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Fluctuations and Decoherence in Chaos-Assisted Tunneling
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We study quantum dynamical tunneling between two symmetry-related islands of stability in the phase
space of a classically chaotic system. The setting for these experiments is the motion of carefully
prepared samples of cesium atoms in an amplitude-modulated standing wave of light. We examine the
dependence of the tunneling dynamics on the system parameters and indicate how the observed features
provide evidence for chaos-assisted (three-state) tunneling. We also observe the influence of a noisy
perturbation of the standing-wave intensity, which destroys the tunneling oscillations, and we show that
the tunneling is more sensitive to the noise for a smaller value of the effective Planck constant.
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Much progress has been made in the study of the quan-
tum dynamics of classically chaotic systems by exploring
how quantum behavior is influenced by structures in the
classical phase space. A particularly challenging regime of
study is that of mixed systems, where regular and chaotic
regions coexist in the same phase space, due to the com-
plexity of the dynamics. One manifestly quantum effect
that has come to light in these systems is dynamical tun-
neling [1], where a quantum wave packet can oscillate co-
herently between two symmetry-related regular regions in
phase space, even though the classical transport between
these regions is forbidden. This effect specifically refers
to the situation in which the classical transport is forbid-
den by the dynamics of the system and not by a potential
barrier, as is the case in the more familiar barrier tunnel-
ing. Although markedly different from barrier tunneling,
dynamical tunneling proceeds along lines similar to bar-
rier tunneling in the symmetric double-well potential [2],
in that the tunneling occurs as a pair of nearly degener-
ate states (“quasidoublet”) with opposite parity dephase.
Subsequently, it was found that the chaotic regions could
also have a substantial effect on the tunneling rate between
the regular regions [3,4], an effect that has since become
known as chaos-assisted tunneling [2,5].

In this Letter, we will focus on the original three-level
model of chaos-assisted tunneling [2,5] (see also [6–8] for
particularly lucid discussions of this model). This model,
also referred to as a singlet-doublet crossing [7], involves
the interaction of a tunneling quasidoublet of states local-
ized on the symmetry-related regular regions (and having
vanishingly small splitting) with a third state associated
with the chaotic region. These states can be energy eigen-
states in autonomous systems or Floquet (quasienergy)
states in the case of time-periodic systems, as we consider
in the experiment. We initially consider these three states
for a parameter regime where the singlet and the doublet
are separated in (quasi)energy and thus do not interact. As
a system parameter varies, the chaotic state can “collide”
with the doublet, producing a three-state avoided crossing.
Because the two regular states have opposite parity and the
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chaotic state also has definite parity, the chaotic state inter-
acts only with one member of the doublet. If the interac-
tion is sufficiently strong, the splittings can be large at the
avoided crossing, leading to an enhanced tunneling rate.
The chaotic states fluctuate erratically as system parame-
ters vary, leading to irregular fluctuations in the tunneling
rate over orders of magnitude [2,6].

Chaos-assisted tunneling has only recently become
amenable to experimental study. The first evidence for this
effect came from a spectroscopic study of the modes of a
microwave resonator, where the authors demonstrated an
enhancement in the quasidoublet splitting for states near
the border between the stable and the chaotic regions [9].
More recently, we have reported the observation of chaos-
assisted dynamical tunneling of ultracold atoms between
two islands of stability in a modulated optical lattice [10].
In this work, we demonstrated the enhancement of the tun-
neling rate relative to integrable tunneling in the unmodu-
lated lattice (Bragg scattering), and we also established the
existence of an oscillation of the atomic population in the
chaotic region, which pointed to the role of the chaotic
region in mediating the tunneling. (A related experiment
[11] studied dynamical tunneling of a Bose condensate
between another pair of islands in a modulated optical
lattice.) The goal of the present Letter is to report the first
observation of several important features of chaos-assisted/
three-level tunneling, including multiple oscillations due
to dephasing of different pairs of the three levels. We also
study the dependence of the tunneling rate on a system
parameter, for which tunneling appears only in a certain
range, and which shows a dependence that is not expected
for ordinary (two-state) dynamical tunneling. Finally, we
study the effects of noise on tunneling, demonstrating both
the suppression of tunneling and an increased sensitivity
to noise for a larger action scale of the system.

The experimental apparatus and procedure used here
have been described previously [10]. We study the dy-
namics of cold cesium atoms exposed to an amplitude-
modulated standing wave of far-detuned laser light,
which provides a nearly conservative spatial potential
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for the atomic motion. In scaled units, the Hamiltonian
for the center-of-mass atomic motion is H � p2�2 2

2a cos2�pt� cos�x� [10], where a is proportional to the
laser intensity and the inverse of the detuning to the nearest
resonance (50 GHz for the experiments here). The other
parameter in these scaled units is the effective Planck
constant k2 :� 8vrT , where vr�2p � 2.07 kHz for the
cesium D2 transition, and T is the period of the modulation.
Because the scaled coordinate operators satisfy �x, p� �
ik2, this parameter k2 controls the size of the atomic wave
packet in the classical phase space. The phase space for
this system is characterized by three primary resonances
[6], corresponding to the three (complex) frequency com-
ponents of the modulation. We study the tunneling of the
atoms between the two symmetry-related resonances that
move with opposite velocities; the third, stationary reso-
nance does not directly participate in the tunneling.

A crucial aspect in successfully observing tunneling os-
cillations is the procedure for quantum-state preparation,
as described previously [10]. After the atoms are collected
in a standard magneto-optic trap and further cooled in a
three-dimensional optical lattice, a subset of atoms with a
narrow momentum distribution (having a half width at half
maximum of 0.03 3 2h̄kL) about p � 0 is selected using
velocity-selective, stimulated Raman transitions. The far-
detuned standing wave, whose intensity is controlled by an
acousto-optic modulator (AOM), is then turned on adia-
batically, so that the atoms localize in the potential wells.
After a sudden shift of the phase of the standing wave
and a delay of appropriate duration, the atoms are local-
ized in phase space (in nearly a minimum-uncertainty con-
figuration) and centered on one of the symmetry-related
islands of stability. The subrecoil velocity selection and
the two-photon nature of the momentum transfer from the
optical lattice to the atoms ensure that only states with
momentum nearly an integer multiple of 2h̄kL are popu-
lated, which, along with being localized on a resonance, is
a necessary condition for tunneling to occur [6,10]. For the
data presented here with k2 � 2.08 (T � 20 ms), the ini-
tial wave-packet distribution (in momentum) was peaked at
4.2 3 2h̄kL, with a width sp � 1.7 3 2h̄kL, and 8.2 3

2h̄kL, with a width sp � 2.1 3 2h̄kL, for the data with
k2 � 1.04 (T � 10 ms). The potential amplitude a was
determined by measuring the small-amplitude oscillations
of the atoms in a deep, stationary standing wave, and com-
paring the data directly to quantum simulations; the values
quoted here have a 5% uncertainty.

As mentioned above, one signature of chaos-assisted
(three-level) tunneling is a nonuniversal dependence of the
tunneling rate on the system parameters. An experimental
measurement of the tunneling rate as a function of a, with
k2 fixed at 2.08, is shown in Fig. 1. Each tunneling rate
was extracted from an average of ten measurements of �p�
vs t, of which two examples are shown in Fig. 2. Tunnel-
ing is visible in the range of a from about 7 to 14, but is
suppressed outside this range. Below this range, the tun-
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FIG. 1. Dependence of the tunneling rate on the well depth a,
for k2 � 2.08 (T � 20 ms). The periods were extracted from
measurements of �p� vs t using both numerical Fourier trans-
form and nonlinear fitting techniques. In the range of a from
8.9 to 10.3, two distinct frequencies can be resolved in the tun-
neling data. The zero-frequency data points at the edges of the
plot indicate that no tunneling frequency can be extracted from
the data at these locations.

neling is presumably too slow to be observed, and above
this range the outer islands have completely dissolved into
the chaotic sea, so that we no longer expect clean tunneling
to occur. There are two particularly interesting features to
notice in the variation of the tunneling rate. The first is that
the tunneling rate decreases as a function of the coupling
strength a. This dependence is the opposite of our expec-
tation of direct (two-state) tunneling, where the tunneling
rate should increase with a (for Bragg scattering, an analo-
gous, direct-tunneling process in an unmodulated standing
wave, the tunneling rate increases with a power-law de-
pendence on a [12]). This behavior is thus strong evidence
that the tunneling is chaos-assisted, where one or more cha-
otic levels have a definite influence on the doublet splitting.
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FIG. 2. Examples of tunneling oscillations for a � 8.0 and
a � 9.7, corresponding to two of the measurements in Fig. 1.
In the former case, a single frequency persists for the maximum
duration of the optical-lattice interaction, while in the latter case
the beating of two tunneling frequencies is apparent. The data
points are connected by lines for clarity.
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The second feature to notice is that two frequencies are
clearly resolvable in a comparatively narrow window in a

(from about 8.5 to 10.5). The one- and two-frequency be-
haviors of the tunneling are illustrated in Fig. 2, where one
tunneling frequency is evident for a � 8.0, and the beating
of two frequencies is clearly apparent for a � 9.7. This
behavior is also consistent with the three-state model near
the center of a singlet-doublet crossing. In this model, the
initial wave packet populates a regular state (localized on
the islands) and two hybrid states, which have population
in both the islands and in the chaotic sea (i.e., these are the
two interacting states with the same parity). There should
thus be two frequencies associated with the tunneling, cor-
responding to the two splittings between the regular state
and the two hybrid states. In general, these two splittings
will not be equal, but should be similar near the center of
the avoided crossing, leading to two-frequency beating in
the tunneling dynamics.

This two-frequency behavior accounts for the dephasing
of two pairs of the quasienergy states in the three-level
model, but the dephasing of the third pair (the two hybrid
states) should also be visible in the experimental data.
Because these are the two states that repel each other in
the avoided crossing, this pair has a larger splitting than
the other two pairs. Thus, we expect this pair of states to
be responsible for a transport that is much faster than the
island-tunneling process, involving the transfer of popu-
lation between the regular island regions and the chaotic
layer. This behavior is illustrated in the surface plot of
Fig. 3, which is sampled 10 times per modulation period,
in contrast to the other data in this Letter, which are
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FIG. 3. Experimental momentum distribution evolution of
chaos-assisted tunneling for k2 � 2.08 (T � 20 ms) and a �
7.7. The distribution is sampled every 2 ms out to 400 ms,
covering the first full tunneling oscillation. The classical island
motion (with the same frequency as the modulation) is evident,
as well as more complicated oscillations into the intermediate
chaotic region near p � 0. The phase space is characterized by
the two (symmetry-related) tunneling islands as well as a small
doublet of stable islands near p � 0. These distributions are
averaged over ten iterations of the experiment.
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sampled at a single phase of the periodic modulation.
This plot focuses on a single tunneling oscillation, which
is the slowest process in this plot. Also visible is a fast
complementary oscillation of the two island populations
at the modulation frequency, which is a manifestation of
the classical island motion [10]. A third, more interesting
oscillation is also visible, where during several modula-
tion cycles the atoms leave the islands and appear in the
predominantly chaotic region between the islands. This
oscillation is precisely what we expect from the dephasing
of the two coupled states, and thus also strongly supports
the three-level model in explaining the tunneling dynam-
ics. Note, however, that although preliminary calculations
[13], as well as the predominantly chaotic nature of the
classical phase spaces studied here, suggest that the three-
level dynamics are due to chaos-assisted tunneling, simi-
lar effects can be induced by states on regular regions in
phase space [14]. We also note that more than three states
may be important in understanding the present results, as
suggested by the complicated nature of the oscillations in
Fig. 3.

The tunneling that we have described relies on quantum
coherence, and tunneling in classically chaotic systems is
expected to be suppressed by dissipation [7,15], measure-
ment [16], and noise [17]. Here we consider the effects of
a noisy perturbation of the optical lattice by making the
replacement a ! a�1 1 ß�t��, where ß�t� is a randomly
fluctuating quantity. This noise signal was generated by
processing normally distributed random deviates using
a digital Chebyshev low-pass filter (fourth order, with
0.1 dB passband ripple) before applying them to the
AOM control signal. The cutoff frequency (0.5 MHz for
the k2 � 2.08, T � 20 ms data, and 1 MHz for the k2 �
1.04, T � 10 ms data) was selected to be well within
the 10 MHz modulation response of the AOM driver and
to make the noise spectrum the same in scaled units for
the different cases. The rms noise levels �ß2�t��1�2 that
we quote are the noise levels after the filter. Because
the instantaneous noise level is proportional to the mean
intensity, truncation effects due to noise deviations falling
outside the dynamic range of the laser were rare except in
the largest noise case (62% rms).

The response of the tunneling oscillations to the noise is
illustrated in Fig. 4 for k2 � 2.08 and k2 � 1.04 (a � 11.2
in both cases). As one might expect, the oscillations are
destroyed as the noise level increases, causing damping of
the oscillations on progressively shorter time scales. At
the largest levels of noise, classical-like behavior (with
noise) is recovered, in that the tunneling oscillations are
suppressed. The noise also has the “direct” effect of caus-
ing relaxation to p � 0, because the noise permits transi-
tions, both quantum and classical, out of the initial island
of stability and into the chaotic sea. The more interesting
feature about this data, though, is that, because the value of
a is fixed between the two measurements and the tunnel-
ing periods are approximately the same (in scaled units),
120406-3
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FIG. 4. Comparison of the effects of applied amplitude noise
on the tunneling oscillations for a � 11.2 and k2 � 2.08 (upper
graph) and k2 � 1.04 (lower graph). The rms noise levels are 0%
(circles), 15.7% (squares), 31% (diamonds), and 62% (triangles)
in the k2 � 2.08 case; and 0% (circles), 7.9% (squares), 15.7%
(diamonds), and 31% (triangles) for the k2 � 1.04 case. The
tunneling is only completely suppressed at the 62% level in
the first case, whereas in the second case the oscillations are
already suppressed at the 31% level, and thus the tunneling is
substantially more sensitive for the smaller value of k2. The data
are averaged over ten realizations of noise.

we can compare the sensitivity of the system to the noise
for two different values of k2. From the data, we see that
the tunneling oscillations are suppressed at a much lower
level of noise for the k2 � 1.04 case than in the k2 � 2.08
case (31% vs 62% rms). Recalling that k2 is the dimen-
sionless Planck constant in scaled units, this comparison
indicates that the tunneling in this system is more sensitive
to decoherence as the system moves towards the classical
limit (i.e., to a larger action scale compared to h̄). This be-
havior is consistent with theoretical expectations because,
for smaller k2, the phase-space structure in chaotic systems
saturates on a smaller scale [18], thus being more easily in-
fluenced by decoherence (which causes diffusion in phase
space). Related experimental results have demonstrated
120406-4
that Schrödinger-cat superposition states in the phase of a
cavity field [19], in an atom interferometer [20,21], and in
an ion trap [22,23] are more sensitive to decoherence when
the separation of the components of the state increases (i.e.,
as the spacing of the interference fringes decreases). The
present experimental results are of a fundamentally differ-
ent nature, though: while these other experiments study
the decoherence of a prepared superposition state, the in-
terferences in the tunneling here are generated dynamically
in this nonlinear system.
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