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We report the direct observation of quantum dynamical
tunneling of atoms between separated momentum regions
in phase space. We study how the tunneling oscillations
are affected as a quantum symmetry is broken and as the
initial atomic state is changed. We also provide evidence
that the tunneling rate is greatly enhanced by the
presence of chaos in the classical dynamics. This tunneling
phenomenon represents a dramatic manifestation of
underlying classical chaos in a quantum system.

Quantum-mechanical systems can display very different
behavior from their classical counterparts. In particular,
quantum effects suppress classical chaotic behavior, where
simple deterministic systems exhibit complicated and
seemingly random dynamics (1). Nevertheless, aspects of
quantum behavior can often be understood in terms of the
presence or absence of chaos in the classical limit. In this
report, we focus on quantum transport in a mixed system,
where the classical dynamics are complicated by the
coexistence of chaotic and stable behavior. We study
quantum tunneling between two stable regions (referred to as
nonlinear resonances or islands of stability) in the classical
phase space. The classical transport between these islands is
forbidden by dynamical "barriers" in phase space. In contrast,
quantum tunneling can couple the two islands so that a wave
packet oscillates coherently between the two symmetry-
related stable regions (2–14).

"Dynamical tunneling," where the classical transport is
forbidden because of the system dynamics and not a potential
barrier, was originally introduced in the context of a two-
dimensional, time-independent potential (2). Subsequently, it
was found that the presence of chaos could markedly enhance
the tunneling rate in a driven, double-well potential (3), and
the role of a discrete symmetry in this system was highlighted
in the tunneling process (4). In addition to symmetry, the
presence of regular islands is important for producing
coherent tunneling, because the islands cause localization of
the Floquet states (5), which are the analogs of energy
eigenstates in time-periodic quantum systems (1). Thus,
dynamical tunneling between islands of stability is analogous
to tunneling in the simple double-well potential, where the
localized eigenstates split into a symmetric/antisymmetric
pair, and the tunneling can be understood in terms of the
dephasing of this nearly degenerate Floquet-state doublet. It
was found that the tunneling rate is correlated with the degree
of overlap of the tunneling states with the chaotic region,
again pointing to the role of the chaotic sea in assisting the
tunneling transport (6). The possible enhancement of the
tunneling rate because of the presence of the chaotic region
was understood in terms of a three-level process, where the
tunneling doublet interacts with a third state associated with

the chaotic region. The term "chaos-assisted tunneling" was
introduced (7, 8) to distinguish this process from ordinary
dynamical tunneling, which is a two-state process. Chaos-
assisted tunneling has also been explained in terms of indirect
paths, which are multiple-step transitions that traverse the
chaotic region, as opposed to direct paths, which tunnel in a
single step and are responsible for regular dynamical
tunneling (9). Because of these coexisting direct and indirect
mechanisms, the presence of the chaotic region produces
large fluctuations in the tunneling rate as the system
parameters vary, sometimes increasing the tunneling rate by
orders of magnitude.

Previous experimental work on dynamical and chaos-
assisted tunneling has mainly focused on wave analogies to
these effects. Chaos-assisted tunneling has been studied in
microwave billiards, where the enhancement of mode doublet
splittings due to classical chaos has been detected
spectroscopically (15). The Shnirelman peak in the level
spacing distribution is a similar statistical signature of
dynamical tunneling (16) and has been observed in acoustic
resonator (17) and microwave cavity experiments (18).
Finally, another recent atom-optics experiment has examined
coherent tunneling in a double-well optical lattice potential
(19, 20).

Our experiment studies the motion of cold cesium atoms in
an amplitude-modulated standing wave of light. Because the
light is detuned far from the D2 line (50 GHz, or 104 natural
linewidths, to the red of the F = 3 → F’ transition, where F is
the atomic hyperfine quantum number), the internal dynamics
of the atom can be adiabatically eliminated (21, 22). The
atomic center-of-mass Hamiltonian can then be written in
scaled units as

H = p2/2 − 2αcos2(πt)cos(x) (1)

where x and p are the canonical position and momentum
coordinates, respectively, t is time, and  α is given by
(8ωrT

2/ h )V0 (V0 is the amplitude of the ac Stark shift
corresponding to the time-averaged laser intensity, T is the
period of the temporal modulation, h  is the reduced Planck
constant, and ωr is the recoil frequency, which has the
numerical value 2π × 2.07 kHz for this experiment); more
details on the unit scaling can be found in (22). The quantum
description of this system is governed by one additional
parameter, the effective Planck constant k = 8ωrT, so that the
scaled coordinate operators satisfy [x, p] = ik (note, however,
that for the experimental data we report momentum in units
of double photon recoils, 2h kL, where kL is the optical wave
number, which is equivalent to the scaled momentum
expressed in multiples of k). The time-dependent potential in
this system can be decomposed into a sum of three
unmodulated cosine terms (23). One of these terms is
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stationary, whereas the other two move with velocity ± 2π, so
that in the limit of vanishing α, the phase space of this system
has three primary resonances, two of which are symmetric
partners about the p = 0 axis. The value of α used in the
experiment was 10.5 ± 5%. At this large value of α, the
central island has mostly vanished, leaving a large chaotic
region surrounding the two symmetry-related islands (Fig. 1,
A and B). To study chaos-assisted tunneling, we prepared the
atoms in one of the resonances and observed the atoms
coherently oscillate between the two islands by monitoring
the evolution of the atomic momentum distribution. The
possibility of experimentally observing chaos-assisted
tunneling in this system has been a subject of recent
discussion (10–12), and the tunneling and band structure in
this system were recently treated in an extensive numerical
study (10).

The basic experimental apparatus has been described in
detail in (22), although we have made several major
improvements, as we now describe. To prepare the initial
atomic state, we first cooled and trapped 106 cesium atoms
from the background vapor in a standard six-beam magneto-
optic trap (MOT), at a temperature of 10 µK (corresponding
to a Gaussian momentum distribution with σp/h kL = 4). The
atoms are then further cooled and stored for 300 ms in a
three-dimensional, far detuned, linearly polarized optical
lattice similar to that of (24). After adiabatic release from the
lattice, the atoms achieve a temperature of 400 nK (σp/h kL =
0.7). The atoms are then optically pumped to the F = 4, m = 0
magnetic sublevel, resulting in a temperature of 3 µK
(σp/h kL = 2). The atomic orientation is maintained with a
0.3-G bias field. A velocity-selective, stimulated Raman pulse
on the 9.2-GHz clock transition (which is insensitive to
Zeeman shifts to first order) "tags" a narrow velocity slice (of
less than 1% of the atoms) into the F = 3, m = 0 sublevel near
p = 0. The Raman fields are generated with a setup similar to
that in (25), and the 800-µs square temporal pulse yields a
momentum slice with a half-width at half-maximum of 0.03 ×
2h kL. The remaining atoms are then removed by applying
low-intensity, circularly polarized light resonant on the F = 4
→ F' = 5 cycling transition for 800 µs.

At this point, the atoms have been prepared in a very
narrow distribution about p = 0, but they are not localized in
position on the scale of the standing-wave period. A one-
dimensional optical lattice is ramped on adiabatically so that
the atoms localize in the potential wells. The lattice is then
suddenly spatially shifted by 1/4 of the lattice period (in
several hundred ns) with an electrooptic modulator placed
before the standing-wave retroreflector. After 6 µs of
evolution in the lattice, the atoms return to the centers of the
potential wells, acquiring kinetic energy in the meantime. The
resulting Gaussian momentum profile is peaked at 4.1 ×
2h kL, with a width σp = 1.1 × 2h kL. This state preparation
procedure produces a localized atomic wave packet centered
on one of the islands of stability (Fig. 1, A and B). The three
red ellipses are the 50% contours of a classical distribution
with the same position and momentum marginal distributions
as the Wigner function. (The Wigner function has additional
structures that reflect the coherences of the initial state.) The
initial condition shown does not reflect a slight distortion due
to anharmonic motion in the lattice. The importance of the
extremely narrow velocity selection is twofold. First, the
atomic distribution must be selected to be well within one
photon recoil of zero momentum, so that all the atoms load
into the lowest energy band of the lattice. Then, in the deep-
well limit, the atomic distribution becomes minimum-

uncertainty Gaussian (modulo the standing-wave period).
Second, only atoms whose momenta are nearly a multiple of
h kL will tunnel, as we discuss further below. As the lattice
only imparts momentum in multiples of 2h kL, the ramping
and shifting of the lattice result in a distribution with an
overall Gaussian envelope but concentrated in narrow
momentum slices around n(2h kL) for integer n. This
structure indicates coherence of the wave packet over
multiple periods of the optical lattice.

After the state preparation, the atoms are subjected to the
time-dependent interaction described by Eq. 1, with a
modulation period of T = 20 µs (k = 2.08). The atoms are then
allowed to expand freely for 20 ms, after which the optical
molasses is turned on, freezing the atoms in place. The
fluorescence of the atoms is collected on a charge-coupled
device camera. As a result of the long free-drift time, this
process yields a measurement of the atomic momentum
distribution. Because of the relatively large size (σx = 0.15
mm) of the initial atomic cloud, the individual momentum
slices are not resolved in the measured distributions. To
compensate for the loss in signal that results from discarding
most of the atoms, we averaged the data presented in this
report over 20 iterations, except for the distributions in Fig.
1D (100 iterations) and Fig. 5A (19 iterations). The
momentum distributions are sampled every two modulation
periods (40 µs) for all the data presented here except for the
high temporal resolution data (Fig. 5A).

The measured evolution of the momentum distribution
(Fig. 1C) shows clear tunneling oscillations between the
initial momentum peak and its symmetric partner, which is
located 8 × 2h kL away in momentum. Four damped
oscillations are apparent in this measurement out to 80
modulation periods (1600 µs), and after this time the
oscillations have completely damped away. Four of the
momentum distributions near the beginning of the evolution
are shown in more detail in Fig. 1D. During the first
oscillation, nearly half of the atoms appear in the secondary
peak (26).

As mentioned above, only atoms with momentum of
approximately a multiple of a photon recoil momentum (or
scaled momentum of nearly a multiple of k/2) will tunnel.
This is clear from the requirement of symmetry for tunneling
to occur, because only states that involve these special
velocity classes are coupled to their symmetric reflections
(about the p = 0 axis) by two-photon transitions. This is
essentially the same condition required for Bragg scattering
(27–29). The broken symmetry resulting from selecting other
velocity classes is formally equivalent to a broken time-
reversal symmetry (30) and suppresses the formation of
symmetric/antisymmetric doublets (30, 31). We can study
this broken symmetry directly by varying the Raman detuning
of the velocity-selection pulse from the optimum value and
monitoring the effect on the evolution of the average
momentum 〈p〉 (Fig. 2). The case with the strongest
momentum oscillations corresponds to the data shown in Fig.
1, C and D. Also shown are measurements with Raman
detunings corresponding to momentum offsets of 0.05 ×
2h kL and 0.12 × 2h kL. In the former case, the oscillations
are partially suppressed, and for the larger detuning, the
tunneling oscillations have mostly disappeared. Because of
this sensitivity to the initial momentum, the tunneling
oscillations are not visible without subrecoil velocity
selection, as we have experimentally verified (32).
Additionally, this effect is largely responsible for the
damping of the tunneling oscillations that we observe,
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because the states near the edge of the Raman velocity
selection profile will not tunnel as efficiently as the
"resonant" states at the profile center. The various states will
also tunnel at slightly different rates, leading to dephasing of
the oscillations, similar to broadened excitation of a two-level
system. Hence, narrower velocity selection should lead to
longer damping times, although noise and decoherence
sources may also limit the coherence of the oscillations.

We also verified that the tunneling is strongest if the wave
packet is initially centered on the island of stability. As the
initial wave packet is moving, we can displace the initial
condition in the x direction in phase space simply by inserting
a short delay time where the standing wave is off before
beginning the driven pendulum interaction. The oscillations
in 〈p〉 were compared for delay times of 0, 3.8, 7.6, and 15.1
µs, corresponding to displacements of 0, 1/4, 1/2, and 1
periods of the optical potential away from the island center
(Fig. 3). For the 1/4-period displacement, the oscillations are
suppressed, but still present. The initial wave packet in this
case only weakly excites the tunneling Floquet states and
mostly populates the states in the chaotic sea (resulting in
diffusion throughout the sea) and states in the outer stability
band (resulting in trapping of the wave packet at the high
momenta). For the 1/2-period displacement, the oscillations
are completely suppressed, because the wave packet is almost
entirely trapped in the outer stable region. For the longest
delay, the wave packet returns to the island center, and the
tunneling oscillations are once again present. The amplitude
of the oscillations is somewhat suppressed in this case,
however, because the free evolution stretches the wave
packet, and hence the tunneling states are not as efficiently
populated.

So far, we have discussed the tunneling oscillations and
how they are affected by a broken quantum symmetry and the
initial location in phase space, which are important
characteristics of dynamical tunneling. To demonstrate chaos-
assisted tunneling requires further evidence, and an important
test is to compare the tunneling in the time-dependent
potential with tunneling in the absence of chaos. A sensible
integrable counterpart of the amplitude-modulated standing-
wave system arises by simply considering the time-averaged
potential, resulting in the quantum pendulum. Because the
initial distribution is centered outside the separatrix, classical
transport across the p = 0 axis is also forbidden in this system.
However, there is a well-known dynamical tunneling
mechanism in the pendulum, high-order Bragg scattering
(27–29), which is a manifestation of quantum above-barrier
reflection (33). As the wave packet is initially peaked near 4
× 2h kL, the dominant transport process is eighth-order Bragg
scattering. For the parameters in the experiment, the
calculated eighth-order Bragg period is around 1 s, which is
much longer than the 400-µs tunneling period in the (chaotic)
driven pendulum. We compared the evolution of 〈p〉 for the
driven pendulum to the transport in the undriven pendulum
(Fig. 4), and indeed no coherent oscillations are observed in
the undriven case during the interaction times measured in the
experiment. Hence, we observe that the classical chaos
enhances the tunneling rate for these experimental
parameters, in the sense that the tunneling in the presence of
classical chaos occurs at a substantially greater rate than the
tunneling in the integrable case.

Although it is customary to study time-periodic systems in
a stroboscopic sense, sampling only at a particular phase of
the modulation as we have done up to this point, it is also
interesting to study the continuous tunneling dynamics in our

system. We studied the evolution of the momentum
distribution during the first half of the first tunneling period,
sampling the system at 1-µs intervals, or 20 times per
modulation period (Fig. 5A). The most obvious aspect of this
data is that the initial and secondary (tunneled) peaks exhibit
complementary but opposite momentum oscillations at the
modulation frequency. These oscillations can be explained in
terms of the continuous motion of the corresponding islands
in phase space (Fig. 5B). As the two islands have opposite
momentum, they move in opposite directions but oscillate in
momentum because of repulsion by the remnants of the
center island (34). In this picture, the islands constitute a pair
of nonintersecting "flux tubes" (14) that remain confined in
separated momentum intervals. The tunneling atoms can be
viewed as a realization of a dynamical Schrödinger cat,
because they represent a coherent superposition of two states
separated in momentum space, each one corresponding to
motion in a classical island of stability.

The evolution in Fig. 5A also shows other interesting
transport behavior. There is another oscillation that proceeds
more quickly than the tunneling, which appears as population
oscillating between the initial peak and the chaotic region
near p = 0. This can be seen most clearly as an enhanced
population near zero momentum during the third, fifth, and
seventh modulation periods. This process also points to
chaos-assisted tunneling, because it suggests that a third
(chaotic) state is involved in the transport between the two
islands.

Note added in proof: After the submission of this paper,
we became aware of an experiment reporting dynamical
tunneling in a similar setting (35).
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Fig. 1. Experimental observation of tunneling oscillations.
(A) The classical phase space for the experimental
parameters. The islands of stability involved in the tunneling
appear as two blue regions inside the green chaotic region and
are symmetric reflections about the p = 0 axis. A schematic of
the initial atomic state is superimposed on the upper island in
red, appearing as three narrow ellipses. (B) Magnified view
of the upper stability island and the initial condition. (C) The
measured evolution of the momentum distribution in time,
showing several coherent oscillations between the two
islands, which are separated in momentum by 8 × 2h kL. In
this plot, the distribution is sampled every 40 µs (every two
modulation periods). (D) Detailed view of the first four
highlighted distributions in (C), where it is clear that a
substantial fraction of the atoms tunnel to the other island (2).

Fig. 2. Comparison of tunneling oscillations for different
Raman detunings. The strongest oscillations observed ( �
correspond to Raman velocity selection at p = 0. The other
two cases are for velocity selection at p = 0.05 × 2h kL ( ��
where the oscillations are partially suppressed, and p = 0.12 ×
2h kL ( ���ZKHUH�WKH�RVFLOODWLRQV�DUH�DOPRVW�FRPSOHWHO\
suppressed. 

Fig. 3. Comparison of chaos-assisted tunneling for different
free-drift times before the standing-wave interaction. The
strongest oscillations occur for zero drift time ( ���ZKHUH�WKH
initial wave packet is centered on the island of stability as in
Fig. 1A. The oscillations are substantially suppressed for a
3.8-µs drift time ( ���ZKLFK�GLVSODFHV�WKH�LQLWLDO�ZDYH�SDFNHW
center by 1/4 of a period of the standing wave. Tunneling
oscillations are completely suppressed for a 7.6-µs drift time
( ���FRUUHVSRQGLQJ�WR�D�����SHULRG�RIIVHW�RI�WKH�LQLWLDO�ZDYH
packet. For a 15.1-µs drift time ( ���WKH�ZDYH�SDFNHW�LV�DJDLQ
centered on the island, and coherent oscillations are restored.

Fig. 4. Comparison of chaos-assisted tunneling oscillations
( ��WR�WUDQVSRUW�LQ�WKH�FRUUHVSRQGLQJ�TXDQWXP�SHQGXOXP�� ��
No tunneling oscillations are observed in the pendulum case
over the interaction times studied in the experiment.

Fig. 5. High temporal resolution tunneling measurement. (A)
Evolution of the momentum distribution during the first
tunneling oscillation, sampled 20 times per modulation
period. The two peaks show complementary oscillations at
the modulation frequency in addition to the slower tunneling
oscillation. Some population also appears in the chaotic
region between the islands, especially during the third, fifth,
and seventh modulation periods (34). (B) Phase space plots
(axes as in Fig. 1A) at four different phases of the lattice
modulation, showing the classical origin of the fast
oscillations in (A). At the start of the modulation period, the
islands of stability are maximally separated but move inward
as they drift away from x = 0 and return to their initial
momenta by the end of the modulation period. The two
islands always remain separated in momentum and do not
cross the p = 0 axis (34).
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