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This dissertation covers a series of experiments designed to control

atomic motion. The experiments progress from being completely classical in

nature to being described by many-body quantum mechanical models. The

first experiment involves an experimental realization of a billiard using cold

atoms and dipole potentials. The experiment was performed in a regime where

the dynamics of the system were completely classical in nature. By adjust-

ments of the shape of the billiard, it was demonstrated that the atomic motion

within the billiard could be made stable and predictable or chaotic thereby al-

lowing ergodic mixing. The subsequent experiment demonstrated the ability

to control the center of mass motion of a collection of atoms without any a

priori knowledge of the system. A minimally nondestructive method based on

the quantum interaction of the atoms with a light field was used to measure

the collective speed of the atoms. This information was utilized as a feedback

signal to load the atoms into a co-moving trap that was subsequently brought
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to rest in the laboratory frame. Finally, Bose-Einstein condensation in one

and two dimensions has been performed. This will allow for the experimental

realization of the quantum tweezer for atoms. In this system, a Bose-Einstein

condensate is used as a reservoir to extract single atoms. Taking advantage

of the coherence properties of the condensate as well as the mean field inter-

action of atoms within the tweezer, single atoms can be extracted with unit

probability into the ground state of a dipole trap.
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Chapter 1

Introduction

1.1 Overview of Research

In the last decade, the contributions from ultra-cold atom research have

received broad recognition. The 1997 Nobel Prize in physics was awarded to

Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips “for develop-

ment of methods to cool and trap atoms with laser light”[1]. The award was

more recently given in 2001 to Eric A. Cornell, Wolfgang Ketterle, Carl E.

Wieman “for the achievement of Bose-Einstein condensation in dilute gases of

alkali atoms, and for early fundamental studies of the properties of the con-

densates”[2]. The first major advance came in 1987 the first demonstration

of a magneto-optical trap (MOT) by Steve Chu and co-workers[3]. At that

point, atoms could be trapped and cooled down to extremes never before pos-

sible. This allowed for the study of a variety of processes: cold collisions[4],

atom lithography[5], atom interferometry[6], atomic clocks[7, 8], Bose-Einstein

condensation[9–11], and quantum chaos[12, 13]. The last two processes are es-

pecially relevant to the research performed in our laboratory. This dissertation

covers several experiments that contributed to this growing field.
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Atomic Billiards Some of the first quantum chaos experiments took place

within the context of optical lattices. These experiments were one-dimensional,

time-dependent quantum systems where the dynamics are chaotic in the clas-

sical limit. As those experiments come to a close, a new type of trap is needed

in which to study atomic motion. This led to the development of the atomic

billiard trap. Described in Chapter 3, these atomic billiards provide new op-

portunities to study quantum chaos and quantum-classical correspondence.

These traps are very versatile; not only are they able to have arbitrary shapes,

but those shapes can vary in time. This allows for studies of quantum chaos

in static two-dimensional systems as well as time dependent two-dimensional

systems.

Feedback Control Since the first MOT was built to trap and cool atoms,

scientists have dreamed of laser cooling a wide range of atoms and molecules.

Presently, laser cooling is limited to a handful of elements, largely the alkali

metals. These atoms possess a closed atomic cycling transition. The cycling

transition allows for energy dissipation through spontaneous emission which

can be exploited to cool the atoms.

In 1998, Mark Raizen et. al. proposed an idea that would allow other

elements and molecules to be “laser cooled”[14]. This idea is an extension

of the stochastic cooling used to increase the flux of anti-proton beams, for

which won Simon van der Meer the Nobel prize in 1984[15]. Through a series

of measurements and feedback, the momentum fluctuations in an ensemble

2



of particles can be damped out, thereby cooling the sample. Chapter 4 gives

details about the proof-of-principle demonstration we performed of the idea

using cesium atoms. The measurement and feedback technique, which relied

on far off resonant lasers, does not depend on an atomic transition. Therefore,

this could lead to the future “laser cooling” of non-alkali atoms or molecules.

This would lead to a host of interesting physics as well as new technologies.

The Quantum Tweezer Since the dawn of quantum mechanics, people

have been trying to find new ways to see and exploit quantum effects. The most

recent and interesting route has been quantum state engineering. Engineering

a well-defined quantum state may lead to exotic applications such as quantum

teleportation, quantum cryptography, and quantum computation[16].

Many different avenues are being pursued to achieve this. In atom

optics, various research groups are striving to isolate single atoms and force

them into a specific quantum state. In 2002, an idea was put forth to use a

condensate as an atom reservoir and to extract a single atom in the ground

state of a dipole trap; thus producing an individual atom in a well-defined

quantum state [17]. Progress towards the experimental realization of this idea

is presented in Chapter 5. Along the way, a variety of new techniques and

novel optical dipole traps were developed.
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1.2 Atom Optics

This section describes some of the basic atomic properties of the ele-

ments used for the research described in this dissertation. Some of the basic

terminology used in the field will be presented. Also provided is a brief dis-

cussion of the behavior of neutral atoms in the presence of magnetic fields and

electric fields.

For a long time, atoms were perceived to behave as particles. With the

advent of quantum mechanics, the consensus changed with the realization that

all objects behave as both waves and particles. The study of these wave-like

properties of atoms make up the field of atom optics. Atom optics can be seen

as the matter analog of traditional light optics. Electric fields and magnetic

fields are used to reflect and manipulate atoms in much the same way mirrors

and lenses reflect and focus the electric and magnetic fields of light.

Atoms are made of protons, neutrons, and electrons, all of which have

a spin. The nucleons together give the atom its nuclear spin, I. In the case of

rubidium I = 3/2 and I = 5/2, for the isotopes 87Rb and 85Rb, respectively.

Before the total spin of the atom, F , can be calculated, the spin of the

electron has to be considered. The total angular momentum of the electron

J = S + L (1.1)

is a combination of the spin of the electron, S, and the orbital angular mo-

mentum of the electron, L. In the ground state, L = 0, therefore J = ±1/2.
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The total atomic angular momentum

F = I + J (1.2)

is the sum of the nuclear spin, I, and the total electronic angular momentum,

J. This coupling gives rise to the hyperfine structure of the atom. Since

J = ±1/2 and I = 3/2, the two ground states of Rb87 are F = 1 and F = 2

and are separated by roughly 6.83GHz.

There are 2F+1 degenerate magnetic sublevels for each hyperfine level.

When placed within a magnetic field, B̂, this degeneracy is lifted. The Hamil-

tonian describing the interaction of the atoms with the magnetic field is [18]

HB =
µB

~
(gSS + gLL + gII) · B , (1.3)

where µB is the Bohr magneton and gS, gL, and gI are the appropriate nuclear

“g-factors”. In the case where the magnetic field is weak and the energy shift

is small compared to the hyperfine splitting, this reduces to

HB = µBgFFzBz , (1.4)

where we have taken the magnetic field to be along the z direction. This leads

to an energy shift of

∆E = gFmFµBBz , (1.5)

where gF is the Landé g-factor and mF ∈ (−2F, . . . , 2F ) is the quantum

number for the projection of the magnetic moment along the direction of the

magnetic field. This energy shift is known as the Zeeman effect.
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In addition to being subject to the effects of magnetic fields, neutral

atoms are also sensitive to electric fields, in particular the oscillating electric

field present in a laser beam. While atoms are sensitive to light fields, their

interaction with them is more involved. The atom interacts with the light

field by scattering photons. The scattering is either coherent or incoherent,

resulting in two different effects.

The coherent interaction is also known as stimulated emission. The

atom scatters the photon by absorbing it. The presence of the light field

induces the atom to emit the photon in phase with the field, creating the dipole

force. A more intuitive semiclassical picture of this is given in Appendix A.

Spontaneous emission is the incoherent process. Again, the atom ab-

sorbs a photon, but this time, the atom emits the photon randomly without

any reference to the light field. This leads to a dissipative force acting on

the atom, which can be used to cool an ensemble of similar atoms. A more

detailed description of spontaneous emission can be found in Appendix A.

The relative strengths of the two forces is important to note. The

conservative dipole force is inversely proportional to the detuning, ∆, from

atomic resonance and directly proportional to the gradient of the intensity, I,

Fdip ∝
∇I
∆

, (1.6)

while the force due to spontaneous emission is inversely proportional to the

detuning squared

Fscat ∝
I

∆2
. (1.7)
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A comparison of these two relationships shows that with enough laser power

and far enough detuning from resonance, the dipole force can be made quite

substantial while rendering the spontaneous emission force negligible. This

situation yields a conservative optical trap.

A variety of terms have evolved to describe the behavior of ultra-cold

neutral atoms. These terms provide units which are better adapted to describ-

ing the atomic system than standard units. When an atom absorbs a photon,

it receives a momentum kick. The resulting change in velocity is referred to

as the recoil velocity

vrec =
~kA

m
, (1.8)

where kA is the wave number for resonant light and is an appropriate unit of

speed for cold atoms. Similarly, the recoil energy

Erec =
~

2k2
A

2m
= ~ωrecoil (1.9)

which is just the energy of an atom moving at the recoil velocity, is an ap-

propriate energy scale for cold atoms. Here, the recoil frequency, ωrec, is also

defined. Converting Erec into a temperature provides the recoil temperature

Trec =
~

2k2
A

mkB

. (1.10)

The experiments described within this dissertation cover a wide period

of time over which the experimental apparatus evolved dramatically. During

this evolution, the alkali atom used for laser cooling and trapping changed from

cesium 133 to rubidium 87. Since both elements will be discussed throughout

7



this thesis, it is useful to have some of the basic atomic properties of both

elements readily available. Table 1.1 lists some of the more useful atomic

constants for cesium and rubidium.

Atomic Properties of 133Cs and 87Rb
parameter symbol cesium rubidium

mass m 133amu 87amu
nuclear spin I 7/2 3/2

D2 transition wavelength λ 852.35nm 780.25nm
lifetime τ 30.5ns 26.2ns

decay rate Γ 2π · 5.22MHz 2π · 6.07MHz
recoil velocity vrec 3mm/s 6mm/s
recoil energy ~ωrec ~ · 2π · 2.07kHz ~ · 2π · 3.77kHz

recoil temperature Trec 198nK 362nK

saturation intensity Isat 2.70mW/cm2 3.58mW/cm2

hyperfine splitting νhf 9.28 GHz 6.83GHz

Table 1.1: Some useful atomic properties of cesium and rubidium. These
values were provided by Daniel Steck[19, 20].
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Chapter 2

Experimental Set Up

The experiments described in this dissertation were conducted over a

period of five years. During that time, the experimental apparatus evolved

from a machine to trap and cool cesium atoms in a MOT to a rubidium Bose-

Einstein condensation machine. Details on the cesium experiment can be found

elsewhere [18, 21, 22] and only the rubidium experiment will be discussed here.

2.1 Overview

The system used to create the rubidium condensate is quite extensive.

The bulk of the optical equipment used in the experiment resides on two

optical tables. One 12’x5’ optical table holding literally thousands of optical

components, six lasers, a variety of electronic and mechanical hardware, and

the vacuum chamber is dedicated solely to the rubidium experiment and is

shown in Fig. 2.1. A second 8’x4’ optical table, shown in Fig. 2.2, is shared

between the rubidium and sodium experiments [23]. It holds the shared laser

and the necessary optics and modulators to shape the beam and send it to the

main optical table.

Despite the complexity of the experiment, at the heart of the apparatus
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Figure 2.1: The main optical table. The table is divided into two section. The
image on the left shows the section of table devoted to the lasers. The image
on the right shows the section for the vacuum chamber.

there are four main systems: the vacuum chamber, the lasers, the magnetic

trap, and the computer control system. Without these ingredients, the exper-

iment will never operate. All the additional components are used to improve

efficiency and reproducibility. These main systems will be discussed first.

2.2 Vacuum Chamber

The experimental system was designed to be a double MOT setup sim-

ilar to that of Ref. [24]. In order to accomplish this, the vacuum chamber has

three distinct parts: an upper chamber where a vapor cell MOT resides, a lower

chamber where a charged MOT lives in an ultra-high vacuum environment,

and a middle section connecting the two that provides the necessary pumping

to achieve the ultra-high vacuum pressures needed in the lower chamber.
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2.2.1 Upper Vacuum Chamber

The upper chamber (Fig. 2.3) was constructed from a modified six way,

304 stainless steel cross with a 1.5” tube diameter. Each of the tubes has

a fixed 2.75” flange welded to the end. This chamber was originally used in

a previous sodium experiment; a more detailed description of the chamber

can be found in Ref. [25]. Attached to each flange is an uncoated 2.75” zero

length window obtained from Larson Electronic Glass. It should be noted that

zero length windows may not be the ideal choice for vacuum chambers with

moderately high pressures (≈ 10−7 Torr) of alkali metal vapor. On several

occasions, it has been observed that the glass-to-metal seal degrades leading

to a catastrophic failure of the window. The glass-to-metal seal is made out of

Kovar which is highly reactive. Possibly, the alkali metal vapor reacts strongly

with the Kovar in the seal, and at the pressures used in the upper chamber,

this leads to failures. Future versions of the upper chamber should avoid the

use of zero length windows. Possible solutions include using non-zero length

windows made from stainless steel or moving over to an upper chamber made

completely from glass.

The cross had five tubes welded to it to provide additional access.

Two of the tubes provide additional optical access. These tubes are 0.75”

in diameter and end in 1.33” flanges with 1.33” uncoated zero length windows

attached. One serves as a survey port to observe the state of the upper MOT.

The other serves as an entrance port for the push beam which will be discussed

later.
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Figure 2.2: The shared optical table. It holds the Verdi laser as well as some
of the beam control optics for that laser. A fortress of black foam board
surrounds some of the optics to protect the beam from air currents.

Of the three remaining tubes, one is used for the shutter. This tube

is 0.5” in diameter and has a 0.75” steel bellows welded to it. At the end of

the tube is a 2.75” rotatable flange. The entire length of this tube makes a

20o angle to the horizontal 1.5” tube above it. An all-metal linear actuator,

MDC model HTBLM-275-1, with a travel of one inch is attached to the end

of this tube. At the end of the actuator, a small metal flag has been welded

on to act as a shutter to separate the UHV region from the HV region. A

stepper motor can be attached through a universal joint to drive the shutter

so that the during the transfer of atoms, a free path exists between the two

vacuum regions, and at other times the path is closed. This option has not

been implemented as it has subsequently appeared to be unnecessary. One of

the main features of the experimental apparatus is the ability to detect single
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Figure 2.3: The upper chamber. The image on the right is a 90 degree rotation
of the one on the left.

atoms (see Chap. 5) and it was feared that without the shutter, the upper

chamber would act as a source of atoms and limit the capabilities of the single

atom detection system. Tests have shown that is not the case.

A 0.75” steel tube is welded to the bottom of the chamber providing a

connection port to the rest of the vacuum system. On the end of this tube is

a rotatable 4.5” flange.

The last additional tube is used to house an exchangeable rubidium

supply. The 0.5” steel tube ends with a 2.75” steel flange connected to a 1.5”

all-metal valve. Connected to this valve is a 1.33” steel tee connected to a 0.75”

all-metal valve and a pinch-off tube containing a one third gram ampoule of

rubidium. The two valves act as an interchangeable rubidium reservoir. The

0.75” valve seals the system from the outside world and the 1.5” valve, which
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is open when the system is in use, can seal the reservoir tube from the vacuum

system. If the rubidium needs to be changed, the large valve is sealed and

the reservoir removed. The ampoule is replaced, the reservoir pumped down,

the ampoule cracked, and finally, rubidium reintroduced to the entire vacuum

system.

Attached to the chamber, along one of the 1.5” horizontal arms, is a

Bayard-Alpert type ion gauge from HPS, along with a 20 l
s

ion pump from

Varian, Inc., model VacIon Plus 20. The ion gauge exists as a check for the

vapor pressure of rubidium in the upper chamber. Should the pressure be too

large, the pump serves as a means to reduce the pressure. A valve separates

the pump from the chamber, effectively making the pumping speed variable

from 20 l
s

to 0 l
s
. In practice, neither the ion gauge nor the pump is used often.

The ion gauge was never completely degassed and, in an effort to not pollute

the system, has rarely been used. High vapor pressures are ideal for quickly

loading a large number of atoms into the upper MOT. Therefore, the pump is

rarely used.

In order for there to be effective loading of the upper MOT while at

the same time ultra high vacuum (UHV) in the region where the condensate

resides to provide long lifetimes, an extreme difference in pressure between the

two regions must exist. For quick loading of the upper MOT, that region needs

to have a pressure, dominated by rubidium vapor, on the order of 10−7Torr ∼

10−8 Torr. On the other hand, for the long magnetic trap lifetimes of several

minutes needed for evaporative cooling, pressures on the order of 10−11 Torr

14



Figure 2.4: The differential pumping tube.

or better are required. The three orders of magnitude difference in pressure

are provided by the differential pumping tube that connects the upper MOT

chamber to the middle UHV chamber.

The differential pumping tube (see Fig. 2.4) consists of an eight and

three quarter inch long 304 stainless steel tube with an outer diameter of

approximately half an inch. The inner diameter of the tube increases in suc-

cessive steps from an eighth of an inch at the top to one half of an inch at the

bottom (by that point the outer diameter has increased to 0.600 inches). At

the top of the tube, a small 20o wedge has been lopped off to allow a shutter

blade to slide over the top. The tube is welded into a double-sided 4.5” flange

that is used to connect the upper and lower chambers.

The stepping of the inner diameter was chosen to have an angle of

≈ 2o. This maximizes the solid capture angle defined by the position of the

upper MOT, lower MOT, and the physical dimensions of the lower cell. In

addition, the stepping allowed for a lower conductance which increased to pres-

sure difference between the two chamber regions. The tube has a calculated

conductance of ≈ 0.091 l
s

for air at room temperature and more importantly

≈ 0.051 l
s

for rubidium at room temperature [26]. This leads to approximately

three orders of magnitude difference between the pressure of the upper and
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lower chambers.

2.2.2 Middle Vacuum Chamber

The middle chamber, located directly below the upper chamber, serves

as a docking port for a series of pumps and vacuum measurement devices.

The chamber is a modified six-way cross with 4.5” flanges. Four 1.5” tubes

with nonrotatable 2.75” flanges are welded between the 4.5” ports in one plane

around the middle chamber. As this chamber was also previously used in an

experiment, a more detailed description can be found elsewhere [18, 21, 22].

Attached to the chamber are two pumps. One is a 75 l
s

ion pump. It

was originally purchased from Varian, Inc. and later refurbished by Duniway

Stockroom. The other is a titanium sublimation pump (TSP). This was pur-

chased from Duniway Stockroom, model number TSP-275-003. The pumping

speed of the TSP depends on a variety of factors including the cleanliness of

the layer of deposited titanium, the area of the deposited titanium, and the

background pressure in the chamber. The filament needs to be run from time

to time in order to keep the titanium surface clean so that it may pump. Under

normal operating parameters, the pump is specified to have a pumping speed

of ≈ 300 l
s
.

In addition to the pumps on the middle chamber, situated within one

of the 2.75” ports, there is a Bayard-Alpert type ion gauge from HPS. This

gauge is used for measuring the pressure of the UHV region. It can not be

left on during the experiment, therefore, it is simply a diagnostic tool used
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Figure 2.5: The UHV middle chamber. Attached to the main vacuum chamber
are two pumps and an ion gauge.
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occasionally. The usefulness of the gauge is limited in that it appears that the

gauge has bottomed out at a reading of 5 × 10−10 Torr which is significantly

higher than our goal of 10−11 Torr. Ultimately, the only true way to determine

whether the vacuum is good enough is through lifetime measurements of atoms

within the magnetic trap. That said, the gauge still serves the purpose of

reassuring us that vacuum has not been lost.

2.2.3 Lower Vacuum Chamber

The lower chamber was designed to be an ultra high vacuum chamber

with as much optical access as possible. This was done using an all glass cell

attached to a large steel chamber that acts as a docking station for several

pumps and vacuum measurement devices. The glass cell gives great optical

access, while the steel chamber supports enough pumping power to provide

the appropriate UHV environment.

The cell is based off a design by the group of Ted Hänsch [27]. The

glass cell was purchased from Hellma Cells, Incorporated. It was made out

of Spectrosil, which is an optical quality, synthetic fused silica. The cell is

rectangular in shape with outer dimensions of 30 mm by 30 mm by 115 mm.

The walls of the cell are 5 mm thick. It was formed by optically contacting

the individual walls together then raising the temperature of the cell until the

pieces fuse together eliminating the need for any cement material. At the top

of the cell, a large Spectrosil flange was fused on. The flange measures 75 mm

in diameter by 17 mm thick with a 20 mm hole in the center to allow access
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Figure 2.6: The lower chamber. The glass cell is where the experiments take
place. The metal adaptor and the gold colored helicoflex seals connect the
glass cell to the middle chamber.

to the cell. This flanged provided the means to attach the cell to the steel

chamber. In our case, the flange is smooth. Others have used a frosted flange

along with Vac-Seal, a UHV compatible sealant [28]. While this approach was

not taken, acceptable results were achieved.

The glass cell is attached, via Helicoflex seals, to the steel middle cham-

ber. The Helicoflex seals, Garlock-Helicoflex part number H-307330 REV NC,

are all metal seals with a design such that they can form glass-to-metal seals.

They consist of a helical spring enveloped in two metal linings. In addition,

there are two delta shaped ridges along the top and bottom of the seal. As the

seal is compressed, the ridges bite into the compressing surfaces, forming the

seal. Unlike a sealing torque, which is given for copper gaskets between flanges

of in an all metal valve, a sealing compression is given for the Helicoflex seals.
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Therefore, the connecting flange that brought the glass cell, the seals, and the

metal chamber together were specially designed to provided the appropriate

compression.

2.3 Lasers

There are seven main lasers producing nearly as many different fre-

quencies used to make the experiment run (see Fig. 2.7). These lasers can be

grouped into two different categories. The first consists of lasers that produce

near resonant light used for trapping and cooling of the atoms as well as op-

tical pumping and imaging. The second group is made up of far off resonant

lasers, either blue or red of resonance, that are used solely for trapping.

2.3.1 Near Resonant Lasers

A correctly operating magneto-optic trap relies on near resonant lasers.

In fact, two distinct frequencies are necessary. As will be discussed later in this

chapter, light that is tuned red of the F = 2 → F ′ = 3 cycling transition is

needed. This light, in conjunction with an appropriate magnetic field, is used

to trap and cool atoms from a background vapor. In addition to this light,

a second frequency called the repump light is needed. Due to the extensive

level structure of rubidium, the cycling transition is not a closed transition

and occasionally atoms will be excited to the wrong state, decay to the F = 1

ground state, and be removed from the MOT. To circumvent this, the repump

light is on the F = 1 → F ′ = 2 transition to put the stray atoms back into
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Figure 2.7: The multitude of laser frequencies used in the experiment.
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Laser Diodes

property MLD780-100S5P GH0781JA2C

distributor Intelite, Inc. Digi-Key
nominal wavelength 780 nm 784 nm
maximum output power 100mW 120mW
threshold current 30mA 30mA
operating current 120mA 140mA
maximum operating current 140mA 167mA
maximum reverse voltage 2V 2V
manufacturer unknown Sharp

Table 2.1: Characteristics of the lasers diodes used in the experiment.

the cooling cycle.

In addition to cooling and trapping the atoms, near resonant light is

needed to move the atoms around, put them into specific internal states, and

image them. The light used to perform these acts is generated by laser diodes.

Due to the variety of frequencies required as well as the amount of light power

necessary, this is accomplished with five diode lasers. Two of the diodes are

master lasers that produce “seed light” at the two main frequencies neces-

sary. To get the range of desired frequencies as well as increased power, the

“seed light” is used to force three other diodes to have the same frequency as

the master lasers, but with full power [29]. The specific frequencies are then

realized through the use of acousto-optic devices.

2.3.1.1 MOT Master Laser

The MOT master laser produces the “seed light” on the F = 2 →

F ′ = 3 transition. The diode used for this is a MLD780-100S5P laser diode
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procured from the online distributor Intelite, Inc. The diode is specified to

have an output power of 100 mW with an injection current of 120mA. The

the output is single longitudinal mode with a nominal lasing wavelength of

780 nm (see Table 2.1).

Precise control of the laser frequency is necessary as well as a linewidth

that is less than the natural linewidth of the atomic transition. This feat is

accomplished by placing the diode within a Littrow configuration, grating-

stabilized housing [30, 31]. The laser housing was slightly modified from the

original design of Bruce Klappauf and Dan Steck in that the angle of the

grating was adjusted to work at 780 nm. Aside from the angle modification,

the original housing, the specifications of which can be found in Bruce’s and

Dan’s dissertations, was unchanged [18, 21].

The basic idea behind the design is that the laser diode is part of

an extended cavity formed by the reflective back surface of the diode and a

grating used as a frequency sensitive output coupler. The grating is mounted

at the Littrow angle (see Eq. 2.1) with respect to the diode so that the first

order, which is frequency dependant, reflects back into the cavity. Diodes are

extremely sensitive to feedback due to their wide gain bandwidth, so the back

reflected beam injection locks the diode [29]. The zeroth order reflection from

the grating forms the output beam. In practice, the output power from the

MOT master laser system is ≈ 30 mW.

A slight modification was made to the original MOT master laser hous-

ing. In order for the first order reflection to be at the appropriate wavelength,
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Figure 2.8: The master laser. This photograph shows the MOT master laser in
its grating stabilized housing. The Plexiglass cover is used to provide thermal
isolation from the environment.

the incident angle between the grating and the laser beam had to satisfy the

Littrow condition

mλ = 2d sinα (2.1)

where m is the order, d is the grating spacing, and α is the grating angle [32].

The grating has a ruling of 1200 grooves/mm or a spacing of d = 0.833µm.

Therefore the angle was adjusted from 30.7o, which was used for 852 nm light,

to 27.9o, which is appropriate for 780 nm light.

The master laser has superb spectral qualities. The laser is single mode

in frequency with a measured linewidth of 1.5 MHz. This is actually an upper

bound for that value. The linewidth was measured using a Fabry-Perot cavity
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with a free spectral range of 300 MHz. The estimated finesse of the cavity based

on the characteristics of the mirrors involved is about 200 giving a resolution

of 1.5 MHz.

Despite the simple construction of the grating stabilized system, they

are notoriously difficult set up for single mode operation on one of the 87Rb

absorption lines. Therefore, a quick explanation of the technique used to prop-

erly align the laser is in order. The diode is housed in a Thorlabs collimation

tube, model LT230P-B. After adjusting the collimation tube lens to ensure the

beam is well collimated, the free running diode is made to lase on one of the

rubidium transition lines. This is accomplished by shining the laser through

an absorption cell and adjusting the current until fluorescence is seen. At this

point, the temperature of the diode is adjusted to optimize the operating cur-

rent. If the current is too low or too high, the temperature is either lowered

or raised, respectively, to remedy that. The temperature should be set so that

the operating current is as close as possible to the nominal operating current

listed on the data sheet while producing light at the transition wavelength.

At this point, the grating is added and adjusted so that the laser is

self-injected. First, the diode injection current is lowered to just below the

threshold level. There are now two approaches to determine if the grating

is appropriately aligned for self-injection. If the current can be modulated,

the current is scanned over the threshold current level and the power output

of the diode is observed on an oscilloscope. The oscilloscope trace shows a

very shallow slope until the threshold current is reached at which point the

25



curve makes a very sharp increase in slope. By adjusting the vertical angle of

the grating, this curve will change shape. When the grating is appropriately

aligned, the threshold current value will drop resulting in the turning point

on the curve moving to a lower value, and in addition, the curve will become

sharper at the turning point.

Since it is not possible for us to modulate the current with the existing

current drivers, the grating was aligned by observing the shift in the threshold

current by eye. Again, the injection current is reduced to just below the

threshold level. At this point, the laser diode barely emits any light. The

minute amount of light emitted by the diode is viewed with an infrared viewer

while the vertical angle of the grating is adjusted. When the grating is aligned,

the threshold current level will lower and the dim spot will become bright. The

grating is aligned by setting the grating angle to maximize the brightness.

The grating stabilized laser will not necessarily be on one of the 87Rb

lines yet. To get the laser on one of the lines, the beam is put through an

absorption cell and into a Fabry-Perot cavity. By adjusting the horizontal

angle of the grating which adjusts the incident angle in this configuration, the

frequency of the laser is swept. The system is appropriately aligned when

the absorption cell fluoresces and the spectrum of the laser, obtained from the

Fabry-Perot cavity, is single mode. It is possible that the cell will fluoresce but

the laser will be multi-mode, therefore an iterative process of slightly changing

the current (a few milli-amps) and readjusting the grating is performed to

remedy this. The entire sequence is a bit time consuming, but once completed
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Figure 2.9: The MOT master laser locking setup. A small portion of the MOT
master beam is sent through the depicted saturation absorption spectroscopy
setup.

it does not have to be done again until the diode is replaced. The exact

determination of which rubidium line the laser is operating on requires the

use of a saturated absorption spectroscopy setup to see the hyperfine splitting

which uniquely determines the line.

In order to determine if the laser is on the appropriate rubidium line

as well as providing a means to lock the laser on that line, a portion of the

MOT master laser is used used to perform saturated absorption spectroscopy

[30, 32, 33]. This provides a Doppler-free background in order to see each of

the F = 2 → F ′ = 1, 2, 3 transitions as well as the cross-over transitions.

From this, one can determine if the lasers are locked to the appropriate line.
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Around 780nm, there are 4 Doppler broadened rubidium absorption lines, two

outer lines for 87Rb and two inner lines for 85Rb. The standard means for

determining the correct line is to measure the frequency splitting between the

two outermost Doppler-free absorption peaks using a Fabry-Perot cavity. The

85Rb peaks are very close together and are easily distinguished from the 87Rb

lines which are over 200 MHz apart. By closely inspecting the two 87Rb lines,

the F = 2 → F ′ line containing the MOT transition has a width of ≈ 425 MHz

whereas the F = 1 → F ′ line containing the repump transition has a width of

≈ 230 MHz which is easily distinguished on our Fabry-Perot cavity.

A layout of the saturated absorption spectroscopy setup is shown in

Fig. 2.9. A small portion of the MOT master laser is picked off with the use

of a 103 MHz AOM. Roughly 1 mW of power is in the first order of this AOM,

which is sent to the spectroscopy setup located on a separate table. Once there

the beam is split into two with a 50% plate beam splitter. One half of the

beam is sent through a polarizing beam splitting cube (PBSC) which directs

the beam to an AOM. The AOM is driven by a frequency modulated signal

with a center frequency of 44 MHz that oscillates from 40 MHz to 48MHz at a

frequency of 50kHz. The first order of the AOM goes through a λ/4 waveplate

before being retro-reflected on a mirror with a 40 cm radius of curvature. The

beam follows the first order back to the AOM where it is again diffracted. This

allows the exiting beam not to move while the driving frequency of the AOM

is modulated. The first order goes back to the PBSC where it passes through

this time due to the orthogonal polarization. Upon passing through the cube,
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the beam passes through a rubidium absorption cell.

The other beam created by the beam splitter travels around the ab-

sorption cell unaltered. On the opposite side, the beam enters the cell. The

beam is aligned to overlap the double passed beam from the AOM which is

88 MHz higher in frequency. In the cell, the two beams interact with a veloc-

ity class of atoms corresponding to a frequency shift of 44 MHz. After passing

through the cell, the beam is reflected by the polarizing beam splitting cube.

The beam is focused with a 36 mm focal length lens onto a fast photodetector.

The signal generated by the photodetector is the doppler broadened

absorption peak with dips at each of the F = 2 → F ′ transitions and cross-

over transitions. The signal is sent to an SRS lock-in amplifier, model number

SR510. The lock-in amplifier receives the same signal used to modulate the fre-

quency of the double passed AOM. The amplifier therefore generates a signal

that is proportional to the derivative of the absorption dips on the photode-

tector signal minus the broad Doppler background. The dispersive signal at

each transition provides a means to lock on to that particular transition.

The laser is locked onto the F = 2 → F ′ = 2/3 crossover transition

because of the fact that it is the strongest line in the dispersive profile. The

pick-off AOM shifts the beam up by 103 MHz and the double passed AOM

in the spectroscopy system shifts the velocity class up by another 44 MHz,

therefore the output beam of the laser is 147 MHz red of the transition to

which it is locked. Since the laser is locked to the F = 2 → F ′ = 2/3 crossover

transition which is 133 MHz red of the F = 2 → F ′ = 3 cycling transition, the
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Figure 2.10: The MOT saturated absorption spectroscopy dispersive signal.
The different dispersive lineshapes refer to the following transitions: a)F =
2 → F ′ = 1, b)F = 2 → F ′ = 1/2, c)F = 2 → F ′ = 2, d)F = 2 → F ′ = 1/3,
e)F = 2 → F ′ = 2/3, f)F = 2 → F ′ = 3.
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MOT master laser is 280 MHz red of the cycling transition.

This 280 MHz detuning from the cycling transition was deliberately

planned. The reason for this is clarified in Fig. 2.11 which shows the distri-

bution of the MOT master beam. After exiting the laser housing, the beam

passes through an anamorphic prism pair to remove the 3:1 aspect ratio. It

then passes through a ConOptics optical isolator, model 713, to protect it from

stray back reflections. Immediately after the isolator is the 103 MHz AOM used

to pick off a portion of the light for the saturated absorption lock. The ze-

roth order of the AOM continues on to a double passed acousto-optic deflector

(AOD). This deflector has a central frequency of 80 MHz and a 3 dB bandwidth

of 40 MHz. By using the first order in the double pass, the frequency of the

MOT master beam is raised anywhere from 120 MHz to 200 MHz. This gives

the MOT master laser a detuning of 80 MHz to 160 MHz red of the cycling

transition. By using an 80 MHz AOM as a fast shutter, the MOT master beam

will have a detuning of somewhere between on resonance and 80MHz red. This

is the needed range of detunings for the successful operation of the experiment.

It allows for processes such as absorption imaging which needs light exactly on

resonance, to MOT loading which needs light approximately 3γ, or 18 MHz,

red of resonance, to polarization gradient cooling which requires detunings up

to 60 MHz red of the cycling transition.
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Figure 2.11: MOT master laser distribution scheme. The light from the MOT
master laser goes through different frequency shifting devices in order to cor-
rectly set the frequency of the light before it is used to injection lock the slave
lasers.
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2.3.1.2 Slave Lasers

Unfortunately the master laser alone does not produce enough power

to create beams for the upper and lower MOTs as well as the auxiliary beams

used for imaging and optical pumping. Therefore, additional lasers, known as

“slave” lasers, are used to meet the power requirements of the experiment. In

order to guarantee that the slave lasers are identical to the MOT master, they

are injection locked to the MOT master [29]. This gives us the full power of

three free-running laser diodes with the same spectral qualities as that of the

MOT master laser.

Each slave laser on its own is simply a free running laser diode. The

Digikey laser diodes (see Table 2.1 for specifications) are used for the slave

lasers. The diodes reside in a Thorlabs collimation tube, model LT230P-

B, with 4.5 mm focal length collimation lens and numerical aperture of 0.55.

The tube sits within a 2”x1.5”x0.65” block of bronzed aluminum atop a Mel-

cor thermoelectric cooler (TEC), model CP 1.0-63-08L. A 50 kΩ thermistor is

used with the TEC to regulate the temperature of the diode. The Wavelength

Electronics WTC3243 provide the control electronics for the temperature reg-

ulation. The hot side of the TEC rests on the anodized aluminum housing that

surrounds the diode. There are two electrical connectors for the temperature

controller and the current controller. There is also an output window made

from a microscope slide fixed at the brewster angle.

To ensure that the slaves have the appropriate spectral output, they

are injection locked [29, 31]. This is accomplished by directing a small amount
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Figure 2.12: Pictures of the slave lasers. The image on the right shows the
slave laser housing complete with the outer covering. The image on the left
shows the housing minus the cover allowing one to see the laser diode holder
as well as the electrical connections.

of light from the masters into the diode. If the spatial profile is well matched,

the slave will have identical spectral properties as the master with all the

power of a free running diode. The unique properties of the optical isolator

which is located after each slave allows for injection. Appropriately polarized

light is introduced into the rejection port of the optical isolator. Since the

crystal in the isolator rotates the polarization the same direction regardless

of propagation direction, the injected beam exits the optical isolator with the

same polarization as the laser diode. It is then aligned to be co-linear with

the output beam of the laser diode. Figs. 2.15, 2.13, and 2.16 illustrate how

the injection beam enters the laser diode.

In practice we use approximately 2 mW of power to injection lock the

slave lasers. Little effort was made to better match the spatial profile of the

injection beam to that of the slave laser output. By doing so, it would be
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possible for the injection power to be lowered to something on the order of

several hundred microwatts as some other groups have used [34].

As with the master lasers, there are special techniques involved with

aligning the diodes for injection locking. Like before, the current and temper-

ature of the free running diode are adjusted so that the output beam fluoresces

in the rubidium absorption cell. At this point the injection beam is aligned

to be counter propagating with the diode output beam. The diode output

beam needs to be analyzed on a Fabry-Perot cavity now. While sweeping the

frequency of the injection beam, the spectrum of the slave laser is observed. If

the above procedure was done correctly, there should be a peak corresponding

to the free running laser and a small peak that sweeps in frequency corre-

sponding to the injection locked portion of the slave. Now several things can

be optimized. First, the operating current of the slave is adjusted to maxi-

mize the injected peak. Then the alignment of the injected beam is adjusted

to increase the injection locked portion of the slave laser. Finally, when those

two are optimized, the injection beam power is adjusted. The minimum power

required is ideal. This process can be iterated to make the locking more effi-

cient by lowering the injection beam power so that the slave is not completely

injected. The current and alignment are then optimized to relock the slave.

This procedure is iterated until satisfied.

A vast distribution networks exist to take the beams from the laser

diodes to the vacuum chamber where they interact with the atoms. The beams

need to be precisely shaped and have specific frequencies in order to be useful
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for trapping, cooling, and imaging the atoms. As the beams make their long

journey (approximately 5 meters) to the chamber, they are shaped into their

useful form.

The three slave lasers are labelled according to their primary function.

Two slaves create the upper MOT beams and are labelled Upper MOT Hor-

izontal and Upper MOT Diagonal. The other slave is simply named Lower

MOT. In addition to serving in their primary capacity, they also perform aux-

iliary jobs according to how much power they have to spare.

Upper MOT Horizontal Slave Laser Fig. 2.13 shows the distribution of

the Upper MOT Horizontal slave laser. Upon exiting the slave laser housing,

the beam is sent through an anamorphic prism pair (not shown in Fig. 2.13) to

give the beam an aspect ratio of unity. From there the beam passes through

a ConOptics optical isolator, model 712B. Due to the extremely broad gain

profile of diode lasers, they are extremely sensitive to back reflections. The

optical isolator supplies approximately 36 dB attenuation of any back reflected

beam alleviating this problem.

The optical isolator serves another purpose. It provides the optical port

to inject the slave laser with a portion of the MOT master beam. The exit

port of the optical isolator is a PBSC. By sending in a beam in the side port

orthogonal to the exiting beam, the input beam is appropriately rotated in

the Faraday rotator to exit the PBSC that is at the entrance of the optical

isolator. The injection beam has the same polarization as that of the slave
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Figure 2.13: Beam distribution for the Upper MOT Horizontal slave laser.
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Figure 2.14: Picture of the homebuilt shutters used in the experiment.

laser beam and, by using the two mirrors prior to the isolator, can be made

co-linear with the slave beam.

After the beam leaves the optical isolator, it passes through an 80 MHz

AOM. This AOM serves two purposes. First, it shifts the frequency of the

beam up by 80 MHz. By using the first order of this AOM, the MOT beam can

be tuned from 80 MHz red of resonance to exactly on resonance. In addition

to shifting the frequency, the AOM provides intensity control by adjusting

the amount of power in the first order. To ensure good turn off of the first

order, a digitally controlled RF switch is between the signal source and the

RF amplifier that drives the AOM.

The first order beam from the AOM is shaped and sent to the upper

chamber to create the upper horizontal MOT beam. As a separate measure to

guarantee that there is no leakage light in this beam, a homemade mechanical

shutter is placed in the beam path (see Fig. 2.14) [35]. The shutter is nothing
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more than a relay with an extended arm on it. On the end of the arm is a

flag made from a razor blade. By driving current through the relay coil, the

arm can be moved and the flag made to block the beam. The mechanical

shutter takes on the order of several milliseconds to close. This is too slow for

us, therefore the AOM is used as a fast, imperfect shutter and the mechanical

shutter is used as a slow shutter with total extinction.

The zeroth order beam of the first AOM is used for additional purposes.

In the beam path an optical flat uncoated on one side is used to pick off a small

fraction of the beam. This is sent to a Fabry-Perot cavity to monitor the slave

laser. After passing through the optical flat, the beam continues to the first

of two double passed AOMs. The first double passed AOM is used to create

the push beam. Since the upper MOT horizontal beam does not need the

full power of the slave laser, this is the ideal means by which to create the

push beam which necessarily must be on at the same time as the upper and

lower MOTs. The first order of the AOM passes through a λ/4 waveplate and

is retro-reflected back through the AOM. It traces the input beam back to a

PBSC where it is ejected due to the orthogonal polarization. The beam was

created using a double pass to allow the detuning of the beam to be changed

while preserving the beam alignment. In practice, the detuning has never been

adjusted. Upon ejection from the polarizing beam splitting cube, the beam is

spatially filtered and sent to the upper MOT chamber.

The second double pass is built around the zeroth order of the first

double pass and is used to generate the vertical imaging beam. The first order
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of this AOM is again sent through a λ/4 waveplate before being retro-reflected.

The beam is extracted with a PBSC and then spatially filtered. At this point

the beam is sent to the upper MOT chamber. The double pass is not chosen

for freedom of tuning but rather for the larger frequency shift achievable.

Upper MOT Diagonal Slave Laser Fig. 2.15 shows the optical distribu-

tion network for the Upper MOT Diagonal slave laser. As the name suggests,

this laser is used to create the upper MOT diagonal beams. The beginning

of the distribution scheme is identical to that of the Upper MOT Horizontal

slave. The beam emerges from the slave laser housing and is made circular

with an anamorphic prism pair. The beam then passes through an optical

isolator to protect the slave laser from unwanted back reflections as well as

provided an injection beam port for injection locking.

After leaving the optical isolator, the beam is sent through an 80 MHz

AOM that serves as both a frequency shifter and power control. The first

order is shaped and sent to the upper chamber to become the upper MOT

diagonal beams. Within the optical path of the shaping optics a home built

shutter is situated to guarantee that there is no leakage light.

The zeroth order from this AOM is used to create two different beams.

The beam is first double passed through a 56 MHz AOM. The first order of

the AOM is used in the double pass thereby raising the frequency of the beam

by 112 MHz. This beam will become the horizontal absorption imaging beam.

After the double pass, the beam is separated with a PBSC. At this point the
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Figure 2.15: Beam distribution for the upper MOT diagonal beam slave laser.
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beam is spatially filtered and expanded to a waist of approximately 15 mm.

The beam is then sent to the chamber to be used for absorption imaging.

The zeroth order of the first double pass is used to create the optical

pumping beam. This beam is double passed through an 80 MHz AOM. In this

case though, the minus one order is used thereby lowering the frequency of

the beam by 160 MHz. By tuning the MOT master appropriately, this puts

the frequency of this beam on resonance with the F = 2 → F ′ = 2 transition.

After the double pass, the beam is separated from the input beam with the

same PBSC used for the absorption imaging beam. The waist is roughly the

same as the absorption imaging beam, 15 mm, and the optical pumping beam

follows the same path to the lower chamber where it enters at the same place

as the absorption beam.

Lower MOT Slave Laser The lower MOT light is generated by the Lower

MOT slave laser. The distribution network for this laser can be seen in

Fig. 2.16. This slave laser is used for only one purpose, which is to create

the lower MOT beams. That being said, there are two different types of MOT

beams. The regular MOT beams are the standard MOT beams that are used

for loading the atoms as they are transferred to the lower chamber. The tiny

MOT beams are used for a more specialized set of circumstances, that of de-

tecting single atoms at the center of the lower chamber. More will be discussed

about single atom detection later (see Chapter 5). For now, the creation of

both beams will be discussed.
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Figure 2.16: Beam distribution for the lower MOT beam slave laser.
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As with the other two slave lasers, the output of the laser is sent through

an anamorphic prism pair to make the beam circular. Following the prism pair,

the beam passes through an optical isolator for protection from back reflections

and to provide a means for injection locking. From there the beam is sent to

an 80 MHz AOM.

The first AOM is used to shift the frequency and provide intensity

control. The first order from this AOM passes through a mechanical shutter

to ensure that the lower MOT light is completely extinguished when required.

After passing through the shutter, the beam is shaped and spatially filtered.

From there, the beam is sent to the lower MOT chamber.

The zeroth order beam from the first AOM is used to created the single

atom detection (SAD) MOT beams. This beam is again sent to an 80 MHz

AOM that serves the same purpose as the first AOM. In fact, the entire op-

tical path of the SAD MOT beams is identical to that of the regular MOT

beams. The only difference occurs when the beam is shaped before entering

the chamber. The size of the SAD MOT beams is much smaller than that

of the regular MOT beams. The reasons for this will be addressed later (see

Chapter 5).

2.3.1.3 Repump Master Laser

The other frequency necessary to create a MOT is provided by the

repump beam. As mentioned earlier, light on the F = 1 → F ′ = 2 transition

is needed to return atoms to the cycling transition which may have decayed into
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Figure 2.17: Repump saturated absorption profile. The different dispersive
lineshapes refer to the following transitions: a)F = 1 → F ′ = 0, b)F = 1 →
F ′ = 0/1, c)F = 1 → F ′ = 1, d)F = 1 → F ′ = 0/2, e)F = 1 → F ′ = 1/2,
f)F = 1 → F ′ = 2.

the F = 1 ground state. To create this light, another Littrow configuration,

grating-stabilized laser housing containing a MLD780-100S5P laser diode was

constructed. This laser is identical to the MOT master laser in every way

except that it is locked to the repump transition 6.83 GHz higher in frequency.

All the relevant information for the repump master laser housing can be found

in the previous section.

As was the case with the MOT master, the repump master is locked

to the repump transition through the use of absorption spectroscopy. A small

portion of the light from the repump master is picked off from the beam using

a waveplate and a polarizing beam splitting cube and used to lock the laser

to the F = 1 → F ′ = 1/2 crossover. The setup to lock the repump laser is
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identical to the way it was for the previous cesium experiment and is described

elsewhere [18, 21, 22]. Fig. 2.17 shows the saturated absorption profile for the

repump transition line along with the dispersive signal corresponding to the

derivative of the absorption signal. The laser is locked on to the strongest

dispersive line which is the F = 1 → F ′ = 1/2 crossover transition. Therefore,

the output of the repump laser is 78.5 MHz red of the repump F = 1 → F ′ = 2

transition.

It is necessary to distribute the repump laser to both the upper and

lower MOTs. Fig. 2.18 gives a schematic of how the repump is split between

the two systems. As with all of the diode lasers, the output of the repump

is made circular with an anamorphic prism pair before passing through a

ConOptics optical isolator, model 713, for protection against back reflections.

From here the repump beam is sent through an 80 MHz AOM which serves

the dual purpose of shifting the frequency of the repump beam up 80 MHz

and therefore nearly on resonance with the repump transition, but it also acts

as a fast shutter for the repump beam. The 80 MHz AOM leaves the repump

beam detuned 1.5 MHz red of the F = 1 → F ′ = 2 transition, but this does

not appear to affect the operation of the MOT. As an added guarantee for

complete extinction of the repump, an additional home-built shutter is placed

within the distribution scheme.

Since very little power is needed in the repump beam, only the repump

master laser is necessary. After passing beyond the protection shutter, the

beam passes through a λ/2 waveplate and a polarizing beam splitting cube to
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Figure 2.18: The distribution network for the repump grating stabilized laser.

split the beam between the upper and lower MOTs. Typically, the waveplate

is set so that 5 mW are sent to the upper MOT while 4 mW are sent to the

lower MOT. This repump splitting was chosen as it gave the best fully loaded

lower MOT even through both MOTs appear to be relatively insensitive to

the exact power in their own repump beam.

2.3.1.4 Laser Diode Control Electronics

Both the master lasers and the slave lasers are operated with home built

current controllers [36]. The controller was designed to supply up to 500 mA

with a set current limit dependent on the diode used. Measuring current

noise with the current output monitor through a bandpass amplifier, under

test conditions of Iout = 200 mA, there was an observed rms noise of about
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Figure 2.19: A simplified schematic for the laser diode current controller cir-
cuit. A full schematic can be found in Ref. [36].

100µVrms on a 2 V dc signal in the 2 Hz to 200 kHz band. This corresponds

to 5 : 105 rms current noise. In the 2 Hz to 20 kHz band, the rms noise was

about 20µVrms, which is about 1 : 105 rms current noise. The drift is limited

by the sense resistor which is between -50ppm/C and 100ppm/C according

to the manufacturer. Self-heating of the sense resistor is rather small and

most changes are likely to be due to ambient temperature variations. More

practically, we have observed drift under 1 : 104 on the few hour scale from

tens of seconds after turn on. Longer term drift is expected to be on the order

of 1 : 105 stemming from the long term stability of the voltage reference.

The current controller design is based on a standard PID feedback loop

48



0.1µF
1nF

Ferrite 10Ω

+

-

1
N

9
1

4
B

1
N

5
7

1
1

Laser Diode

Figure 2.20: The laser diode protection circuitry.

and a buffered current output as shown in Fig. 2.19. The current sense is done

with a Caddock SR10 1 Ω 4-point sense resistor and measured by an INA128

instrumentation amplifier. The amplifier is set to have a gain close to 10 and

may be trimmed for accuracy giving a current monitor of 1 V for every 100 mA

of output current. This trimming is for the purpose of removing the small

absolute error of the sense resistor, if such accuracy is desired. In principle,

however, it is only really important to have noise-free operation and stability

rather than accuracy. We trimmed the output accuracy to under 0.1%. The

PID is in a single opamp configuration, where the various time constants are

coupled. This is hardly a problem in this circuit. In general, one can think

of C0 as the high frequency roll-off, C1 and R0 as the integrator, R1/R0 as

the proportional gain level, and R2 and C2 with R1 as the differential. We

found excellent performance without the differential part of the circuit, simply

omitting these components (R2 and C2) and using fixed resistors of values

R0=R1=4.99 kΩ and capacitors C0 of 39 pF and C1 of 10 nF. This gives an

integration bandwidth of about 20 kHz and a unity proportional level.
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Laser diodes are extraordinarily sensitive to shocks. In fact, electro-

cution is the number one cause of death for laser diodes [30, 31]. In order to

protect against this untimely death, the protection circuit shown in Fig. 2.20

was added to each diode. Several forward and reverse biased diodes were added

to prevent the voltage from swinging too high in either direction. In addition,

a ferrite bead and a low pass filter were added to reduce any noise that may

be picked up by the cable connecting the laser diodes to the current driver.

2.3.2 Interaction Lasers

In addition to the laser diodes, there are two far off resonant lasers

used in the experiment. Due to their far detuning and high power, they pro-

duce excellent conservative traps with negligible spontaneous emission (see

Appendix A). In order to have both attractive and repulsive potentials, one

laser is situated to the red of the Rubidium atomic transition and the other is

to the blue side.

The repulsive potential is created by a Verdi laser manufactured by

Coherent, Inc. The Verdi is a diode pumped, frequency doubled Nd:Vanadate

solid state laser. Two laser diode assemblies pump the Nd:Vanadate crystal.

The output of the crystal is frequency doubled with a lithium triborate (LBO)

crystal held at a constant temperature of 151oC. An optical diode and an

etalon are used to ensure single frequency mode operation. The output of the

Verdi is 10 W CW at 532 nm with a specified linewidth of less than 5 MHz.

Coherent specifies a power stability of ±1% over a 2 hour period and noise of
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less than 0.1% in the 10 Hz to 1 GHz range.

The attractive potential is generated by a Ytterbium fiber laser, model

YLD-10-1064, produced by IPG Photonics. The laser consists of several mul-

timode, 1 W, laser diodes operating at 970 nm that pump an Ytterbium doped

fiber. From this, 10 W of CW laser power at 1064.4 nm is produced. The fiber

has an emission bandwidth of ≈ .31 nm and the annoying feature of random

polarization. The output power instability (over 4 hours) is on the order of

1% while the short term stability, in the frequency range of 1 kHz to 20 MHz,

is on the order of 0.8%.

2.4 Magnetic Trap

One of the easiest way to create a BEC is through magnetic trapping

and evaporative cooling. This requires a magnetic trap that avoids the problem

of Majorana flip loss (as in a quadrupole trap), but it was preferred to remove

some of the complexities of other magnetic traps (i.e. the standard Ioffe-

Pritchard trap and variants). The Quadrupole Ioffe Configuration (QUIC)

trap, first designed by the group of Theodor W. Hänsch, fills that role [27].

2.4.1 Quadrupole Ioffe Configuration

The QUIC trap consists of three coils: a quadrupole coil pair and a Ioffe

coil as shown in Fig. 2.21. Alone, the pair makes a quadrupole magnetic field,

which is suitable at lower currents for running a MOT. This is a principle

advantage to this magnetic trap, in that others require more difficult mode
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Figure 2.21: Top view of the QUIC trap. The trap consists of a quadrupole
coil pair and a Ioffe coil. Alone, the pair makes a quadrupole magnetic field,
which is suitable at lower currents for running a MOT. The large arrows show
the direction of the current in the coils.

matching to transfer atoms from a MOT into the trap.

The basic idea of operation is that the quadrupole coil pair run at a

low current to provide the fields for a MOT. At some point, the atoms may

be optically pumped into a trapped state of the magnetic trap and the coil

currents then ramped up to make a quadrupole magnetic trap. The MOT

atoms are in the same location as the magnetic trap, so mode matching of

the traps is not needed. Now, before evaporatively cooling, the Ioffe coil

current is ramped up to equal that of the quadrupole coils. At this point,

with identical current in all coils, the fields have maximum stability. Also,

the magnetic trap is now compressed and is suitable for evaporative cooling.

The disadvantage of this design is that the field minimum has moved toward
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Figure 2.22: Calculated field for our QUIC trap. Field magnitude along the z-
axis is shown for different situations. In all cases, the current in the quadrupole
coils is IQ = 25 A. The dotted curve is for Ioffe current II = 0 A, which
corresponds to the case of a purely quadrupole field. The dot-dashed and
dashed curves correspond to II = 10 A and II = 20 A, respectively. The solid
curve is when II = IQ = 25 A. This curve corresponds to a situation with trap
frequencies of ωz = 2π · 18 Hz and ωrad = 2π · 225 Hz with B0 = 1.8 G.

the Ioffe coil. This places a limit on optical access to the BEC. Figure 2.22

shows the field magnitude along the z-axis while transferring from a purely

quadrupole to the quadrupole-Ioffe trap.

The QUIC trap fields are similar to those of a standard Ioffe-Pritchard

configuration near the trap minimum [37]. A vector field plot is shown in

Figure 2.23. The potential, V (r) = µ|B(r)|, near the minimum is given by

V (r) = µB0 +
m

2
(ω2

zz
2 + ω2

ρρ
2) , (2.2)
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Figure 2.23: Vector field plot for the compressed QUIC trap. The lower axis
is z, the distance from the pure quadrupole zero. The Ioffe coil is located to
the right.

where r is specified by axial, z, and radial, ρ, components relative to the field

minimum, and m is the atomic mass. This is a harmonic potential with trap

frequencies given by ω =
√

µB′′/m, where B′′ is the field curvature in the

given direction. In the case of the radial direction, the curvature is

B′′
ρ =

B′2
ρ

B0

− B′′
z

2
. (2.3)

This is approximately B′′
ρ
∼= B′2

ρ /B0 when the coil currents are equal (i.e. B′
ρ

is large and B0 small). The trap frequencies are therefore given by

ωz =
√

µB′′
z /m , (2.4)

and

ωρ =
√

µB′2
ρ /mB0 , (2.5)

54



where B′
ρ is the radial field gradient, B′′

z is the axial field curvature, and B0

is the field minimum. Since the quadrupole trap has gradients B′
x = B′

y/2,

where B′
x is the gradient along the quadruple coil axis, the radial gradient is the

geometric mean: B′
ρ =

√

B′
xB

′
y = B′

x/
√

2. For the |F = 2,mF = +2〉 ground

state of 87Rb, the factor
√

µ/m = 2π · 1.2765 Hz and the trap frequencies are

ωz = 2π · (1.2765 Hz/
√

G/cm2)
√

B′′
z , (2.6)

and

ωρ = 2π · (1.2765 Hz/
√

G/cm2) B′
ρ/
√

B0 . (2.7)

At II = IQ = 25 A, theoretical values are B′
ρ = 235 G/cm, B′′

z =

195 G/cm2 and B0 = 1.8 G. This corresponds to trap frequencies of about

ωz = 2π · 18 Hz and ωρ = 2π · 225 Hz. Small adjustments in Bo are made by

an auxiliary Ioffe coil, thus setting the operating value of ωax.

2.4.2 Coil Structure and Construction

The approximate dimensions of the coils are as follows. The quadrupole

coils have a 34 mm inner diameter, a 68.5 mm outer diameter, and a 32 mm

thickness. The Ioffe coil has a partially conical end, with a 7.5mm inner

diameter, a 26 mm outer diameter, a 37 mm inner thickness, and a 33 mm outer

thickness. The quadrupole coils are separated by 75 mm (between the centers

of the coils) and the Ioffe coil is displaced 38 mm from the quadruple center to

its center. These dimensions should not be taken too seriously, because they

approximate the shape of the actual round wires and their locations.
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Fig. 2.24 shows the coils and location of the magnetic wire. Each coil is

wound around a PVC rod and encased in a water-tight PVC holder for cooling

(see below). The Ioffe coil has 4 layers of windings with 20 gauge magnet

wire. There is a set of 1/16” nylon rods from Small Parts, Inc. oriented

perpendicular to the direction of winding between each layer. The coil was

wound such that there is a spacer layer, 42 turns, a spacer layer, 41 turns, a

spacer layer, 39 turns, another spacer layer, and finally 37 turns for a total of

159 turns. The quadrupole coils use 14 gauge magnet wire and have a set of

3 layers of turns then a nylon spacer followed by another set of 3 layers and

spacer followed by a set of 4 layers. The number of turns per layer are: spacer,

18, 17, 18, spacer, 18, 17, 18, spacer, 18, 17, 18, 17. This is a total of 176 turns

for each quadrupole coil.

To wind the coils, a pair of Teflon winding blocks was made to hold

the inner PVC rod in a lathe which was slowly turned by hand. Teflon was

used since epoxy does not stick to it strongly. Around the inner rod and after

each subsequent layer of turns for the Ioffe coil, or after 3 layers of turns for

the quadrupole coils, a set of spacers was put in place with 5 minute epoxy.

These rods were placed around the the circumference of the coil approximately

1/2” to 3/4” apart and oriented perpendicular to the windings. After each coil

was completed, it could easily be removed from the Teflon blocks. Each coil

was then glued with a much stronger 24 hour epoxy called Cold Weld from

Permatex. This gluing was in various places, mostly on the outside, along the

rim to make sure the coil can not unwind in anyway, at the ends of the spacers
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(a)

(b)

Figure 2.24: The three primary coils of the QUIC trap: (a) top view, (b) side
view. Magnet wire is encased in PVC holders. The darker regions represent
the copper wires and the lighter regions between the wires represent the nylon
spacers. The spacers are oriented perpendicular to the coil turns. That is,
in (a) all spacers are parallel with the plane of the paper and in (b) spacers
come out of the paper for the quadrupole coils and parallel to the paper for
the Ioffe. The PVC rods exiting the rear of each coil form base is a water tube
connector.
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to make sure there is a solid connection between them and the wire, and also

from the wire and spacers to the inner PVC rod. This epoxy was intended to

provide additional support for the coil against any strain and reinforce the 5

minute epoxy which may weaken in water. Great care was taken to not scratch

the wire in this process.

Figure 2.24 shows machine drawings of the PVC coil holders with ap-

proximate dimensions of the magnet wire inside. The darker regions represent

the copper wires and the lighter regions between the wires represent the nylon

spacers. The spacers are oriented perpendicular to the coil turns. The inner

PVC rods were then inserted into the PVC holders. Each holder has a base

piece and an inner rod. Both holders have a single hat piece. In the case of the

Ioffe coil, that piece fits over the the entire coil and attaches to the base piece.

For the Quadrupole coils, the hat slips down the inner rod and over the coil

attaching to the baseplate at two places. The position of the coil on the inner

rod was set by the Teflon winding blocks so the coils are correctly positioned

when they slip into place. The PVC holders were cemented together using

standard PVC cement. In addition, an external PVC weld was made along all

the seams of the seal.

The wire ends from each coil exited the housing and passed down each

of the plastic water tubes attached to the coils. The wire then travels about

1.5 feet down the tube where it reaches a modified 0.5” brass Swagelock union

tee. The tee has a small hole that was drilled into it opposite the perpendicular

port. In addition, a copper tab was silver soldered onto the side of the tee.
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The wire was soft soldered into the hole with the use of a propane torch. The

extra slack of magnet wire was left inside the water tube beyond the brass

connector for the case of a future break due to electro-chemical etching at the

connection. In this scenario, the tee could be removed and re-soldered using

some of the slack wire. The inside of the tee was also covered with Cold Weld.

On the outside of the brass tee, the electrical connection is made to 10 gauge

wire by bolting the lug on the wire to a hole in the copper tab on the side of

the tee. The copper tabs were first cleaned with sandpaper to remove oxides

from the soldering process.

The coils are cooled with water. Each PVC holder has two water con-

nectors which are attached to 1/2” plastic tubes with nylon Swagelock con-

nectors. The water enters each holder in the lower tube and exits the top

allowing air bubbles to escape. The water then either passes through the gaps

in the coil formed by the nylon spacers or goes around the outside of the

windings. The water is primarily prevented from going straight from the inlet

to the outlet and not passing the coil by a barrier that is machined into the

PVC baseplate. The process water comes from the recirculating refrigeration

chiller Merlin M-33 from Neslabs which is buffered by a massive water tank.

This chiller has a cooling capacity of 1250 W. The quadruple coils each have

a resistance of 0.29 Ω and the Ioffe coil has 0.40 Ω. At a maximum reasonable

current of 30 A, this gives powers of about 260 W in each quadruple coil and

360 W in the Ioffe coil. The chiller’s positive displacement pump puts out

about 6 l/min at a maximum pressure of 60 psi. When operated at this max-
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imum flow, the quadruple coils individually drop about 25 psi, the Ioffe coil

15 psi, and electronics FET heatsink about 50 psi. So when run in parallel the

Ioffe coil receives about 2.4 l/min, each quadruple coil about 1.44 l/min, and

the FETs about 0.72 l/min and the output pressure is only 6 psi. With these

flows and the outstanding thermal contact, the coils only change temperature

by about 2 oC.

The decision to use PVC for the coil housings was based on leaking

problems that were associated with a former design. Originally, the housings

had been made out of Plexiglass and sealed with the chemical Dichloroethane.

Dichloroethane melts the Plexiglass allowing two adjacent surfaces to fuse

together. Those housings had a nasty tendency to develop leaks. This likely

occurred due to small gaps that the Dichloroethane did not seal because of

the fact that small gaps are not filled by the substance since it only fuses

contacting faces and adds no material. Also, Plexiglass tends to absorb water

and swell [38]. This could further weaken the seal made by the Dichloroethane

and lead to leaks. This problem was temporarily remedied by using the epoxy

Cold Weld. The epoxy was put on the surface of the joints and at noticeable

leaks. This brought temporary relief, but eventually it gave way to a leak that

was not able to be patched. With the use of PVC cement and PVC welding,

the current coils were constructed and sealed. They have yet to leak or show

any signs of faltering.

In addition to the primary coils of the QUIC trap, various auxiliary

coils were added. These coils are shown pictorially in Figure 2.25. For each of
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Helmholtz Pair

Auxiliary Ioffe

Ioffe Coil

Figure 2.25: A photograph showing the coils of the QUIC trap. The Ioffe Coil,
the Helmholtz pair, and the auxiliary Ioffe coil are labelled. The quadrupole
coils are surrounded by the Helholtz pair.

61



these, the coils are self-supported with the turns attached together with epoxy.

They were slipped over the PVC forms of the primary coils and are held in

place by a few dabs of epoxy to the PVC. These coils are uncooled.

The first is the auxiliary Ioffe coil. This coil consists of about 40 turns

of 20 gauge wire and has a resistance of about 1/4 Ω. The purpose of this

coil is to slightly alter the minimum field B0. One can think about this coil

as a small adjustment to the current in the actual Ioffe coil. Since the coil

is uncooled, there is a limit to the current that is reasonable to put through

it. The change in field minimum is approximately ∆B0 ≃ (1 G/A) · IIAux. In

practice, this coil can change B0 by several Gauss.

The Helmholtz pair, which is mounted on the outside of the PVC hold-

ers of the main quadrupole coils, consist of 30 turns each of 16 gauge wire,

and each coil has a resistance of about 0.05 Ω. The pair produces a uniform

field near the trap center along the arrow labelled ρ in Figure 2.25. The value

of this field is about BHH = (2.6 G/A) · IHH. Therefore, a field of 10 G can be

obtained along the axis of the primary quadrupole coils for under a watt of

power in each coil.

2.4.3 Current Driver Electronics

The power circuit for the QUIC trap consists of three current regu-

lators and two MOSFET switches as shown in Fig. 2.26. The three current

regulators are single opamp PID controllers which regulate the current based

on a Hall sensor output (CLN-25 from F.W. Bell) by adjusting the analog gate
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Figure 2.26: A schematic of the main power circuit that runs the magnetic
trap coils.
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voltage of their respective MOSFETs. These regulators are similar to those

for our laser diode current controllers. The main current controller uses four

IRFPS40N50L power MOSFETs from International Rectifier. These MOS-

FETs have a breakdown voltage of VDSS = 500 V. The two shunt regulators

each use five IRF1405 power MOSFETs from International Rectifier which

have a low on-resistance of RDS(on) = 5.2 mΩ each. This gives the FET bank

an on-resistance of 1.04 mΩ. It is intended that this be much smaller than

that of the load it shunts. These loads are about 0.5 Ω each. The MOSFET

switches use a single IRFP260N. These are intended to fully shut off the a coil

when it is desired and not used for regulation.

This design is flexible enough to allow various current configurations

and ramps to be used, including a quadrupole trap for the MOT which is

obtained with the Ioffe coil off, the QUIC trap after the Ioffe has been ramped

on from the quadupole configuration, and the decompessed Ioffe trap which

is at the location of the quadrupole trap. The decompressed Ioffe trap is

produced by lowering the quadrupole currents and keeping the Ioffe current

the same value as that used in the QUIC trap. This produces a weak symmetric

Ioffe-Pritchard type trap which has moved back to a desired location at or near

the quadrupole trap center. More will be said about the decompressed Ioffe

trap in Chap. 5.

In the ideal operation mode for evaporation, the same current flows

through all three of the QUIC trap’s primary coils. In this case, only the

main current regulator is operating, the two switches are wide open, and the
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two shunts are totally disabled. During ramps, the analog inputs to the shunt

controllers are used. This diverts current to or away from the coil. The coils

may be slowly switched off or on together by using any combination of the

two shunts and the main current regulator. For sudden switch off of the entire

trap, the main MOSFETs are simply switched off. In this case, the main

MOSFET’s built-in 500 V zener voltage does the clamping for a quick linear

current decay. The various forward diodes (HFA50PA60C) protect the power

supply and also prevent the coils from switching through the shunt current

regulator.

In constructing this circuit, there are three floating voltages which are

labeled ‘Local GND’ in Fig. 2.26 near each regulator. At each location is a

0.5 A, ±15 V power supply for the control electronics. The control signals

shown are one analog input for each regulator and one digital input for each

switch, which are brought in through analog and digital optocouplers. This

allows for each control stage to float at any voltage along the chain and also

prevents ground loops and protects our computer outputs from voltage spikes

during switch off. There is also an earth ground 0.5 A, ±15 V power supply

for the front end of the optocouplers.

The HCNR201 analog optocoupler and the HCPL-2602 digital line re-

ceiver optocoupler, both from Agilent Technologies, were used in the circuit.

The HCNR201 has an output photodetector and an identical photodetector

on the input side. This allows for feedback linearization of the output with a

precision opamp. This setup provides a very stable and accurate analog signal

65



with a bandwidth of order 100 kHz. This is far beyond the sweeps used in the

experiment, which are on the order of 100 ms. This is also fast enough to be

used for sudden switch off. The HCPL-2602 has a frontend that is directly

driven by the input digital signal.

2.5 Control Electronics

A rather involved control system is needed for the experiment to run

smoothly. The system consists of four computers running four different pro-

grams used for computer control and data acquisition. A brief description of

the different elements of the system is provided below. A full description of

the system as well as design notes, schematics, and construction plans for all

elements of the system can be found online at Ref. [39].

Four computers are used to control and extract data from the exper-

iment. The main control computer is a standard desktop personal computer

(PC) computer running under Windows 2000. The main control program for

the experiment runs from this computer. The program, Control, was written

in Microsoft Visual C++ by Florian Schreck. The structure of the program is

such that adding new experimental sequences can be done quickly and with

little effort. The program has a graphical interface allowing the user to easily

pick which options are to be performed as well as what the parameters for those

options are. The program controls the outputs of four National Instrument

cards, two digital and two analog output cards, residing in the computer.

The main data acquisition and analysis computer is also a PC running
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Windows 2000. This computer runs the program Vision which acquires and

processes images from the experiment. The program, also due to Florian

Schreck, was written in Borland C++. This program communicates with

the main control program, receiving experimental values and the parameters

used during the experimental run. Vision displays the images taken by the

two cameras and displays them on the monitor. The program also allows

for manipulation and analysis of the data. Ideally, this computer would be

directly connected to the two data taking cameras, but this was not possible.

Due to limitations of the two cameras, separate computers must operate those

cameras and send the data to Vision via TCP/IP.

One of the two computers devoted to camera interface is a Macintosh

PowerMac computer running Macintosh operating system OS 8.6. It contains

a NuBus card that communicates with the Princeton Instruments (PI) water

cooled CCD camera. Several programs written in LabView receive the raw

image, process it, and send data back to Vision on the main data processing

computer. Attempts to upgrade this computer to a PC have failed due to

the fact that it is the only computer with a NuBus card that can correctly

communicate with the PI camera.

Finally, there is a PC running Windows XP that is used to interact

with the Apogee Alta series air cooled CCD camera model U47+. A program

written in Visual C++ interfaces with the Alta camera and sends the data to

Vision on the main data acquisition computer. This camera is not controlled

directly from the main data acquisition computer because there are no drivers
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written in Borland C++ for the camera. Efforts were made to run both

Borland C++ and Visual C++ on the main data acquisition computer to allow

it to take the picture, but the two C++ programs would not communicate well

together in such a configuration.

Specialized hardware was developed to interface the computers with

the experiment. A slew of digital outputs and analog outputs are needed to

turn on and off different devices as well as to control the output levels of

those devices that need it. As was mentioned previously, the control computer

houses five National Instrument cards providing 24 analog outputs and 32

digital outputs. Unfortunately, this does not provide enough control for the

experiment, but it is impossible to add more cards to the computer due to

the limited number of PCI slots in the motherboard of the computer. This

problem was circumvented by designing and building an original parallel digital

bus system and accompanying digital outputs and digital-to-analog outputs.

The parallel bus system consists of a parallel bus of 25 bits. Eight bits

are used as an address for a 16 bit device. In addition there is one strobe

bit which is used for timing. The control computer interfaces the bus system

through a National Instruments NI6533 32 bit digital output board. The

output of this board produces the 25 bit signals, a synchronous clock signal,

and seven extraneous bits. The special National Instruments cable connects

the NI board to several home built boards that buffer the NI outputs and use

the synchronous clock to create the strobe bit. The output of these boards is

the bus system.
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The bus system is capable of accessing one 16 bit device every clock

cycle labelled with one of 256 different addresses. During each clock cycle, the

bus system controls either a card with 16 digital outputs or one 16 bit channel

of an analog card that has eight outputs. The digital card takes the 16 data

bits from the bus and uses those values to set the logic level of 16 latched

and buffered digital outputs. Each of the analog cards accommodates eight

buffered analog outputs. Two-four channel, 16 bit digital-to-analog converters

are used on the board to convert the bus data bits into an analog signal.

The speed at which the system can operate is determined in part by the

speed of the computer interface with the bus system. In addition, it is limited

by the number of elements that the bus system is operating at one time. The

NI cards are operated at a clock rate of 500kHz, putting an initial limit on how

fast the bus can run a device. The other limit is that the bus can access only

one device per clock cycle. If N devices are being updated at the same time,

the updates must alternate between the N devices every N clock cycles, thus

reducing the effective speed by a factor of N . Given the high initial speed of

the bus, this has never been a major concern for the experiment since generally

there are only a few simultaneous updates.

2.6 The Sequence

The previously described elements of the experimental apparatus are

essential to the creation of a condensate. But mere descriptions of those ele-

ments do not do justice to the difficulty in producing a condensate. Therefore,
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it is instructive to look at the process used to create a condensate from begin-

ning to end starting with the collection of atoms out of a vapor.

2.6.1 Upper MOT

As previously mentioned, the upper MOT resides within the upper

chamber. The pressure in the upper chamber is on the order of 10−7 Torr and

dominated by rubidium vapor. This value is inferred from the known vapor

pressure of rubidium at room temperature [19] along with the known pressure

in the upper chamber of < 10−9 Torr before the addition of rubidium into the

chamber.

The upper MOT loads roughly 109 atoms in under half a second. Be-

cause there are no calibrated diagnostic instruments with which to measure the

upper MOT, these specifications are only estimates. Two small CCD cameras,

Ramsey Electronics model CCD338, are used to observe the upper MOT. An

image of the upper MOT, taken with one of the survey cameras is shown in

Fig. 2.27. A crude estimate of the number of atoms was generated by collecting

fluorescence from the upper MOT and measuring it on a power meter. The

exact number of atoms is not relevant since the experiments take place in the

lower MOT.

Fig. 2.28 shows the layout of the optics used to create the upper MOT.

Along the three orthogonal axes made by the six 2.75” ports, three retrore-

flected beams are used to create the MOT beams. The horizontal beam uses

roughly half the power from one of the slave lasers. The beam has a 1/e2
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Figure 2.27: A CCD image of the upper MOT.

waist of ≈ 8 mm with a power of ≈ 15 mW. The two diagonal MOT beams

are generated from the output of one slave laser. Approximately 40 mW is

split with a 50% beam splitter into the two diagonal beams. Each beam has

a 1/e2 waist of ≈ 8 mm. The repump beam for the upper MOT is combined

with the horizontal MOT beam in a 2” polarizing beam splitting cube. The

beam has a 1/e2 waist of ≈ 8 mm with a power of ≈ 5 mW.

The quadrupole magnetic field is supplied by two current loops. One

loop is a coil which has a diameter of 3.2” and has 81 windings. It is situated

next to the upper MOT chamber around the free horizontal beam port. The

“matching” loop actually consists of two large coils with 81 windings shaped

to resemble a matching 3.2” diameter coil. The reason this is done is because

of the mechanical shutter, ion gauge, and ion pump that are connected to the
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Figure 2.28: The optics layout for the upper MOT.

upper MOT chamber on the extended horizontal beam port. The two coils

used to create the “matching” coil are themselves matched. Each coil has a

roughly 2.5” diameter. A portion of the coil is shaped to be one half of a 3.2”

diameter coil. The rest is bent at a right angle and extends away from the

chamber. Together the coils make one almost seamless 3.2” diameter coil. The

parts of the coils protruding away from the chamber are matched with current

running in opposite directions, so that the magnetic field falls off quickly and

has little effect on the quadrupole field inside the chamber. All three coils are
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cooled via water cooling of their respective coil holders.

While all efforts were made to match the two coils, there still exists a

slight imbalance between the two. To overcome this, the double coil is run at

a slightly higher current. When loading an upper MOT the single coil is run

at ≈ 2.8 A while the double coil is run at ≈ 3.4 A. This creates a quadrupole

field with an estimated gradient of 20 G

rmcm. An added benefit of controlling the current in the coils separately is

that it is possible to adjust the position of the upper MOT along the axis of

the quadrupole coils.

2.6.2 Transfer

The transfer of atoms from the upper MOT to the lower trapping region

is accomplished in a manner similar to that used by Madison et. al. [24]. A

near resonant push beam is trained on the upper MOT. It continually pushes

atoms from the upper MOT through the differential pumping tube to the lower

chamber where the atoms are recollected in the lower MOT.

The push beam is generated from the Upper MOT Horizontal slave

laser as shown in Fig. 2.13. As previously mentioned, the zeroth order of the

slave laser is used to produce the push beam. The beam is designed to run

concurrently with the upper MOT. The double pass in the beam path allows

for tuning of the push beam, but in practice, the detuning is set to that of the

upper MOT.

Before entering the chamber, the push beam is a collimated beam with
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a waist of .75 mm and a power of roughly 6 mW. Approximately 10 cm be-

fore entering the upper chamber through the top 1.33” port, the beam passes

through a 200 mm focal length lens. This focusses the beam to a waist of

approximately 100µm about 5 cm before hitting the atoms. The divergence

of the beam is such that it has a waist of roughly 1 cm at the position of the

lower MOT while not clipping on the differential pumping tube.

2.6.3 Lower MOT

Situated in the center of the glass cell in the UHV region of the vacuum

chamber is a magneto-optical trap used to collect atoms transferred from the

high pressure region of the chamber. The MOT consists of three pairs of

mutually orthogonal counter-propagating beams. Unlike the upper MOT, the

lower MOT beams are each independent.

As mentioned earlier, one slave laser produces the light for the lower

MOT beams. The distribution for this laser is shown in Fig. 2.16 and described

in Sec. 2.3.1. Before the lower MOT beams are created, the main beam is spa-

tially filtered. After the spatial filter, the beam has a power of approximately

45 mW and a waist of approximately 0.75 cm. This beam is then split into six

beams of approximately equal intensity. The beams are inserted into the glass

cell chamber as seen in Fig. 2.29. The portion of the repump beam used for

the lower MOT is spatially filtered and expanded to a waist of roughly 1.5 cm

and has a power of about 5 mW. This beam is then inserted into one arm of

the lower MOT beam path as shown in Fig. 2.29.
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Figure 2.29: The optical setup for the lower MOT.
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Figure 2.30: An absorption image of the lower MOT. The MOT contains
≈ 1.5 × 109 atoms. The image was taken with a probe beam detuning of
5 MHz to avoid saturating the image.

The magnetic field gradient required for the operation of the lower

MOT is provided by the QUIC trap coils. In MOT operation, only the two

quadrupole coils are in use. For typical loading conditions, 1.75 A of current

are run through the coils. This produces a field gradient of ≈ 15 G/cm.

Atoms are loaded into the lower MOT from the upper MOT via the

differential pumping tube as mentioned in Sec. 2.6.2. The initial loading rate

for the lower MOT is typically on the order of 1.5 × 108 atoms per second.

This rate starts to fall off after approximately three seconds as saturation

effects begin. The cloud reaches a steady state number of 1.5 × 109 atoms

after roughly twenty seconds of loading. Fig. 2.30 shows an absorption image

(see Sec. 2.6.6 for a description of absorption imaging) of a fully loaded lower

MOT. The cloud has a 1/e2 diameter of ≈ 2 mm. The temperature of the

cloud is roughly 100 − 150µK.

After the lower MOT has loaded, the cloud undergoes polarization gra-
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Figure 2.31: An absorption image of the lower MOT after polarization gradient
cooling. The MOT contains ≈ 1.3 × 109 atoms. The image was taken with a
probe beam detuning of 7 MHz in order to avoid saturating the image.

dient cooling [40, 41]. The intensity of the lower MOT beams is reduced to

50% of the loading intensity. At the same time the beams are detuned to

50 MHz red of the F = 2 → F ′ = 3 atomic transition and the magnetic field

is shut off. The atoms remain in the light for 5 ms after which they have been

cooled down to a typical temperature of 25µK with only a slight loss in atom

number.

2.6.4 Optical Pumping and Transfer to the Magnetic Trap

The next step in the condensation process is optical pumping, followed

by loading into a magnetic trap. The reasons for loading the atoms into a

magnetic trap will become clear in the next section; this section focusses on

how the atoms are put into a specific magnetic state so that they can be

efficiently placed into a magnetic trap.

A review of what happens to an atom in a magnetic field is in order.

In Chap. 1, it was explained that an atom behaves as a small magnetic dipole
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and in a magnetic field, B. It feels a potential, UB = gFmFµBBz (see Eq. 1.5).

By spatially varying the magnetic field, it is possible to build a potential that

traps the atoms. The atomic magnetic moment precesses around the local

magnetic field at the Larmor frequency, ωL = µ/~ B. Viewing each atom as

a magnetic dipole moment, if the external magnetic field direction changes

slowly as an atom moves through space, the moment will adiabatically follow

the field direction, that is dθ/dt ≪ ωL, where θ is the angle of the magnetic

field with respect to some axis. The condition may also be written

v · ∇B
ωLB

≪ 1. (2.8)

Therefore, since the magnetic trap has ∇B on the order of 250 G/cm and B

at least 1 G, the above ratio is smaller than 0.01 for atomic velocities of order

several hundred recoil velocities. The adiabaticity condition, therefore, applies

to atoms in a magnetic trap loaded from a MOT.

For the 87Rb ground state 52S1/2, the Landé factors are gF=1 = −1/2

and gF=2 = 1/2 [19]. This means that the states |2,+2〉, |2,+1〉, and |1,−1〉

are low field seeking states in that they will seek out a field minimum to

reduce their potential energy. Since it is not possible to make a static magnetic

field with a field maximum [34], traps must be made with a field minimum.

Therefore atoms in low field seeking states are trappable atoms. In the case of

a magnetic trap with too weak a field, as discussed above, atoms of sufficient

temperature will see a trapping field that varies too quickly and may move to

a different mF state (likely an untrapped state). Such transitions are called
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F = 1

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

OP beam repump beam

Figure 2.32: Diagram of the optical pumping scheme. Two beams are applied
to the sample of atoms shown in red in the figure. The optical pumping beam
(OP beam) is resonant on the F = 2 → F ′ = 2 transition. Once in that
state, the atom spontaneously decays to either the F = 2 or F = 1 ground
state, shown in blue in the figure. A repump beam is needed as well to ensure
that atoms that decay to the F = 1 are thrown back into the optical pumping
cycle.

Majorana flips and result in trap loss. This is especially problematic for a trap

with a field zero which results in Majorana flips for arbitrarily cold atoms.

In order to efficiently load atoms into the magnetic trap, as many of

the atoms as possible must be put into a trappable state. This is accom-

plished through optical pumping, which is achieved by making the desired

state, |F = 2,mF = +2〉 a dark state. Fig. 2.32 illustrates the optical pumping

scheme. A biasing magnetic field is applied to the atoms to define a quantiza-

tion axis. At this point, a σ+ polarized laser resonant on the F = 2 → F ′ = 2

transition is applied to the atoms. It is important that the biasing magnetic

field is not too strong so that the laser is still in resonance with all the magnetic
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sublevels.

The σ+ laser drives transitions from |2, i〉 state to the |2, i+ 1〉 state.

Notice that since the state |2,+2〉 is a stretched state, there is no state to

which it can be excited. This state is referred to as a dark state since the

atoms no longer see the resonant light. Once in a dark state, atoms will

remain in that state. If an atom does become excited, it will decay to one of

the ground states available by selection rules with a probability determined

by the Clebsch-Gordan coefficients. Since it is possible for the atoms to decay

down to the F = 1 ground state, the repump laser is also turned on to keep

atoms in the optical pumping cycle. After several cycles of excitation and

decay, atoms will start to accumulate in the dark stretched state, which also

happens to be the desired magnetically trappable state.

A weak magnetic bias field is needed in order to define a quantization

axis. The optical pumping bias field is applied by a Helmholtz coil pair at-

tached to the two large lower MOT quadrupole coil housings. As mentioned

in Sec. 2.4.2, the two coils are driven in series creating a field on the order of

several Gauss.

Two beams are required to implement optical pumping. The same

repump beam on the F = 1 → F ′ = 2 transition that is used to create the

lower MOT is used for optical pumping. The optical pumping light on the

F = 2 → F ′ = 2 transition is created by the Upper MOT Diagonal slave laser

as shown in Fig. 2.15. The beam is tuned to be exactly on resonance with

the optical pumping transition with a power of approximately 1.5 mW. The
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beam has a Gaussian profile with a waist of 15 mm that is clipped by an iris

to a diameter of 19 mm. The beam is combined with one of the lower MOT

horizontal beams in a polarizing beam splitting cube and enters the chamber

as displayed in Fig. 2.29.

The optical pumping sequence takes 200µs and dramatically increases

the number of atoms loaded into the magnetic trap. Empirically, the number

of atoms loaded into the magnetic trap is increased by slightly more than a

factor of two. This increase in number comes at a small price. The repeated

spontaneous emission events that make optical pumping work, heat the cloud

of atoms. The amount of heating is quite small, increasing the temperature

by about 5µK. This is an acceptable trade-off.

After the atoms are optically pumped into a state that can be trapped,

they are loaded into the magnetic trap. As described previously, the magnetic

trap consists of three coils. The two quadrupole coils create the gradient field

used to load the transferred atoms into the MOT. To load into the trap, the

current in those coils is ramped up followed by the ramping on of the Ioffe

coil. Because the MOT coils and the magnetic trap coils are one and the

same, there is no mode matching necessary in order to load atoms into the

trap.

Fig. 2.33 shows a plot of the ramp on of the magnetic fields as atoms

are loaded into the trap. At the end of the optical pumping sequence, the

quadrupole coils are ramped on to a value of 15 A in 5 ms. Afterward, the coils

are slowly ramped up to their final current of 28 A over a period of 500 ms.
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Figure 2.33: Plots showing the currents in the coils as a function of time.
“Main” is the current through the main regulator. The plot shows the currents
for the initial sequence down to production of BEC in the magnetic trap. The
current is switched off at that point if BEC production is the end goal.

This trap is referred to as the compressed magnetic trap and Fig. 2.34 shows

an image of atoms within this trap. At this point the Ioffe coil is switched on

and ramped up to a current of 28A over the course of 500ms. The magnetic

trap is now fully on. Fig. 2.34 shows an image of atoms in the full QUIC trap.

The current in the coils is regulated solely by the main current regulator

in an effort to increase stability in the system. In this configuration, the

trap center has moved by roughly 7.5 mm toward the Ioffe coil. The exact
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(a) (b) (c)

Figure 2.34: Images of atoms within different configurations of the magnetic
trap. Image (a) shows the magnetic trap with 15 A in the two quadrupole coils.
Image (b) shows the magnetic trap in the compressed trap configuration, and
finally, image (c) shows the magnetic trap in the QUIC trap configuration.

displacement is difficult to determine due to limitations of the imaging system,

but this is of little concern.

The magnetic trap is characterized by its trap frequencies and the mag-

netic field strength at the trap minimum. The trap frequencies are determined

by “kicking” the cloud of atoms within the trap and observing the oscillata-

tions. The cloud is “kicked” by offsetting the trap center slightly with a bias

field, then letting the cloud evolve in the trap before taking an image. Fig. 2.35

shows the results of such a measurement. In this case, the trap frequencies are

120Hz in the strong direction and 19Hz in the weak direction. Since the trap

frequencies are dependent on the trap minimum, it is important to know this

value. The field minimum can be found through RF evaporation (see Sec. 2.6.5)

by continuing the evaporation sweep until there are no atoms left. The fre-

quency at which this happens corresponds to the energy offset at the bottom
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Figure 2.35: Plots showing the motion of the atomic cloud in the magnetic
trap. From this measurement, it is possible to calculate the trap frequencies.
The plot on the left shows oscillations along the weak axial direction corre-
sponding to a trap frequency of 19 Hz. The plot on the right shows oscillations
along the strong radial direction corresponding a trap frequency of 120 Hz.

of the trap, which can be converted into the magnetic field value at that point.

In the case of the trap frequency measurements, the field minimum was 3.9 G.

During typical operation, the field minimum is roughly 1.4 G (see Sec. 2.6.5).

This yields trap frequencies of ωrad = 2π × 200Hz and ωax = 2π × 19Hz.

2.6.5 Forced RF Evaporative Cooling

Standard laser cooling techniques are limited as to how far they can cool

an atomic sample. Laser cooling operates on the principle that absorption of

a resonant beam is directional, whereas the spontaneous emission of a photon

from an atom is isotropic. Light fields appropriately tuned to the red of the

atomic transition cause a swiftly moving atom to see the light as blue shifted
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and hence in resonance. As the atom absorbs the photon, it gets a momentum

kick slowing it down in that direction. This is used to cool and trap atoms

with laser light.

The fact that this cooling is accomplished with discrete photon trans-

fers leads to a limit in how far a sample can be cooled. While the sponta-

neously emitted photon has an isotropic radiation pattern leading to no net

momentum, the square of the momentum distribution is nonzero. The atom

undergoes a random walk in momentum space, leading to a spread in the width

of the momentum distribution.

As mentioned earlier in Section 2.6.4, evaporative cooling is used to

avoid the temperature and density limits associated with laser cooling. The

particular means by which we evaporatively cool is known as forced RF evapo-

ration. This method was first proposed and demonstrated for cooling magneti-

cally trapped hydrogen [42]. Later, it was used to cool alkali atoms to quantum

degeneracy [9–11], and is still the dominant means for achieving that goal. A

thorough review of the subject can be found in Ref. [43] and Ref. [44].

There are several mathematical models that describe evaporative cool-

ing [43, 45], but the principle can be explaine with a short example. Consider

a system of N particles at temperature Ti. The energy distribution for such

an ensemble of particles is given by a Maxwell distribution [46]. Now, imagine

that the particles with energy greater than some value Ecut are removed from

the group. The total energy of the group is lower, but the energy distribution

of the particles is no longer thermal. To reach equilibrium again, the particles
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Figure 2.36: A schematic of how RF evaporation works. Each magnetic sub-
level feels a different potential due to the magnetic field. Only the states
|F = 2,mF = +2〉 and |F = 2,mF = +1〉 feel a trapping potential. Radio fre-
quency photons create a position dependent resonance condition that forces
higher energy atoms to flip their spins to untrapped states, thereby ejecting
them from the trapping region.

rethermalize through elastic collisions with each other. The end product is an

ensemble of particles with a lower final temperature, Tf < Ti.

The experimental realization of forced RF evaporation is illustrated in

Fig. 2.36. As mentioned earlier, the atoms are loaded into a magnetic trap

in a specific magnetic sublevel of the ground state, |F = 2,mF = +2〉. The

energy of the atom within the trap is the sum of the kinetic energy and the

potential energy (U = mFgFµB|B|). The magnetic trap forms an anisotropic

harmonic trap with a nonzero field minimum at the trap center. As an atom

moves around the trap, it exchanges kinetic energy for potential energy, with
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the more energetic atoms able to explore farther away from the trap center.

These more energetic atoms are ejected from the trap through radio frequency

(RF) spin flip transitions. The RF creates a position dependent resonance

condition forming an effective energy cut in the sample. At some position, the

energy difference between the different magnetic sublevels (∆U = gFµB|B|) is

equal to the energy of the RF photon (E = ~ωRF) and atoms that reach that

position will make a transition to a high field seeking magnetic sublevel. Once

the atoms are in a high field seeking state, they are ejected from the trap.

After some time longer than the inverse of the trap frequency, all the atoms

with energy greater than the cutoff energy are removed from the trap. This is

a single step evaporation process.

Forced evaporation refers to the process by which evaporation is artifi-

cially made to continue. In a single step process, the hot atoms are ejected and

the cloud cools down. The number of atoms with an energy greater than the

energy cut decreases, assuming that the collision rate stays constant. There-

fore, the efficiency of cooling slows down and the process eventually comes to

a halt. In order to force continuation of the evaporation process, the energy

of the cut has to be continually reduced.

Efficient evaporative cooling relies on a constant elastic collision rate

throughout the evaporative process. The elastic collision rate,

Γelastic = nσelasticv , (2.9)

depends on the mean density, n, the scattering cross section, σelastic, and the
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Figure 2.37: Plots of the change in phase space density, ρ, as a function of the
change in atom number and the change in temperature of the cloud during
evaporation.

relative velocity of the atoms, v. Since n ∝ N/T 3/2 and v ∝ T 1/2, it is clear

that Γelastic ∝ N/T . Therefore, for evaporation to continue and not slow down,

the temperature must decrease proportionally to the atom number.

The real quantity of interest here is the phase space density, ρ. A quick

check shows that ρ = nλ3
deBroglie ∝ N/T 3 ∝ Γelastic/T

2. By appropriately

tailoring the decrease in the energy cut, it is possible to keep the elastic collision

rate constant and increase the phase space density as the temperature drops.

This is referred to as runaway evaporation. Fig. 2.37 shows the change in

phase space density as a function of atom number as well as a function of

temperature. In the experiment, the phase space increases as the inverse

of temperature squared indicating that we are in the runaway evaporation

regime. Fig. 2.38 shows images of atoms within the magnetic trap at various

points during the evaporation process. The final result of this entire procedure
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Figure 2.38: Images of the atomic cloud at various points during the evapo-
ration sequence. Images (a) and (b) were taken with the wide angle imaging
configuration while the rest of the images were taken with the close-in imag-
ing configuration. The images were taken at the following points in the RF
sweep of the evaporation sequence: (a)initial loading, (b)15MHz, (c)5 MHz,
(d)3 MHz, (e)2.1 MHz, (f)1.75 MHz, (g)1.65 MHz, (h)1.55 MHz.

is a 87Rb condensate with approximately 106 atoms.

Within the experiment, a Stanford Research Systems function gener-

ator model SRS DS-345 is used to generate the radio frequency signal at a

power level of 3 dBm. This signal is then amplified with a MiniCircuits RF

amplifier model ZHL-3A with a minimum gain of 24 dB and a maximum out-

put of 29.5 dBm. The signal is sent to a small coil located just below the
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glass cell. The coil radiates the RF signal, thereby supplying the RF knife for

forced evaporation. The impedance matching of the coil to the RF source was

improved by a series 50 Ω resistor.

The frequency of the RF signal is ramped down exponentially. The

ramp down starts at a value of 20 MHz and is ramped down to ≈ 1.4 MHz

in a period of twenty seconds with a time constant of five seconds. The trap

minimum can be found by evaporating until no atoms remain. Under normal

operating parameters this occurs at a value of ≈ 1.2 MHz corresponding to a

magnetic field offset at the trap center of 1.4 G.

2.6.6 Detection and Condensation

The primary means for analyzing the atoms is through absorption imag-

ing. This method provides a straightforward means of determining the density

profile of the cloud of atoms. Ref. [44] gives a detailed explanation of absorp-

tion imaging as well as other imaging schemes. A basic understanding can

be obtained by considering a laser beam travelling through a dilute cloud of

atoms. If the laser is near resonance, the atoms will scatter photons from the

beam, leading to a loss in intensity. The absorption rate for this process can

be described as

dI

dz
= −σegnI , (2.10)

where

σeg =
3λ2

2π

1

1 + I/Isat + 4(δ/γ)2
(2.11)
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is the photon-atom scattering cross section. Here, λ is the atomic transition

wavelength, Isat is the saturation intensity (see Appendix A), and γ is the

linewidth of the atomic transition. By integrating Eq. 2.10, the absorption of

the incident laser beam is found to be

I = Ioe
−σeg

∫

n(x,y,z)dz . (2.12)

By measuring the profile of the incident beam, more appropriately

called the probe beam, after it has passed through the cloud of atoms, it

is possible to reconstruct the density profile. First, two pictures are taken of

the probe beam, one without atoms, Io, and one with atoms present, I(x, y).

The ratio of the two quantities,

A(x, y) ≡ I(x, y)

Io
= e−σ

∫

n(x,y,z)dz , (2.13)

is easily performed by a computer. This gives a flat profile with a large dimple

that is proportional to the exponential of the integrated column density of the

atoms. It is easier to work with the optical density,

Dopt(x, y) ≡ − ln

(

I(x, y)

Io

)

= σeg

∫

n(x, y, z)dz , (2.14)

which is also trivial when solved numerically. Dopt(x, y) gives a quantity that

is directly proportional to the density of the cloud.

From this point it is possible to calculate the number of atoms that

were imaged. By integrating the optical density and scaling it appropriately,

the total atom number,

N =

∫ ∫

n(x, y) dxdy =
1

σeg

∫ ∫

Dopt(x, y) dxdy , (2.15)
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is determined.

In addition, other quantities of interest can be calculated. As de-

scribed earlier, the collision rate, Γelastic, is an important quantity especially

in characterizing the evaporative cooling process. From Eq. 2.9, we know that

Γelastic = nσelasticv. The velocity of the atoms is proportional the square root

of the temperature and the average density is proportional to N/V . The vol-

ume of a classical gas trapped in a harmonic potential is characterized by a

1/e2 width σx =
√

kbT/mωx. Therefore Γelastic ∝ N/T . An interesting thing

to note is that

Dopt(x = 0, y = 0) =

∫

n(x = 0, y = 0)dz ∝ N/T ∝ Γelastic . (2.16)

Simply by looking at the data images, it is possible to determine the collision

rate. In Fig. 2.38, the collision rate stays constant, indicating that runaway

evaporation is occurring.

Another quantity of interest is the temperature, which can be obtained

in two ways. The simplest means is by taking an image of the cloud in the trap.

If the trap is harmonic, the density distribution is given by the temperature

of the cloud. Therefore by fitting the distribution to a Gaussian profile, the

temperature is readily obtained.

Another means of discerning the temperature is through a time-of-flight

measurement. By releasing the cloud from the trap, the momentum distribu-

tion of the cloud is converted into a position distribution. The resulting density

distribution is a convolution of the initial distribution and the momentum dis-
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tribution. If the cloud is imaged at some time τ after being released, the

density distribution will be gaussian is shape with a 1/
√
e width given by

σ2
x(τ) = σ2

x(0) +
σ2

p

m2
τ 2 , (2.17)

where σp is the 1/
√
e width of the momentum distribution. From here the

temperature is

T =
σ2

p

mkB

. (2.18)

The experiment accommodates two orthogonal imaging systems. The

origin of the horizontal probe beam is the Upper MOT Diagonal slave laser as

depicted in Fig. 2.15 and described in Sec. 2.3.1. As the beam makes its way

to the lower MOT chamber, it is tuned to resonance with a power of 5.0 mW.

The beam profile is Gaussian with a diameter of roughly 30 mm that has been

clipped with an iris to a diameter of 19 mm. It enters the chamber as shown

in Fig. 2.29. It is combined with one of the horizontal lower MOT beams

with the use of a 1” polarizing beam splitting cube. It then passes through

the chamber, is absorbed by the atoms and exits the chamber. Upon leaving

the chamber, the imaging beam is extracted from the MOT beam by another

1” polarizing beam splitting cube. After the cube, the beam is transported

using two 120 mm focal length achromatic lenses. The image formed after

this transport system is magnified using an interchangeable lens system. From

there the beam is directed to the camera, a Princeton Instruments CCD camera

model TE/CCD-5122TK/1UV. The CCD chip has a 512× 512 array of 20µm
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pixels. The interchangeable lenses consist of a 38.1 mm focal length lens and

a 4× objective leading to magnifications of .67× and 3.33× respectively.

In addition to the horizontal imaging system, there is a vertical imaging

system. The vertical probe beam is created from the Upper MOT Horizontal

slave laser as shown in Fig. 2.13 and described in Sec. 2.3.1. Similar to the

horizontal imaging system, this beam is tuned to resonance with a power of

3.5 mW. The beam is combined with the push beam using a 1/2” polarizing

beam splitting cube and enters the chamber from the same port. The beam

passes through the upper chamber, the differential pumping tube, and the

middle chamber before reaching the atoms. The beam is not collimated but

rather focusses before the differential pumping tube then expands afterward

to reach a diameter of roughly 15 mm at the atoms. After interacting with the

atoms, the beam exits the chamber and is transported via additional optics to

the Apogee Alta series U47+ CCD camera with a resolution of 1024 × 1024

pixels. The image is formed on the CCD with a 38.1 mm focal length lens,

giving a magnification of 4.33×.

An additional feature of the vertical imaging system is that it is capable

of making fluorescence images. By counting the number of photons, the atom

number can be determined according to

Natoms =
8π [1 + 4(∆/Γ)2 + (6I0/Isat)]

γ(6I0/Isat)texpηcountdΩ
Ncounts , (2.19)

where ∆ is the detuning from the atomic transition, γ is the natural linewidth

of that transition, I0 is the intensity of one of the MOT beams, Isat is the
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saturation intensity, texp is the exposure time, η is the quantum efficiency of

the camera, Ncounts is the integrated number of counts on the CCD, and dΩ is

the solid collection angle of the camera [18].

Additional analysis needs to be done on the images to verify that the

cloud of atoms is a condensate, as absorption images of condensates are similar

to any dense cloud. One method is to determine directly from the density

profile of the cloud. When the cloud condenses, its density profile changes.

A thermal cloud of atoms within a harmonic trap has a density distribution

that is Gaussian. On the other hand, due to the mean field repulsion of

the condensate, its profile is extended and matches that of the potential, a

parabola (see Appendix B). A bi-modal density profile with a large parabolic

central distribution and Gaussian wings is a clear sign of a condensate.

Another means of determining if the cloud is a condensate is observation

of the cloud after a time of flight expansion. For a thermal cloud of atoms,

the momentum distribution in a harmonic trap is Gaussian. Once released

from the trap, the cloud spreads equally in all directions. The fully expanded

cloud density will reflect the symmetric Gaussian momentum distribution by

forming an isotropic cloud, providing that the expansion time is long enough

such that the initial anisotropy is much smaller than the final cloud size. On

the other hand, condensates behave differently. Others have shown that the

density profile remains the same as the cloud expands, but that the mean field

interaction changes the rate of expansion for the different dimensions according
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Figure 2.39: The bimodal distribution of a condensate. The inset image is
a cloud of atoms with both a condensate and a thermal part. The plot is a
profile of the density along one direction. The black and red lines are the raw
data. The red line is the condensate and the black line is the thermal cloud.
The green line is a parabolic fit to the condensate data, and the blue line is a
Gaussian fit to the thermal data.
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to

Rradial(t) = Rradial(0)
√

1 + τ 2, (2.20)

Raxial(t) = Raxial(0)
(

1 + λ2
[

τ tan−1(τt) − ln(
√

1 + τ 2)
])

. (2.21)

where Rradial and Raxial are the condensate radii (see Appendix B), τ = ωradt is

the time of expansion scaled by the tight trap frequency, and λ = ωaxial/ωrad is

the ratio of the two trap frequencies [10, 47, 48]. The tighter confined directions

have a higher mean field energy which translates to a higher kinetic energy

in those directions once the trap is turned off. Originally the cloud is cigar

shaped in the anisotropic trap with the cloud thinner in the high frequency

directions. After expanding for some time, the anisotropy changes orientation

as the cloud is thinner in the weak trapping direction. This provides a clear

signature of condensation. Fig. 2.40 shows an image of a condensate after

expansion. The asymmetry of the cloud is a clear signature of condensation.
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Figure 2.40: A Bose-Einstein condensate of 87Rb. This image of a condensate
with 8 × 105 atoms was taken 18 ms after being released from the magnetic
trap. The asymmetry results from the asymmetry in the magnetic trap and is
a clear sign of condensation.
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Chapter 3

Atomic Billiards

3.1 Overview

The billiard is the simplest two-dimensional, time-independent system

that exhibits non-trivial dynamics. It consists of a two-dimensional, flat po-

tential region bounded by an infinitely sharp, infinitely high barrier enclosing

a freely moving point particle which undergoes elastic collisions with the bar-

rier walls. Despite the simplicity of the system, billiards can exhibit all forms

of classical behavior, from simple integrable motion to chaotic motion. This

vast array of dynamics is determined solely by the shape of the boundary [49].

With a circular boundary, the motion is very regular. However, if the circle

is stretched infinitesimally in one direction, it will turn into a Bunimovich

stadium. This system exhibits hard chaos with no stable trajectories [50].

Because of the simplicity of the system and the richness of the dy-

namics, billiards are an ideal testing ground for chaotic dynamics. Billiards

ranging in shape from stadiums [50] to wedges [51] have been studied theo-

retically. Numerical simulations of billiards have been used to study problems

in statistical mechanics[52, 53], and they have been experimentally studied in

the context of quantum dots [54, 55] and microwave cavities [56–58].
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Recently, our group[59] and another[60] have used the tools of atomic

physics to study billiards. In these systems, cold atoms act as the point masses,

moving within a billiard formed by light potentials. An advantage of this setup

is the ease of creating arbitrary billiard shapes as well as the capability to create

dynamic boundaries. In addition, cold atoms can be manipulated by adding

controlled amounts of noise and dissipation. Also, by appropriately scaling

the size of the billiard with respect to the de Broglie wavelength of the atoms,

the system can be used to study either classical or quantum dynamics, as well

as the transition between the two regimes.

3.2 The Wedge Billiard

The gravitational wedge billiard differs slightly from the traditional

concept of a billiard in that a constant force, gravity, is applied in one direc-

tion. It is constructed of two straight barriers oriented at an angle θ with

respect to gravity (See Fig 3.1). A particle of mass m within the billiard falls

under gravity until it hits one of the walls, at which point it undergoes an

elastic collision. It continues to move under the influence of gravity until it

makes contact with the wall it just impinged upon or it hits the opposite wall.

There is assumed to be no dissipation within the system, therefore this process

continues ad infinitum. The top is open, but particles are still trapped within

the region due to gravity.

The wedge billiard has been the focus of much theoretical work [51, 61–

63]. Aside from being interesting in its own right, the wedge billiard model is
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Figure 3.1: The gravitational wedge billiard. A particle of mass m, moving
ballistically, undergoes collisions with the walls of the billiard that are at an
angle θ with respect to gravity. The wedge has an angle of 2θ. The velocity
at the point of impact can be resolved into components that are normal and
tangential to the wall as shown.

relevant to other problems. It has been shown [51] that the wedge billiard is

a reduction of the one-dimensional, three body, self-gravitating system.

The phase space trajectories of particles moving within the billiard

provide a useful means to study the dynamics of the system. Since the billiard

is a two-dimensional system, it has a four-dimensional phase space. Four

dimensional spaces are difficult to visualize, so it is convenient to project the

phase space onto a two-dimensional surface of section. As the energy is a

constant of the motion and the particle will always make contact with the

billiard walls, a two-dimensional Poincaré surface of section can be created.

The wedge potential homogeneity yields useful scaling properties. The

potential is homogenous in that V (λx, λy) = λV (x, y)[63]. As a result, a wedge

of some angle θ looks the same regardless of whether it is 2 mm or 2 m in size.
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This homogeneity allows trajectories to be scaled from one energy to another.

Hereafter all trajectories will have a scaled energy of E = 1 for simplicity.

As a particle moves ballistically between elastic collisions with the walls,

it is relatively easy to track its dynamics. Looking at the velocity of the

particle immediately before the collision with the wall, it is possible to create

a mapping so that a known velocity at one bounce will yield the velocity at

the next bounce. Lehtihet and Miller derived the following map for the wedge

billiard[51]. The map TA

vi+1
t = vi

t − 2cotθ|vi
n| (3.1)

(vi+1
n )2 = (vi

t)
2 (3.2)

and the map TB

vi+1
t = (|vi

n| − |vi+1
n |) cot θ − vi

t (3.3)

(vi+1
n )2 = 4 sin2 θ − (vi

n)2 + 2 cos(2θ)
(

vi
t sin θ − vi

n cos θ
)

(3.4)

where vt is the tangential component of velocity and vn is the normal compo-

nent of velocity (see Fig. 3.1) and the superscript refers to the bounce number,

represent the two possible bouncing actions. TA applies to the situation when

the particle collides with the same wall as the previous bounce, while TB is

used when the particle hits the opposite wall. The condition

(vt − 2 cot θvn)2 + v2
n ≤ 1 (3.5)

determines which map is used.
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At this point is helpful to examine the structure of the surface of section.

The coordinates v2
n and vt were chosen to guarantee that the map is area-

preserving [62]. The choice of coordinates and energy scale determines the

shape of the phase space portrait (see Fig. 3.2). The boundary of the portrait is

an inverted parabola such that v2
n+v2

t = 1. The lower boundary corresponds to

the particle having zero velocity normal to the wall at the time of collision. At

the origin, this corresponds to a particle resting at the vertex, or sliding down

the side of the billiard wall when the point is away from the center. The upper

boundary represents the vertex of the wedge. Points along the upper boundary

have the maximum tangential and normal velocity components which occurs

only at the vertex. In Fig. 3.2, the red curve is a set of points that will be

mapped to the upper boundary. Points above this curve are trajectories that

have adequate vn to travel to the opposite side of the wedge, whereas points

below the curve will remain on the same side. This curve is the dividing line

between points mapped with TB or TA, in other words, a mapping of Eq.3.5.

With some initial condition and the resulting points generated by TA

and TB, a trajectory of the particle in phase space can be plotted, giving

insights on the dynamics of the particle. Fig. 3.3 is one example of such a phase

space, but with a collection of initial conditions. Some physical trajectories

within the wedge are plotted for two of the initial conditions represented in

the diagram.

As Fig. 3.3 demonstrates, a variety of dynamics can occur within the

billiard. At the center of the portrait, marked by the black dot, the dominant
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Figure 3.2: Partitions of the wedge map. The red curve denotes the condition
separating the two types of bounces. Points in region A use map TA while
points in region B use map TB.

fixed orbit is plotted. For all wedge angles there exists a trajectory such that

the particle strikes one wall with zero tangential velocity, and travels to the

opposite wall striking it with zero tangential velocity and identical normal

velocity. This process repeats indefinitely. The physical path is symmetric

about a vertical line originating at the vertex. While all wedge angles have a

dominant orbit, the stability of that orbit depends strongly on the angle [51].

Away from the fixed point, other stable trajectories may be found. Each

color represents a unique initial condition. The colored bands surrounding the

fixed point in Fig. 3.3 represent stable trajectories. An example of a phys-

ical trajectory with quasi-periodic properties is also displayed. The particle

bounces between the two walls within a well defined region of the billiard. Over

time the particle collision points sample only that region within the wedge.

The other interesting behavior that is evident from the phase space

portrait is chaotic motion. Surrounding the stable trajectories, there exists
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Figure 3.3: A surface of section for a 2θ = 53o angle wedge. Each color cor-
responds to one initial condition. Sample trajectories for two separate initial
conditions are shown below the map. The trajectory on the left corresponds
to a particle within the “chaotic sea.” The trajectory on the right is a particle
within an island of stability.

a region of “random” trajectories that appear to jump from point to point

with no obvious pattern as seen in Fig. 3.3. A trajectory starting out in this

“chaotic sea” will undergo ergodic mixing with trajectories of other particles

in the “sea”. The singularity of the vertex brings about this behavior [63]. The

physical trajectory samples the entire wedge surface and will come arbitrarily

close to the vertex. The importance of this will become apparent later.

The structure of the wedge phase space depends strongly on the angle

of the wedge. Fig. 3.4 is a gallery of phase space portraits for various wedge

angles, from which interesting patterns emerge for wedge angles between 0o
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Figure 3.4: Phase space portraits for different wedge angles. θ = a) 22.5o b)
25.8o c) 30o d) 34.5o e) 44o f) 45o g) 50o h) 60o

and 45o. The phase space is mixed, as numerical studies have shown [51, 61,

63]. The ratio of chaotic to stable motion oscillates with the wedge angle,

giving rise to what is known as a “breathing chaos” [61]. Wedge angles of

90o/(n + 1), where n is a whole number, are distinct minima of this ratio.

Similarly, there are certain catastrophic angles, namely 25.91o and 34.26o,

which have a completely chaotic phase space. For all wedge angles greater

than 45o, the phase space turns completely chaotic.

3.3 Experimental Techniques

In order to perform an experimental study of this system, a billiard is

needed as well as a particle to bounce around inside the billiard. The tools
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of atomic physics can provide these ingredients. Light potentials created by

lasers can be used to form billiards of arbitrary shape. Laser cooled atoms are

a ready source of particles to bounce around a billiard.

The goal of the experiment was to observe changes in the dynamics of

the particle within the billiard by varying the wedge angle. As was mentioned

earlier, the portions of the wedge that are sampled by an atom depends on

kind of trajectory. If an atom happens to be in a chaotic trajectory, it will

sample the entire wedge including the vertex. On the other hand, an atom in a

stable periodic orbit, will only sample a limited portion of the wedge that will

not include the vertex. With this in mind, a relative measure of the amount of

stable orbits can be made. By poking a hole in the bottom of the wedge and

waiting for a prescribed amount of time, the atoms with chaotic trajectories

will drain out leaving the atoms with stable trajectories behind. By measuring

the number of atoms left in the wedge after a given time, otherwise known as

the survival probability, it is possible to see the ratio of chaotic to non-chaotic

trajectories. This ratio can be compared for different wedge angles.

A necessary ingredient of the billiard system is the point like mass that

bounces within the billiard. This role is filled by ultracold cesium atoms. The

experimental sequence begins by loading ≈ 106 atoms into a magneto-optical

trap (MOT) [3]. The atoms are then subjected to a round of polarization gra-

dient cooling. The resulting cloud of atoms has a gaussian spatial profile with

a radius 0.2 mm and a temperature of ≈ 10µK, which corresponds to a mo-

mentum distribution with width σp = 7 ~k. A description of the experimental
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apparatus can be found elsewhere[18, 21, 22].

By using a focused laser beam, a conservative gaussian trap of arbitrary

size down to the diffraction limit and arbitrary depth up to the limits of the

laser’s output can be created (see AppendixA). By moving the beam any

billiard configuration can be created. As shown in Fig. 3.5 any shape can

be drawn by synchronously deflecting the beam along two orthogonal axes

[64]. This allows us to create designer billiard potentials in the direction

perpendicular to the optical axis of propagation.

A home-built Titanium:Sapphire (Ti:Sapph) laser provided the optical

potential used to create the billiard wall. The Ti:Sapph laser was pumped by

a Coherent I90 Argon Ion laser. With ≈ 8 watts of pump power, the Ti:Sapph

produced roughly 600 mW of light at ≈ 850 nm. Within the cavity of the

laser, there were several devices to ensure single mode operation including a

birefringent filter, an optical diode, and an intracavity assembly from Coherent

Laser Group. The measured linewidth of the laser is 10 MHz [18], although this

is an upper bound due to the measurement technique. Further information on

this laser, including its history, design and construction can be found elsewhere

[18, 21].

The beam from the Ti:Sapph was used for a variety of experiments.

Hence, the beam passed through several acousto-optic modulators (AOM’s)

used to divert a portion of the beam off to other experiments. One such

80 MHz AOM was used to pick off the billiard experiment’s allotment of the

beam. From there it was sent to the billiard imaging system.
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Figure 3.5: Two AODs mounted orthogonally to each other. By synchronously
scanning the two deflectors, arbitrary shapes can be drawn.

To produce the shape of the billiard, the laser beam was scanned us-

ing an acousto-optic deflector (AOD) from Isomet, model 1205C-2-804B. The

resonant circuit of the deflector has a bandwidth of 40 MHz with a center

frequency of 80 MHz. This provides an angular deflection of 18.3 ± 4.6mrad

for the first order diffracted beam at the center frequency. The deflector has

a lead molybdate crystal with a 6 mm aperture, although the beam size was

limited to ≈ 1 mm. This decreased the access time, Taccess, of the deflector to

≈ 0.3µs, where the access time is the time it takes an acoustic wave to trans-

verse the beam. The figure of merit for a scanner is the number of resolvable

spots (NRS). The NRS is computed from the time bandwidth product

NRS = ∆f × Taccess (3.6)
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Figure 3.6: Examples of different shapes achievable using the scanning AOD
method. The CCD image on the left is a wedge similar to the ones used in the
experiment. The CCD image on the right is that of the state of Texas used as
a test for the AODs.

where ∆f is the bandwidth of the deflector [65]. The reduction in access time

reduced the NRS from the specified 66 down to approximately 10.

The AOD’s are controlled with drivers supplied by IntraAction Corp.,

model DE-802M26. The drivers are equipped with modulation inputs for

frequency and power as well as a digital shut off switch. The drivers are

capable of delivering up to 2W of RF power within a 60 MHz to 100 MHz

frequency range. A peak diffraction efficiency of 85% at the center frequency

was achieved with approximately 95% of the available power. The diffraction

efficiency is a function of frequency, therefore the measured transfer function

of the deflectors was used to modulate the RF power to ensure a flat response

across the scanning range.

In order to make two-dimensional shapes, two AOD’s were oriented

along orthogonal directions as shown in Fig. 3.5. In this configuration, draw-

ings on a 10 by 10 grid with a resolution of one grid square were possible,

where a grid space is one spot size. While that resolution is by no means
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ideal, it was possible to create billiards like those shown in Fig. 3.6.

The optical system shown in Fig. 3.7 was used to image the billiard on

the cloud of atoms. A collimated beam from the Ti:Sapph laser passes through

two orthogonal AOD’s. From there, the deflected beam draws the shape of the

billiard on the first lens. Since the beam is collimated, a tightly focused image

of the billiard is created at the focal length of the first lens. Preceding the

image, a short focal length lens on a translation stage is used to appropriately

magnify the image. The typical magnification used was roughly 1/4. This

image was directly transported to the chamber by a 1 to 1 telescope. The

imaging system produced billiards with a 1/e2 wall thickness of 56µm and

a total billiard size of up to 500µm. These were verified by a knife-edge

measurement as well as by a CCD image measurement.

In order to confine the atoms to the billiard plane, a standing wave

was superimposed on the billiard beams (See Appendix A). The standing

wave creates a series of vertical wells along the optical axis of the billiard

beams. These wells provide confinement in the optical axis direction and free

movement in the two orthogonal directions. Based on the initial size of the

cloud of atoms, this created a series of approximately 1000 two-dimensional

billiard systems.

The standing wave was created from the first order of an AOM before

the billiard AODs. The polarization of this beam was rotated to be orthogonal

to that of the billiard beam. A lens was matched to the final lens in the

billiard set up to create a large collimated beam entering the chamber with a
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Figure 3.7: Layout of the optical setup for the billiards experiment. The beam
from the Ti:Sapph laser is split by an AOM. The zeroth order beam is sent
to the imaging system to create the billiard. The first order beam is used
to create the standing wave. The two beams are combined in a polarizing
beam-splitting cube and sent into the vacuum chamber.

1/e2 diameter of 2.6 mm. On the other side of the chamber where the beams

exited, a polarizing beam splitting cube and a mirror were positioned so that

the billiard beam was directed to a beam dump and the standing wave beam

was retro-reflected to create the standing wave.

The measurement of the atoms within the billiards was accomplished

with a CCD camera, Princeton Instruments model TE/CCD-5122TK/1UV.

The CCD chip has a 512× 512 array of 20µm pixels. Attached to the camera

is a Nikon 105 mm f/2.8 D macro lens. The camera was mounted such that it

had a view into the chamber via a small 2.75” port, which was at a 33o angle
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to the billiard beam’s optical axis.

The atom number was measured by collecting the fluorescence of the

atoms. By turning off all magnetic and optical fields, and turning on the MOT

beams, an optical molasses was created. The atoms were held in this optical

molasses for 50 ms while their spontaneously emitted photons were collected by

the CCD camera. The atoms will move during the exposure time, but this does

not affect the measurement of atom number. Since we are only concerned with

atom number and not any spatial features, this is not a problem. By counting

the number of photons, the atom number can be determined according to [18]

Natoms =
8π [1 + 4(∆/Γ)2 + (6I0/Isat)]

Γ(6I0/Isat)texpηcountdΩ
Ncounts (3.7)

where ∆ is the detuning from the atomic transition, Γ is the natural linewidth

of that transition, I0 is the intensity of one of the MOT beams, Isat is the

saturation intensity, texp is the exposure time, η is the quantum efficiency of

the camera, Ncounts is the integrated number of counts on the CCD, and dΩ is

the solid collection angle of the camera.

The billiard had different sizes compared to the cloud of atoms de-

pending on the angle of the wedge. The varying sizes led to different loading

efficiencies. Therefore, the fluorescence from the surviving atoms had to be

normalized against the loading efficiencies. For each wedge angle, a fluores-

cence image of the atoms in the wedge with no hole was made 25 ms after

loading the billiard. This was sufficient time to allow those atoms that were

not loaded to fall away from the billiard. This gave a measure of the loading
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Figure 3.8: Two CCD images of a circular billiard. On the left, the deflectors
are scanned at 10 kHz. On the right, the deflectors are scanned at 100 kHz.

efficiency and was used to normalize the results of the survival probability

measurement.

The experimental sequence was initiated by collecting a cloud of cold

cesium atoms in a MOT. The billiard with a hole in the bottom was turned

on while at the same time the MOT was turned off, dropping the atoms into

the billiard. The atoms were left to bounce around in the billiard for fixed

lengths of time, allowing the atoms with chaotic trajectories to escape while

the atoms with stable trajectories remained behind. The billiard was then

turned off just as the freezing molasses was turned on, at which point the

CCD camera collected the fluorescence of the atoms.

Before the experiment could take place, several issues had to be ad-

dressed. The scanning rate of the AOD’s is a concern for the experiment.

Ideally the deflector should be scanned as fast as possible in order for the

atoms to experience a time-averaged potential. If the beam scans too slowly,

the atoms will move into the beam path and be kicked during the following

scan cycle, or worse yet, travel completely through the beam path and escape
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the trap. The problem is that there is a limit to the scanning speed of a deflec-

tor. Since the NRS depends on the access time, the scan speed is limited by the

access time[65]. In other words, in order to keep the same resolution, the scan

must be slower than Taccess otherwise the acoustic wave will change before it

has crossed the optical beam. Faster scanning will cause lensing effects within

the crystal, reducing the resolution. In the case of nonlinear scans, which are

needed for arbitrary shapes, the situation is much worse [66]. As can be seen

in Fig. 3.8, increasing the speed of the scan above a certain level will distort

the shape of the billiard. It was found that around 80 kHz, the shape of the

billiard started to deteriorate, while below 1 kHz atoms leaked out of the trap.

Above 5 kHz, there was no noticeable effect on the atoms. In the experiment,

the deflectors were scanned at 20 kHz to stay clear of either extreme.

Another issue to contend with is that the walls of the billiard are not

infinitely hard. The wall profile is gaussian in nature rather than a step func-

tion. This allows the atoms to travel into the walls before being reflected.

This softness has an effect on the dynamics. As seen in Fig. 3.9, the billiard

appears to have a smaller angle than it actually does. Fig. 3.9 shows particle

turning points on the billiard wall from a simulation where the gaussian profile

of the walls was taken into account. As can be seen, toward the bottom of the

wedge, the particles turn near the top of the wall, but closer to the top, the

particles do not penetrate as far into the wall profile.

This effect is due to the fact that the particles are moving slower at the

top of the billiard. When the particle is near the top of the billiard, most of its
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Figure 3.9: The effect of soft walls on the wedge billiard. The blue line repre-
sents the peak of the billiard potential. The red dots show the turning points
for a particle bouncing off the wedge.

energy is in the form of potential energy, as opposed to kinetic energy. Since

the particle is moving slower, it does not have to go as far into the soft wall

before it hits its classical turning point. As the collision point moves closer to

the vertex, the particles progressively penetrate further into the wall making

the walls appear steeper than they are.

This effect was seen in both the simulations and the experiment. The

soft walls effectively shifted the wedge angle by as much as 10o. This effect was

corrected for by making the potential of the billiard walls position dependent.

A linear gradient was added to the potential height so that at the vertex,

the potential was at its maximum and ramped down to zero at the top of

the billiard. This correction factor is not exact since the penetration depth

depends only on the normal component of velocity and not the total velocity.

However, on average it is appropriate and was confirmed by both simulation

and experiment.

Related to the problem of soft walls is spontaneous emission. Since
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Figure 3.10: A CCD image of the actual wedge used in experiment. The
dimensions are a) 500µm, b) 50µm, and c)56µm

the atoms are bathed in light as they penetrate the wall, the possibility for

absorbing a photon is present (see AppendixA). The far detuning of the

billiard beam helps to keep the possibility of this event to a minimum. A

numerical integration of the spontaneous emission rate over the path the atom

takes while in the light during a bounce reveals the probability for a such an

event to take place at less than 0.1% per bounce. An atom bounces on average

15 times during an experimental sequence, therefore the chance of spontaneous

emission is an almost negligible 1.5%.

3.4 Results

The actual wedge used in the experiments is shown in Fig. 3.10. As

was mentioned earlier, the 1/e2 spot radius is 28µm. The Ti:Sapph was tuned

1.7 nm blue of the cesium atomic transition. Approximately 200 mW of power

was in the optical beam used to create the billiard. This corresponds to a

potential barrier of approximately 20000 ~ωrec which is more than sufficient to

contain atoms that have an initial mean energy of roughly 50 ~ωrec and pick
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Figure 3.11: Survival probability as a function of the wedge angle. There are
distinct peaks at 45o, 30o, and 22.5o, while near the catastrophic angles, 25.91o

and 34.26o, there are distinct valleys. Beyond 45o, no atoms remain within
the billiard.

up at most 5000 ~ωrec as they fall from the top of the billiard to the bottom.

The measurement of the survival probability can be seen in Fig. 3.11.

Qualitatively, the results appear to agree with theory. Clear peaks occur near

22.5o and 30o corresponding to 90o/4 and 90o/3 respectively. There appears

to be a peak near 45o, although slightly shifted toward smaller angles. This

can be explained by the fact that at 45o all the stable trajectories connect with

the vertex, suppressing the peak at 90o/2.

Clear signatures of predominately chaotic behavior exist as well. At
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26o and 34o, there are distinct valleys showing almost no survival probability.

This is consistent with theory predicting global chaos for angles of 25.91o and

34.26o [61]. Similarly, above angles of 45o, the survival probability drops to

zero. Again, this agrees completely with theory [51].

While qualitative agreement with theory is useful, a comparison with

numerical simulations are more helpful to check our understanding of the sys-

tem. Fig. 3.12 shows the experimental results alongside the results of a com-

puter simulation. The simulation was performed using 10,000 particles and

included the finite size of the billiard, the softness of the billiard wall, and

spontaneous emission. There were no fitting parameters. The only alteration

of the numerical results was a multiplication by 1/2. Aside from the origi-

nal magnitude, the numerical results agree quite well with the experimental

results.

One possible explanation for the magnitude discrepancy between sim-

ulation and experiment is interatomic collisions. Previous estimates of the

collision rate for cesium atoms in this experiment gave an upper limit of 2.5%

in 1 ms [67]. Given that the length of the experiment is 300 ms, the atoms

likely experienced at least one collision during the course of the experiment.

The collisions may mix the trajectories, enhancing the escape rate. This pos-

sible enhancement of the escape rate was not factored into the simulations,

and this may account for the higher survival probabilities in the simulation.
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Figure 3.12: A comparison of experimental and numerical results for the wedge
billiard. The red line represents the experimental results. The blue line is the
numerical results which have been multiplied by a factor of 1/2.

3.5 Conclusion

Optical billiards provide a new testing ground for studies of chaos.

Through the use of dual scanning deflectors, arbitrary two-dimensional billiard

shapes can be drawn at will. The dynamics within the billiard is strongly

dependent on the shape of the billiard. As this experiment has shown, billiards

with unique mixing properties can be created. By appropriately choosing the

shape of the boundary, a trap with ergodic mixing properties can be produced.

This could be useful in stochastic cooling schemes that rely on mixing as one

step in the cooling process [14].
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This technique is not limited to billiard potentials. It can be extended

into non-billiard like potentials by utilizing the soft-wall aspects of the po-

tential. If the spatial extent of the shape drawn is roughly the same as the

resolution, there no longer is a sharp boundary. Now there is a roughly har-

monic potential where the flat potential of the billiard used to be.

The possibility of creating dynamic potentials also exists. There are

limits on how fast the scanners can raster an image, but that image need not

remain static. A circular billiard can be made such that the radius oscillates

or deforms between a stadium potential and a circle at some frequency. Thus,

the possibility of studying two-dimensional time-dependent chaotic systems

exists.

To reiterate, the system studied in this experiment was completely

classical in nature. The de Broglie wavelength of the atoms used in this ex-

periment were much smaller than any other length scale in the experiment,

making quantum effects negligible. However, that does not need to remain the

case. With a higher resolution imaging system, it should be possible to make

billiards on the order of tens of micrometers in size. With a sufficiently cold

sample of cesium atoms, such as those produced through the use of lattice

cooling techniques[18, 22, 68–70], it is possible to have de Bröglie wavelengths

that are comparable to the size of the billiard. Alternatively, a Bose-Einstein

condensate could be used as a source of cold atoms. The extremely low tem-

perature of the condensate automatically yields de Bröglie wavelengths that

are on the order of the billiard size. In addition, the Gross-Pitaevskii equation
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governing the condensate has a nonlinear term, which means new studies of

many body physics are also possible.
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Chapter 4

Feedback Control

4.1 Overview

Manipulating ensembles of particles through feedback has evolved sig-

nificantly since its use to increase the luminosity of antiproton beams [71].

This has led to proposals for cooling neutral atoms [14] and ions [72], as well

as manipulation of wavepackets with ultrafast laser pulses [73]. The basic idea

for feedback control of a physical system involves several steps. First, a mea-

surement is made which probes the state of the system. Second, a correction to

the system state is performed based on the result of the measurement. These

together constitute feedback which may be used to control the system. The

measurement as well as correction method differ among the various proposals

and experiments in the field. In an experiment where the state of a system is

to be controlled, it is desirable for the measurement to be as nondestructive as

possible. Some experimental work [74] has involved the use of a high finesse

optical cavity to monitor the position of an atom in real-time and to trigger a

far-off-resonance dipole force trap (FORT) which confines the atom to a cavity

mode. Other recent work [75] has involved making position measurements of

atoms in an optical lattice and feeding back on that measurement to alter the

oscillations of the atoms within the lattice. Our group has demonstrated a
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method of feedback control that uses the method of recoil-induced resonances

(RIR) [76, 77] to make a center-of-mass momentum measurement of a cloud of

atoms and a moving optical lattice for changing the state of the system.

This experimental demonstration of real-time feedback control is a sim-

plified single iteration model of stochastic cooling as discussed in Ref. [14]. A

stochastic cooling setup entails a measurement and feedback determined cor-

rection as discussed here, but also includes a mixing process whereby the

particles are allowed to rethermalize. In such a case, many iterations would

be used to damp momentum fluctuations, for instance. In this demonstra-

tion, a measurement and correction are applied but without subsequent state

mixing. This is not stochastic cooling, but rather a single iteration of a pos-

sible feedback sequence. Instead of damping out the momentum fluctuations

of the ensemble, the average momentum of the entire group is damped. A

measurement of the velocity distribution is made in order to obtain the cen-

ter of mass velocity of the ensemble of particles. The information is used

in real-time to provide feedback correction to the system in the form of a

time dependent optical potential. This potential is a moving 1D optical lat-

tice which traps the atoms and slows them to rest in the laboratory frame.

The measurement-correction feedback iteration is done with relatively minor

heating of the ensemble.

124



4.2 Recoil Induced Resonances

Most atom optics experiments are concerned with using light fields to

affect atomic motion. This is accomplished when atoms scatter photons from

laser beams. When this happens, the atom receives a momentum kick. The

interesting thing is that by conservation of momentum, the light field must

also have a momentum kick. The method of recoil induced resonances utilizes

the change in the light field in an effort to measure the momentum distribution

of the cloud of atoms.

The usual means for measuring the momentum distribution of a cloud

of atoms is through ballistic expansion. In this procedure, the momentum

distribution is converted into a spatial distribution. The trap holding the

cloud is released and the atoms are allowed to expand for some amount of

time. The atoms are then “frozen” in optical molasses [78] as a fluorescence

image of the cloud is taken. This is repeated for various expansion times. By

measuring the expansion of the cloud as a function of the expansion time,

the momentum distribution of the cloud can be extrapolated. This method

work extraordinarily well but has the disadvantage in that it is a destructive

measurement.

As mentioned above, RIR works by measuring the change in momen-

tum of a laser beam to determine the momentum distribution of the atoms.

Granted, for there to be a change in the laser field’s momentum, the atoms

must have a change in momentum, but this can be kept to a minimum as will

be shown. Therefore, this form of measurement, while not exactly nondestruc-

125



E

p

∆E

∆p

~ω1

~ω2

~∆

Figure 4.1: Stimulated Raman transitions between different motional states
within a cloud of cold atoms. If the energy and momentum difference between
two motional states within the cloud are equal to the energy and momentum
difference beteen the pump and probe beams, the two classes are connected
via a stimulated Raman process.

tive, is only minimally disruptive and the sample of atoms can still be used

after the measurement.

RIR works by the process of stimulated Raman transitions between

atomic motional states. Fig. 4.1 and Fig. 4.2 help to clarify the situation.

Imagine two beams intersecting within a cloud of atoms. For any two veloc-

ity classes that have the same energy difference and momentum difference as

photons in the two beams, stimulated Raman processes can occur. As atoms

change velocity classes through this process, photons are redirected between

the two beams. These deflected photons contain information about the popu-

lation of the different velocity classes.
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Figure 4.2: Beam orientation for RIR. The pump and probe beam intersect
at an angle θ within a cloud of atoms. The momentum difference between the
two beams is denoted by the wavevector q.

Imagine two laser beams of nominal wavelength λ with wavevectors k1

and k2 (k1 ≈ k2 ≡ kL), which are detuned some amount ∆ from the atomic

resonance and δ with respect to each other, intersecting at a small angle θ in

a cloud of atoms, as depicted in Fig. 4.2. For orientation, the beams are in the

x− y plane and the y axis lies along the axis of symmetry at an angle θ/2 to

both beams. Two separate conditions, one on momentum and one on energy,

must be met in order for stimulated Raman transitions to take place. For the

configuration depicted in Fig. 4.2, atoms can undergo a Raman transition from

one motional state to another motional state when the difference in momentum

between these two state is

pfinal − pinitial = ~k2 − ~k1 = ~q = ~qxx , (4.1)

where

qx = 2kL sin(θ/2) . (4.2)

For tiny angles, this is much smaller than the momentum distribution of the
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cloud allowing for a much finer resolution of the atomic momentum distribu-

tion.

Similarly, energy must be conserved in the scattering process as illus-

trated if Fig. 4.1. This gives the relation

p2
final

2m
− p2

initial

2m
= ~δ , (4.3)

where δ is the frequency difference between the two beams. Together Eq. 4.1

and Eq. 4.3 create the condition

v · q = vqx = δ − ~q2
x.

2m
. (4.4)

In the small angle limit, terms of order q2
x can be dropped leaving

δ =
pxqx
m

(4.5)

as the resonance condition for stimulated Raman transitions. This condition

shows that there is a specific momentum class, px, singled out by a particular

value of δ that is allowed to undergo Raman transitions.

The rate at which photons are scattered from one beam to the other

depends on the population of the two velocity classes that are in resonance

with each other. It has been shown [76, 77] that the scattering rate, W , from

one beam to another is

W = N
π

2
Ω2

R~m
∂Π

∂p
|p=mδ

q
, (4.6)

which is proportional to the derivative of the the momentum distribution,

Π(p). Here, N is the number of atoms, m is the mass of an individual atom,
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and ΩR is given by

ΩR =
Ω1Ω2

2∆
, (4.7)

where Ωi is the resonant Rabi frequency for each beam. Therefore, by mea-

suring the scattering rate of photons from one beam to another, the derivative

of the momentum distribution can be obtained.

For each value of δ, one point in the derivative of the momentum dis-

tribution can be measured. In order to map out the entire momentum distri-

bution, the measurement of the scattering rate must be done for a range of

δ. This can be accomplished by linearly chirping δ. The derivation of Eq. 4.6

was done for a static δ, hence the assumptions used in that derivation place

certain limits on the frequency chirp. Previous work [25, 79] has shown that

the maximum scan rate for a momentum distribution of width ∆p is

rmax ≈ 1

2π

(

q∆p

m

)2

. (4.8)

This stems from the fact that in order to resolve a width of ∆ω, it is necessary

to remain within the resonance condition for at least a time ∆t = 2π/∆ω.

Likewise, if the resonance condition for two velocity classes is held for too

long, then a substantial change in the momentum distribution can occur. The

inverse of the Rabi frequency sets the time scale at which significant population

transfer happens. This leads to a minimum scan rate of

rmin ≈ ~q2

m
ΩR . (4.9)

These limits will have to be followed for Eq. 4.6 to be valid.
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It is appropriate at this point to be reminded of the fact that the

RIR measurement is only minimally non-destructive. The fact that photons

are scattered necessarily means that momentum is transferred to the atoms,

spreading the momentum distribution. During each Raman transition an en-

ergy equal to ~δ is transferred either to or from the atoms. Integrating this

over the entire sweep duration gives an average energy transfer of [25, 79]

Emeasurement =
4π

r
Ω2

R~ωr sin2(θ/2) . (4.10)

This leads to a spreading of the momentum distribution described by

σ2
p,total = σ2

p,initial + 2mEmeasurement . (4.11)

4.2.1 Frequency Modulated RIR

The RIR measurement relies on photons being scattered either into or

out of the probe beam. It is the change of the power in this beam that leads

to a measurement of the momentum distribution. This gives rise to a ripple

in the power on top of the probe beam. A figure of merit for the strength of

the signal is the ratio of the ripple amplitude to the initial power in the probe

beam. Because of noise and incomplete subtraction of the background power

level, the minimum acceptable value for this ratio has been limited to 10−3 [79].

Due to the low resolution, previous experiments [80–83] were required to have

the pump and probe beams close to resonance in order to have an observable

signal. This led to a large amount of spontaneous emission, thereby heating

the sample. This defeats the purpose of using RIR as a nondestructive means

of measuring the momentum distribution.
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Figure 4.3: A schematic of frequency modulated recoil induced resonances.
The probe beam has frequency sidebands placed on it by an electro-optic
modulator. The pump beam is scanned in frequency such that the difference
in frequency between it and the upper sideband of the probe beam is δ. After
interacting with the atomic sample, the power of the probe beam is measured
with a fast photodiode. That signal is mixed with the original modulation
frequency ωM to recover the RIR signal.

Frequency modulation spectroscopy is a method that allows us to de-

tune farther away from resonance, hence reducing spontaneous emission, while

still retaining a useful signal-to-noise ratio [79]. Fig. 4.3 gives a diagram to help

illustrate the method. First, the probe beam is phase modulated at a frequency

of ωM before interacting with the sample of atoms. This puts frequency side-

bands on the carrier beam spaced by integer multiples of ωM and having a

power spectrum given by [25]

Iinitial = Io

[

∑

k

J2
k (M) + 2

∑

k<l

Jk(M)Jl(M) cos([k − l]ωM t)

]

, (4.12)

where the amplitudes of the sidebands are given by Bessel functions and M is
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the depth of modulation.

The frequency of the probe beam is appropriately chosen so that one of

the sidebands adjacent to the carrier is very close in frequency with the pump

beam while the carrier and the other sidebands are far away in frequency. If

ωM is much larger than the width of the momentum distribution, then only

that sideband can interact with the atoms. Now, the pump and probe beams

are used in the traditional manner to perform an RIR measurement. Upon

exiting the atomic sample, the phase modulated probe beam contains the RIR

signal at a frequency of ωM . This can be seen be upon inspection of Eq. 4.12.

It is clear that sidebands equidistant in frequency from the carrier are equal

in intensity but 180o out of phase. Therefore, if no atoms are present, the

sidebands at ±ωM and higher will completely destructively interfere. On the

other hand, when atoms are present, they interact with the pump and probe

beams scattering photons either into or out of one of the probe beam sidebands

based on Eq. 4.6. When the two sidebands of the probe beam interfere, the

destructive interference is not complete. This gives rise to a photocurrent

signal with amplitude

Isig =
2

M
J2

1R~ωoW (4.13)

at the frequency of the phase modulation. If this signal is then mixed with

the original modulating frequency ωM , the output will be the near DC RIR

signal. This in essence acts as a high frequency lock-in amplifier increasing

the signal-to-noise ratio.

The RIR measurement determines the average momentum of the cloud
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of atoms as a zero-crossing of the RIR curve, and this information can be

used in a feedback scheme to stop the atoms. The intersecting beams create

a standing wave or one dimensional lattice that is moving at a velocity

vlab
sw = 2δν

λ

2 sin(θ/2)
(4.14)

with respect to the laboratory and

vatoms
sw = 2δν

λ

2 sin(θ/2)
− p

m
(4.15)

with respect to the atoms. Assuming that the atoms are not initially at rest

in the laboratory frame, a linear frequency sweep uniformly decelerates the

lattice until it comes to a stop with respect to the atoms. Beyond which,

the lattice accelerates in the opposite direction until it comes to a stop in the

laboratory frame. The zero crossing of the RIR lineshape corresponds to when

the lattice is stationary with respect to the atoms. By turning up the intensity

of the beams at the zero crossing, deep potential wells are created that can

decelerate the atoms as the standing wave comes to rest in the laboratory

frame. This procedure of measurement and correction thereby stops the cloud

of atoms in the laboratory frame.

4.3 Experimental Techniques

This experiment was performed using cesium atoms from a standard

vapor-cell magneto-optic trap (MOT) [3]. The MOT apparatus used is the

same one used for the billiards experiment (see Chapter 3) and is described in
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great detail in Ref. [18, 21, 22]. We trap approximately 106 cesium atoms with

Gaussian distributions in position and momentum with widths of σy = 180µm

and σp = 8.5 ~k, respectively. The experiment starts when the MOT is turned

off and the atomic cloud is allowed to fall freely under the influence of gravity

for 10 ms, during which it expands to a width of σy = 350µm. After these

10 ms, the cloud is subjected to an RIR velocity measurement.

The experimental setup used is shown in Fig. 4.4 and is similar to that

which is described in Ref. [79]. The two RIR beams start as a single beam

generated by the same Ti:Sapph laser used in the billiard experiments (see

Chapter 3). In this experiment the light was detuned 6 GHz red of the 6S 1
2
(F =

4) → 6P 3
2
(F ′ = 5) transition near 852 nm. This detuning was verified through

the use of a wavemeter [18, 22] and a Fabry-Perot cavity. This beam is sent

through an AOM operating at 80 MHz. This modulator (AOM1) is used to

split the original beam into a pair which have a frequency difference of 80 MHz.

This pair is to become the pump and probe beams.

The zeroth order beam from AOM1 is double passed through AOM2

operating at 54 MHz+δν where δν is a variable frequency. The double pass

allows the driving frequency of AOM2 to be swept without steering the beam.

It is then spatially filtered to clean the beam profile and aligned to hit the

atomic cloud after a 10 ms free fall. The beam has a frequency that is shifted

108 MHz+2δν relative to the original beam, and has a Gaussian intensity

profile with a 1/e2 waist of 750µm. This is the pump beam.

The first order beam from AOM1 is double passed through an electro-
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Figure 4.4: Experimental setup
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optic phase modulator (EOM) from ConOptics Inc., model 350-40. Attached

to the EOM is a helical resonator with a Q ≈ 250 at a frequency of 28 MHz.

The EOM is used to put sidebands on the carrier at ±28 MHz . We drive

the EOM to produce sidebands 2.5 dB below the carrier. The purpose of

double passing the EOM is for reduction of residual amplitude modulation

created by the EOM as the birefringence of the lithium niobate crystal drifts

in time resulting in polarization modulation of the output beam at the driving

frequency. Without compensation, the parasitic change in polarization results

in a change in beam amplitude upon passing through the polarizing beam

splitter cube that follows the EOM. The double pass setup with the quarter-

wave plate allows us to correct for the drifts of EOM birefringence and reduce

this effect. Following the EOM double pass, the beam is spatially filtered and

aligned to intersect the atomic cloud where it has a 1/e2 waist of 750µm.

Since the beam was originally derived as the first order of AOM1, the carrier

is 80 MHz above the original Ti:Sapph beam with sidebands at 53 MHz and

108 MHz. This is the probe beam.

The stimulated Raman transitions between motional states result from

the interaction of the pump beam (108 MHz+2δν relative to the original

Ti:Sapph beam) and the upper sideband of the probe beam (at 108MHz)

which intersect at an angle θ = 4.5o. The frequency difference here is 2δν,

which is experimentally controlled. Depending on the frequency difference,

Raman transitions are driven as the resonance condition in Eq. 4.5 is met. A

frequency difference of 2δν = 0 Hz, for example, corresponds to rest in the
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laboratory frame, whereas 2δν = ±320 Hz corresponds to velocity classes at

±1 vrec. For a typical RIR measurement, δν is linearly swept over a range that

includes the entire velocity distribution. The best sweep rate for an optimal

signal depends on the power in the beams as well as the detuning from atomic

resonance [79]. Typically, the pump and probe beams have powers of 35 mW

and 15 mW, respectively, with δν swept at a rate of 74.3 MHz/s.

After the beams interact with the atoms, they exit the chamber where

the pump beam is blocked. The probe beam passes through AOM3 after which

the first order is detected by a photodiode. This additional AOM is used as a

fast shutter to protect the photodetector from receiving intensities above the

damage threshold during the correction phase which will be described shortly.

Prior to interaction with the atoms, the FM sidebands on the probe beam

were equal in intensity. As mentioned in Section 4.2 the interaction of the

RIR beams with the atoms results in the scattering of photons from the pump

beam into the upper sideband of the probe beam. The imbalance between the

FM sidebands results in the amplitude modulation measured by a balanced

photodetector from New Focus Inc., model 1607. The output of the detector

is, therefore, a signal at the sideband frequency (28 MHz) with an amplitude

that is proportional to the intensity mismatch between the sidebands (i.e.

to the scattering rate which is proportional to the derivative of the velocity

distribution).

The output of the photodetector is amplified and mixed with the orig-

inal 28 MHz signal appropriately phase shifted which is subsequently low-pass

137



t

S
ig

n
al

S
tr

en
gt

h

Figure 4.5: A typical RIR signal. The upper signal is the control voltage for
the frequency sweep of the pump beam. The lower curve is the associated
RIR signal. The DC offset of the RIR signal is due to residual amplitude
modulation from the EOM at the modulation frequency. The vertical axis is
arbitrarily scaled for the two signals.

filtered to remove the high frequency component and is then amplified. The

result is a DC level with the dispersive RIR signal on top of it. The DC

level fluctuates to some degree due to fluctuations of the residual amplitude

modulation. A typical RIR scan is shown in Fig. 4.5.

In order to stop the falling atoms, the intensity of the pump and probe

beam need to be increased when the standing wave formed by those two beams
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is travelling at the same velocity as the atoms. To accomplish this, the RIR

signal from the amplifier is fed into an analog electronic trigger circuit. The

trigger circuit measures the DC level and subtracts it from the total signal.

This leaves only the dispersive RIR lineshape which is compared to a reference

voltage level. A trigger signal is generated once the signal passes the threshold

level (see plots (a) and (b) in Fig. 4.6). Note that the trigger pulse actually

comes prior to the zero crossing of the dispersive signal. To compensate for

this offset, appropriate delays are added to the electronics that are triggered off

this pulse. These delays are typically 20µs and are not visible on the timing

diagram in Fig. 4.6. The output of this comparator trigger is then used to

initiate the sequence that stops the atoms. A timing diagram of the entire

sequence is shown in Fig. 4.6.

The first curve (a) in Fig. 4.6 is the triggered RIR. Curve (b) shows

the generated trigger pulse, curve (c) shows the linear frequency sweep which

changes slope after the trigger for the reason explained below, and curve (d)

shows the control signal for the correction which is achieved by increasing the

intensity of both RIR beams. The combination of signals (c) and (d) brings the

atoms to a stop in the laboratory frame as described above. During the high

intensity phase (after the trigger), AOM3 is turned off (via an RF switch) to

protect the photodetector. This is seen in curve (a). At the point of trigger on

the curve, the light to the photodetector is turned off and the signal vanishes.

The increased intensity of the RIR beams provides the correction. The

intensity in each beam increases according to I(t) = I(0)/(1 + Γt)2 [68]. This
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Figure 4.6: Timing diagram of voltage signals involved in the feedback scheme.
The vertical axis is arbitrarily scaled for each signal. Signal (a) is the RIR
signal up to the trigger point. Signal (b) is the trigger signal generated by the
electronic trigger circuit. Signal (c) is the frequency sweep of the pump beam.
Signal (d) is the control signal for the adiabatic increase of the beam intensity
levels. The vertical dashed line marks the trigger point.

is an adiabatic increase to avoid heating the atoms during this process due

to a sudden momentum kick. In the experiment we used Γ = 44.4 kHz which

disturbed the sample very little. Turning on the lattice more quickly was

observed to heat the cloud significantly. On the other hand, size constraints

limit the amount of time allowed for the adiabatic turn on. The beam size and

cloud size are matched for an optimal RIR signal. Therefore, if the intensity

is not raised quickly, the atoms will move out of the beam overlap region,

and will not be caught in the moving lattice. The initial powers in the pump
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and probe beams were 35 mW and 15 mW, and were adiabatically increased

to 75 mW and 70 mW, respectively. Curve (d) in Fig. 4.6 is the amplitude

modulation signal to AOM1 and AOM2 (with different heights for each) that

provides this increase to higher intensity.

The frequency sweep is also altered after the trigger pulse. At first,

the linear frequency sweep is stopped during the adiabatic turn on. Ideally,

the lattice velocity should follow the free fall velocity of the atoms during

the adiabatic turn on, but that is difficult due to signal delays (especially

due to the low pass filter), therefore we simply hold the lattice at its current

speed. Secondly, the acceleration of the lattice after the adiabatic turn-on

(proportional to the slope of the frequency) is changed. In an accelerating

lattice, atoms will undergo Landau-Zener tunneling [84], escaping the lattice,

and will not be stopped. The constant acceleration is decreased to avoid

this tunneling, but kept high enough so that atoms would not exit the beam

overlap before being stopped. The initial lattice acceleration for the RIR scan

was 810 m/s2 and was changed to 150 m/s2 for slowing.

4.4 Results

The primary result of this experiment is shown in Fig. 4.7. The data

points on the lower red curve correspond to the initial cloud of atoms falling

under gravity with no corrective slow-down. These are averaged over five free

fall sequences. The dashed curve is a ballistic trajectory of the MOT falling

under the influence of gravity.
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Figure 4.7: Center of mass position of a cloud of atomic cesium falling with
and without correction. The data on the lower red curve is falling under
gravity with no correction. The data on the upper blue curve is falling with a
corrective slow-down at 10 ms.

The data points on the upper blue curve correspond to atoms that were

stopped and then allowed to fall again averaged over ten correction sequences.

For the first 10 ms, the atoms follow the same free fall curve as described previ-

ously. The RIR and slow-down sequence starts at 10 ms after the initial release

from the MOT. The sequence stops the falling atoms and then releases them

to fall again approximately 1.5 ms later. The dotted curve is a ballistic trajec-

tory with an initial momentum of 0 ~k at 11.5 ms. There is good agreement

between the data and the idealized trajectory.

Ideally, the trigger pulse turns on the deep well lattice at a time when

both the average velocity of the atoms and the lattice are the same. In this

case, we achieve stopping efficiency of approximately 80% of the atoms. Perfect

stopping efficiency is not possible in our system due to the lower intensities
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Figure 4.8: Temperature measurement of the cloud after stopping showing the
cloud’s expansion as a function of time.

in the wings of the beams creating smaller potential wells that can not slow

the atoms. Another source of lower efficiency is noise on the RIR signal which

causes the trigger time to vary. This leads to a velocity mismatch between the

atoms and the lattice. Typically, the noise causes triggering within a window

of 7 recoil velocities about the ideal trigger point. This problem is observed

to result in loading efficiencies into the lattice as low as 50%.

To measure the heating effects of this method we plot the square of the

width of the cloud, σ2
y , as a function of time squared in Fig. 4.8. From this fit,

we determine the momentum width via σ2
y(t) = σ2

y(0) + t2σ2
p/m

2. Before the

correction sequence the momentum distribution has a width of σp = 8.5 ~k

and after σp = 12.2 ~k.

Heating results from various sources including spontaneous emission
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and coherent processes involved in the RIR measurement as mentioned earlier

in Section 4.2. The beams operate at a detuning of 6 GHz to the red of the

atomic transition which allows for a reasonably small rate of spontaneous

emission. We measure heating of the sample to a momentum width of σp =

9 ~k from this effect alone. A larger detuning may be used to decrease the

spontaneous emission at the expense of a lower well depth for the corrective

slow-down.

The RIR measurement is only approximately nondestructive. There is

an increase in the momentum width due to the coherent scattering of photons

as described in Section 4.2. In our system, the momentum distribution after

an RIR measurement when not followed by a corrective slow-down has a width

of σp = 16 ~k. In the correction scheme, this heating effect is not fully present

since the RIR scan is halted after the trigger which takes place before the

halfway point in the scan. The heating effect of the coherent scattering may

be reduced by decreasing the scattering rate. This may be accomplished by

reducing the power in the beams and/or increasing the detuning. Of course,

this is at the expense of the signal for the obvious reason that the signal is

smaller if fewer photons are scattered.

Fundamentally, the measurement can not be fully nondestructive. Ul-

timately, the degree of nondestructiveness is determined by the threshold of

the RIR measurement, which ideally is dictated by the shot-noise limit. The

figure of merit here is the signal-to-noise ratio. A minimum signal-to-noise

ratio, S
N

, is required for the triggering electronics to work. For a shot noise
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limited detector [79],

S

N
∝ Ipump

√

Iprobe

∆2
, (4.16)

and the heating, H, goes as

H ∝
√

IpumpIprobe

∆
, (4.17)

where Ipump and Iprobe are the intensities of the pump and probe beams. There-

fore, for a fixed signal-to-noise ratio at the limit of the electronics,

H ∝
√

S

N
4
√

Iprobe (4.18)

The heating changes slowly as a function of the probe intensity. Within this

experimental realization it would be difficult and at the limit of the detector’s

ability to reduce the heating any more and still have an acceptable signal-to-

noise ratio.

4.5 Conclusions

The basic result of this proof-of-principle experiment is that real-time

measurement and correction feedback are possible with a controllable amount

of perturbation. The center of mass motion of the atoms was controlled in real-

time with minimal disturbance to the sample. As demonstrated, this method

does not rely on any a priori information about atomic motion. As long as

the average velocity of the cloud is within the measurement range of the RIR

scan, the scheme should work on any unknown average velocity.
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Chapter 5

The Quantum Tweezer for Atoms

5.1 Overview

Scientists have long been interested in completely controlling the state

of a quantum system. Doing so allows one to fully explore the fundamentals of

quantum mechanics. Exotic systems such as entangled states, Schrödinger cat

states, quantum computers, and quantum teleportation become possible [16].

As these these situations are active theoretical topics, an experimental real-

ization of a single quantum system with control over the quantum mechanical

state is desirable.

In order to engineer such quantum states, complete control over all

degrees of freedom is required. A single neutral atom in the ground state of a

microtrap provides a desirable starting point for producing different quantum

states. In this system, a neutral atom with a specific internal state is in a well-

defined energy eigenstate of a trap that is fixed at a chosen point in space. Our

group has performed experiments that will lead to the production of atoms in

the ground state of an optical trap with near unit probability.

The original idea for this scheme was developed by Niu and Raizen in

2002 [17]. In its simplest form, a Bose-Einstein condensate (BEC) is used as
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a reservoir of atoms from which a microtrap extracts a single atom. It relies

on the coherence properties of the condensate, as well as the mean field in-

teractions of the atoms within the microtrap, to create a series of tunnelling

opportunities for the atoms between the condensate and the tweezer. By

appropriately tailoring the separation of the quantum tweezer from the con-

densate, as the system moves through the tunnelling opportunities, all but one

of the atoms within the tweezer are forced to tunnel out. The end result is a

single atom in the ground state of the microtrap.

This means for attaining a single neutral atom is not the only one

available. Other ideas have been developed and pursued by different groups.

Severral groups are pursuing single atoms through weak magneto-optical traps

(MOTs)[85–87]. These MOTs are operated such that the the average number

of atoms in the trap is on the order of one. When a single atom is detected in

the trap, it is then loaded into an optical dipole trap [88, 89]. These schemes

are fundamentally sound, but suffer from some undesirable features. They are

not a deterministic source of atoms. In addition, the atom is not in a well-

defined vibrational state of the dipole trap and requires additional work to

place it into the ground state once it is captured. With the quantum tweezer,

this comes free of charge.

Another possible method relies on the Mott insulator transition in

Bose-Einstein condensates [90]. The Mott insulator transition occurs when

a condensate is placed in an optical lattice. As the well depth of the lattice

increases, a phase transition from a superfluid state to a number state in the
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lattice sites occurs [91]. This produces number states within the lattice site,

but at the cost of addressability. Optical lattices have well sites located half

a wavelength away from each other making it near impossible to individually

address a single atom within a well.

The remainder of this chapter explains the theory and implementation

of the quantum tweezer. The exact means by which the tweezer extracts atoms

is slightly changed from the original proposal. These differences as well as the

actual data from the experiment are described below.

5.2 Quantum Tweezer Theory

The quantum tweezer uses a BEC as a reservoir for extracting single

atoms. The scheme is depicted in Fig. 5.1 and Fig. 5.2. To begin, consider

a one-dimensional condensate in a harmonic trap characterized by the fre-

quency ωx. The condensate is described by the following one-dimensional

Gross-Pitaevskii equation

(

− ~
2

2m

∂2

∂x2
+ Vext + g1D|φ2|

)

φ(x) = µφ(x) , (5.1)

where g1D is the one dimensional coupling constant and µ is the chemical

potential (see Appendix B). Here, Vext = 1
2
mω2

xx
2 is the external potential

that holds the condensate.

Within the condensate, a microtrap is slowly turned on at the center

of the trap. In the beginning, the tweezer is only a small perturbation to the

trapping potential. The microtrap is formed by two repulsive gaussian barriers
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Figure 5.1: A diagram of how the tweezer works. In (a), a one-dimensional
condensate is trapped in a harmonic potential characterized by the trap fre-
quency ωx. The blue line represents the chemical potential of the condensate.
Image (b) shows the introduction of the tweezer into the condensate. It is
slowly turned on in the center of the harmonic trap. At this point the tweezer
is only a small perturbation to the harmonic trap.
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forming a trapping region between the two of them. The potential takes the

form

Vdot(x) = Vo(e
−

2(x−d)2

w2
x + e

−
2(x+d)2

w2
x ) . (5.2)

These two repulsive gaussian potentials are characterized by a waist wx and a

separation distance 2d. Such a trap has a trapping frequency given by

ωx =

√

8Vo

mw2
x

e
− 2d2

w2
x

(

4
d2

w2
x

− 1

)

, (5.3)

(see Appendix A for details). Note that the external potential in Eq. 5.1 is now

the sum of the harmonic trapping potential and the tweezer potential. The

microtrap is turned on by increasing Vo and pushing the tweezer up in energy

through the condensate. In addition to raising the energy of the states within

the trap, it increases the potential by changing the trap frequency. This can be

compensated for by adjusting the distance between the two gaussian barriers.

The different multi-atom ground state energy levels become degenerate with

the chemical potential of the condensate as the tweezer is ramped on.

It is through these degeneracies that the tweezer operates. When the

energy level of the atoms within the tweezer and the chemical potential are

equal, an atom in that state can tunnel out of the tweezer and back into the

condensate. At this point the number of atoms within the tweezer decreases by

one, thereby reducing the energy of the atoms within the tweezer and removing

the degeneracy condition. As the tweezer potential continues to increase, the

energy of the atoms is again degenerate with the chemical potential and an

atom can again tunnel out of the microtrap. This process continues until the
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Figure 5.2: A continuation of the pictorial description of the quantum tweezer.
In (a), the tweezer trap has risen and now the individual multi-atom ground
states within the microtrap become degenerate with the chemical potential.
The red lines represent the one atom and two atom ground states while the
blue line represents the chemical potential of the condensate. Image (b) shows
the tweezer after it has exited the condenstate and is fully decoupled from it.
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tweezer has energetically pushed through the condensate and is completely

decoupled from it. Whatever atoms happen to remain in the tweezer after the

tunnelling opportunities will remain in the tweezer. In general, the output

state of the tweezer will be some superposition of multi-atom ground states.

The key to single atom extraction is to tailor the turn on rate of the tweezer

such that only the single atom ground state has a high probability of being in

the microtrap after extraction.

In order to obtain a better understanding of how to extract only one

atom, it is instructive to look at the energy levels of the multi-atom ground

states within the tweezer trap. The energy of the different states depends

on the energy level of the trap, the number of atoms in the state, and the

coupling of the state to the condensate. A mathematical analysis of the system

[17, 92, 93] yields, for n atoms in the ground state of the tweezer,

En = nE1 +
n(n+ 1)

2
ν , (5.4)

where E1 is the energy of an atom in the trap relative to the chemical potential

of the condensate and ν represents the repulsion atoms feel within the micro-

trap. The energy difference between the tweezer and the chemical potential

has several contributions and has the form

E1 = ǫDot + Voffset − µ+
g1D

2
NJ2,2 (5.5)

where ǫDot is the ground state energy level of the microtrap, Voffset is the

potential offset created by the microtrap, µ is the chemical potential of the
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Figure 5.3: Energy diagrams for the multi-atom ground states within the
tweezer as a function of the potential height of the tweezer. The diagram on
the left corresponds to the case where the coupling between the tweezer and
the condensate is neglected. On the right, the coupling is included, causing
energy gaps where there were previously crossing. The energies are plotted in
units of 5.65 nK. Plots courtesy of Artëm Dudarev [93].

condensate, and J2,2 is the generalized overlap integral of an atom in the

microtap with an atom in the condensate. It is given by the equation

Jl,m =

∫

(φBEC)l(φDot)
mdx (5.6)

where φBEC is the wavefunction of the condensate and φDot is the wavefunction

of the atoms within the tweezer. The mean field repulsion an atom feels when

confined in the tweezer is given by ν = gJ0,4.

Fig. 5.3 shows the change in the energy levels as a function of the po-

tential height of the tweezer. This calculation assumed a specific set of exper-

imentally feasible parameters. The trap was assumed to have frequencies of

30 kHz in the tight dimensions and 3 Hz in the weak dimension. In addition,

the tweezer trap was characterized by a trap frequency of 200Hz, and 100
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atoms were assumed to be within the condensate to have a reasonable lifetime

due to three-body losses. Eq. B.22 yields a one-dimensional condensate with a

chemical potential of µ ≃ 21 nK · kB. As the potential is increased, the energy

levels will increase. When the tweezer is well below the chemical potential,

the higher atom number states have lower energy, whereas when the tweezer

is decoupled from the condensate, the higher atom number states have higher

energy. This inversion of levels from inside the condensate to outside the con-

densate leads to level crossings as shown in Fig. 5.3. These level crossings

physically correspond to the aforementioned degeneracies. The point when

the i + 1 atom level crosses the i atom level is when the potential has been

raised such that the i + 1 atom ground state is degenerate with the chemical

potential. At this point, one atom from the i + 1 state can tunnel out of the

tweezer, reducing the number of atoms within the microtrap to i.

To quantify the tunnelling rates, analysis of the system including the

coupling between the atoms in the tweezer and the condensate is necessary

[17, 92, 93]. The off diagonal terms in the Hamiltonian give rise to this coupling.

Fig. 5.3 shows the effect of this coupling on the energy levels. An energy gap

appears at the energy level intersections, creating avoided crossings. These

avoided crossings dictate the parameters under which an atom can tunnel

from the tweezer to the condensate.

In situations where avoided crossings occur, the possibility of jumping

from one energy level to another occurs via Landau-Zener tunnelling [94]. The

probability of making the transition from one level to the other after one pass
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is

P = exp

(

−(2π)2

h
ǫ212/|

d

dt
(ǫ1 − ǫ2)|

)

, (5.7)

where ǫ12 is the energy gap between the two levels and d
dt

(ǫ1 − ǫ2) is the

difference in the slope of the energy levels. In the case of the tweezer, this

can be approximated as the slope of the lower energy level away from the gap.

From this the probability for an atom to tunnel from the tweezer into the

condensate can be calculated. Fig. 5.1 shows that when the tweezer is deep

inside the condensate, the barrier between the tweezer and condensate is very

small, if it exists at all. Therefore, the large coupling give rise to large energy

gaps. As the tweezer potential is raised, the barrier between the tweezer and

condensate grows, reducing the likelihood of atoms tunnelling out. The energy

gaps therefore decrease.

The idea behind the tweezer is to pick an extraction rate for the micro-

trap such that the system adiabatically follows the lowest energy level at each

crossing until the final crossing, where the system makes a non-adiabatic jump

across the energy barrier leaving one atom within the tweezer with high prob-

ability. Fig. 5.4 shows a plot of the probability of different number states in

the tweezer after extraction as a function of extraction rate. The plot shows

a region of extraction rates where there is high probability of pulling out a

single atom with the tweezer. Over almost an order of magnitude in ramp

on rates for the tweezer, the extraction probability is greater than 90%. It

should be noted that this calculation assumed a linear increase in the tweezer

potential. Conceivably, a nonlinear ramp could be used such that when the

155



10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Rate

P
ro

ba
bi

lit
y

0
1
2

Figure 5.4: The probability of finding n atoms within the tweezer after extrac-
tion as a function of the extraction rate. The different colors correspond to
different atom numbers as labelled in the upper right corner. The extraction
rate is plotted in units of 4.3 nK/ms. The red dotted line highlights when the
one atom extraction probability is greater than 90%. This range corresponds
to extraction rates between roughly 30 ms and 130 ms which are feasible for
the experiment. Plot courtesy of Artëm Dudarev [93].
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gaps are large deep within the well, the potential rises slowly and increases

later when the final one atom to zero atom gap is reached. This may lead to

even higher probabilities for the one atom state.

5.3 Experimental Techniques

In order to perform the quantum tweezer experiment, several things

are necessary. First, a one-dimensional condensate must be created. Spe-

cialized traps with high oscillation frequencies are required to reach the one-

dimensional regime. In addition to those traps, a trap to create the tweezer is

needed. And finally, a means to confirm single atom extraction is needed. This

system needs to be able to detect the low light levels associated with a single

atom scattering light as well as have the sensitivity to distinguish between a

single atom or multiple atoms.

5.3.1 Optical Traps

The condensate produced within the QUIC trap and described in Chap-

ter 2, Section 2.6 does not meet the requirements necessary to perform the

quantum tweezer experiment. To begin with, it is very much a three di-

mensional condensate. It would be possible to evaporate further, hence re-

ducing the atom number in the condensate and eventually reaching the one-

dimensional condensate condition [95], but the trapping frequencies are still

too low to perform the experiment. The weak trap frequencies do not provide

a sufficient separation of the energy level crossings to achieve a pure number
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state. The magnetic trap is limited in the range of trap frequencies it can pro-

duce. It will never be able to produce the 30 kHz tight confining frequencies

required for the tweezer experiment to work.

In an effort to address these problems, a new procedure for creating

condensates was developed. Optical traps offer an elegant solution to this

dilemma. They can be easily adjusted to form many desired shapes, simply

by changing a few optical elements. In addition, extremely high trap frequen-

cies are possible by focussing the beam down to very small (≈ 2µm) waists.

Appendix A provides details on the different geometries available by using op-

tical traps.

The optical traps are created from the two far off resonance lasers

mentioned in Chap. 2. The Verdi laser creates the repulsive potentials and the

fiber laser creates the attractive potentials. Since the beams create interesting

trapping geometries it is worthwhile to describe the beam preparation and

transport to the chamber.

The red attractive traps are the simpler traps to create. The randomly

polarized output of the fiber laser is split into two beams of equal intensity

with a polarizing beam splitting cube (PBSC). These two beams will be used

to create a vertical and horizontal red trap. The vertical trap is used to

create lower dimensional condensates while the horizontal trap is used for

alignment purposes. Both beams pass through an acouto-optic modulator

(AOM) that acts as a fast shutter for the beams. The horizontal beam is

generated from the first order of a 50 MHz AOM while the vertical beam uses
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Figure 5.5: The layout of the optics on the Verdi table used to create the three
separate repulsive traps.

the negative first order of an 80 MHz AOM. This ensures that there will be

no static interference pattern, should both beams be used simultaneously with

atoms. After the AOMs, both beams are spatially filtered and pass through a

homebuilt shutter (see Chap. 2) in the beam path. At this point, the horizontal

beam has a waist of roughly 3 mm and the vertical trap has a waist of roughly

5 mm. These collimated beams are then transported to the vacuum chamber.

The repulsive traps are more numerous and therefore distributed via a

slightly more complicated scheme as shown in Fig. 5.5. The Verdi laser resides

on a separate optical table. The output of the laser is sent through a telescope

that is used solely for shuttering purposes. Within the telescope beam path

are two shutters. The first is a homebuilt shutter with a silver mirror attached
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to the flag. The reflected beam is sent to a beam dump. The additional weight

of the mirror slows down the response of the shutter, reducing its effectiveness.

This is remedied by the use of a second shutter, a UniBlitz 1” shutter with a

reflective coating on the shutter blades. The UniBlitz shutter is fast, but the

reflective coating has a low damage threshold, therefore it can withstand the

full power of the Verdi for only a short time. Together, these two shutters act

as the mechanical shutter, with the UniBlitz quickly blocking the beam and

the homebuilt shutter blocking the beam shortly thereafter.

After the shutters, the beam goes through a λ/2 waveplate and a PBSC

to create two beams with adjustable power control. One arm of the cube will

eventually create the tweezer trap. This beam is double passed through a

40 MHz AOM using the first diffraction order. The output is separated using

the PBSC. It is then spatially filtered. The collimated output has a waist of

roughly 1.5 mm with a maximum of about 1 W of power. From this point the

beam is transported to the table holding the vacuum chamber.

The other output beam of the cube is used to create the optical traps

necessary to create a one-dimensional condensate. This beam is again sent

through a λ/2 waveplate followed by a PBSC to split the beam into two beams

of roughly equal power. One arm has a waist of roughly 1.5 mm with about

3 W of total power. This beam is transported directly to the main optical

table. The other arm is passed through two electro-optic modulators (EOMs)

acting as intensity modulators. The first EOM is from ConOptics, model 370,

and is driven by one channel of a Trek high voltage dual amplifier, model 601C.
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Figure 5.6: Layout of the horizontal optical traps. The beams make their way
into the MOT beam path through the use of dichroic mirrors (DM).

The second EOM is also from ConOptics, but is model 350, and is driven by

the other channel of the Trek amplifier. The two EOMs can provide 47 dB

of attenuation to the laser beam. After the EOMs, the beam has a waist of

roughly 1.5 mm and has a maximum power of 3 W.

Once the beams arrive at the chamber, they are appropriately shaped

before entering. The traps can be organized according to their orientation with

respect to the chamber. The horizontal traps are comprised of a horizontal red

trap and a horizontal green sheet trap. The vertical traps consist of a vertical

red trap, the vertical green sheet trap, and the tweezer trap.

The horizontal traps enter the glass cell as shown in Fig. 5.6. Before

entering the chamber, the horizontal red trap passes through a 300 mm focal

length lens. The beam is then superimposed on the lower MOT beams with
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the use of a dichroic mirror (DM). The lens is approximately 300 mm away

from the center of the chamber, where the atoms are located. The focussing

of the red beam is such that at the atoms, the beam is symmetrical with a

waist of ≈ 40µm. The beam from the Verdi table passes through an acousto-

optic deflector with a bandwidth of 50 MHz centered at 110 MHz. The first

order of this beam passes through a 50 mm focal length lens. This lens is

the first lens of a telescope used to expand the beam. The final lens of the

telescope is a 250 mm achromat creating a collimated output beam with a

waist of ≈ 7.5 mm. This beam is then transported to the chamber through a

series of mirrors. Immediately before entering the chamber, the beam passes

through a 50 mm focal length lens, as shown in Fig. 5.6, which focusses the

beam to a waist of 2.6µm at the location of the atoms. To create a sheet,

within the collimated portion of the beam, a 1000 mm focal length cylindrical

lens is used to move the focus in one direction off of the atoms. The end result

is a sheet beam that has a waist of ≈ 2µm in the direction of gravity and

≈ 100µm perpendicular to gravity.

The vertical traps enter the chamber in a slightly more complicated

manner. The vertical red trap beam passes through a 150 mm lens, after

which it focusses to a spot at the focal length of the lens. This spot is then

imaged using the lens tower shown in Fig. 5.7. A 200 mm lens in the upper part

of the tower forms a transport system from the image which is then reflected

upwards with a dichroic mirror. The beam passes through a 50 mm Gradium

lens and is focussed to a spot above the position of the atoms. The 150 mm
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Figure 5.7: Layout of the vertical optical trap beams. The beams enter the
chamber through a tower of optics located below the glass cell. The bottom
optical port is separate from the optical traps and is used for the vertical
imaging system.

163



lens is positioned such that at the location of the atoms, the beam has a waist

of ≈ 40µm.

The vertical green sheet trap is formed in a manner similar to the

horizontal green sheet trap. The beam from the Verdi table passes through a

140 mm focal length lens. This lens, in conjunction with a 700 mm focal length

lens, forms a telescope which expands the beam to a waist of approximately

6 mm. Within the telescope region, a polarizing beam splitting cube (shown

in Fig. 5.7) is used to combine the vertical green trap with the tweezer trap;

the tweezer trap will be described later. The collimated beam is reflected

by a dichroic mirror upwards toward the aforementioned Gradium lens. The

Gradium lens focusses the beam to a spot with a waist of ≈ 2.6µm at the

location of the atoms. As before, in order to make the green vertical trap a

sheet, a 100 mm focal length cylindrical lens is placed in the beam path. This

time it is placed within the telescope region, moving the focus in one direction

away from the atoms. The end result is a beam with a waist of ≈ 2.6µm in

one direction and 75µm in the other direction.

The last vertical trap is the tweezer trap. Again, this trap is similar to

the two other green traps. The beam from the Verdi table passes through an

acousto-optic deflector with a bandwidth of 50 MHz centered around 110 MHz.

This deflector has the capability of being driven by multiple frequencies si-

multaneously. A bank of temperature stabilized voltage controlled oscillators

(VCOs) are controlled by the computer such that they produce a desired set

of frequencies. The RF power of these VCOs are individually computer con-
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Figure 5.8: A CCD image of the tweezer beams. This image shows the full
capabilities of the tweezer trap system. Ten spots are made with a spacing
of approximately 10µm. The spots are ≈ 6µm in diameter in the small
dimension and ≈ 12µm in diameter in the long dimension. For the actual
tweezer experiment, only two spots are needed to create the trap potential,
but the image demonstrates the capacity of this method.

trolled through voltage controlled attenuators. The frequencies are combined

on a MiniCircuits 16 way RF power combiner. The output of the combiner is

sent to a MiniCircuits three watt broadband linear amplifier which drives the

deflector. The experiment typically uses up to ten different frequencies at once

to drive the deflector, creating ten different spots with separations determined

by the frequency differences.

The first order output of the deflector passes through a 140 mm focal

length achromatic lens located at the focal distance away from the deflector.

This lens is the first lens of a telescope that expands the beam to a waist of

6 mm with a 700 mm focal length lens. Within the telescope beam path, the

beam is superimposed with the vertical green trap through the use of a PBSC

as shown in Fig. 5.7. After passing the Gradium lens it is focussed to a spot

165



on the atoms with a waist of ≈ 3µm. For the tweezer trap, a sheet geometry

is not needed, but a little asymmetry is useful to guarantee that the atoms do

not see a weak spot in the trap. Therefore, a 1000 mm focal length cylindrical

lens was placed in the telescope beam path to slightly elongate the trap in one

direction yielding a spot with waists ≈ 3µm by ≈ 6µm. Fig. 5.8 shows an

image of the tweezer beams creating a lattice potential.

5.3.2 Magnetic Trap Decompression

Before the condensate in the QUIC trap can be loaded into the optical

trap, it must be moved to the center of the glass cell, which allows for better

optical access. In Chap. 2, the field in the compressed trap was discussed.

The compressed trap is when the field minimum is small and the gradients

are high. In this configuration, the trap is suitable for evaporative cooling.

A disadvantage, however, is that the trap center is located near one of the

walls of the glass cell. It is possible to move the trap minimum back near

the center of the chamber by lowering the current in the quadrupole pair and

maintaining the current of the Ioffe coil. In this case, the gradients, especially

in the radial direction, are decreased. Using a numerical simulation, a plot of

the fields for this case is shown in Fig. 5.9. In the figure, for II = 25 A and

IQ = 7.5 A, the field has approximate values of B′
ρ = 71 G/cm, B′′

z = 42 G/cm2

and B0 = 42 G. This corresponds to trap frequencies of about ωz = 2π ·8.25 Hz

and ωz = 2π·12.7 Hz. In this case, the simulation shows the trap center moving

past the center position demonstrating the capability. In the experiment, the
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Figure 5.9: Calculated field for the uncompressed QUIC trap. Field magnitude
along the z-axis is shown for different situations. In all cases, the current in the
Ioffe coil is II = 25 A. The dotted curve is for quadrupole current IQ = 25 A,
which corresponds to the compressed trap. The dot-dashed and dashed curves
correspond to IQ = 15 A and IQ = 10 A, respectively. The solid curve is when
IQ = 7.5 A. This curve corresponds to a situation with approximate trap
frequencies of ωz = 2π · 8.25 Hz and ωz = 2π · 12.7 Hz, with B0 = 42 G. This
roughly symmetric trapping minimum is near the center of the chamber. The
plot inset shows a closer view of the trap minimum in the final case; clearly it
has moved slightly beyond the chamber center.
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same behavior is observed. The Ioffe coil is held at 28 A while the quadrupole

coils are reduced to a current of roughly 8.5 A to bring the trap back to the

center along the Ioffe coil axis.

In addition, several auxiliary coils are used to return the trap to the

center in the two other axes. A vertically oriented levitation coil is necessary

to counteract gravity. Since the trap is very weak in this configuration, gravity

is strong enough to pull the trap center down. A water cooled coil located on

the bottom of the middle vacuum chamber provides a magnetic gradient field

for this purpose. With a current of about 8A, the coil can provide enough force

on the atoms to counter gravity and return the trap to its original position

in the vertical direction. The optical pumping bias coils are used to shift the

magnetic trap back to the center along the quadrupole axis.

During the switch on of the QUIC trap’s primary coils, it is not im-

portant to worry about kinks in the current because the atoms are hot. After

evaporation, the atoms are very cold, and when decompressing the trap back

to the quadrupole center it is necessary to carefully choose a current profile

which will not excite the atoms. More specifically, a continuous acceleration

is needed. If the acceleration is chosen to be of the form a(t) = −Aω2 sinωt,

with A > 0, this can be integrated to find the velocity v(t) = ωA cosωt + C

and the position x(t) = A sinωt + Ct + x0, where ωtend = 2π. Using the

boundary values a(0) = a(tend) = 0 and v(0) = v(tend) = 0, yields the con-

stants A = (x0 − xend)/2π and C = (xend − x0)/tend, where xend = x(tend). So,
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the trap center position is moved in time according to

x(t) =
x0 − xend

2π
sin

2πt

tend

+
xend − x0

tend

t+ x0. (5.8)

In order to actually move the atoms, the current in the quadrupole pair has

to be adjusted. The position moves from the QUIC trap center at 28A to

the region of the quadrupole center at around 8.5 A. Because the current

dependence is rather complicated, it was simplest to determine the positions

experimentally, by varying the current settings and imaging the cloud. The

current for the desired position was determined numerically from the above

equation.

5.3.3 BEC in an Optical Trap

After moving the magnetic trap back to the center of the glass cell,

the cloud is loaded into a gravito-optical trap. This is performed in several

steps. First, the horizontal green sheet sheet is turned on below the cloud.

The beam is turned on over a period of 300 ms to a power of roughly 300 mW.

After the sheet is on, the cloud is compressed by “turning on” gravity. This is

accomplished by turning off the levitation coil used to cancel out the effects of

gravity. The coil is ramped off in 100 ms leaving a compressed cloud. Now the

cloud is confined in one dimension through the combination of gravity and a

repulsive sheet. In order to confine the atoms in the two remaining directions,

the vertical red trap is turned on at the same time as the sheet to a power of

approximately 50 mW.
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Figure 5.10: An absorption image of the condensate created in the optical
trap. The image was taken 18 ms after being released from the trap. The
cloud contains ≈ 2.3 × 105 atoms and has a diameter of 240µm in the long
direction and 80µm in the short direction.

At this point the atoms are contained in both an optical trap and a

magnetic trap. The magnetic trap is now ramped off to create a pure optical

trap. During this process, the intensity of the red trap is lowered slightly. This

provides some amount of evaporative cooling to counteract any heating that

may have occurred during the shut off of the magnetic trap. The magnetic

trap ramp down occurs in five steps, which decrease the current in the coils

as well as adjust current in the auxiliary coils to keep cloud stationary as the

fields shut off. This takes place over the course of 2.5 seconds while lowering

the red trap intensity by 2 dB.

The end result of this process is a condensate in a pure optical trap.

This is verified through a time of flight measurement. Fig. 5.10 shows and ab-

sorption image of the cloud after a time of flight of 18 ms. The clear asymmetry
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of the cloud indicates that it is a condensate. The estimated trap frequency

for the gravito-optical trap is roughly 500 Hz in the tight direction which is

parallel to gravity (see Appendix A). In the other two directions, the trap

frequencies are roughly 10 Hz.

5.3.4 High Frequency Optical Traps

In an effort to achieve the high trap frequencies necessary to perform

the tweezer experiment, compressed sheet traps were used in both the verti-

cal and horizontal directions. Two blue detuned sheets were used to create

a trap around the atoms. Implementation along the horizontal axis was ac-

complished by driving the acousto-optic modulator with two frequencies to

add an additional sheet. Then the sheets were compressed by decreasing the

difference between the two frequencies. Along the vertical axis, an acousto-

optic modulator would need to be installed and used in the same way. The

only problem with this approach was that it was not possible to achieve high

enough trap frequencies. An analysis using the formulas from Appendix A,

with careful consideration of the experimental realities of the system reveals

that at most only 5 kHz is possible. In addition, compressed sheet traps cre-

ate an anti-trapping potential in the perpendicular direction that would be

difficult to accurately counterbalance with a red trap.

Optical lattices provide an attractive solution to the problems associ-

ated with sheet traps. The trade-off is that individual addressability is lost.

Another means to obtain high optical gradients yet retain individual address-
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Figure 5.11: Plots of the intensity, I (in arbitrary units), as a function of
position for the vertical sheet trap without (on the left) and with (on the
right) the phase plate. Inset in the upper right of each plot is a CCD image
of the full beam from which the profile was obtained. The red lines are fits to
the data. On the left, the profile is fit to a gaussian with a waist of 2.6µm.
On the right, the profile is fit to a TEM01 mode with a waist of 3.6µm.

ability of the trap is through the use of TEM01 mode traps. TEM01 mode

beams have the tightly focussed spatial features of a double sheet trap, but do

not suffer from the unwanted potential offset in the center.

The TEM01 mode beams are simple to create experimentally. Within

the collimated beam path of the optical setup for the sheet traps, an anti-

reflection coated window was inserted. One half of the window had an addi-

tional coating that consisted of an ≈ 6900 Å thick layer of magnesium fluoride.

The thickness is such that the portion of the beam that passes through the

coating receives a π phase shift. The end result is that at the focus of the

beam, where the atoms are, the beam profile is no longer gaussian but rather

has a dark stripe down the center. Fig. 5.11 shows CCD images of the beam

profile at the focus as well as profiles of the beam quality.
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The phase plate does not produce a true TEM01 mode beam. Fig. 5.12

shows how the phase plate affects the beam. The π phase shift changes the

complex amplitude of the beam such that the gaussian profile now has a discon-

tinuous change of sign at the origin. A true TEM01 has a complex amplitude

of the form of a (0,1) order Hermite-Gaussian function[29]. The difference

between the two is rather substantial, but each has the same dark stripe in

the center of the intensity profile. This can be seen by taking the Fourier

transform of the complex amplitude, as the focussing lens does, then squaring

the result to obtain the intensity profile [65]. The result shows a TEM01 type

profile with longer tails than a true TEM01 profile. This higher order spatial

noise is most likely due to the sharp discontinuity introduced by the phase

plate. This behavior is also seen in the CCD images of the beam. While the

higher order spatial noise is not ideal, it does not pose a problem since it is

necessarily away from the beam focus and thus away from the atoms.

The true evidence that this is an acceptable means of producing a

TEM01 trap is that it traps atoms. After creating a condensate in the gravito-

optical trap, the TEM01 mode trap is ramped on in two steps. First, in the

horizontal direction, the trap is ramped on over a period of 100 ms a distance

of 6µm above the position of the sheet with roughly 50 mW in the beam.

Then, the lower sheet is simultaneously ramped off as the TEM01 mode beam

is turned completely on. In this fashion, a condensate of ≈ 5 × 104 atoms is

loaded into the trap.

Expansion of the atoms within the trap reveal that the cloud is indeed
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Figure 5.12: Plots of the effect of the phase plate on a gaussian beam. The
phase plate gives a π phase shift to half of the beam changing the amplitude,
|A|, as shown in the plot on the left. On the right, in red, is the square of the
Fourier transform of the amplitude showing the beam intensity profile, I. For
comparison, the beam profile of a true TEM01 mode beam of equal power is
shown in blue.

a condensate. Within the trap, the condensate is two dimensional. This can

be verified through the use of Eq. 5.11. Upon release, in the tight confining

direction, the cloud will spread like a gaussian wavepacket since it only occu-

pies the ground state vibrational level of the trap. A single particle gaussian

wavepacket has a wavefunction given by [96]

ψ(x, t) = 〈x|ψ(t) =
1

√√
π(a+ (i~t/ma))

e
− x2

2a2(1+(i~t/ma2)) , (5.9)

where a =
√

~/mω is the harmonic oscillator length. Since the density is the

wavefunction squared, it has the form

n(x, t) = ψ∗(x, t)ψ(x, t) =
1

√

π(a2 + ~2t2/m2a2)
e
− x2

a2(1+~2t2/m2a4) . (5.10)
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Figure 5.13: A plot of the half waist, W/2, of the the condensate as a function
of time after release. The fit using Eq. 5.11 yields a trap frequency of 16 kHz.
After optimization, higher trap frequencies have been achieved. Inset is an
absorption image of the condensate for one of the data points corresponding
to a time of flight of 17 ms.

This is simply a gaussian profile that has an expanding waist, described by

W (t) =
√

2

√

~

mω

(

1 + t2ω2
)1/2

. (5.11)

Fig. 5.13 shows a plot of the half waist of the density distribution as a

function of time after release. The fit of the data clearly shows that the cloud

expands as a two dimensional condensate. In the horizontal direction, trap fre-

quencies as high as ωtight = 2π× 23 kHz have been achieved. A similar TEM01

mode trap was constructed in the vertical beam path and trap frequencies as

high as ωtight = 2π × 45 kHz have been observed.

Loading into a crossed TEM01 mode trap consists of first loading the
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atoms into the horizontal trap then into the vertical trap. This has been

accomplished and atoms are held within the trap, but no verification that the

cloud is still a condensate has been done as there is no obvious means of doing

so. Since individually each trap is capable of loading a condensate, it stands

to reason that a crossed trap geometry should do the same since the traps are

ramped on adiabatically.

The end result of this procedure is the creation of a single condensate

in a very tight trap. The optical trap holding the condensate is characterized

by frequencies of 45 kHz by 16 kHz by 10 Hz. In this highly asymmetric trap,

the condensate is one-dimensional as long as the atom number is below 4×104

(see Chap. 1 Sec. B.4). This can be verified by counting the number of atoms

within the trap using the single atom counting capabilities of the experiment

(see Sec. 5.3.5).

5.3.5 Single Atom Detection

In order to verify the ability of the tweezer to extract single atoms,

it is necessary to detect single atoms. This feat is accomplished using an

arrangement similar to that of D. Meschede [88]. The atom is placed into a

weak MOT such that it is trapped and will fluoresce. The fluorescence from

the atom is then collected with a large collection angle lens system. The

collected light is transported to an avalanche photodiode (APD) that counts

the individual photons emitted by the atom. With appropriate suppression

of scattered background light, the signal to noise ratio can be large enough
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Figure 5.14: Single atom detection “super lens”. The lens system consists
of four lenses: 1) 40.0 mm focal length plano-concave lens, 2) 50.0 mm focal
length bi-convex lens, 3) 40.0 mm focal length plano-convex lens, 4) meniscus
lens with 26 mm and 78 mm radii of curvature, and 5) 5 mm thick slab of fused
silica.

to distinguish the quantized fluorescence of individual atoms. In this way, a

single atom can be detected.

The collection lens used in this scheme is actually a carefully chosen

collection of lenses. The design is identical to that used by Meschede [97].

Four lenses, in addition to one wall of the glass cell that comprises the vacuum

chamber, are appropriately spaced to create a “super lens” (see Fig. 5.14) with

a solid collection angle of roughly 2% of 4π. The lens system was designed to

reduce spherical abberations up to 7th order and astigmatism to 3rd order.

Designed for imaging, this system is more than adequate since we are only

interested in light collection. Regardless, the lens system works well for the

purposes of this experiment.

The “super lens” is positioned such that the fluorescent light from the
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atom is collimated. This beam is transported a distance of 80 mm from the

chamber to give room to clean the beam and measure the fluorescent light. Af-

ter approximately 80 mm, the beam is focused with a 60 mm achromat through

a 100µm pinhole. This reduces the amount of background scattered light.

From here the beam passes through two 50 mm lenses and is focussed onto

an APD to measure the fluorescence light level. To ensure that no stray light

enters the beam path of the transport optics, the entire path is enclosed with

black cardboard paper.

Single atoms were observed with an APD. The APD is manufactured by

Perkin Elmer, model SPCM-AQR-14. The APD has an active area of 175µm

and an overall photon detection efficiency of ≈ 66% at 780 nm. The dark

count for the APD is 50 counts per second with a maximum of 100 counts

per second. The APD is capable of a mean count rate of 5 million counts

per second before saturation effects start to become appreciable. The module

can withstand count rates up to 15 million counts per second before damage

occurs. This limit is never approached during the course of the experiment.

The APD is an extremely sensitive device that can be easily destroyed

by an excessive amount of light, therefore, a series of protection devices are

in place. Immediately in front of the APD is an interference filter with a

10 nm bandwidth centered at 780 nm. This filter reduces the fluorescence

signal by ≈ 50% but reduces scattered light outside the bandwidth by roughly

four orders of magnitude. Additionally, a UniBlitz shutter is in front of the

APD. It only opens during the measurement of single atoms. This reduces the
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possibility of stray light hitting the APD. An electronic security box was also

built for additional protection. This box contains several TTL inputs to trigger

a relay that disconnects the APD from its power source. The TTL inputs

include a software trigger as well as photodiode signals. The photodiodes are

placed on the table near the APD. Once the light level on the photodiodes

increases beyond a threshold level, the protection circuit is activated.

Before the system could be used for detecting single atoms from the

tweezer, it had to be tested against a known source of single atoms. This

was accomplished by measuring the atom number in a weak MOT with a

tiny capture volume. Previous experiments [85–87] had captured single atoms

within a MOT. A similar set up was designed to measure the sensitivity of the

APD and collection optics to single atom detection (SAD). The first step was

to create a weak MOT with a tiny capture region.

First the magnetic field gradient of the existing MOT setup was in-

creased. The current in the quadrupole coils was increased to 28 A, yielding

field gradients of roughly 265 G/cm. To further reduce the capture region as

well as weaken the trap, a different set of MOT beams were used. A dedicated

SAD MOT beam was created out of the zeroth order of the lower MOT beam

as described in Chap. 2. This beam is transported to the lower MOT region

where it is combined with the regular lower MOT beams. This was accom-

plished by mixing the SAD MOT beams with the regular MOT beams on a

90%-10% beam splitter. The end result is a second set of MOT beams that

have a waist of 0.5 mm and a power of approximately 0.1 mW per beam. In
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addition, the repump beam for the SAD MOT was reduced. A mechanical

flipper with a 1 mm aperture was placed in the repump beam path. When

the SAD MOT is activated, the aperture is flipped into place reducing the

repump beam to 1 mm in diameter. The reduction in size and power of the

beams makes the MOT weak so that it would only capture a few atoms, but

it also has the benefit of reducing the amount of scattered light that reaches

the APD.

When a SAD MOT is created, the shutter protecting the APD is

opened, and a recording of the count rate from the APD is made. Fig. 5.15

shows a data set from one typical experimental run. In this case, the MOT

beams were tuned 3.5 MHz from the cycling transition and both the MOT

beams and repump beams were operating at 20% of the full value. The plot

shows the count rate obtained from the APD as a function of time. The count

rate was derived by counting the number of photons for 100 ms. The plot

shows the count rate every 100 ms over the entire observation of 350 seconds.

There are distinct quantized steps corresponding to an integer number

of atoms within the MOT. A recording of the background count rate was made

for 1 second by leaving the magnetic field gradient off, which resulted in a rate

of 30,700 counts per second. Afterwards, the gradient was applied and atoms

entered the trap. As an atom enters the trap, the fluorescence counting rate

makes a discrete jump of approximately 11,400 counts per second. This can

be seen more easily in a histogram plot of the counting rate.

Fig. 5.16 shows a histogram plot of the data set from Fig. 5.15. The
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Figure 5.15: Photon count rates taken during the operation of a weak MOT.
This data was taken with a MOT detuning of 3.75 MHz, MOT intensity of 20%
maximum, repump intensity of 20% maximum, and a magnetic field gradient of
265 G/cm. The average background scattered light signal is 30,700 counts per
second. Each atom provides an additional signal of 11,400 counts per second.
The quantized levels corresponding to different numbers of atoms within the
MOT are highlighted with colored lines.
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Figure 5.16: A histogram of the counts shown in Fig. 5.15. The data was
sorted into a histogram with bin sizes that are half the single atom signal rate
centered at the background signal rate. The plot on the right shows the fit
of the histogram peaks to a poissonian distribution as would be expected for
a random process such as the loading of a MOT. The poissonian fit had an
average atom number of 2.475.

data was sorted into bins 5,700 counts per second wide in size, starting at the

background counting rate. The histogram clearly shows distinct peaks every

11,400 counts per second that arise from an integer number of atoms in the

trap. The graph also reveals the lack of signal in between the sharp peaks. A

comparison of the peaks to the valleys measures the error rate of the number

detection of the system. For the zero, one, and two atom cases, the correct

number of atoms is determined at least 95% of the time or better.

Aside from statistics on the detection ability, the histogram can be

used to analyze the statistics of atoms within the trap. The average number

of atoms trapped in the MOT is found to be roughly 2.475 atoms. It is a

random process by which atoms from the background vapor find the trapping
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Figure 5.17: A plot of the reliability of the single atom detection system. The
probability displayed is that of finding the same number of atoms on the next
measurement cycle as a function of the measured atom number.

region and become trapped within the MOT. Therefore, one would expect a

oissonian distribution for the atom number within the trap. Fig. 5.16 shows

the probability distribution for finding atoms within the trap, as well as a fitted

poissonian distribution. The fit shows good agreement between the poissonian

and the actual probability distribution.

Fig. 5.17 shows the reliability of measurements made with the single

atom detection system. The plot gives the probability of measuring the same

number of atoms in the MOT during the next measurement cycle. As can be

seen from the plot, the probability is near 97% for zero, one, or two atoms.

This is useful in that if a single atom is extracted and placed in the MOT
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capture region before it is turned on, there is a 97% probability that any

atoms measured with the detection system are those placed in the MOT after

extraction and not those loaded from background vapor or lost from the MOT.

In conjunction with the error statistics obtained in the histogram, it is possible

to measure a single atom and know with over 93% accuracy that it is the

extracted atom.

5.4 Future Outlook

Presently, a great deal of progress has been made towards the experi-

mental realization of the quantum tweezer for atoms. To date, it is possible

to create a single, one-dimensional condensate with tight confining trap fre-

quencies of 23 kHz and 45 kHz, of which the geometric mean is greater than

the 30 kHz value used in the simulations. The weak direction is much easier to

manipulate, and trap frequencies in the range of 5 Hz to 20 Hz are possible. As

for the microtrap, single and multiple traps have been created and calculated

trap frequencies of up to 200 Hz are possible. The detection apparatus for the

single atom has been built and tested. Quantized fluorescence corresponding

to an integer number of atoms within the SAD MOT has been observed, ver-

ifying the reliability of the detection scheme. Therefore, the majority of the

experimental apparatus necessary to perform the experiment exists and is in

place.

At this point, it should be possible to perform the experiment. A large

parameter space can be explored. The tweezer trap frequency, the weak trap
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frequency for the condensate, and the extraction rate are just a few of the

parameters that can be adjusted to find an operating region where an integer

number of atoms are extracted.

One remaining step is required before it is possible to verify that the

experiment works. A method to clean the optical traps is needed. Great effort

was taken to make the trapping beams as clean as possible, but fringes still

exist on them. Therefore it is possible that atoms can get trapped within the

fringes, leading to complications for the detection of the single extracted atom.

One means of cleaning the optical trap is to use a magnetic orbiting potential

(MOP). The MOP consists of a low current quadrupole field offset from the

center of the optical trap through the use of the auxiliary coils. The magnetic

trap center is made to circle around the optical trap by adjusting the current

in these coils. In this manner, the magnetic trap can circle around the optical

trap, removing atoms from the fringes of the optical trap. Afterwards, the

magnetic trap is turned off and the “mopped” atoms fall away. The end result

is the single atom in the optical trap.

After the successful extraction of a single atom has been performed,

it is still necessary to demonstrate that the atom is in the ground state of

the trap. This can easily be done by allowing the atom to tunnel out of the

tweezer. The extracted atom is actually in a metastable state. The repulsive

trap provides a barrier against a free space continuum. Therefore, it is always

possible for the atom to tunnel through the tweezer wall. To minimize this

possibility, the tweezer depth will be increased after extraction to reduce the
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tunnelling possibility. By lowering the well depth of the tweezer trap, it is

possible to observe the tunnelling rate of atoms out of the trap. Since the

tunnelling rate depends on the barrier height, the rate will be dependent on

the vibrational state the atom occupies. Therefore, the tunnelling rate will be

a good means of verifying occupation of the ground state vibrational level.

The remaining hurdles to extracting a single atom and verifying that it

is in the ground state are relatively small and should be overcome in a short

amount of time, barring any catastrophe to the experiment. Once completed,

a variety of experiments using single, neutral atoms are possible. Rabi os-

cillations can be performed by two tweezer traps close together. This leads

in nicely to experiments in quantum computation where spatially localized

qubits are formed by two adjacent wells [98]. With this scheme, a phase gate

is easily implemented and with Rabi oscillations forms a complete set of oper-

ators that can perform any quantum algorithm [16]. Along another direction,

experiments in atom entanglement and multiparticle atom interferometry will

be possible [99]. These experiments would require the addition of a high mag-

netic field coil to reach a Feschbach resonance in 87Rb which is necessary to

adjust the scattering length of the rubidium atoms [100]. The aforementioned

experiments do not form an exhaustive list. Any experiment requiring a single,

well-defined quantum state is now possible.
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Appendix A

Optical Dipole Traps

A.1 Overview

Optical dipole traps are used extensively throughout the experiments

described in this dissertation. The use of optical potentials to trap atoms

has been around for quite some time and been written about extensively (see

Ref. [101, 102] for additional reviews). Due to the extensive use of optical po-

tentials in this dissertation, it is useful to have handy a listing of the necessary

formulas to calculate traps depths and frequencies.

A.2 The Dipole Potential

One of the major tools used in the laboratory to control the behavior

of atoms is the optical dipole trap. The optical dipole trap is based on the fact

that alkali atoms have a large electric dipole moment. If a laser is directed onto

one of these atoms, the atom behaves as a dipole interacting with the electric

field of the laser. This creates an energy shift known as the AC Stark shift

or light shift. In addition, if the frequency of the laser is near the transition

frequency for the atom, there is a resonant enhancement to the light shift.

Alkali metal atoms have an electronic configuration such that they have

188



one electron in their outer shell while all the inner shells are filled. This

configuration leads them to behave similarly to a hydrogen atom. As a very

good approximation, the motion of the single electron in the presence of an

ac electric field can be treated as a damped, driven harmonic oscillator. In

this model, an electron with charge q and mass m is attached to the nucleus

via a spring with constant k, damping b, and is driven with a force Fo = qEo

from an incident light field. The electron moves in the same direction as the

polarization of the incident electric field which is taken to be the x direction

in this case. The electron obeys the following equation of motion [32]

mẍ+ bẋ+ kx = qEoe
iωt , (A.1)

or in a more transparent formulation

ẍ+ γẋ+ ω2
ox =

qEo

m
eiωt , (A.2)

where τ , the lifetime of the atomic transition, is 1/γ, and ω2
o = k/m is the

square of the transition frequency. For the case of rubidium, the natural

linewidth is γ ≈ 2π × 6 MHz and ωo ≈ 2π × 384 THz making this system a

driven, under-damped harmonic oscillator.

A closer look at Eq. A.2 sheds some light on the behavior of the atom in

the presence of a light field. The solution of the equation contains two parts:

a transient solution that dies off on a time scale of order 1/γ, and a steady

state solution that mimics the driving force. The transient is [103]

xtrans(t) = xoe
−γt
2

(

cos(ω1t) +
γ

2ωo

sin(ω1t)

)

, (A.3)
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where ω1 =
√

ω2
o − γ2/4. Since in this under-damped system ωo >> γ, we can

say ω1 ≈ ωo and neglect the second term in Eq. A.3. Therefore,

xtrans(t) = xoe
−γt
2 cos(ωot) , (A.4)

is a transient behavior that oscillates at the transition frequency, but dies away

on a timescale on the order of the excited state lifetime. The transient behavior

is initiated by the initial interaction of the laser and quickly dies away. This

quickly dying behavior is of little use here.

The steady state part of the solution has the form [32]

xss(t) =
qEoe

iωt

m(ω2
o − ω2 + iγω)

. (A.5)

The real part of the solution, which describes the motion of the electron, is

[103]

xss(t) =
qEo/m

√

(ω2
o − ω2)2 + ω2γ2

cos(ωt− δ) . (A.6)

This shows that the electron oscillates at the same frequency as the driving

force with a phase shift

δ = tan−1

(

ωγ

ω2
o − ω2

)

, (A.7)

determined by the detuning of the laser from the atomic resonance transition

and an amplitude determined by both the driving force as well as the detuning.

Of interest here is the phase shift between the driving electric field and

the oscillating dipole [104]

p(t) = qxss(t) =
q2Eo/m

√

(ω2
o − ω2)2 + ω2γ2

cos(ωt− δ) . (A.8)
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As the detuning grows, the phase shift approaches 0 or π depending on whether

the detuning is to the low side or high side respectively of the atomic transition.

Therefore, for detunings that are to the low side, or red, of the transition, the

dipole will oscillate in phase whereas for detuning to the high side, or blue, of

the transition, the dipole will oscillate out of phase. The energy of a dipole in

an electric field is given by [101]

U = −1

2
〈p(t) · E(t)〉 . (A.9)

From Eq. A.8 and Eq. A.9 it is clear that the dipole potential is proportional

to the electric field squared. Therefore, since the intensity of a light field, I,

is also proportional to the electric field squared, we see that

U ∝ − I

∆
, (A.10)

where ∆ = ω − ωo is the detuning from the atomic resonance transition. If

the laser field has a spatially varying intensity distribution, the potential will

vary spatially and the force felt by the atom will be

F (x) = −∇U(x) ∝ −∇I
∆

. (A.11)

So for detunings to the red of the atomic transition, there is a decrease in

potential energy in areas of higher intensity leading to an attractive force

whereas for detunings to the blue side of the atomic transition higher intensity

creates a potential barrier and a repulsive force.
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A.3 Gaussian Beams

It is now clear that light will create a potential for an atom. To make use

of that fact, it is important to know what beam profiles are possible and hence

what trapping potentials can be formed. Since light is an electromagnetic

wave, Maxwell’s equations in free space are an appropriate starting point [105].

∇ · E = 0 (A.12)

∇ · B = 0 (A.13)

∇ × B = ǫo
∂E

∂t
(A.14)

∇ × E = −µo
∂B

∂t
(A.15)

From here, it is possible to solve for the wave equation that governs electro-

magnetic waves. By taking the curl of Eq. A.12, one arrives at [29]

∇2E − 1

c2
∂2E

∂t2
= 0, (A.16)

where c = 1/(ǫoµo)
1/2 is the speed of light in vacuum.

Let us assume that the solution to Eq. A.16 is a wave of the following

form

E(r, t) = A(r)eiωteiφ(r) , (A.17)

where A(r) and φ(r) are a spatially varying amplitude and phase. Substituting

Eq. A.17 into Eq. A.16 yields the Helmholz equation [65],

(

∇2 + k2
)

A(r) = 0 , (A.18)
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where k = ω/c is the wavenumber of the electromagnetic wave. The solu-

tion to the Helmholz equation gives the amplitude of a wave travelling in the

z direction with frequency ω, and some transversely varying amplitude and

phase. If the assumption is made that the beam varies slowly in the z direc-

tion compared to the transverse directions, then one arrives at the paraxial

equation

∇2
t A − 2ik

∂A

∂z
= 0, (A.19)

where ∇2
t is the transverse part of the Laplacian operator. This result is based

off the assumption that ∂2A
∂z2 is small compared to all the other derivatives.

This assumption holds for beams that are either focussing or defocussing with

a cone angle of less than ≈ 30o [29], as is the case for all the beams discussed

in this dissertation.

A.3.1 Gaussian Traps

There are a variety of different solutions to the paraxial wave equation.

The most commonly used is the gaussian beam solution. In this case, the

solution takes the form [29, 65]

A(−→r ) = Ao
Wo

W (z)
e
−

ρ2

W2(z) eikz+ik ρ2

2R(z)
−iζ(z), (A.20)

where W (z) and R(z) are the 1/e2 waist and wavefront radius of curvature,

respectively. The gaussian beam will focus at some point z = 0 where it is

characterized by a waist

Wo =

(

λLzo

π

)1/2

(A.21)
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and a wavefront radius of curvature, R, that is infinite. Away from this posi-

tion, the waist and wavefront curvature will change according to

W 2(z) = W 2
o

(

1 +

(

z

zo

)2
)

(A.22)

and

R(z) = z

(

1 +
(zo

z

)2
)

. (A.23)

The distance zo is known as the Rayleigh length and is the distance where the

waist has increased to
√

2Wo. ζ(z) is a phase retardation effect known as the

Guoy effect, but is of little concern here.

Suppose that a laser operates at a wavelength λL. At the focus, it has

a gaussian beam profile of

I(ρ, z) = Ioe
−2ρ2/W 2

o (z) (A.24)

where the prefactor

Io =
2P

πW 2
o

(A.25)

is the peak intensity.

As was shown earlier, laser light creates a potential for the atoms such

that U ∝ I. Therefore, the light shift creates a potential of the form [106]

U(ρ, z) = Uo(z)e
−2ρ2/W 2

o (z) , (A.26)

where the factor

Uo(z) =
~γ2Io(z)

24Isat

[(

1

δ1/2

+
2

δ3/2

)

− gFmF

√
1 − ǫ2

(

1

δ1/2

− 2

δ3/2

)]

. (A.27)
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Figure A.1: The intensity distribution of a gaussian beam. The image on the
left is a two dimensional density plot of the intensity distribution. The right-
hand image is a one dimensional intensity profile of the beam taken along the
x axis.

Here, ǫ is a measure of the polarization. In the case of linear polarization, as in

the experiment, ǫ = 1, therefore we can ignore the last term in the potential.

The saturation intensity is given by

Isat =
2π2

~cγ

3λ3
. (A.28)

Isat = 3.58 mW/cm2 for 87Rb. Io(z) is the peak intensity of the beam given

by Eq. A.25.

In addition to knowing the trap depth Uo, the trap frequencies associ-

ated with the beam are important. If we do a Taylor series expansion of the

potential function about the minimum of the trap, we find

U(x) = Uc +
∂U

∂x

∣

∣

∣

∣

xmin

(x− xmin) +
1

2!

∂2U

∂x2

∣

∣

∣

∣

xmin

(x− xmin)2 + . . . (A.29)
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Typical Gaussian Trap Values

Value λL = 532nm λL = 1064nm

Uo 20.0Erec 46.5Erec

ωrad NA 2π × 900 Hz
ωaxial NA 2π × 10 Hz

Table A.1: Typical values for a gaussian beam trap. The values were calculated
for a beam with a waist of 10µm in both directions at the focus and a power of
10 mW. Due to the fact that blue detuned beams create a repulsive potential,
alone they do not make traps and are not included in this table.

Since we are looking at the minimum, the linear term vanishes. By equating

the quadratic term to the potential of a harmonic oscillator, USHO = 1
2
mω2x2,

a trap frequency can be calculated. At the focus of a gaussian beam, in the

direction perpendicular to the optical axis, the radial trap frequency is

ωrad =

√

4Uo

mW 2
o

. (A.30)

Since the waist grows away from the focus, the intensity decreases and

the potential changes correspondingly. So in addition to a radial trap, the

atoms also experience an axial trap. In an analogous manner to the radial

trap frequency, the axial trap frequency along the optical axis is

ωaxial =

√

2Uo

mz2
o

. (A.31)

Table A.1 gives trap values for typical beam parameters. Using the above

equations, it is trivial to scale these values for any particular beam parameters.
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A.3.2 Sheet Traps

More exotic traps can be created by altering the ratio of the two beam

waists with respect to each other. By elongating the waist in one direction, it

is possible to form sheets. As with other dipole traps, sheet traps come in two

flavors depending on the direction of the detuning from resonance.

A.3.2.1 Red Sheets

Detuning red of resonance creates an attractive sheet trap. These traps

are identical to a regular gaussian trap except for the extreme aspect ratios

available. The trap depths and trap frequencies are calculated in the same

way, except that the waist W (z) is now replaced by the geometric mean of the

two waists,
√

Wx(z)Wy(z), when calculating the potential depth.

A.3.2.2 Blue Sheets

Blue detuned sheets can create more interesting trap geometries. Since

blue detuned traps are repulsive in nature, sheets of light can be used to create

confining boundaries. The work done throughout this dissertation relied on

two main configurations for the blue detuned sheet traps. One uses a single

sheet and gravity to create a trap for the atoms. Another variety utilizes two

sheets and confines atoms between the two repulsive barriers.

Gravity-Optical Traps Gravity-optical traps are simple yet effective traps

for neutral atoms. In this configuration, a single blue detuned sheet is used
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Figure A.2: One dimensional potential profile for a gravity-optical sheet trap.
The gaussian bump on the left of the image is the potential of the blue detuned
sheet while gravitation potential energy gives rise to the linear slope. The
direction of gravity is denoted by the green arrow.

to trap the atoms. Gravity provides the additional potential required to keep

the atoms localized. Fig. A.2 shows a one dimensional profile of the potential

created by a sheet and gravity.

The analytical form of the potential of a gravity-optical trap is given

by

U(x) = Uoe
− 2x2

W2
x +mgx . (A.32)

Such a potential does not lend itself well to analytical solutions for the well

depth and trap frequency. Therefore it is necessary to resort to numerical

methods to calculate these quantities. Table A.2 gives calculated values for a

gravity-optical sheet trap using typical values for beam size and intensity.
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Typical Gravity-Optical Trap Values

Parameters Well Depth ω

Wx = 2µm,Wy = 100µm 999Erec 2π × 996 Hz
Wx = 5µm,Wy = 100µm 395Erec 2π × 586 Hz
Wx = 5µm,Wy = 200µm 195Erec 2π × 567 Hz
Wx = 10µm,Wy = 100µm 190Erec 2π × 386 Hz

Table A.2: Typical values for a gravity-optical trap. The trap values were
numerically calculated with a beam power of 1 W.

Compressed Sheets Trap The other trap configuration for blue detuned

sheets is two sheets enclosing a sample of atoms. Fig. A.3 illustrates such a

geometry. By adjusting the intensity of the beams as well as the distance

between the two sheets, different trap depths and frequencies are possible, as

will be shown.

The potential formed by two blue sheets is given by

U(x, y) = Uoe
−

2y2

W2
y (e

−
2(x+d/2)2

W2
x + e

−
2(x−d/2)2

W2
x ) , (A.33)

where Wx and Wy are the waists of the beams in each of the respective direc-

tions and d is the distance between the sheets. When d is much larger than

the waist in that direction, the two sheets act as “hard walls” and the system

behaves in a manner similar to a billiard (see Chapter 3). This situation is

useful for trying to control the dynamics of the particle within the trap.

As the distance between the sheets is reduced, the beams start to over-

lap. At that point, the width of the beams is comparable to the distance

between the beams, in which case the trap starts to become harmonic. By
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Figure A.3: A two dimensional plot of the intensity distribution of two com-
pressed sheets. The distance between the center of each sheet is d.
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Figure A.4: One dimensional intensity profile plots of two compressed sheets.
The image on the left shows the potential well created by the compressed
sheets taken along the x axis at y = 0 in Fig. A.3. The image on the right
show the intensity profile of the trap along the y axis at the potential minimum
of the trap located at x = 0 in Fig. A.3.

performing a Taylor series analysis of the trapping potential, the trap fre-

quency of two blue detuned sheets is

ω =

√

8Uo

mW 2
x

√

e
− d2

2W2
x (

d2

W 2
x

− 1) . (A.34)

The maximum trap frequency possible in this configuration is

ωmax =
2

e3/4

√

4Uo

mw2
x

∼ 0.94

√

4Uo

mw2
x

(A.35)

which occurs at a sheet separation of d =
√

3W .

At this point it is important to notice the fact that in the compressed

sheets trap, there is an offset created by the overlap of the two sheets. This

offset decreases in value as one moves away from the center of the trap giving

rise to an anti-trapping potential orthogonal to the trapping potential. The

anti-trapping potential can be characterized by a frequency of

ωaxial =

√

8Uo

mw2
y

e
− d2

2w2
x . (A.36)
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Typical Compressed Sheets Trap Values

Well Depth 223Erec

ωmax 2π × 5 kHz
ωaxial 2π × 177 Hz

Table A.3: Typical compressed sheets trap values. The trap values were cal-
culated for sheets with waists of Wx = 5µm and Wy = 100µm and a power of
1W in each beam.

At the optimum separation distance of d =
√

3W , this takes a value of

ωaxial,max =

√

8Uo

e3/2mw2
y

. (A.37)

Typical trap values are given in Table A.3.

A.3.3 Standing Wave Optical Traps

Another common means of making an optical trap for atoms is to

create an optical lattice. Optical lattices are created by superimposing two

counter-propagating laser beams of the same frequency. Because of the laser’s

coherence properties, they will interfere with each other creating the typical

standing wave pattern shown in Fig. A.5.

To generalize this situation a bit more, imagine two laser beams with

identical wavelength λL, beam size, and power intersecting each other at an

angle θ between the optical axes of the two beams. In such a situation, an

interference pattern is formed perpendicular to the bisector of the angle be-

tween the beams. The interference pattern produces an intensity modulation

of the form

I(x) = Io sin2(kLx) (A.38)
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Figure A.5: The intensity distribution of a standing wave trap. The image on
the left is a two dimensional intensity plot of an optical lattice. The righthand
image is a one dimensional intensity profile taken from the center of the two
dimensional plot.

where the effective wavenumber is given by

kL =
2π sin(θ/2)

λL

. (A.39)

As can be seen, the intensity varies sinusoidally from zero to a peak intensity of

Io = 8P/πW 2 which is four times that of an individual beam with a periodicity

given by

d =
λL

2 sin(θ/2)
. (A.40)

From this intensity pattern, a potential lattice is created. The potential has

the form

U(x) = Uo sin2(kLx) (A.41)
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Typical Standing Wave Trap Values

Value λ = 532nm λ = 1064nm

Uo 321Erec 744Erec

ωaxial 2π × 198 kHz 2π × 150 kHz
ωradial NA 2π × 722 Hz

Table A.4: Typical values for a standing wave trap. The values were calculated
for a two identical counter propagating gaussian beams with waists Wx,y =
50µm. Each beam has a power of 1 W.

where, from Eq. A.27,

Uo =
~γ2Io(z)

24Isat

(

1

δ1/2

+
2

δ3/2

)

. (A.42)

As before, it is important to know the trap frequencies available by

using an optical lattice. Since it is possible to get spatial variations of the

intensity pattern over a smaller distance (it is possible to get periodicities as

small as λL/2), it is easier to achieve high trap frequencies. By using the same

method as before, one can find that the trap frequency in the well of an optical

lattice is

ωaxial =

√

2Uok2
L

m
. (A.43)

The trapping frequency in the radial direction is the same as that of a gaus-

sian beam. Clearly, by having the two beams directly counter-propagating,

and thereby having the largest wavenumber, one can get a very large trap fre-

quency. Table A.4 lists trap values in an optical lattice for typical parameters.
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A.3.4 TEM01 Mode Traps

The gaussian beam solution to the paraxial equation (Eq. A.19) is not

the only solution. In fact, the gaussian beam is a subset of a larger set of

solutions to the paraxial equation called the Hermite-Gaussian beam solutions.

They have the same paraboloidal wavefronts as the gaussian beam, but they

have an additional modulation to the intensity distribution.

The complex amplitude of the Hermite-Gaussian beam takes the form

[29, 65]

Al,m(x, y, z) = Al,m

(

Wo

W (z)

)

Gl

[ √
2x

W (z)

]

Gm

[ √
2x

W (y)

]

eikz+ik ρ2

2R(z)
−i(l+m+1)ζ(z)

(A.44)

where

Gl(u) = Hl(u)e
−u2

2 , (A.45)

is the Hermite-Gaussian function of order l and Hl(u) is the Hermite polyno-

mial of order l. It is possible to find Hermite polynomials using the recursive

relation

Hl+1(u) = 2uHl(u) − 2lHl−1(u) (A.46)

and

H0(u) = 1 (A.47)

H1(u) = 2u . (A.48)

By taking the square of the complex amplitude, one finds the intensity
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distribution for the beam. This leads to

Il,m(x, y, z) = |Al,m|2
(

Wo

W (z)

)2

G2
l

[ √
2x

W (z)

]

G2
m

[ √
2x

W (y)

]

. (A.49)

If we look at the zeroth order Hermite-Gaussian beam, the gaussian beam

solution stands out at the lowest order member of the Hermite-Gaussian family

of solutions.

Of particular interest for our experiment is not the zeroth order solu-

tion, but rather the first order solution. By letting l = 0 and m = 1, the

intensity pattern will be given by

I0,1(x, y, z) =
P

πWx(z)Wy(z)

8x2

W 2
x (z)

e
− 2x2

W2
x (z) e

−
2y2

W2
y (z) . (A.50)

This mode is also known as a TEM01 mode. Fig. A.6 shows plots of the inten-

sity distribution for a TEM01 mode. It should be noted that the TEM01 mode

has a dark line down the center of the beam. This is important in that it does

not suffer from the anti-trapping potential that plagues the compressed sheets

trap.

The potential created by the TEM01 beam takes the form

U(x, y, z) = 4Uo(z)
x2

W 2
x (z)

e
− 2x2

W2
x (z) e

−
2y2

W2
y (z) , (A.51)

where Uo is the potential depth of a gaussian beam having the same power

and waist as given above. The potential has a value of zero at the center of

the beam and increases to peaks located a distance Wx/
√

2 away. This gives

the trap a well depth of

Umax =
2

e
Uo . (A.52)
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Figure A.6: The intensity distribution of a TEM01 mode beam. The image
on the left is a two dimensional intensity plot of a TEM01 mode beam. The
righthand image is a one dimensional intensity profile taken along the x axis
of the two dimensional plot.

Along the same lines, the trap frequencies associated with a TEM01 can

be calculated. At the focus of a TEM01 beam, the trap has a frequency of

ωx(y) =

√

8Uo(y)

W 2
xm

. (A.53)

This value varies along the length of the dark line due to the changing intensity

in the y direction. It should be noted that this is a factor of
√

2 better than

two sheets compressed together. Typical values for a TEM01 mode trap are

given in Table A.5.
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Typical TEM01 Mode Trap Values

Umax 1470Erec

ωx 2π × 41.9 kHz

Table A.5: Typical values for a TEM01 mode trap. The calculation assumed
a beam with a power of 2W , waists Wx = 100µm and Wy = 2µm, and
λL = 532 nm.

A.4 Spontaneous Emission

Care must be taken when using optical dipole traps. In addition to the

potential the light creates, there is also the chance of the atom absorbing a

photon and making a transition to the excited state. It will then decay back

down to the ground state by spontaneously emitting a photon. To conserve

momentum, the atom receives a kick when it both absorbs and emits the

photon. The photon is spontaneously emitted in all directions leading to a net

change in momentum of zero, but the atom does undergo a random walk in

momentum space which leads to a heating of the entire sample. Therefore, it

is important to reduce spontaneous emission as it can become a substantial

source of heating.

Earlier in Eq. A.8 it was shown that the electric field induces a dipole

moment in the atom. This can also be written as [104]

p = αE , (A.54)

where α is the atomic polarizability. Therefore

α =
q2

m

1

ω2
o − ω2 − iωγ

. (A.55)
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It can be shown that the absorbed power becomes [101]

Pabs = 〈ṗ · E〉 =
ω

ǫoc
Im(α)I . (A.56)

This leads to a scattering rate of

Rscat =
Pabs

~ω
=

1

~ǫoc
Im(α)I . (A.57)

By substituting Eq. A.55 into Eq. A.57, the scattering rate becomes

Rscat =
ωγq2

m~ǫoc

I

(ω2
o − ω2)2 + ω2γ2

. (A.58)

In the limit that the detuning is small compared to the atomic transition

frequency, this reduces to

Rscat =
πq2I

2ωom~ǫoc

γ/2π

(ωo − ω)2 − (γ/2)2
, (A.59)

which is a Lorentzian profile centered at ωo with a full width at half maximum

of γ/2. The important thing to note is that the scattering rate falls off as the

inverse of the detuning squared.

A more rigorous calculation that takes into account the quantum me-

chanical nature of the atom can be performed and is found to be [43]

Rscat =
γ

2

so

1 + so + (2∆
γ

)2 , (A.60)

where

so = 2
Ω2

γ2
=

I

Isat

. (A.61)

Isat is the saturation intensity given in Eq. A.28. Again, this shows that the

scattering rate depends inversely on the detuning squared. Therefore, with

sufficient detuning, it is possible to create substantial dipole potentials while

having a negligible number of spontaneous emission events.
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Appendix B

Bose-Einstein Condensates

B.1 Overview

A Bose-Einstein condensate is a system of bosons at a density and

temperature such that the phase space density of the system is of order one

or greater. This produces a macroscopic system that shows quantum behav-

ior. This was achieved in dilute gases of alkali metals for the first time in

1995 [9–11]. This procedure has now become rather common place and is rou-

tinely performed in our lab (see Chap. 2 and Chap. 5 for a description of how

condensates are made), therefore some basic theory on condensates is useful.

Many nice review articles have been written on the subject [107, 108] as well

as several books [109, 110]. Therefore, I will only go into detail on the relevant

information for understanding the experiment. This appendix gives some of

the basic theoretical aspects of condensates in one, two, and three dimensions

with emphasis on experimentally useful quantities.

B.2 Three Dimensional Bose-Einstein Condensates

To begin, let us assume that we have a dense cloud of cold atoms. For

an ideal gas of bosons in a three dimensional harmonic trap, the cloud exhibits
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a phase transition when the following condition is met

ρλ3
dB ≥ ζ(3/2) ≈ 2.612 . . . , (B.1)

where λdB = h/
√

2πmkBT is the de Broglie wavelength and ζ(3/2) the Rie-

mann zeta function [111]. This condition corresponds to the atoms being cold

enough that their de Broglie wavelengths are comparable to the inter-atom

spacing. Therefore the wavefunctions collapse onto one another and a signifi-

cant proportion of the population can be described by a single wavefunction.

Algebraic manipulation of Eq. B.1 leads to a formula for the temperature at

which condensation starts to occur, also known as the critical temperature,

Tc. For a harmonically trapped gas this is

Tc =
~ω̄

kB

(

N

ζ(3/2)

)1/3

. (B.2)

Here ω̄ is the geometric mean of the trap frequencies. In our experiment

ω̄ ≈ 2π × 90 Hz, so with 2 million atoms, Tc ≈ 500nK.

As the temperature is lowered, more atoms accumulate in the ground

state increasing the number of atoms within the condensate. By integrating

the number of atoms in the ground state using the Bose distribution, one can

show that the condensate fraction increases as [110]

No = N

[

1 −
(

T

Tc

)3
]

. (B.3)

Therefore, by cooling down far enough it is possible to reach a regime where

the condensate is almost pure, i.e. the thermal background fraction is very

small.
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The condensate is a many-body system where the particles within the

condensate interact with each other through a contact interaction described

by Uoδ(r − r′) where Uo = 4π~
2ascat/m. ascat is the scattering length of the

atoms which is approximately 5.3 nm for 87Rb. A common approximation to

make is the Hartree-Fock ansatz in which the many-body system is a product

of single particle states. Using this mean field approach to analyze the system,

the Gross-Pitaevskii equation (GP equation),
(

− ~
2

2m
∇2 + V (r) + g3D|ψ(r)|2

)

ψ(r) = µ3Dψ(r) , (B.4)

can be derived to describe the evolution of the wavefunction ψ(r) [109, 110].

The constant g3D = Uo is used to conform with standard notation. Here, µ3D

is the chemical potential of the condensate and the wavefunction is normalized

such that the integral of |ψ(r)|2 over space is equal to the number of atoms,

N , in the condensate. This is valid for dilute gases such as in the experi-

ment. With this equation, it is possible to analyze the condensate in terms of

experimentally useful quantities.

B.2.1 Thomas-Fermi Approximation

Exact solutions to the Gross-Pitaevskii equation are rather hard to

come by due to the nonlinear term in the Hamiltonian. Fortunately, some

of the basic characteristics of a condensate can easily be calculated using the

Thomas-Fermi approximation. The approximation is valid for condensates

with large atom number and/or high mean field. The Thomas-Fermi approxi-

mation consists of assuming that the kinetic energy is negligible compared to
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the mean field energy and the potential energy and removing that term from

the GP equation. In which case, the result is

(

V (r) + g3D|ψ(r)|2
)

ψ(r) = µ3Dψ(r) (B.5)

leading to

n(r) = |ψ(r)|2 =
µ3D − V (r)

g3D

(B.6)

where n(r) is the density. We can define the boundary of the cloud as the

point where the chemical potential is equal to the potential energy of the trap.

For a three dimensional harmonic trapping potential, the boundaries become

R2
i =

2µ

mω2
i

(B.7)

in each of the trapping directions. The density distribution of the condensate

is a paraboloid with radii in each direction given by Eq. B.7.

A useful quantity is the chemical potential, which can be found in

terms of easily measured quantities such as the atom number and the trap

frequencies. The total number of atoms in the condensate is equal to the

integrated density in Eq. B.6. Using relation B.7 to remove the cloud radii,

the chemical potential becomes

µ3D =
152/5

2

(

Nascat

ā

)2/5

~ω̄ , (B.8)

where ω̄ is the geometric mean of the trapping frequencies and ā =
√

~/mω̄

is the geometric mean of the harmonic oscillator lengths. For our experiment,

with an almost pure condensate in the QUIC trap, we have roughly 106 atoms
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giving a chemical potential µ3D ≈ 2.52 × 10−30J ≃ 183nK · kB. The cloud has

a spatial extent of Rrad = 5µm and Rax = 50µm.

Another important quantity to know is the three body recombination

rate. This will determine the lifetime of the condensate. At the high den-

sities associated with condensates, there arises the possibility of three atoms

colliding at the same time. When this happens, two of the atoms can form a

molecule with the third carrying away the excess energy. The molecules leave

the condensate while the highly energetic atom stays in the trap, heating the

condensate.

A realistic calculation of the lifetime due to three body losses can be

made. The probability for three bodies to collide scales as the density squared.

The losses can be modelled by the rate equation

dN

dt
= −k3N〈n2〉 , (B.9)

where k3 is the three body recombination rate constant which for 87Rb is

1.81−29cm6/s [112]. Here, 〈ni〉 = 1/N
∫

ni+1 dV is the weighted average den-

sity. From this rate equation, the lifetime of the condensate is given as

τ3 =
1

k3〈n2〉 . (B.10)

In the case of a cloud trapped in a harmonic potential, the average squared

density can be calculated, yielding [112]

〈n2〉 =
154/5

168π2

(

mω̄

~
√
ascat

)12/5

N4/5 . (B.11)

For the condensates made in the QUIC trap, 〈n2〉 ≈ 1.76 × 1028 cm−6 giving

rise to a time constant τ3 ≈ 3.1 s.
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B.3 Two-Dimensional Condensates

It is possible to study condensates in lower dimensions. This is accom-

plished by altering the trap geometry such that the trapping frequencies in

either one or two of the directions is much greater than that of the remaining

directions. In such a configuration, the condensate will show behavior that is

either two-dimensional or one-dimensional in nature [95].

In order to create a two-dimensional condensate, it is necessary to

“freeze out” the dynamics in one of the dimensions. This can be accomplished

by increasing the trapping frequency, ωt, in one direction so that ~ωt ≥ µ3D.

With the energy level spacings in the tight confining direction much greater

than the chemical potential, the condensate is only allowed to undergo zero

point oscillations in that direction, effectively reducing the dimensionality of

the system. It should be noted that an equivalent formulation of the con-

dition for two-dimensionality is that the healing length of the condensate,

ξ = 1/
√

4πnascat, is greater than the radius of the condensate in the tight

confining direction.

Since the chemical potential of the condensate depends on the number

of atoms within the condensate, the two-dimensionality criteria puts a restric-

tion on the number of atoms that can be in a two-dimensional condensate

within a given trapping potential. Starting with

~ωt ≥ µ3D , (B.12)
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a little algebra yields

N2D ≤
√

32~

225ma2

√

ω3
t

ω4
⊥

, (B.13)

where ω⊥ =
√
ωxωy is the geometric mean of the trapping frequencies in the

two weakly confining directions [95]. It is clear that in order to have as many

atoms as possible in a two-dimensional condensate, it is important to have the

highest tight trapping frequency achievable and the weakest possible confine-

ment in the other two directions.

The three dimensional GP equation has to be reformulated for a two-

dimensional system in order to model the behavior of this new, lower dimen-

sional system. Lowering the dimension of the GP equation is a straight forward

process [113]. The assumption is made that the wavefunction is of the form

ψ(x, y, z) = φ(x, y)
(mωz

π~

)1/4

e−
mωz
2~

z2

, (B.14)

where φ(x, y) is the two-dimensional condensate wavefunction. This solution

is placed into Eq. B.4 and the z dimension is integrated out. The result,

(

− ~
2

2m
∇2

x,y + V (x, y) + g2D|φ(x, y)|2
)

φ(x, y) = µ2Dφ(x, y) , (B.15)

is the two-dimensional form of the GP equation where g2D = (mωz

2π~
)1/2g3D is

the two-dimensional coupling factor and µ2D is the two-dimensional chemical

potential.

As before, it is possible to simplify the two-dimensional GP equation

by making the Thomas-Fermi approximation. In an analogous manner to the
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three dimensional case, the chemical potential for a two-dimensional conden-

sate can be derived with the result

µ2D = (8π)1/4

(

3

8

)1/2(
Nascat

az

)1/2

~ω̄2D . (B.16)

Here, az is the harmonic oscillator length in the tight confining direction and

ω̄2D is the geometric mean of the trapping frequencies in the two weak direc-

tions. For a two-dimensional condensate containing ≈ 5×104 atoms trapped in

a 20 kHz TEM01 mode trap with weak trap frequencies of 10 Hz, the chemical

potential is µ2D ≈ 5.16 × 10−31 J = 37.5 nK · kB.

Three body losses still remain a concern. The rate equation remains

the same, the only difference is the average squared density. Recalculation of

this quantity leads to

〈n2〉 =
9N

32
√

3π

1

ascat

1

az

1

ā4
⊥

. (B.17)

where ā⊥ is the geometric mean of the harmonic oscillator lengths in the two

weak directions. For the two-dimensional condensate mentioned previously,

〈n2〉 ≈ 5.1 × 1028 cm−6 leading to a lifetime of τ3 ≈ 1 s.

B.4 One-Dimensional Condensates

Not surprisingly, it is possible to reduce the dimension of the condensate

further by increasing one of the weak trapping frequencies to a large enough

value. If the two tight confining trap frequencies are great enough such that the

chemical potential is less than the energy level spacings of the harmonic trap
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in both directions, the condensate will be forced into zero point oscillations in

those directions. A mathematical formulation of this condition is

~ωy, ~ωz ≥ µ3D, (B.18)

where y and z are taken as the tight confining directions. This criteria on

the dimensionality of the condensate leads to the restriction on the number of

atoms that may be in a one-dimensional condensate residing in a particular

trap [95]

N1D ≤
√

32~

225ma2

√

ω⊥

ω2
x

. (B.19)

Here, ω⊥ is the geometric mean of the tight confining trap frequencies and ωx

is the weak trap frequency.

The two-dimensional GP equation must be reformulated for a one-

dimensional condensate. This is done in the same way that the two-dimensional

GP equation was formulated. Since the wavefunction is reduced to zero point

oscillations in two dimensions, the assumption is made that the wavefunction

has the form

φ(x, y) = ϕ(x)
(mωy

π~

)1/4

e−
mωy
2~

y2

, (B.20)

where ϕ(x) is the one-dimensional many-body wavefunction. This form is

substituted into the two-dimensional GP equation and the y dimension is

integrated out. This yields the following one-dimensional GP equation

(

− ~
2

2m

∂2

∂x2
+ V (x) + g1D|ϕ(x)|2

)

ϕ(x) = µ1Dϕ(x) , (B.21)
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where g1D = g2D(mωy

2π~
)1/2 = g3D

mω⊥

2π~
is the one-dimensional coupling constant

and µ1D is the one-dimensional chemical potential

This one-dimensional GP equation can be simplified with the Thomas-

Fermi approximation. By doing this, the chemical potential can be calculated,

yielding

µ1D =

(

9

32
mω2

xg
2
1DN

2

)1/3

. (B.22)

For a one-dimensional condensate contained in a harmonic trap with frequen-

cies of 2π × 30 kHz, 2π × 30 kHz, and 2π × 3 Hz, the chemical potential is

µ1D ≈ 2.76 × 10−31 J = 20 nK · kB.

Following a similar procedure as before, the three body recombination

lifetime can be calculated. For a one-dimensional condensate in a harmonic

trap, the average squared density is

〈n2〉 =
3

35π2

3

√

3

2

1

a4
⊥

(

a2
⊥

ascata4
x

)2/3

N4/3 , (B.23)

where a⊥ is the geometric mean of the harmonic oscillator lengths in the

tight confining directions and ax is the harmonic oscillator length in the weak

direction. For the aforementioned one-dimensional condensate, 〈n2〉 ≈ 5.56 ×

1027 cm−6, which yields a lifetime of τ ≈ 10 s.
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