units.

. -~ . The transfer is implemented by radiative coupling the electronic
are selectively transferred by means of radiative COUplm%tates|b> and |a), undergoing different trapping conditions. The

number of atoms transferred into the tweezers is controlled by spec-
trally resolving the energy splitting between the one- and two-atom
*Electronic address: bernd.mohring@physik.uni-ulm.de ground states of the tweezers.
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identified. In Sec. Il the efficiency of the transfer for differ-

ent realizations of the radiation coupling between the two Hsc=Yab f AX () Y0 a(X) (%), (4)

hyperfine states is discussed. In Sec. IV the conclusions are

drawn and outlooks are discussed. In the Appendexes a detereg,,=4nh%a,,/M is the interaction strength, with the

tailed analysis of the parameter regime, where the quanturswave scattering lengta,, for collisions between one atom

tweezers can be implemented, is presented. in state|a) and one atom in statf). The coupling with
radiation is described by the time-dependent term

Il. THEORETICAL DESCRIPTION +
Hin(t) = —RA(Y) J dX‘//a(X) Pa(X)
We consideN ultracold atoms of madsl whose relevant
internal degrees of freedom are the stable hyperfine Jttes 1 t
and |b). The atomic center of mass experiences at position *Shu f X[ () (X)) +H.c], ()
x=(x,y,z) a harmonic potentiaV/;(x) of the form
where(), (1) is the real-valued Rabi frequency aad) is the
1 detuning of the radiation at timefrom the resonance fre-
V() = EM(VJ-ZXXZ‘F vy?+ 157, (1)  quency of the transitiofb) — |a).
All atoms are initially in the internal state) and form a
. condensate. We denote this collective state, the ground state
wherew,, v, and;, are the frequencies along each Carte-qf 3/, for N atoms, by|0). By means of a radiation pulse a
sian direction and=a,b labels the atomic state. The poten- numbern of atoms (with n<N) are transferred into the
tial Vy(x) is steeper thaVy(x): namely, the frequencies |oyest-energy state of,. We denote byn) the state of the
Vaxs Vay Vaz> MiN(vpy, Yoy, vpy). At time t=0 the atoms are all - gystem after the transfer, correspondind\ten atoms in the
in the statelb) and constitute a Bose-Einstein condensateqground state o4, andn atoms in the ground state 61,
The aim is to coherently transfer a predetermined number ofhe efficiency of the procedure is measured by the probabil-
atoms from the condensate, which acts as a reservoir, into iy P, .,(T), which corresponds to the probability at tirfie
collective quantum state of the atoms in the steep potentigd; the end of the pulse, of findingatoms in the ground state

Va(X). _ ~ of H, Itis defined as
Transfer of atoms into the quantum tweezers is imple- )
mented by suitably driving the statgg and|b) with radia- Po_n(T) = [Kn|U(T)[0)/%, (6)

tion pulses, which can be in the microwave or optical re- ith
gime, thereby implementing a Raman transition. Coheren

and selective transfer is achieved provided the radiation 1 (7

pulses are sufficiently short, so that incoherent dynamics dur- u(m = Texp(EJ dTH(T)) (7

ing the interaction is negligible and sufficiently long to spec- 0

trally resolve a selected atomic transition. This latter stateand 7 indicates the time ordering. In Sec. Il we describe
ment will be quantified in Sec. Il B In the frame rotating at strategies of varying the coefficienist) and(), (t) in H; as

laser frequency, the relevant dynamics describing the intera function of time in order to achieve unit efficiency.
action of the atom with radiation is given by the Hamiltonian

‘H, which we write as
A. Basic assumptions and approximations

H=Ha+Hp+ Hset Hin(t). ) In order to study the dynamics and the efficiency of the

tweezers, we decompose the field operator in a convenient
Here, the termsi, and H, describe the dynamics of the basis. Here, we use the Fock decomposition of the field op-
atom’s center of mass in the states and |b), respectively, eratory,(x): namely[20],
and have the form .
Pal¥) = 2 Bo(X)a, ®)
t h? o "o
H _f oy () —mV VI |45(x) where i, labels the excitations of the harmonic oscillator
with Hamiltonianp?/2M +V,(x), ¢oa(x) is its wave function,

+ %gjj f dx:,//jT(x)z//;r(x)tjxj(x)l,//j(x), (3)  andas_is the field operator annihilating an atom in the cor-
responding stat@,). We remark that the stata,) describes
single-particle eigenstates; hence, they are not the eigenstates

where ;(x) [{(x)] is the field operator annihilatingreat-  of %, when two or more(interacting atoms are inside the
ing] an atom at positiorx in the internal statgj), the term  tweezers. Nevertheless, in this case it still provides a plau-

gjj=4mhi%a;/M represents the interaction strength of two-sible ansatz for estimating the order of magnitude of the
body collisions of atoms in the stalp, anda;; denotes the physical parameters.

s-wave scattering lengtfj=a,b). Collisions between atoms  Since the number of atoms which are extracted from the
in different hyperfine states are described by the term condensate is negligibly small compared withwe replace
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the field operator for atoms in the hyperfine stigeby a  proportional to the dissipative rate associated with the radia-
scalar. Att=0 the atoms are assumed to be in the condensatéve transfer{21].

ground state with macroscopic wave functigip(x) and The coupling due to radiation between the statesand
chemical potentiale. These quantities are assumed to beln+1) is described by the matrix elements|H|n+1)=(n
constant and negligibly affected by the transfer of atoms intoe 1/7|n)", with n=0,1. Wedenote by

the tweezers. The condensate is hence a reservoir of atoms at
given density ny(x)=N|¢p(x)|?. The condensateexcitations
are accounted for by thdow-energy collective modes at
frequenciesw,, and the part of Hamiltoniaft(,, which may ) ] ) o
limit the efficiency of the quantum tweezers takes the formthe corresponding Rabi frequency, which takes the explicit
Hp=Sqhwgblibg, whereb, and b} are the annihilation and form

creation operators of a phonon of energy,. In addition,

the quantum tweezers overlap spatially with the condensate, Qf}) =Q VN(n+1) J dX hy(X) a(X). (14)

and collisions between the atom inside the tweezers and con-

densate, described by E), can be detrimental for the XV

h f th Their infl h e assume that atoms are extracted from the center of the
coherence of the process. Their influence on thetweezers & ondensate, which here corresponds with the center of the
ficiency is discussed in Sec. Il B. Below, we treat the Hamil-

tonian t 4 I turbati h foct is t tweezers. For a very steep tweezers trap, whose size is much
ronian erm(4) as a smail perturbation, Wnose €flect 1S 10 ga)jer than the size of the condensate, the integral in Eq.
introduce small shifts of the energy levels.

s . 14) is approximated b
In the situations we consider the condensate ground stat(e ) bp Y

is coupled(quasjresonantly with the ground state #f, for R

n atoms and one or two atoms at a time are transferred into QY = Quny(n+1) f dX¢a(X), (15
the steep potential. The states which are relevant to the dy-

namics are denoted H9), |1), and|2), corresponding to 0, 1, wheren,=n,(0) is the density at the center of the conden-
and 2 atoms in the ground state of the quantum tweezergate.

2
O = ~(nHin+1) (13)

respectively. Their energy i&(n)=(n|*|n) with n=0,1,2. The resonant coupling between the sta@sand |2) can
By settingE(0)=0, they take the form be characterized by the Rabi frequency
- _ D O@*
E(n) = Ea(n) + Esdn) — N, ©) Q@ - 9% 6
whereE4(n) is the energy oh atoms in the ground state of Enl2h '

he Hamiltoni ndEg{(n) is the interaction ener .
the Hamiltonian?t, andEq(n) is the interaction energy due where the denominator corresponds to the value of the de-

to the term(4), while the term - accounts for the extrac- tuning for which the two states are resonantly coupled and
tion of n atoms from the condensate. The explicit expres- 9 y P

sions forE,(n) andEg(n) are found from the overlap integral
between the condensate wave function and the wave function
describing the ground state &f, for n atoms. We evaluate
them by approximating the latter with the wave functiomof The coupling, Eq(16), has been evaluated in the Iirrﬂ(ll)
noninteracting atoms in the ground state of the oscillator aneé< E,/7% in second-order perturbation thedi32].

Ex= X hvg+ AEy+Ee(2) - 2u. (17)

j=xy,z

find For later convenience, we denote Ay-E;/% the detun-
1 ing for which the state40) and|1) are resonantly coupled,
E,(n) = n(— > fwg - ﬁA) +AE, (10 Wwith
j=xy,z 1
and Ey=3 2 fivg+Edl) - p. (18)
2j=x,y,z

Esdn) = gaphN f dx|a(x) [ pu(X)[?. (11)
A B. Values of the parameters

Here, we have denoted hy,(x) the stategpa(x) with A,
=(0,0,0 andAE, is an energy shift due to particle-particle
interactions in statéa), which can be decomposed into the
termsAE,=AE g+ AEgipoit). The termAE,, accounts for
the collisions of atoms in the ground state, which we esti
mate forn=2 as

In this section we estimate the order of magnitude of the
energy terms and check the consistency of our assumptions
for experiments where the tweezers trap is a magnetic mi-
crotrap. In particular, we consider a magnetic trap with
spherical symmetry and an oscillation frequency of 30 kHz
along each direction. Similar parameter regimes have been

discussed i17].
AEqy = gaaf dx| a(x)[*, (12) We first focus on the spectrum of one atom inside the
tweezers. According to Eq$9) and (10), the energy of the
while the termAEgqdt) is due to dipole-dipole radiative vibrational ground statgl) reads E(1)=E4(1)+Es(1)-u
interactions between the atoms inside the tweezers and it ith
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E.(1) = §ﬁ v, —hA (19) 5¢ E() E(2)\ E(3) | E(4\ ‘
2 ' \
0 ==

E(0 i

For v,=27x 30 kHz andy,=27X 100 Hz and a condensate © \
of N=10° Rb* atoms with density n,=3
X 10'3 atoms/cm, one findsu/f~1.8 kHz while Eq(1)/#
is orders of magnitude smaller. For the given value pthe
size of the tweezers ground-state wave functiolqiSeezers 15+
~60 nm. Moreover, the energy distance between the grounc

and first excited states is of the orderfof,. Thus, the fre- -20
quency of the steep trap sets a fundamental limit for selec-
tively addressing the ground state of the one-atom tweezers 280 285 290 295 300 305
thereby avoiding the excitation of other single-atom states. A (kHz)

The ground state of two atoms inside the tweezers has _ . o )
energyE(2)=E,(2)+E.{(2) - 2u with FIG. 2. (Color onling Extraction by adiabatic ramping the laser

detuning A through atomic resonance. The solicblored lines
show the energie€(n) when n atoms are inside the tweezers
Ea(2) = 3fivy— 2hA + AE,, (200 ground state as a function of the detuning. The enefies cross

the energyE(0), horizontal line, at different values of, corre-
where Eq(2) ~2E.(1). The termAEzzAEcoll+AEdipoIe de- sponding to the interaction energy ofatoms inside the tweezers.
scribes the energy shift due to atom-atom interactions insid&he dashed lines are the dressed state energies, obtained by radia-
the tweezers. The term due to collisions A€, /%~ 21 tive coypl_lng t_)etween the BEC and the_ tw_eezers. When the_ atoms
X 2 kHz. When the coupling between the hyperfine states jare all initially in the BEC and the detuning is ramped adiabatically,

achieved with coherent Raman transitions and radiation if*® System dynamics follow correspondingly the lower dashed line.

the optical range, the term due to dipole-dipole interaction ig '2nSfer of one atom into the ground state of the tweezers is

of the order of the excitation rate of the sta#& and it is achieved by ramping through the avoided crossing betves@

negligible for the considered setup. Hence, the frequency oetmd E().

the steep trap is the largest frequency scale, which deter- _
mines also the size of the energy separation between ttecurate knowledge of the relevant parameters, which have
ground and first excited states of the two-atom tweezers. {0 be evaluated for the specific atomic species and trapping

From Eq.(10) it is visible that selective addressing of the conditions.
states|1) and |2) requires one to resolve frequencies of the
_ord_er of AE,/#: namely, t_he interaction energy of _th_e atoms IIl. TWEEZING ATOMS WITH LASERS
inside the tweezers. This sets a fundamental limit on the
parameters for implementing the transfer and, consequently, In this section we discuss three methods of shaping radia-
on the time for implementing the transition. tion pulses in order to transfer a definite number of atoms

As in this parameter regimAE,>E,, it is justified to  from the condensate into the microtrap. The first method uses
treat the Hamiltonian territ{, Eq.(4), as a small perturba- adiabatic ramping of the frequency of the radiation coupling
tion. Neglecting the coupling of the sta@ with the exci- |n-1)—|n) (adiabatic passay¢11,18. The second method
tations of the condensate is more delicate. This coupling cais based on the combination of two pulses, which induce a
be neglected when the pulses spectrally resolve the condesequence of adiabatic and diabatic pass@ék The third
sate excitations. This assumption may be reasonable whenethod uses resonant pulses with well defined pulse area
the trap frequencyy,>27 X1 kHz. In this work we will  [18].
neglect this coupling, although in general its effect must be
taken into account for smaller values of. Its systematic
study in such regime will be object of future investigations.

We discuss now the approximation on the ground-state We consider the transfer of atoms from the condensate
wave function of|n). It is in fact questionable whether one into the quantum tweezers by adiabatically ramping the fre-
can approximate the wave function of the statg with n  quency of radiation coupling the two atomic states. The fre-
=2, with the product of single-particle wave functions. We quency of the pulse—namely, the detunigdt) in Eq.
note, however, that the size of the ground-state wave funab)—is slowly varied as a function of time from the initial
tion in the steep trap we consider here is still larger than thealue A; to the final detuning)¢, allowing the system to
s-wave scattering length. Numerical studies have shown th&bllow adiabatically the evolution.
two-body s-wave scattering is still a reasonable approxima- Figure 2 displays the energy eigenvalues-ofs a func-
tion in relatively steep trapf23-25. Hence, although the tion of the detuningA. Adiabatically sweeping the detuning
ansatz we use is not reliable for exact results, it is still plauthrough these resonances corresponds to remaining in an in-
sible for gaining insight into the efficiency of the tweezers. stantaneous eigenstate of the HamiltoritanTransfer of one
Nevertheless, it is understood that the application of theatom is implemented by ramping the detuning between the
schemes discussed below to a certain experiment requiresluesA; andA; in Fig. 2, corresponding to change the en-

-10

E/h (kHz)

A. Adiabatic passage
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(a) (b) The transfer of two atoms into the tweezers can be
1.0 — e achieved starting from the stal® by adiabatically ramping
0.9 \ the detuningA either (i) subsequently across the resonances
R E(0)=E(1) and therE(1)=E(2) (lower dashed line in Fig.)2
io.s k or (ii) across the resonan&#0)=E(2). The first case corre-
o7 sponds to transferring one atom at a time. In the second case
two atoms are transferred simultaneously. This latter imple-
18 mentation has a drawback due to the small value of the ra-
0.9 diative coupling between the statf and |2). In fact, the
08 corresponding Rabi frequency, estimated in ELp), is in
. gener.al_ rather smaller than the Rabi frequeﬁ@, Eq.(14), _
: describing the transfer of one atom into the tweezers. This
0.6 5 i o a0 57 55 G055 smallgr value leads to smaller energy splitting atl the a\_/0|ded
|A(to)| (KHz,/ms) A(to)] (icHz/ms) crossing between the level@) and |2), therefore imposing

much stricter limits on the ramping speed. The lower quad-
. o rants of Fig. 3 depict the results of the simulation for the
FIG. 3. (Color onling Transfer efficiencyPo_; (top) andPo_.>  sequential adiabatic transfer of two atoms into the microtrap.
(bottom as a function of the ramping ratd\| for (a) v,=2m  The efficiencies and transfer times are comparable with the
X30 kHz and Q=4 kHz and (b) »,=27X100kHz andQ_ efficiencies reached for transferring a single atom, showing
=30 kHz. The solid(red curves show the numerical result, the that two atoms can be transferred into the ground state of a
black curves display the theoretical predictions of the Landau-Zenefyeezers trap with, =27 X 30 kHz in few milliseconds. The
formula. The shaded areas denote the regions where the theoretic@hshed curve corresponds to the Landau-Zener prediction,
success probability, according to H@2), is above 99%. Efficient \ynich in the adiabatic region is to good approximation the
transfer can be achieved in few milliseconds. product of the transfer probabilities at the single avoided
_ o _ crossings, and takes the for)-%,~ P2 P\ HereP;_,
ergy eigenstate along the dashed curve. Ad_|abat|c evolutio found from Eq.(22), where the energy splitting is
is preserved when the frequency ramping ratéulfills the h|Q(21)|.
relation

m(AE/H)? (21) B. Adiabatic passage using pulses

2lIn(1 =Py’ We discuss now the transfer of atoms into the tweezers by
means of the so-called Stark-chirped rapid adiabatic passage
(SCRAB technique[26]. Here, population transfer between

transfer into the tweezers has been successfully impIetW0 quantum states is achieved by suitably varying the Rabi

mented. The derivation of inequali@?) is shown in Appen- requency€, (t) and the detuning\(t) in Eq. (5), thereby
dix A. combining adiabatic and diabatic transitions. In this scheme,

The upper quadrants of Fig. 3 display the transfer effi-two pulses of finite duration are utilized, which are a time-
ciencvP. - as a function of the rate of ram WQ| for two delayed one with respect to the other. One pulse is far-off
value)s/ gr%che microtrap frequencie§—27-r>?30 kHz and resonance and induces an ac Stark gkijf} on the transition

v,=27 X 100 kHz. Here thgsolid) red curve has been ob- )~ |a), while the second pulse, which we denote by “pump

. . : . ._pulse,” couplesquasjresonantly the statga) and|b) and
tained from numerical simulations, and the shaded regmrﬁas Rabi frequence®, (t). The detuning is shaped in order to

denotes the range where the transfer probability is larger th : . _ .
0.99. The dashed curve corresponds to the prediction of t?@lf'" the resonance conditiod\(t) =E,/# at two instants of

Landau-Zener formula in the adiabatic regime, namely forlMe &y "?mdtZ' The shaping and time delay between t_he two
large transfer efficienciefl9,27—29 and discussed in Ap- pulses is such that dj the system undergoes an adiabatic
pendix A. This takes the form passage of the same type as the one discussed in Sec. Il A,

while att, the transition is diabatic, thereby ensuring that at
nggl: 1 —g %d (22) the end of the pulses the transfer between the sf@temnd

_ 1) is achieved. A possible realization of the pulses as a

with a,q=78124%A(ty)| the adiabaticity parameter and function_ of_time and the corresponding dynamics are dis-
A(ty) and & the rate of ramping and the energy splitting, Pl2yed in Fig. 4. Here, the energy levéle) andE(1) cross

respectively, at the avoided crossing betw&é®) andE(1).  at the instant, =0 andt,=. At these instants, the system
Efficiencies of the order of 99% are achieved for transfeH.mdergoes an adiabatic and diabatic transition, respectively.

times of the order of milliseconds. The results show thalAS a result, if initially all atoms are in the condensate, then
faster transfer is achieved at larger trap frequencies. In fact,

|A(to)| <

whereAE, is the two—atom interaction energy aR{g is the
threshold transfer probability, such that f&_,;>P, the

the interaction energE, increases withy,, thereby allow-  *in fact, if both transitions would be adiabatic, there would be no
ing for larger values of the ramping rate according to Eq.transfer at the end of the pulses as the transitidn wbuld reverse
(21). the transition at,, bringing the system back to the initial state.
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E(2) E@3)

(kHz)

20

10 -

E/h (kHz)

A0k | |
-2.0 0.0 2.0 4.0 6.0

T-Q (ms)

FIG. 4. (Color onling Sketch of the dynamics when implement- b
ing the SCRAP technique for transferring one atom into the twee- 1.0
zers.(a) Pump pulsg¢ ), (t)] and ac Stark shiftA(t)] as a function
of time. (b) Corresponding spectrum. The lines(ly) are the ener-
gies E(n) as evaluated at the corresponding valueAgft). The
dashed curves indicate the dressed-state energies. The vertical sol
(dashedl lines indicate the instants at which the transitif - 06
—]1) (|0y—|2)) is driven resonantly. é

0.8

0.4
finally one atom is transferred into the ground state of the

tweezers.

Since at least at one avoided crossing the dynamics mus
be adiabatic, the bounds on the values of the Rabi frequenc'
and on the time variation of the ac Stark shift are basically 4.0 20 0.0 20
the same as for the adiabatic passage in Sec. lll A. Moreovet o7 (ms)
the finite size of the pulses and the requirement that a diaba-
tic transition take place at one of the crossings introduces a FIG. 5. (Color onling (a) Contour plot for the transfer probabil-
further parameter—namely, the width of the pump plige ity Py_,; as a function of the coupling pulse maximunand width
on which the transfer efficiency depends. The parameter refr,. The tweezers trap frequency ig=27x30 kHz and the ac
gime for the applicability of this technique is discussed inStark shift pulse has widtify=2T,. Pump and detuning pulses
detail in Appendix B. have a Gaussian envelope. The cross indicates the pararfiters

Figure 5a) displays the transfer efficiency as a function =15 kHz andT,=1 ms, which are used in evaluating the curve in

of To and Q, the maximum Rabi frequency of the pump (b)- (b) Probability Po_, as a function of the time variationr
pulse, as obtained from a numerical simulation for a tweezer8&tween the instant of time at which the resonance condition is
trap with v,=2mwx30 kHz. Transfer efficienciesP, ., achieved by the ac Stgrk pulsg and the instant of tlme at which the
>99% are achieved in the white region, corresponding td?UMP Pulse reaches its maximum value. The maximundzat
transfer times of the order of some milliseconds. High effi-_# ™S corresponds to the dynamics for which the temporal se-
ciencies are reached for a relatively wide range of paramguenci of ad'abﬁt'c and d'afat.'cgassagej S e;](Changed' The asym-
eters, showing that the method is robust to fluctuations of thénetlry etween the two peaks Is discussed In the text.
parameters of the pulses. These data have been evaluatgghinst this kind of fluctuations. Note that the curve exhibits
under the condition for which the pump pulse achieves itsa second maximum atr=-4 ms, corresponding to the case
maximum value at the same instant of time at which then which the pump pulse is centered at the second insfant
detuning pulse fulfills the resonance condition, as depicted it whichA fulfills the resonance conditioA=E;/%: namely,

Fig. 4. In this case the ideal conditions for adiabaticity areto the situation in which the sequence of diabatic and adia-
reached. The effect of a time lagr between these two batic passages is reversed. Ideally, the two maxima should be
events is shown in Fig.(6), which reports the dependence symmetric. Asymmetry here arises from the fact that the dy-
of the transfer efficiency odr. The transfer efficiency ex- namics at the crossing corresponding to the resonance for
hibits awide plateau arounér=0, which is of the order of a simultaneous transfer of two atoms into the tweefeashed

millisecond, showing that the method is also very robustvertical line in Fig. 4b)] is not perfectly diabatic. This intro-

0.2
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FIG. 6. (Color onling Sketch of the dynamics when implement-
ing the SCRAP technique for transferring sequentially two atoms FIG. 7. Contour plot for the transfer probabiliBg_,, as a func-
into the tweezers@ Pump pulsd €, (t)] and ac Stark shiffA1(t)]  tion of the coupling pulse maximus2 and widthT,,. The tweezers
as a function of time(b) Corresponding spectrum. The lines()  trap frequency is,=27 % 30 kHz and the ac Stark shift pulse has
are the energieg(n,t) as evaluated at the corresponding value ofwidth T,=2T,,. The detuning pulse has a Gaussian envelope, and
A4(t). The dashed curves indicate the dressed-state energies. T pump pulse is given b§Qo/ 2){tant (t+ 2t amp) / trampl — tanH (t
vertical lines indicate the instants at which the transition— |1) =T~ 2tamp/ tramplh, Wheretm, is the time in which the pulse is
and [1)—[2) are driven resonantly. Transfer of two atoms is ramped up to the maximum value.
achieved when the dynamics start at the blue solid curve.

zers energy levels. In Fig. 8 the transfer efficieriRy., is

duces a fundamental difference in the EfﬁCiency of tranSferp|otted for Gaussian pu|ses as a function of the pu|se maxi-
which depends on whether this transition point is crossedmum intensity and duration. Efficiencies close to unity are
namely, on whether the diabatic transitions occur before thegglized with pulses of millisecond duration.
adiabatic one. Efficient transfer of two atoms is achieved by sequentially

Similarly to the adiabatic passage in Sec. Ill A, transfer ofsending two pulses, each transferring one atom into the twee-
two atoms by means of SCRAP is better implementedzers. Here, the first pulse is resonant with the transi@n
sequentially—i.e., by transferring one atom at a time. Figure_,|1>, thereby implementing ar rotation. A 7 rotation on
6 shows a pulse sequence and the corresponding energye transition1) — |2) is achieved by coupling it with a sec-
spectrum as a function of time for transferring sequentiallyond pulse with detuning=(E,~E,)/% and suitable pulse
two atoms inside the tweezers. The ideal dynamics followgreg. The spectral resolution, at the levelAd,/#, avoids
the lower dashed IinAe in Fig.(B). The transfer efficiency as pat during the second pulse the atom in the tweezers is
a function of T, and () is displayed in Fig. 7. Here, efficient transferred back to the condensate, as the transifon
transfer of two atoms, larger than 99%, is achieved in times—|1) is far-off resonance. Transfer efficiencies exceeding
of the order of several milliseconds. The relatively broad99% are achieved on time scales of the order of several mil-
range of values for whiclP,_,, exceeds 99% shows that the liseconds.
method is robust against parameter fluctuations.

IV. DISCUSSION AND CONCLUSIONS

C. Transfer by population inversion We have investigated the feasibility of a scheme that em-

We finally discuss transfer of atoms into the tweezers byploys radiation, thereby achieving the deterministic extrac-
radiation pulses of chosen areas, coupling resonantly thgon of atoms from a Bose-Einstein condensate and their
states|0) and |1). Perfect transfer is achieved wheh  transfer into the quantum state of a steep trap. We have
=E;/h and when the the pulse area fulfills the relationshown that a high transfer efficiency can be achieved in
deQ(ll)(r):w. The limitations are on the choice of the Rabi times of the order of some milliseconds in parameter regimes
frequency, whose value is bound by the interaction energy imnvhich are within reach of present experiments with mi-
order to have negligible coupling to off-resonant statee  crotraps[17]. The radiation used for implementing the ex-
Appendix A), and on the pulse duration, which must be suf-traction can be either in the microwave regime, thus coupling
ficiently long to guarantee the spectral resolution of the tweedirectly, say, a magnetic dipole transition like[®10], or in
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(a) which limits the efficiency of the tweezers. Its effect can be
eliminated by resolving spectrally the condensate excitations.
This is possible when the condensate is confined in a suffi-
ciently steep trap. In this case, the condensate excitations
must be taken into account when setting the parameters, as
they determine the spectral resolution to be achieved and
eventually the transfer duration.

Our analysis has been restricted to the transfer of one and
two atoms into the corresponding tweezers ground state.
Similar considerations apply for the transfer into one- and
two-atom excited states. In this case, the parameters must be
carefully set, so to spectrally resolve the desired level. The
process, in this case, may take advantage of symmetries, rul-
ing out the coupling to states which may be close but or-
thogonal to the initial state. The procedure discussed in this
paper can be as well extended to the transfer of three or more
atoms into the tweezers. In this case, we expect that the
scheme is efficient when transferring sequentially one atom
‘ at a time. When confining three or more atoms into the steep

1.0 1.2 1.4 1.6 1.8 2.0 trap, however, one must consider many-body effects which
(b) t(ms) can give rise to instabilities. The dynamics and time scales

1.0 — ; on which they manifest themselves depend on the trap pa-
rameters and atomic species and have to be analyzed case by
case.

To conclude, the possibility of extracting atoms on de-
mand from a condensate realizes the deterministic coupling
0.8 of an atom trap to a reservoir, thereby finding several analo-
gies in quantum optical systems, and opens interesting per-
spectives in the study and control of coherent matter waves.
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FIG. 8. (Color onling Transfer of one atom by resonantro-
tation. (a) Contour plot ofPy_.; by means of Gaussian pulses with
A=E;/# as a function of the maximum pulse val@eand of the
pulse widthT, for v,=27X 30 kHz. The black regions correspond
to the parameter regime, where the efficiency is below 8(8).
Po_.1 as a function of the pulse streanhfor constant pulse width
To=1.5 ms. The corresponding parameters are indicated by the verAPPENDIX A: LIMITS FOR THE APPLICATION OF THE
tical line in (a). ADIABATIC PASSAGE

the optical domain, thereby implementing Raman transitions. In this appendix we discuss the parameter regimes for
Their application depends on the specific details of the syswhich the dynamics described in Sec. Il A apply. We first
tem. summarize the dynamics of the adiabatic passage by discuss-
The results presented here refer to ideal conditions, wheri#@g the transfer of one atom into the tweezers. The consider-
att=0 all atoms are in the condensate ground state and th&lions madehere can be directly extended to the transfer of
coupling with the other excited states of the condensate caatoms. We assume that the detuning is swept between the
be neglected. The presence of noncondensed atoms and th#ial value A; and the final valué\; in the interval of time
coupling of the statda) to the condensate excitations have T, such thatA(0)=A; and A(T)=A;. Efficient transfer from
not been considered. The presence of noncondensed atof@sto |1) is achieved when at these values of the detuning the
introduces a source of noise into the process, giving an instates|0), |1) are eigenstates dff to good approximation.
determination in the transfer efficiency of the order of theThe value of the Rabi frequency is bound from the constraint
noncondensed fraction. The coupling of the stajeto the  that the relevant dynamics must involve only the sta@s
condensate excitations constitutes a further source of noisand |1). When these conditions are fulfilled, the dynamics
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can be restricted to the subspace of stéi@s |1)} and the We fix now the threshold valu®,, such that forPy_, 4
eigenvalues of the reduced Hamiltonian at a given indtant = P, the transfer is considered successful, and we evaluate
O<t<T, are the rateA, and thus the minimum time, required for transfer-
1 1, ————a5 ring successfully one atom into the tweezers. From (E8)
€(1,0) = ShA () Eh\"Al(t)z +|0, (A1) we find thatP}®, =P, when
- - SIh)?
with |A(t)| < % (A9)
A () = A(t) - Ey/h. (A2) 0
The corresponding eigenstates take the form Using Eqgs.(A5) and (A6) we rewrite this condition as
. - AE,/h)?
|D,(1)) = Sin@(1)[0) + cosO(H)|1), (A3a) IA(ty)| < _mAEA)” (AL0)
|[D_(1)) = cos®(1)[0) ~ sinO()[1), (A3b)  Hence, the timer, needed for transferring one atom into the
where the mixing angl® is defined by the relation tweezers must fulfill the relation
o A=A 2]In(1-Py)
tan 20(t) = , 000 <. A4 = | >—|——, (A11)
( ) Al(t) ( ) m ( ) 1 A(to) - AEzlh

We denote by, the instant of time at which the transition where we have takeji\;—A;| ~ AE,/%. With the parameters
is resonantly driven: namely, when the detuning fulfills theof Sec. Il B, forAE,/A=2mx 2 kHz and a success probabil-
relation A(tp) =E;/A. The minimum values of the energy ity P,=99%, the transfer time must fulfill the relation

splitting is reached at=t, and takes the form >0.2 ms.

5=le.(Lty) — e-(1,tg)| =A|OY)]. (A5)
We now identify the parameter regime for which one may APPENDIX B: LIMITS FOR THE APPLICATION
restrict the dynamics to the level®) and|1). This approxi- OF SCRAP

mation is justified wher{i) coupling to single-particle exci-
tations of the one-atom tweezers is negligible—ilél(ll)|
< v,—and(ii) when the stat¢2) contributes negligibly to the
dynamics—namely, when the condition

In this appendix we discuss the parameter regimes for
which the dynamics described in Sec. Il B applies. For sim-
plicity we consider the case in which both the pump and the
far-off-resonance pulse have Gaussian envelope and are

|0V < AE, /A (A6)  given by

is fulfilled. This condition onQ'Y ensures also a complete _ A t?
adiabatic transfer by ramping 1the detuning across the reso- Q®=0 exp{— Tf)] (B13)
nanceE(0)=E(1) while keeping(), constant. In fact, in this
limit the final detuningA; can be chosen sufficiently fa
away from the resonanck,/2k and at the same time be .
sufficiently large so that ak; the unperturbed staté®) and Aq(t) = Aggiset™ A exp{—
|1) are to good approximation eigenstates of H.

We_ now evaluate the probability,_,; of transferring one whereT, andT, are the pulse widths, and the terfisand
atom into the ground state of the tweezers when the dynam-

ics can be restricted to the levé®s and|1). In the adiabatic 2 denote the pulse maxima, and the offset valugse is
regime the probability?, ., can be evaluated by using the such that at the instants andtz the resonance conditions
Landau-Zener formula, which at the asymptotics—i.e., forA(t)=A(t)=Ey/% are fulfilled. Here, we have chosetp

r and

(t-17)?
2

A

}, (B1b)

large transfer efficiencies—takes the form <t,, so that the adiabatic passage occurs at the first crossing,
2 ~ and sett;=0 andt,=r.
Ppf1=1- e, (A7) The system dynamics can be reduced to the two Id0gls
Here a4 is the adiabaticity parameter, defined as and |1) provided that the relation in Eq(A6) isA fulfilled,
£ which sets an upper bound to the maximum vdlughat the
o= T’— (A8) pump pulse reaches. The dynamics is adiabatic around the
252 A(ty)] pointt; provided that the pulses time variation is sufficiently

) ) o smooth such that the adiabaticity parameter in &®8) is
The parameter,y is proportional to the energy spliting  yery |arge. For this reason, ideally the pump pulse should
defined in Eq(AS5), and is inversely proportional to the time each jts maximum t, such that the level splitting is maxi-
derivative of t(fsg detuning at the level crossing. Hence, the mum at the avoided crossing. The adiabaticity of the transfer
probability P,~; approaches unity for large values of att, can be evaluated by checking for which parameters the
asg—i.e., for large values of the energy splitting and/or smalladiabaticity parametes,q of Eq. (A8) is much larger than

values of the rate\. unity. From Egs(A6) and(A8) one finds a condition for the
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temporal variation of the detuning. For Gauss pulses as in A(l)-ri 2
Eq. (B1b) this condition takes the form To=Qy _& exp 2 | (B3)
T A
TAEZ  Ar 7
——Z > eXp -, (B2)
4 1 Tx Tx

which fixes a relation between the widths and maxima of the

where here;=0. two pulses and their relative delay. Simple algebra shows
Ideally, the adiabatic transition between two eigenstates ofhat this condition is consistent with the condition in Eq.

Ha+Hy—say, |0) to the statel)—is implemented over an (B2) provided thatAE, T, /4> 1.

infinite time. As the pump pulse has a finite duratigp then Finally, the transition is diabatic @=r when the pump

To must exceed a minimum valugy,, in order to achieve pyise is very small at this instant—i.e[, > T, and, more

sufficiently large transition probabilities at the instaptUs-  gpecifically, 7> T,. A condition for diabaticity is derivable

ing the relatiort;m,~ 20, /[A(ty)| [30], where(), is the larg-  imposing that the adiabaticity parametertabe a,{t,) <1,

est value of the coupling betweé®d) and|1), this condition  thereby finding a bound on the time lagt,—t; which also

corresponds to depends on the form of the pulse envelopes.
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