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This thesis describes several new ideas towards spatially resolved single atom detec-

tion, using a magic wavelength and spatially resolved stimulated Raman transitions.

After an introduction to the theory of AC-Stark shifts and the magic wavelength,

we will present the calculations on the magic wavelength for Sodium and Rubidium.

We conclude the first chapters by summarizing the experimental efforts made in order

to determine the magic wavelength in Sodium.

The theory for stimulated Raman transitions will be described in chapter 5 and

evaluated in chapter 6 for Sodium atoms, including a prediction for the ideal pulse area

and the spatial resolution achievable using magnetic field gradients.
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the Landé-g-factors. Energy is not to scale. . . . . . . . . . . . . . . . . . 55

B.3 Schematic of the cycling transition F = 2→ F′ = 3 with the red detuned

beam (orange) and the repump beam (blue). Energy is not to scale. . . . 56

B.4 Sodium 32S1/2 ground state hyperfine structure in an external magnetic

field. In the anomalous Zeeman-regime the levels are grouped according

to the value of F, in the Paschen-Back-regime according to the value of

mJ [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



Chapter 1

Introduction

In the last few decades, the experimental study of the interaction of electro-magnetic

radiation with ”cold” atoms has led to a new field of research, Atom Optics. It is possible

today to cool atoms as Sodium and Rubidium to only a few millionth of a degree with

a laser cooling mechanism. In this region, the wave nature of the atoms becomes

apparent and opens up possibilities for the study of interesting atom-light interactions

and quantum phenomena.

In 1982 Metcalf et al. showed the first slowing of atoms in an atomic beam [1]

and in 1985 Chu et al. succeeded in cooling trapped atoms [2]. The rapid development

made in cooling and precise manipulation of atoms finally led to the first Bose Einstein

Condensate in 1995 by Cornell and Wieman in Boulder , Colorado [3]; a phenomenon

predicted by Albert Einstein in 1925 [4].

In the last ten years many questions have been addressed to BEC-systems, such

as the interaction with an optical lattice and the transition between a superfluid and

a Mott-insulator [5]. The techniques developed make it possible to think of studying

the quantum statistics of atoms, with the hope of observing such phenomena as atom

bunching and anti-bunching, comparable to similar phenomena in quantum optics and

doing controlled studies of entanglement in an atom number state.

Single atom detection and spatially resolved measurements are needed for these

type of studies; a magic wavelength tweezer and spatially resolved Raman transitions
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are therefore useful tools. A tweezer at the magic wavelength would allow to trap

atoms in the ground state as well as in an excited state without heating them. Thus

transitions between these two states can be induced and fluorescence imaging can

be used to determine the atom number. Spatially resolved Raman transitions allow

to measure spatial distributions where the achievable resolution is smaller than the

wavelength.

As this work deals with the manipulation of atomic states with light we will

review the semi-classical description of atoms with non-resonant light (chapter 2) and

apply it to calculations of the AC-Stark shift in Sodium and Rubidium. Knowing the

respective energy shifts for the ground and the excited states we can determine the

magic wavelength, where the relative shift between the ground and a specific excited

state vanishes (chapter 3). Our efforts to determine the magic wavelength in Sodium

are summarized in chapter 4, together with a brief discussion of the experimental

environment.

In chapter 5 we expand the theory of the interaction of electro-magnetic radiation

with atoms to the case with two monochromatic light sources and introduce stimulated

Raman transitions in the presence of an external magnetic field. Chapter 6 summarizes

our calculations of stimulated Raman transitions for Sodium atoms, and outlines the

spatial resolution that is prospectively achievable using a magnetic field gradient.

A relevant parameter in all our calculations is the dipole matrix element between

two states. A convenient way to determine these is the Wigner-Eckart Theorem which

is briefly discussed in appendix A. Appendix B summarizes some physical properties

of Sodium atoms and describes the influence of an external magnetic field on the

energy level structure. The Einstein-coefficients we calculated to determine the magic

wavelength in Rubidium are tabulated in appendix C.
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Chapter 2

Interaction of atoms with

non-resonant light

In this chapter we give a brief introduction into the theory of the interaction of atoms

with non-resonant light. We restrict the treatment to purely monochromatic light and

use a semi-classical expression for the interaction Hamiltonian.

2.1 Time-dependant Schrödinger equation

A dynamical quantum mechanical system is described by the time-dependant Schrödinger-

equation

H|Ψ(~r, t)〉 = i~
∂
∂t
|Ψ(~r, t)〉. (2.1)

For the interaction of atoms with light this equation cannot be solved analytically.

Hence we will use perturbation theory and treat the time-dependant electro-magnetic

light field as a perturbation [6]. We separate the total Hamiltonian H(t) into two terms,

H(t) = H0 +H′(t), where H0 is time independant; the explicit time dependance is treated

in H′(t) as perturbation to the solution of the stationary Schrödinger-equation.

The solution to the time-independant Schrödinger equation is given by the
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eigenfunctions |n〉with the corresponding energy eigenvalues En = ~ωn,

H0|n〉 = En|n〉. We will write the time-dependant wavefunction |Ψ(~r, t)〉 as superposition

of eigenstates |n(~r)〉,
|Ψ(~r, t)〉 =

∑

n
cn(t)e−iωnt|n(~r)〉 (2.2)

with the time-dependant coefficients cn(t). The Schrödinger equation thus becomes

H(t)|Ψ(~r, t)〉 = (H0 + H′(t))
∑

n
cn(t)e−iωnt|n(~r)〉

= i~
∂
∂t

∑

n
cn(t)e−iωnt|n(~r)〉 (2.3)

Eq. 2.3 can be further evaluated by multiplication from the left with 〈m| and integrating

over spatial coordinates. This leads to a set of differential equations for the coefficients

cn(t),

i~
dcm(t)

dt
=

∑

n
cn(t)H′mn(t)eiωmnt, (2.4)

where H′mn = 〈m|H′(t)|n〉 and ωmn = ωm − ωn.

2.2 Interaction of a two-level atom with non-resonant light

Let us consider the case of a periodic perturbation with frequency ω, more precisely

an oscillating electric field described by ~E(~r, t) = 1
2
~E0ei(~k·~r−ωlt) + c.c.. In most cases the

spatial dependance of the electric field is negligible when considering the interaction

of atoms with light, since the extend of the electric field is on the order of λ (a few

hundred nanometers) while the atoms are several orders of magnitude smaller (a few

Ångström). The formalism presented here is for non-resonant light; the resonant case

has to be treated seperately.

We will apply the common dipole approximation for radiative transitions of the

atoms [7]. Thus the Hamiltonian becomes

H(t) = H0 − ~µ · ~E(t), (2.5)

4



with the perturbation H′(t) = −~µ ·~E(t). The set of differential equations, eq. 2.4, specifies

to
∂cm(t)
∂t

=
i
~

∑

n

~µmn~E(t)cn(t)eiωmnt, (2.6)

where µmn describes the dipole matrix element 〈m|~µ|n〉.
Let us first consider the analytically solvable case of a two-level atom. The more

general treatment of a multi-level system will be presented in chapter 2.3. In a two-level

atom there are two coupled differential equations

∂cg(t)
∂t

=
i
~
~µge~E(t)ce(t)eiωat (2.7)

and
∂ce(t)
∂t

=
i
~
~µeg~E(t)cg(t)eiωat (2.8)

with the resonant absorption frequency ωa = ωe − ωg. The ground and excited states

are labeled by the indices g and e respectively. By introducing the Rabi frequency for a

two-level atom

Ω =
E
~
〈e|µ|g〉, (2.9)

these differential equations can be simplified to

∂cg(t)
∂t

= iΩ∗ce(t)e−iωat (2.10)

and
∂ce(t)
∂t

= iΩcg(t)eiωat, (2.11)

where we have ignored the spatial dependance of the oscillating electric field.

Generally it is possible to solve these equations by transforming them into a

rotating frame. Here we will follow another ansatz [8] and substitute the coefficients

cg(t) and ce(t) with

5



c′g(t) = cg(t) (2.12)

and

c′e(t) = ce(t)e−iδt, (2.13)

where δ = ωl − ωa defines the detuning from resonance. By making this substitution

and making the Rotating Wave Approximation [9] one derives the following equations

[10]

i~
dc′g(t)

dt
= c′e(t)

~Ω

2
(2.14)

and

i~
dc′e(t)

dt
= c′g(t)

~Ω

2
− c′e~δ. (2.15)

It is now possible to diagonalize the matrix for the perturbative part of the

Hamiltonian to the following form

H′ =
~

2

(−2δ Ω

Ω 0

)
, (2.16)

thus the shifted energy levels are given by

Eg,e =
~

2
(−δ ±Ω′), (2.17)

where Ω′ ≡
√

Ω2 + δ2. If we assume Ω� δ the energy levels are shifted by

∆Eg,e = ±~Ω
2

4δ
(2.18)

respectively.

Similarly, if we assume Ω� |δ| the levels shift by

∆Eg,e = ±sgn(δ)
~Ω

2
. (2.19)

A schematic for the two-level energy shift is shown in fig. 2.1.
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Figure 2.1: Schematic of the energy shift due to a periodic perturbation in a two-level
atom.

The potential created by the energy shift can be used to trap atoms. The force

due to the potential is a consequence of the dipole moment and is therefore called

dipole force,

~Fg,e = −∇E = ∓ ~
4δ
∇Ω2 ∝ 1

δ
∇I. (2.20)

The dipole force is proportional to the intensity of the light and inversely proportional

to the detuning of the light-frequency from the resonance frequency. Since the detuning

from resonance can be either positive or negative, i.e. blue or red detuned, one should

consider two separate cases. In case of blue detuned light, δ > 0, the energy shift

of the ground state is positve and the dipole force repulses atoms from the intensity

maximum. Therefore atoms will not be trapped in the beam. On the other hand, it is

doable to exert an attractive dipole force if δ < 0. Thus it is possible to trap atoms in a

red detuned laser beam, as it is done in an optical tweezer.

7



2.3 Interaction of a multi-level system with non-resonant light

Although there are many cases where the two-level approximation is justified, we

will now consider the more general case of a multi-level atom by going back to the

Schrödinger-equation (eq.2.1) and using time-dependant perturbation theory to solve

the differential equation.

In the second order expansion we get the following expression for the coefficients

cm(t),

cm(t) − cm(0) = − 1
~2

∫ t

0
dt′

∫ t′

0
dt′′

∑

k

~µnk~E(~r, t′)~µkm~E(~r, t′′)eiωnkt′eiωkmt′′ , (2.21)

where the sum has to be evaluated over all possible states. For further analysis we insert

the complex electric field E(t) = 1
2 E0eiωlt + c.c., where we neglect the spatial dependance

again. Thus we obtain

cm(t) − cm(0) = − 1
4~2

∫ t

0
dt′

∫ t′

0
dt′′

∑

k

~µnkE0(t′)
(
eiωlt′ + e−iωlt′

)

×~µkmE0(t′′)
(
eiωlt′′ + e−iωlt′′

)
eiωnkt′eiωkmt′′ , (2.22)

where we have avoided the Rotating Wave Approximation.

Assuming the atom to be in state |m〉we can rewrite the coefficients as complex

phase eiφ(t). The equation above then reads

1 · eiφ(t) − const. = − 1
4~2

∫ t

0
dt′

∫ t′

0
dt′′

∑

k

~µnkE0(t′)
(
eiωlt′ + e−iωlt′

)

×~µkmE0(t′′)
(
eiωlt′′ + e−iωlt′′

)
eiωnkt′eiωkmt′′ . (2.23)

By differentiating and averaging over one period this becomes

〈φ̇〉 = −|E0|2
4~2

∑

k

|~µkm|2
(

1
ωkm + ωl

− 1
ωkm − ωl

)
. (2.24)
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The energy shift for the level m is then seen to be

∆Em = ~〈φ̇〉 = −|E0|2
~

∑

k

|~µkm|2
(

1
ωkm + ωl

− 1
ωkm − ωl

)
(2.25)

and for the ground state

∆Eg = −|E0|2
4~

∑

k

|~µkg|2
(

1
ωkg + ωl

− 1
ωkg − ωl

)
. (2.26)

A comparison with the classical result ∆Eg = −α(ω)
2 |E0|2 gives the quantum-mechanical

description for the polarizability α(ω) [11]

α(ω) = − 1
2~

∑

k

|~µkg|2
(

1
ωkg + ωl

− 1
ωkg − ωl

)
. (2.27)

In fig. 2.2 we show the AC-Stark shift for the Sodium ground state and the

32P3/2(F = 0) excited state as an example. The poles appear due to resonant transitions.

2.4 Dipole matrix elements, Einstein-coefficients and the AC-

Stark shift

In order to calculate the AC-Stark shift it is necessary to evaluate the dipole matrix

elements

µ jk = 〈 j|µ|k〉 = 〈 j|erq|k〉. (2.28)

Here e denotes the charge of an electron, r the electron coordinate and q the polarization

of the incident electric field.

Since in alkali atoms hyperfine splittings play an important role, the eigenstates

of the atoms have to be expressed in the F-basis. In the following section we will label

the states |k〉 by the quantum numbers Jk and Fk for the angular momenta and the

9



Figure 2.2: Plot of the AC-Stark shift. Numerical values are for a beam with P=1W,
w0=10µm and π-polarized light; the hyperfine structure belongs to the 32P3/2 state. The
potential is attractive for ∆E < 0 and repulsive for ∆E > 0.

magnetic quantum number Mk. The dipole moment therefore reads

µ jk = e〈JkFkMk|rq|J jF jM j〉. (2.29)

In general, the value of the dipole matrix element will depend on the polarization of

the incoming beam; q = ±1 corresponds to circular (σ±) polarised light, for linear (π)

polarised light q equals 0.

The dipole matrix elements can be transformed into reduced matrix elements

by applying the Wigner-Eckart Theorem [12]

〈JkFkMk|rq|J jF jM j〉 = (−1)Jk−Mk

( Jk 1 J j

−Mk q M j

)
〈JkFk||r||J jF j〉. (2.30)

On the right-hand side of eq. 2.30 we succeeded in separating the geometry and

symmetry from the dynamics of the system using a reduced matrix element. The term
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in brackets describes a Wigner-3j-symbol, which includes the selection rules for optical

transitions. It is related to the Clebsch-Gordan-coefficients via the following equation

( Jk 1 J j

−Mk q M j

)
= (−1)Jk−1−M j

√
(2J j + 1) 〈Jk −Mk, 1q|J j −M j〉. (2.31)

Further evaluation of the reduced matrix element is necessary in order to cal-

culate the dipole matrix element. The reduced matrix element in the F-basis can be

transferred into the J-basis by factoring out the F-dependance,

〈IkJkFk||r||I jJ jF j〉 = (−1)1+Jk+I j+F j

√
2F j + 1

√
2Fk + 1

{ Jk I j Fk

F j 1 J j

}
〈Jk||r||J j〉. (2.32)

The term in curled brackets represents a Wigner-6j-symbol.

By inserting eq. 2.30 and 2.32 into 2.28 we express the matrix element as

µ jk = e〈JkFkMk|rq|J jF jM j〉

= e · (−1)1+Jk+I+F j+Jk−Mk

( Jk 1 J j

−Mk q M j

)

×
√

2F j + 1
√

2Fk + 1
{ Jk I Fk

F j 1 J j

}
〈Jk||r||J j〉. (2.33)

We can connect the reduced matrix element 〈J′||r||J〉 with the Einstein-coefficients A jk

for spontaneous emission, respectively the inverse of the partial lifetime [10],

Akj =
1
τkj

=
ω3

kj

3πε0~c3
1

2Jk + 1
|〈Jk||e~r||J j〉|2. (2.34)

Hence the dynamics of the system are included in the Einstein-coefficients, while the

geometrical properties are represented by the Wigner-symbols. By applying eq. 2.34

and eq. 2.33 we get the following result for the energy shift [13],
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∆E j =
∑

k

|µkj|2E2

~

(
1

ωkj + ωl
− 1
ωkj − ωl

)

=
∑

k

E2

~

(
1

ωkj + ωl
− 1
ωkj − ωl

)
Akj

3πε0~c3

ω3
kj

(2Jk + 1)

|e · (−1)1+Jk+I+F j+Jk−Mk

√
2F j + 1

√
2Fk + 1

( Jk 1 J j

−Mk q M j

) { Jk I Fk

F j 1 J j

}
|2

= 3πc2I
∑

k

Akj(2Jk + 1)

ω2
kj · (ω2

l − ω2
kj)

× |
√

2F j + 1
√

2Fk + 1
( Jk 1 J j

−Mk q M j

) { Jk I Fk

F j 1 J j

}
|2. (2.35)

The sum of the Einstein coefficients and the corresponding transition strengths

include the contributions from the possible dipole transitions in the atom. The relative

transition strengths depend on the involved angular momenta J and F, the projection

M and the polarization of the laser beam and are given by the geometry of the system

which we have expressed by the Wigner-3j and Wigner-6j-symbols. Nevertheless, the

absolute value of the AC-Stark shift is determined by the intensity of the laser beam.
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Chapter 3

Magic Wavelength

The concept of a magic wavelength is mostly discussed in connection with time and

frequency measurements. Today time and frequency standards are determined by

Cesium fountain clocks as NIST-F1, where transitions are induced in a microwave-

cavity [14]. Although frequency is already the most precisely measurable quantity,

frequency measurements would be greatly improved by exploiting optical instead of

microwave transitions.

For an optical clock, ultracold neutral atoms have to be trapped in order to

minimize Doppler-Shifts. Optical traps have the disadvantage of shifting the energy

levels, where the magnitude of the shift is proportional to the intensity of the beam

used to create the trap, as we have shown in the previous chapter. In general, these

shifts are different for different atomic levels, and the resonance frequency therefore

depends on the trapping potential, i.e. the exact position of the atom inside the trap.

Nevertheless, if the energy shifts are equal for the ground and the respective excited

state the resonance frequency gets insensitive to the intensity of the laser beam and

hence to the trapping potential. The wavelength with the above characteristics is called

the magic wavelength [15].

An attractive trap at the magic wavelength provides the same potential for the

ground and excited state. Hence the atoms held in this trap are not heated when a

resonant transition is induced. The fluorescence signal contains information not only
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on the transition frequency but also on the number of atoms trapped [16].

We have shown in chapter 2.2 that the energy shift for the ground and excited

states are of equal magnitude but of opposite sign for a two-level atom. Hence it

is impossible to find a magic wavelength in a two-level system. However, a magic

wavelength is possible, but does not necessarily exist, in a multi-level system. Since all

optical transitions depend on the polarization of the incident beam it is possible to find

different magic wavelengths for different polarizations.

Magic wavelengths have already been calculated (and measured) in some atoms,

Calcium [11] and Strontium [17] for example, but theoretical predictions of the magic

wavelength are limited by the uncertainty in the Einstein-coefficients. Most Einstein-

coefficients are only determined theoretically; the values depend strongly on the model

and on the approximations used to calculate them.

3.1 Calculation of the magic wavelength in Sodium

In the previous chapter we derived an analytical expression for the AC-Stark shift

(eq. 2.35). In order to minimize an error due to a limited number of transitions we

took 32 different energy levels into account. Numerical values used to determine the

magic wavelength in Sodium are taken from the NIST Databank [18]. Tab. 3.1 shows

the numerical values for the magic wavelengths for π-polarized light for the different

hyperfine levels.

state(s) magic wavelength in nm
F=0; F=2; F=3, M=±2,0 1040 ± 8
F=1, M=0 1110 ± 3
F=1, M=±1 1020 ± 7
F=3, M=±1 1012 ± 9
F=3, M=±3 none

Table 3.1: Numerical values for the magic wavelengths of the ground state with the
32P3/2-state of Sodium for linear polarized light
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The degeneracy of some of these levels, i.e. F=0 M=0 and the F=2 manifold

are due to the same relative transition strengths. For trapping atoms with different

magnetic sublevels it is desirable to have only one single magic wavelength for all of

them. A universal magic wavelength like this does not exist in Sodium; nevertheless,

for linear polarized light, a trapping wavelength around 1040nm looks promising since

the potential is attractive for all states and does not change dramatically with the

hyperfine level. Plots of the AC-Stark shift are shown in figs. 3.1 and 3.2. The poles are

due to resonant transitions in Sodium atoms, e.g. at 589 nm.

Figure 3.1: Plot of the AC-Stark shift. Numerical values are for a linearly polarized
beam with P=1W, w0=10µm and π-polarized light; the hyperfine structure belongs to
the 32P3/2 state.
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Figure 3.2: Plot of the AC-Stark shift in Sodium. Numerical values are for a linearly
polarized beam with P=1W and w0=10µm; detailed view around the magic wavelength;
the hyperfine structure belongs to the 32P3/2 state.

Fig. 3.3 shows the AC-Stark shift for circularly (σ+) polarized light.

A tweezer with circularly polarized light looks less promising compared to

linearly polarized light. The degeneracy of most levels is removed, leading to even

more individual magic wavelengths that are spreaded over a bigger wavelength range.

3.2 Magic wavelength in Rubidium

Using data from Safronova et al. (see also appendix C) we calculated the AC-Stark

shift for Rubidium 87 [19]. Although individual magic wavelengths are found, there

does not exist a wavelength which looks promising for trapping. The steep slope of the

AC-Stark shift around the magic wavelengths near 1400nm leads to a very sensitive

dependance on the trapping wavelength. The energy shift is also strongly dependant

on the magnetic sublevel.

A plot of the AC-Stark shift is shown in fig. 3.4.
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Figure 3.3: Plot of the AC-Stark shift in Sodium. Numerical values are for a circularly
polarized beam with P=1W and w0=10µm; the ground state manifold is shown in red,
excited states (32P3/2) are blue.

Figure 3.4: AC-Stark shift in Rubidium. Numerical values are for a linearly polarized
beam with P=1W and w0=10µm; the hyperfine structure belongs to the 52P3/2 state.
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Chapter 4

Experiments on the magic

wavelength

In this chapter we outline our efforts to determine the magic wavelength of Sodium.

Although the measurements did not attain any meaningful results, we want to give a

brief introduction to the idea of the measurement and shortly describe the experimental

procedure.

4.1 Scattering Rate

In section 2.2 we described the interaction of a two-level atom with a monochromatic

light field. However, an approach using coherent evolution of the amplitudes cannot

describe spontaneous emission. In the two-level approximation this can be included

using a density matrix formalism. The interaction of a two-level atom with electro-

magnetic radiation in the case of purely radiative damping can then be described by

the optical Bloch equations [8]
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d
dt
ρgg =

iΩ
2

(ρ̃ge − ρ̃eg) + Γρee (4.1)

d
dt
ρee = − iΩ

2
(ρ̃ge − ρ̃eg) − Γρee (4.2)

d
dt
ρge = − iΩ

2
(ρee − ρgg) − (

Γ

2
+ i∆)ρ̃ge, (4.3)

where ρi j are the matrix elements of the density operator, Ω =
~µ·~E
~ is the resonant

Rabi frequency, ~µ the dipole operator, ~E the electric field, Γ the natural decay rate of the

excited state e and ρ̃ge ≡ ρgeexp(−i∆t), ρ̃ge = ρ̃∗eg. The total steady-state photon scattering

rate is then given by Γρee [20]

Rsc =
Γ

2
I/Isat

1 + (2∆
Γ )2 + I

Isat

, (4.4)

where I
Isat

= 2
(

Ω
Γ

)2
. This approximation is valid if the detuning ∆ from the optical

resonance is large, ∆� Γ.

An additional light field causing an AC-Stark shift, corresponding to a detuning

from resonance, should therefore decrease the scattering rate and consequently the

amount of scattered light. Fig. 4.1 shows the scattering rate as a function of the

detuning ∆ for several values of I
Isat

. The natural decay rate Γ is taken to be 2π·9.795MHz,

corresponding to the Sodium D2-line, which we use to trap and cool the atoms.

4.2 Experimental Setup

4.2.1 Oven and Zeeman-slower

Because of the low vapor pressure of Sodium (Pv = 2.2 ·10−11 torr [20]) it is necessary to

heat the Sodium in an oven to about 500K. Our oven is not recirculating and therefore

it has to be refilled after a few hundred hours of operation [21].

In order to be able to trap the atoms in a magneto-optical trap (MOT) (see section

4.2.2) the atoms in the effusive beam have to be decelerated to a few meters per second.
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Figure 4.1: Scattering Rate dependance on the detuning δ for several values of I
Isat

. The
natural decay rate Γ is 2π · 9.795MHz for the D2-line in Sodium.

This can be achieved by scattering a sufficient number of photons from a counter-

propagating beam. Atoms with different velocities have different Doppler-shifts, so the

optical transition will be out of resonance after a certain number of scattering events.

A resonant transition can be maintained by changing the magnetic hyperfine splittings

using an external magnetic field, tuned to compensate for the decreasing Doppler-shift

of the decelerating atoms. In a low magnetic field the magnetic energy levels split

proportionally to the magnitude of the field. This is called the anomalous Zeeman-

effect and is used in a Zeeman-slower to maintain a resonant transition between the

ground and the respective excited state. The slowing transition in our setup is the

|F = 2,M = 2〉 → |F = 3,M = 3〉 transition and is excited by a dye laser (Coherent

899-21).

4.2.2 Magneto-Optical Trap

After leaving the Zeeman-slower the atoms that are sufficiently slowed are trapped in

a magneto-optical trap (MOT). Two coils in an Anti-Helmholtz-configuration provide
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a quadrupole field with a magnetic field gradient in radial (ρ-) and axial (z-) direction,

where
dBz

dz
= 2

dBρ
dρ

. (4.5)

In addition to the magnetic field gradient there are three pairs of counter-propagating

beams, red-detuned from the resonance at zero magnetic field; a schematic of the

alignment is shown in fig. 4.2. If a trapped atom moves out of the zero magnetic field

at the center of the trap, the magnetic sublevels will split according to the magnitude

Figure 4.2: Schematic of the beam configuration in a magneto optical trap (MOT), the
current in the Anti-Helmholtz-coils (red) flows opposite, the MOT beams are repre-
sented by the blue arrows

of the magnetic field. Therefore the detuning decreases with an increasing distance

from the center of the magnetic field. If the polarizations of the two opposing beams

are aligned correctly, there will be more light scattered from one than from the other

and the atom driven back towards the center of the trap, i.e. an atom moving to the

right scatters more σ−-polarized light. In fig. 4.3 we have shown a schematic for the

magnetic detuning in a 1-D-MOT, which can easily be extended to three dimensions.

The beams in our setup are 20MHz red detuned from the 32S1/2(F = 2) →
32P3/2(F′ = 3) transition; the magnetic field gradient in the axial direction is 15G/cm.
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Figure 4.3: Sketch of the Zeeman-Shift in a 1-D MOT. The dashed line represents the
red detuned MOT-beam frequency. The position dependant Zeeman-shift changes the
detuning from the resonance frequency [8].

4.3 Experimental procedure

After loading about 109 atoms into the MOT we collected the scattered light and focused

it down onto an avalanche photo diode (APD). By introducing an AC-Stark shift with

a YAG-laser (IPG Photonics YLD-10) at 1064nm the fluorescence signal of the MOT

should change slightly. Since the desired signal is small compared to the background

fluorescence we intended to use a lock-in amplifier (SRS 510) to extract the signal. We

therefore pulsed the YAG-laser with frequencies between 1kHz and 10kHz.

The first signal we got was due to light directly scattered from the YAG beam

into the APD. We therefore put additional shielding around the APD and could remove

scattered light at a wavelength of 1064nm.

We created a MOT with a diameter of approximately 500µm and variied the

beam waist of the YAG-laser between 190µm and 400µm. The predicted AC-Stark shift

δ due to a 6W YAG-beam with a waist of 400µm is 49.4kHz in about 49% of the atoms,

assuming the MOT to be spherical and of equal density. Using eq. 4.4 we can calculate
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the scattering rate in the MOT with the detuning ∆ = 20MHz of the MOT-beams and the

scattering rate in presence of the YAG-light with the total detuning ∆tot = ∆ + δ. Thus

the expected change in the fluorescence signal is about 2% relative to the flourescence

without the YAG-beam. Nevertheless, we were not able to detect a change in the

fluorescence signal.

The attempt to introduce a frequency modulation of the MOT-light itself using

two DDS (Direct Digital Synthesis) failed. The switching of the DDS resulted in tran-

sients that were picked up by the MOT fluorescence. Changing the frequency using

a frequency generator (HP 0.1-2010 GHz FG) with external modulation we succeeded

to induce a change in flourescence. At a modulation frequency of 10kHz we could

detect down to a 2kHz change in the MOT-frequency. The corresponding change in the

flourescence signal was 0.48%.

A stronger effect of the AC-Stark shift is expected at a wavelength of 532nm, far

away from a magic wavelength. Hence we followed the same experimental procedure

using a Verdi laser (Coherent Verdi V10) instead of the YAG-laser; but we still could

not detect a meaningful signal. It is possible that the changing magnetic field in the

MOT complicates the measurements in a way we were not considering.

In our future experiments we will not drive a clock transition, therefore we

are not obliged to use a magic wavelength. Moreover, since the atoms are in different

hyperfine states, a trap cannot be at a magic wavelength for all the atoms. Nevertheless,

it is advantageous to be near a magic wavelength to avoid a strong heating of the atoms.
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Chapter 5

Stimulated Raman transitions

A Raman transition is a two-photon process that couples two different energy levels

and transfers population from one state into the other. This is done by absorbing one

photon from a monochromatic light source (usually a laser) and reemitting a photon

with a different frequency. Stimulated Raman transition means that the emission is

also driven by an external monochromatic field (second laser beam). For an efficient

population transfer, the beams should be detuned by the frequency corresponding to

the energy difference of the two coupled states.

In section 5.1 we will give a brief overview of stimulated Raman transitions,

before we present the fundamental limits in section 5.2. The following sections will

present a theoretical description of stimulated Raman processes, first for a simple

three-level system in section 5.3, then generalizing to multi-level systems in section 5.4.

Lastly, we will describe the effects due to an external magnetic field.

5.1 General description of spatially resolved stimulated Ra-

man transitions

The ground state 2S1/2 in Sodium splits into two hyperfine levels with F=1 and F=2.

The difference frequency between those two states is 1.772GHz. The laser we use to

cool and trap the atoms in a MOT, is tuned to the |32S1/2,F = 2〉 → |32P3/2,F = 3〉
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transition. Therefore only atoms in the |F = 2〉 ground state will be excited by our laser

and start fluorescing until they finally decay into the |F = 1〉 state. Ususally, a repump

laser, tuned to the |32S1/2,F = 1〉 → |32P3/2, F = 2〉 transition, is used to transfer atoms

out of the dark state back to the |F = 2〉 ground state.

Let us assume now all atoms start in the |F = 1〉 ground state. In a direct

transition using a radio frequency pulse spatial resolution can be achieved by shifting

the energy levels of the two hyperfine ground states by applying a magnetic field

gradient. This leads to a spatially varying resonance frequency ω0. By tuning the

frequency of the radio field one can select a small region around x0 in which the atoms

will make a transition, if a pulse with the appropriate intensity and duration is applied.

A simplified scheme of the one-photon transition is shown in fig. 5.1, where we have

assumed that only the final state | f 〉 is dependant on the magnetic field. The resolution

is given by the width of the atomic distribution that is excited around a particular x0.

Figure 5.1: Simplified scheme of a resonant transition with spatial resolution; the
resonance frequencyω0 is space-dependant, i.e. the resonance frequencyω0 at x0 is not
in resonance at point x. For simplicity we have assumed that only the final state | f 〉 is
dependant on the magnetic field.
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The scheme for a Resonant Raman transition looks fairly similar, as can be seen

in fig. 5.2. Instead of a resonant one-photon transition a resonant two-photon transition

occurs. Two frequencies ω1 and ω2 are combined into one excitation pulse, where the

difference frequency ω = ω1 − ω2 equals the differency frequency between the initial

and the final state. Both frequencies, ω1 and ω2 are off-resonant; the detuning to the

intermediate level |I〉 is given by ∆.

Figure 5.2: Simplified scheme of a resonant Raman transition with spatial resolution;the
resonance frequency is space-dependant. For simplicity we have assumed that only
the final state | f 〉 is dependant on the magnetic field. The two frequencies ω1 and ω2
are off-resonance with an intermediate level |I〉. The detuning is given by ∆.

5.2 Limitations for spatially resolved Raman transitions

In the following section we want to present the fundamental limits for spatially resolved

Raman transitions [22]. In addition to considering the spectral resolution, we must also
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take into account the velocity of the atoms and their accelerations due to the differential

force exerted by the potential for the initial and final state.

5.2.1 Spectral resolution limit

During the Raman process one photon is absorbed and another photon of almost the

same frequency is emitted into a co-propagating field. Thus the net momentum change

of the atom is negligible. The use of a co-propagating configuration avoids a velocity-

selection due to Doppler-Shifts which has been observed by Kasevich et al. using

a counter-propagating beam configuration [23]. Raman-induced resonance imaging

using co-propagating laser fields has been used by Thomas et al. for precision position

measurements of moving atoms [24], [25].

If the detuning of both Raman pulses from resonance is large enough to avoid

a population of an excited state, incoherent transitions between the two ground states

can be avoided. Therefore, the life-time of the ground states determines the bandwidth

of the Raman transition. Since the lifetime of the ground states is long, we are able to

neglect the bandwidth of the Raman transition.

The difference in the Raman beams can be created by passing one beam through

an acousto-optic modulator (AOM). By equalizing the optical path length it is possible

to minimize the frequency jitter in the difference frequency; in this limit the stability of

the difference frequency is then given by the AOM and is usually small and negligible.

In the limit of a very stable difference frequency the Fourier-Theorem gives the

frequency resolution of the Raman process,

∆ω ≈ 1
T
. (5.1)

For simplicity we assume the initial state |i〉 to be independant of the magnetic field.

If the frequency shift of the final state | f 〉 varies linearly with the position, the force F

exerted by the magnetic field on the final state is uniform and the frequency shifts as

∆ω = ∆E
~ = F

~∆x. The quantity F
~ is the spatial tuning rate, which determines the spatial
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variation of the resonance transition frequency. Combining this with eq. 5.1, we yield

the spectral resolution limit

∆xsp =
~

FT
. (5.2)

5.2.2 Velocity-limited resolution

The spatial resolution is not only influenced by the spectral resolution but also by

atomic motion. Atoms with a certain velocity vx along the measurement axis will leave

the resonant region after having made the transition from the initial state |i〉 to the final

state | f 〉. Hence the velocity-limited resolution is

∆xvel = vxT. (5.3)

The velocity-limited resolution increases with a decreasing pulse duration, and

so a short pulse duration is desirable. However, the spectral resolution limit will

decrease with a decreasing pulse time. The optimal pulse duration can be found using

eq. 5.2 and 5.3. The velocity-limited resolution is given by

∆xvel =

√
~vx

F
. (5.4)

5.2.3 Acceleration-limited resolution and the Heisenberg uncertainty prin-

ciple

Atoms do not only move because of their initial velocity; they will also be accelerated

by the force due to the energy gradient. This should not be confused with the fact

that the net momentum due to absorption and emission of photons is negligible. The

acceleration-limitied resolution is

∆xacc =
F

2m
T2, (5.5)
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where m is the atomic mass. By setting ∆xsp = ∆xacc one finds the optimal pulse

duration

Tacc =

(
2~m
F2

)1/3

(5.6)

and the acceleration limited resolution thus becomes

∆xacc =

(
~2

2mF

)1/3

. (5.7)

Let us assume that only the final state is shifted by the potential. The transition

between the initial state |i〉 and the final state | f 〉 can occur at any time during the pulse

time T, and so the uncertainty in the final momentum of the atoms is ∆p = FT. Simple

multiplication with the spectral resolution limit (eq. 5.2) leads to the fundamental limit

given by the uncertainty relation between space and momentum

∆x∆p = ~. (5.8)

µm

5.3 Raman transitions in a three level atom

The total electro-magnetic field driving a stimulated Raman transition can be described

by the sum of the two individual light beams with frequencies ω1 and ω2,

~E(~r, t) =
1
2
·
(
~E1 · ei(~k·~r−ω1t) + ~E1 · e−i(~k·~r−ω1t) + ~E2 · ei(~k·~r−ω2t) + ~E2 · e−i(~k·~r−ω2t)

)
. (5.9)

There exist three possible configurations of a three-level system with the initial

state |i〉, an intermediate state |I〉 and a final state | f 〉, that is driven by a two-photon pro-

cess, usually called the ”ladder”, ”V” or ”lambda” configurations, which are schemat-

ically shown in fig. 5.3 [26]. A stimulated Raman transition between two hyperfine

levels of the ground state corresponds to the Λ-configuration.
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Figure 5.3: Possible configurations of a three-level system driven by a two-photon
process, from left to right: ladder-configuration, V-configuration, Λ-configuration

5.3.1 Three-level amplitude equations

In chapter 2 we developed the coherent amplitude formalism for the interaction of an

atom with an electric field. The amplitude equations in a three level system and with

two monochromatic light sources become [27]

ċi =
iΩ∗1

2
cIei∆1t, (5.10)

ċ f =
iΩ∗2

2
cIei∆2t (5.11)

and

ċI =
iΩ1

2
cie−i∆1t +

iΩ2

2
c f e−i∆2t, (5.12)

where the Rabi frequencies Ω1 and Ω2 are defined by

Ω1 =
−E1

~
〈I|µ|i〉 (5.13)

and

Ω2 =
−E2

~
〈I|µ| f 〉; (5.14)
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∆1 and ∆2 describe the detunings from the transition frequency,

∆1 = ω1 − ωIi (5.15)

and

∆2 = ω2 − ωI f . (5.16)

Here we have neglected the decay rate Γ of the intermediate level which is justified

because of a negligible population due to large detunings. Furthermore the decay rate

is negligible compared to the Rabi frequencies, Ω1,Ω2 � Γ. A sketch of the frequencies

and detuning involved in a stimulated Raman process in a three-level atom is shown

in fig. 5.4.

Figure 5.4: Schematic of the frequencies and detunings in a stimulated Raman process
in a three-level atom.

5.3.2 Adiabatic Reduction to a two-level system

Eq. 5.12 can be integrated directly by neglegting the time-dependance of the coefficients

ci and c f [28]. We can use the solution

cI = − Ω1

2∆1
cie−i∆1t − Ω2

2∆2
c f e−i∆2t (5.17)
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to adiabatically reduce the three-level amplitude equations to an effective two-level

system,

ċi = −iν1ci −
β

2
c f eiδt (5.18)

ċ f = −iν2c f −
β∗

2
cie−iδt, (5.19)

where ∆1 ≈ ∆2 ≡ ∆ and δ = ∆1 − ∆2. The AC-Stark shifts νm and the effective Raman-

Rabi frequency β are then defined by

νm ≡ |Ωm|2
4∆

(5.20)

β ≡ −
Ω∗1Ω2

2∆
. (5.21)

Eqs. 5.18 and 5.19 can be solved by substituting

ci = aie−iν1t (5.22)

c f = a f e−iν2t. (5.23)

Doing this we can rewrite the set of differential equations as

ȧi =
iβ
2

a f ei(δ−(ν2−ν1))t (5.24)

and

ȧ f =
iβ∗

2
ai e−i(δ−(ν2−ν1))t. (5.25)

If both light shifts are equal, ν2 = ν1, and the detuning δ from the resonant Raman

transition vanishes, the solution of these equations is trivial. The final state probability

then is

P f (t→∞) = |c f (t→∞)|2 = |a f (t→∞)|2 = sin2
( |β|

2
τ

)
, (5.26)

where we have assumed the initial population of state | f 〉 to be zero and a Raman pulse

duration of length τ. |β|τ is commonly known as pulse area. A π
2 -pulse will transfer
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half the population while a π-pulse transfers the whole population from the initial into

the final state.

We have assumed the light shifts ν1 and ν2 to be equal. Experimentally this

can be achieved by tuning the intensities of the incident Raman beams. This becomes

especially easy when driving a resonant transition between the two hyperfine ground

states in Sodium (F=1 and F=2), since both states are shifted equally (see chapter 3).

Thus if both beams have the same power and beam waist, i.e. the incident intensities

are identical, AC-Stark shifts will be equalized.

In addition to the final state probability for the resonant case we must now

consider the non-resonant case. We can solve the amplitude equation for the non-

resonant case using perturbation theory and assuming ai(0) ≈ 1. We are then able to

integrate eq. 5.25, where we again assume the light shifts ν1 and ν2 to be equal. For a

square Raman pulse of length τ the final state amplitude a f becomes

a f (t→∞) =

∫ τ/2

−τ/2

iβ∗

2
e−iδt′dt′ = −β

∗

δ
sin
δτ
2
. (5.27)

We may center the pulse around t = 0 without loss of generality. The general solution

for the final state probability |a f (t→∞)|2 is then

P f (t→∞, δ) =
τ2|β|2

4
sinc2

(
δτ
2

)
, (5.28)

where

sinc x ≡ sin x
x
. (5.29)

We find the exact solution for δ = 0 to be nearly equal to the approximated solution

given above. Hence we can identify eq. 5.28 as the product of eq. 5.26 with a sinc2 line

shape for small pulse areas. Nevertheless for pulse areas as large as 4π the line shape

stays approximately constant [29] and we will therefore use

P f (t→∞, δ) = sin2 |β|τ
2

sinc2
(
δτ
2

)
. (5.30)
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as the final state probability.

5.4 Raman transition in a multi-level atom

In general the selection rule ∆mF = 0,±1,±2 applies for a Raman transition. Never-

theless in alkali-atoms transitions from one hyperfine ground state into the other with

∆m = ±2 are forbidden. This is easily understood by looking at the two-photon process

in tensor notation and recalling that all alkali-atoms occupy a ground state with J = 1/2.

By combining two one-photon processes we can generally create three different

tensor operators. The scalar operator E1E∗2 vanishes for perpendicular polarized light

beams. The vector operator E1 × E∗2 causes Raman transitions with ∆m = 0,±1, see

fig. 5.5. An outer product operator E1 ⊗ E∗2 of rank 2 cannot be formed for atoms in

a J = 1/2 ground state [30]. Therefore transitions with ∆m = ±2 do not occur. By

explicitly calculating the multiple paths between the initial and the final state the same

result arises due to destructive interference.

Figure 5.5: Possible Raman transitions between two hyperfine states with J = 1/2.
For simplicity we assume all atoms to start in the |F = 1,m = 0〉 state. The detuning
of 1.772GHz belongs to the Sodium ground state 2S1/2. The splitting of the magnetic
sublevels is according to the anomalous Zeeman-effect.
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5.4.1 Multiple initial and final states

Each hyperfine level splits into (2F+1) magnetic sublevels. We therefore have to deal

with three inital levels (F=1) and five final levels (F=2). In an external magnetic field

the levels are split as shown in fig. 5.5, providing the possibility for a spatially resolved

measurement. If this splitting is larger than the Raman transition linewidth, only one

transition will be resonant. It is then possible to treat each transition as a separate

two-level Raman process. The shift due to an external magnetic field is described in

more detail in appendix B.2.

In the result for the final state probability we have to take into account the

fact that the atoms are in different magnetic sublevels, where we can assume an equal

distribution in each of these if there is no condition favorable for one above another. In

addition to the detuning δdue to the difference frequency of the two laser beams another

detuning δB
i (~r) arises due to the magnetic field splitting of the magnetic hyperfine states.

This detuning is therefore dependant on the magnetic state of an atom. Including the

detuning due to the magnetic field splitting the final state probability develops to

P f (t→∞, δ) =
1
3

∑

i

sin2 |βi(~r)|τ
2

sinc2
(δ − δB

i (~r))τ

2
, (5.31)

where we have to sum over all initial states.

5.4.2 Multiple intermediate states

In addition to multiple initial and final states we also have to take multiple intermediate

levels into account. We have argued that we can treat multiple initial and final states

separately. However, things are not quite as easy if one considers different intermediate

levels. A treatment similar to the one in section 5.3 can be done by including additional

intermediate levels. Adiabatic elimination of these levels results in an effective Raman-
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Rabi frequency β given by

β f i = −
∑

I

〈 f |µE2|I〉〈I|µE1|i〉
2~2∆I

, (5.32)

which corresponds to a summation of all possible paths between the initial and the

final state.

5.5 Raman transitions in a magnetic field

Before we explain the effect of a magnetic field on the effective Raman-Rabi frequency

we will discuss the shift of the Raman resonance frequency δB
i (~r). For simplicity we

will now only examine the atoms starting in the |F = 1,mF = 0〉 ground state, the two

other states can be treated similarly. The possible Raman transitions from the initial

level |F = 1,mF = 0〉 (shown in fig. 5.5) correspond to a change in the magnetic sublevel

of ∆m = 0,±1.

In presence of a magnetic field both initial and final state are shifted by

∆ω(~r) =
1
~

g mµB B(~r), (5.33)

where m is the quantum number of the final state, µB the Bohr-magneton and B(~r)

the magnitude of the magnetic field at position ~r. For the detuning from the Raman

resonance frequency the absolute value of the single detunings is irrelevant. Rather,

the difference of these is important,

δB
m f ,mi

(~r) =
1
~

(g f m f − gi mi)µBB(~r) =
1
~
γm f ,miµBB(~r). (5.34)

The effect of a magnetic field on the effective Raman-Rabi frequencies is more

delicate. In the lab frame we define the polarizations of our two beams as {x̂, ŷ} and

assume a propagation along the ẑ-axis. The cross product x̂ × ŷ = ẑ forms the rank one

operator T(1, 0), leading to transitions with ∆m = 0. The atoms, however, may regard
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the polarizations as any perpendicular combination of fields, i.e. {ŷ, ẑ}, which therefore

allows transitions with ∆m = ±1. The number of atoms making the transition from

the initial to the final state remains independant of the local orientation of the atoms,

because lab frame and atom frame are equivalent in the absence of a magnetic field.

In the presence of a magnetic field the local field orientation defines a quan-

tization axis. In fig. 5.6 we have given some examples of how the magnetic field

determines the quantization axis. The unprimed axis define the lab frame, the atom

frame is marked by primed coordinates. In figure (a) the magnetic field points along

Figure 5.6: Definition of the quantization axis by an external magnetic field. The
direction of the magnetic field is represented by the red arrow. Unprimed coordinates
belong to the lab frame, coordinates in the atom frame are primed.

the ẑ-axis of the lab frame. The quantization axis ẑ′ corresponds to the ẑ-axis in the lab

frame. This causes the atoms to view the {x̂, ŷ} polarization of the Raman beams the

same as in the lab frame. Hence the coupling to the state | f 〉 is governed by ∆m = 0

transitions. If the magnetic field points along one of the polarization axis, for example

along the ŷ-axis as in (b), the polarization in the atom frame is {ŷ′, ẑ′}. This configu-

ration therefore leads to ∆m = ±1 transitions. Generally the magnetic field can point

in an arbitrary direction (c). This corresponds to a linear combination of the two cases

discussed before and transitions with ∆m = 0 and ∆m = ±1 happen.

All our calculations will be done in the lab frame, where the Raman beam po-
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larizations stay constant, while the quantization axis rotates according to the magnetic

field orientation. The rotation angles, as they are defined in fig. 5.6 (c), are given by

sin θ(~r) =

√
B2

x(~r) + B2
y(~r)

√
B2

x(~r) + B2
y(~r) + B2

z(~r)
(5.35)

cos θ(~r) =
Bz(~r)√

B2
x(~r) + B2

y(~r) + B2
z(~r)

(5.36)

sin φ(~r) =
Bx(~r)√

B2
x(~r) + B2

y(~r)
(5.37)

cos φ(~r) =
By(~r)

√
B2

x(~r) + B2
y(~r)

. (5.38)

Thus we are able to determine the effective Raman-Rabi frequencies βi,0 in the

atom frame by rotating the Raman transition operator. For further calculations it is

useful to go back to the spherical tensor notation, T(k,q). k describes the rank of the

operator, q the ẑ component of the operators angular momentum.

We can define β0,0 = T(1, 0). In the absence of a magnetic field, the transition

operator T(1,0) corresponds to ∆m = 0 transitions. In the rotated frame this tensor

becomes

T(1, 0) =
∑

q
D1

q0(~r) T′(1, q), (5.39)

where D1
q0(~r) are the Wigner rotation matrix elements which can be expressed using the

spherical harmonics Y1q(θ(~r), φ(~r)),

D1
q0(~r) = (−1)q

√
4π
3

Y1q(θ(~r).φ(~r)), (5.40)

The angles θ and φ describe the rotation of the quantization axis.

The relation between the spherical tensor operator in the lab and the rotated
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frame is obtained by expanding the sum,

T(1, 0) = T′(1, 0) cos θ(~r) +
1√
2

T′(1,−1) sin θ(~r) e−iφ(~r) +
1√
2

T′(1, 1) sin θ(~r) eiφ(~r). (5.41)

This has to be true for all angles θ and φ. By choosing θ = φ = 0 we therefore find that

T(1, 0) = T′(1, 0) = β0,0. (5.42)

We will use the Wigner-Eckart Theorem to determine the remaining effective

Raman-Rabi frequencies in the rotated frame; using eq. A.6 we find them to be

β−1,0 = β1,0 =
1
2
β0,0. (5.43)

After doing the transformation to the lab frame using eq. 5.41 the Raman-Rabi fre-

quency become

β0,0(~r) = T′(1, 0) cos θ(~r) = β0,0 cos θ(~r) (5.44)

β−1,0(~r) =
1√
2

T′(1,−1) sin θ(~r) =
1

2
√

2
β0,0 sin θ(~r) (5.45)

β1,0(~r) =
1√
2

T′(1, 1) sin θ(~r) =
1

2
√

2
β0,0 sin θ(~r). (5.46)

We have neglected phase information in these expressions since only the magnitude

of the Raman-Rabi frequencies matters for the final state probability. The remaining

Raman-Rabi frequencies of the initial states with magnetic quantum number m = ±1

can be treated similarly.

The final state probability can therefore be determined by adding the contribu-

tions from all initially populated states. The transfer efficiency is determined by the

product of the effective Raman-Rabi frequency and the pulse duration, while the prod-

uct of the detuning from resonance due to a magnetic field gradient and the pulse dura-

tion determines the resolution. The magnitude of the external magnetic field influences

the effective detuning (δ − δB
i (~r)), while the direction affects the effective Raman-Rabi

frequency β.
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Chapter 6

Raman transitions of Sodium atoms

The following chapter uses the theory for stimulated Raman transitions we described

previously to calculate the ideal pulse duration needed to ensure a complete population

transfer from the |F = 1〉 to the |F = 2〉 ground state in Sodium. Furthermore, we

determine the spatial resolution achieved by applying a magnetic field gradient and

propose an experimental method to determine the pulse duration and the magnetic

field dependance.

6.1 Magnetic detuning from Raman Resonance

In section 5.5 we already introduced the detuning δB
m f ,mi

(~r) =
γm f ,miµB

~ B(~r) due to the

magnetic field. We will now calculate this detuning for Sodium atoms. Knowing the

Landé-g-factors for the ground state of Sodium, gi = −1/2 (F=1) and g f = +1/2 (F=2),

we can calculate γm f ,mi . The numerical values are shown in table 6.1. With these values

we can now calculate δB
m f ,mi

(~r) for some particular initial and final state combination.

6.2 Dipole matrix elements

Before we can calculate the effective Raman-Rabi frequencies we need to determine

the transition dipole matrix elements 〈J = 1/2||µ||J = 3/2〉 and 〈J = 1/2||µ||J = 1/2〉. In
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m f inal = −2 m f inal = −1 m f inal = 0 m f inal = 1 m f inal = 2
minitial = −1 -3/2 -1 -1/2 0 1/2
minitial = 0 -1 -1/2 0 1/2 1
minitial = 1 -1/2 0 1/2 1 3/2

Table 6.1: Calculation of γm f ,mi in Sodium for the |F = 1〉 → |F′ = 2〉-Raman transition

section 2.4 we already used the relation between the transition dipole matrix element

and the lifetime of the respective transition. Knowing the lifetime of the 32P3/2 and the

32P1/2 excited state we can calculate the dipole matrix elements using [10]

|〈J′||e~r||J〉| =
√

1
τJ′ J

3πε0~λ3

(2π)3 (2J′ + 1). (6.1)

The dipole matrix elements for the D2- and D1-line are

|〈J = 1/2||µ||J = 3/2〉| = 4.22 · 10−29Cm (6.2)

and

|〈J = 1/2||µ||J = 1/2〉| = 2.11 · 10−29Cm (6.3)

respectively.

6.3 Effective Raman-Rabi frequencies and final state probabil-

ity

In a multi-level atom the effective Raman-Rabi frequency is given by

β f i = −
∑

I

〈 f |~µ~E2|I〉〈I|~µ~E1|i〉
2~2∆I

, (6.4)

where we have to sum over all possible paths for a transition, see section 5.4.1.

In this section we will assume without loss of generality that the two electric

fields are {ŷ, ẑ} linearly polarized or ~E1 = E1 ŷ, ~E2 = E2ẑ. The magnetic field is taken to
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be in the ẑ-direction, ~B = Bẑ.

The quantization axis of the atom is defined by the external magnetic field.

Hence in the atom frame we can expand the linear (π) polarized field in the ŷ-direction

into two circular polarized (σ+ + σ−) fields. These lead to transitions with a change

of ∆m = ±1 in the magnetic quantum number. While the expansion is possible in

ŷ-direction it is impossible in ẑ-direction, which coincides with the quantization axis.

Figure 6.1: Schematic of the possible Raman transitions leading to the effective Raman-
Rabi frequency β0−1

In this configuration it is simple to identify the possible paths leading to the

transition |F = 1,m = −1〉 → |F = 2,m = 0〉 which are schematically shown in fig.

6.1. Hence we can calculate the effective Raman-Rabi frequency β0−1 by adding the

individual Raman-Rabi frequencies of each path,
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β0−1 = −
∑

I

〈F = 2,m = 0|~µ~E2|I〉〈I|~µ~E1|F = 1,m = −1〉
2~2∆I

= − 1√
2

E1E2

2~2

∑

I

〈F = 2,m = 0|µ2|I〉〈I|µ1|F = 1,m = −1〉
2~2∆I

= − 1√
2

E1E2

2~2 (
1

∆3/2
〈F = 2,m = 0|µ2|F = 1,m = 0〉〈F = 1,m = 0|µ1|F = 1,m = −1〉

+
1

∆3/2
〈F = 2,m = 0|µ2|F = 2,m = 0〉〈F = 2,m = 0|µ1|F = 1,m = −1〉

+
1

∆1/2
〈F = 2,m = 0|µ2|F = 1,m = 0〉〈F = 1,m = 0|µ1|F = 1,m = −1〉

+
1

∆1/2
〈F = 2,m = 0|µ2|F = 2,m = 0〉〈F = 2,m = 0|µ1|F = 1,m = −1〉)

= − 1√
2

E1E2

2~2 (
1

∆3/2

√
1

60

√
5

48
· (4.22 · 10−29Cm)2 +

1
∆3/2

0

√
1

48
· (4.22 · 10−29Cm)2

+
1

∆1/2

√
1
6

√
− 1

24
· (2.11 · 10−29Cm)2 +

1
∆1/2

0

√
− 1

24
· (2.11 · 10−29Cm)2)

= − 1√
2

E1E2

2~2 · 1.09 · 10−73C2m2. (6.5)

The detunings ∆1/2 and ∆3/2 are the detunings of a Verdi laser beam (532nm) from

the D1- and D2-line respectively. The detunings due to the hyperfine splitting of the

excited states are negligible. We should keep in mind that E1 and E2 cannot be chosen

independantly. The theoretical description for the final state probability is only valid

if the relative light shifts between the two ground states vanishes. In Sodium we will

introduce an undesired AC-Stark shift if E1 ; E2.

It is sufficient to calculate one Raman-Rabi frequency explicitly, the others can

be calculated using the Wigner-Eckart Theorem, e.g.

β00 = 〈F = 2,m = 0|µ|F = 1,m = 0〉 = (−1)2
( 2 1 1

0 0 0

)
〈F = 2||µ||F = 1〉

=

√
2

15

√
30 β0−1 = 2 β0−1 (6.6)

The values for the effective Raman-Rabi frequencies are listed in tab. 6.2 as multiples

of β00.
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With the calculation of the detuning from the Raman resonance and the effective

Raman-Rabi frequency we are now able to write down an expression for the final state

probability, depending on position ~r, Raman detuning δ and pulse duration τ

P f (r, θ, δ, τ) =
1
3

(sin2 (

√
3

4
τβ00 sinθ)·

(sinc2(
(δ + 3/2µB dB/dr · r/~)τ

2
) + sinc2(

(δ − 3/2µB dB/dr · r/~)τ
2

))

+sin2 (

√
3

4
τβ00 cosθ)·

(sinc2(
(δ + µB dB/dr · r/~)τ

2
) + sinc2(

(δ − µB dB/dr · r/~)τ
2

))

+sin2 (
1√
2 4
τβ00 sinθ)·

(sinc2(
(δ + 1/2µB dB/dr · r/~)τ

2
) + sinc2(

(δ − 1/2µB dB/dr · r/~)τ
2

))

+sin2 (

√
3√

2 4
τβ00 sinθ)·

(sinc2(
(δ + 1/2µB dB/dr · r/~)τ

2
) + sinc2(

(δ − 1/2µB dB/dr · r/~)τ
2

))

+sin2 (
1
2
τβ00 cosθ) · sinc2(

δτ
2

)). (6.7)

m f inal = −2 m f inal = −1 m f inal = 0 m f inal = 1 m f inal = 2

minitial = −1
√

3
2 sin θ

√
3

2 cos θ 1
2

√
2 sin θ

minitial = 0
√

3
2

√
2 sin θ cos θ

√
3

2

√
2 sin θ

minitial = 1 1
2

√
2 sin θ

√
3

2 cos θ
√

3
2 sin θ

Table 6.2: Calculation of the effective Raman-Rabi frequencies in the lab frame; in
multiples of β0,0. θ is defined as in eqs. 5.35 and 5.36

6.4 Numerical results for Sodium atoms

Before we can calculate the spatial resolution we need to find the optimal pulse duration

to ensure a complete transfer of atoms from the |F = 1〉 to the |F = 2〉 state. We therefore

ignore , for the time being, the effects due to the detuning from the Raman resonance

frequency and an external magnetic field and concentrate on the time development.
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Figure 6.2: Dependance of the final state probability of pulse duration τ.

In a future experimental setup, the detuning between the two Raman beams will

be created by an Acousto-Optic Frequency Shifter (Brimrose TEF-1700-350-589) with

an optical threshold of 100W/mm2 and a diffraction efficiency of 14.8% at a wavelength

of 532nm. The time development of the final state probability depends critically on the

intensities of the two Raman beams. So it is important to note that the following calcu-

lations are based on beams with 7.6 mW with a beam waist of 50µm. The large beam

waist guarantees that the intensity in the Raman resonance region is approximately

constant. A plot of the time dependance is shown in fig. 6.2. After a pulse duration of

337.3µs the population transfer reaches 98.8%.

With a pulse of length 337.3µs, less than 20kHz detuning from the Raman

resonance frequency will reduce the population transfer significantly, as can be seen in

fig. 6.3. This results in a spectral resolution of less than 250nm if we take the magnetic

field gradient to be 150G/cm. Nevertheless, the spatial resolution is severely limited

due to the initial velocity of the atoms and their acceleration during the Raman pulse.
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Figure 6.3: Dependance of the final state probability of the detuning δ from the Raman
resonance frequency

By confining the atoms in an optical lattice it is possible to circumvent the

resolution limits due to the atoms velocity and acceleration. We can then use a long

pulse duration time, to ensure an efficient population transfer and to gain a good

spectral resolution. But this also means that the resolution is ultimately limited by the

size of each individual lattice site, i.e. 266nm for a beam with a wavelength of 532nm.

The center of the resonant Raman region should coincide with the center of the lattice

site to avoid a population transfer in the two neighbouring sites.

A magnetic field gradient of 150G/cm means a splitting of the magnetic levels

according to the anomalous Zeeman effect. Fig. 6.4 represents the case where the

quantization axis of the atoms coincides with the z-direction in the lab frame (magnetic

field along the direction of beam propagation). In this case eq. 6.7 reduces to
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P f (r, θ, δ, τ) =
1
3

(sin2 (

√
3

4
τβ00 )·

(sinc2(
(δ + µB dB/dr · r/~)τ

2
) + sinc2(

(δ − µB dB/dr · r/~)τ
2

))

+sin2 (
1
2
τβ00 ) · sinc2(

δτ
2

)). (6.8)

Since one third of the transitions are insensitive to a change in the magnetic field, at

least one third of the initial population of the |F = 1〉 state will be transferred to the

|F = 2〉 state, while in the resonant Raman region up to 98.8% can be transferred. This

behaviour is shown in fig. 6.4.

Figure 6.4: The final state probability as a function of the position. 0 belongs to the
point of 0 magnetic field. The Raman detuning δ equals 0, the magnetic field gradient
is 150G/cm. The angle θ equals 0, i.e. the magnetic field points along the z-axis (atom
and lab frame coincide).
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In the absence of a magnetic field, all sublevels are equally populated. In a

magnetic trap only the atoms with F=1 M=-1 will be trapped. In this case eq. 6.7

reduces to

P f (r, θ, δ, τ) = sin2 (

√
3

4
τβ00 sinθ) · sinc2(

(δ + 3/2µB dB/dr · r/~)τ
2

)

+sin2 (

√
3

4
τβ00 cosθ) · sinc2(

(δ + µB dB/dr · r/~)τ
2

)

+sin2 (
1√
2 4
τβ00 sinθ) · sinc2(

(δ + 1/2µB dB/dr · r/~)τ
2

). (6.9)

A plot of the final state probability as a function of the position~r is shown in fig. 6.5. The

optimal pulse duration changes to 345.0µs and the population transfer reaches 100%,

since the resonance frequency of the transition from the M=-1 level is dependant on the

magnetic field. Therefore only atoms in the resonant Raman region can be transferred.

Figure 6.5: Dependance of the final state probability of the position. O belongs to the
point of 0 magnetic field. The Raman detuning δ equals 0, the magnetic field gradient
is 150G/cm. The angle θ equals 0, i.e. the magnetic field points along the z-axis (atom
and lab frame coincide). All atoms start in the F=1 M=-1 state.
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In all the calculations done above we have assumed the Raman detuning δ to be

zero, i.e. the difference frequency equals the hyperfine splitting of the Sodium ground

states in absence of a magnetic field (1.772GHz). By changing the detuning we can vary

the position of the resonant Raman region in space. A detuning of 1MHz corresponds

to a spatial shift of the resonant region by 7.55 µm.

6.5 Experimental procedure to determine the transfer efficiency

of stimulated Raman transitions

The experimental procedure used to test the efficiency of the Raman pulse is rather

simple. After loading the MOT and cooling the trapped atoms, the repump beam is

turned off. Therefore atoms that fall into the |F = 1〉 state remain there and are separated

from the |F = 2〉 → |F′ = 3〉 cycling transition. Eventually all atoms will fall into this

dark state. The atoms can then be transferred into the magnetic trap. In the future,

the trap will be in an Anti-Helmholtz configuration with an optical plug [31]. In this

trap only the atoms with the magnetic sublevel M=-1 will be trapped. An evaporation

cooling technique is then used to create a Bose Einstein Condensate. The optical lattice

is created next and the atoms are confined to individual lattice sites.

A Raman pulse is then applied and the corresponding number of atoms make

the transition to the |F = 2〉 state. The resonant light is turned on. Although the resonant

light forms a closed transition all atoms will eventually fall in the |F = 1〉 state again

after a certain number of cycling transitions. During this process they gain energy and a

time-of-flight measurement could separate the two atom groups and the atom number

of those that made the Raman transition can be determined. Knowledge of the initial

number of atoms is a crucial element of determining the Raman transition efficiency.

One therefore must be certain that the initial number of atoms does not vary by more

than a few percent.

Knowing the ideal pulse duration one can study the population transfer effi-

ciency as a function of a magnetic bias field. The relation between those two can then be
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used to determine the necessary magnetic field gradient to achieve the desired spatial

resolution.

Instead of using a time-of-flight measurement one could also think of lowering

the depth of the optical lattice. The atoms that underwent the Raman transition and

therefore the cycling transition will leave the trap before the other atoms do which did

not make the Raman transition. It is then possible to determine the atom number of

the remaining atoms.

In the proposed configuration for spatially resolved Raman imaging the mag-

netic field gradient is along the propagation axis of the two co-propagating Raman

beams which are linearly polarized in x̂- and ŷ-direction respectively. By preparing all

atoms to be in the |F = 1,M = −1〉 state and confining them in an optical lattice a spatial

resolution of one lattice site seems achievable applying a magnetic field gradient of

150 G/cm. A change in the Raman detuning can be used to vary the resonant Raman

region in space. The resonant Raman region is at the point of zero magnetic field if

the difference frequency equals the hyperfine splitting in absence of a magnetic field

(1.772GHz).
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Appendix A

Wigner-Eckart Theorem

When dealing with different angular momenta, their couplings, and transition proba-

bilities, it can be very helpful to use the Wigner-Eckart Theorem. It allows a separation

of a matrix element 〈α′ j′m′|T(k, q)|α jm〉 into a scalar matrix element (reduced matrix

element) 〈α′ j′||Tk||α j〉, which carries the information about the dynamics of the system,

and a Wigner-3j-symbol (Clebsch-Gordan coefficient), that carries the geometrical and

symmetrical properties. The Wigner-3j-symbol therefore includes the selection rules

for radiative transitions.

We will follow the proofs given by Zare [12] and Edmonds [32] and consider

first a rotation of the state vector T(k, q)|α′ j′m′〉,

R [T(k, q) |α′ j′m′〉] = R T(k, q) R−1 R |α′ j′m′〉
=

∑

q′,m′′
Dk

q′q(R) D j′

m′′m′(R) [T(k, q′)|α′ j′m′′〉]

=
∑

q′,m′′
Dk ⊗Dj′ [T(k, q′)|α′ j′m′′〉, (A.1)

where Dl
m′m(R) are the Wigner rotation matrix elements. These can be expressed by

spherical harmonics Y1,q

D1
q,0(~r) = (−1)q

(4π
3

)1/2
Y1,q(θ(~r), φ(~r)). (A.2)
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The product of the two rotation matrices Dk ⊗Dj′ in eq. A.1 can be expressed

as a product of Clebsch-Gordan coefficients and a rotation matrix DK. The linear com-

bination of the products T(k, q′)|α′ j′m′′〉, that transforms under rotation as a particular

state |βKQ〉 of the basis functions of the rotation matrix Dk is

|βKQ〉 =
∑

q,m′′
〈kq′, j′m′′|KQ〉T(k, q′)|α′ j′m′′〉, (A.3)

where 〈kq′, j′m′′|KQ〉 is a Clebsch-Gordan coefficient. Taking the inner product with

〈α jm| ∑

q,m′′
〈kq′, j′m′′|KQ〉〈α jm|T(k, q′)|α′ j′m′′〉 = 〈α jm|βKQ〉 (A.4)

can further be manipulated by multiplying both sides with 〈kq, j′m′|KQ〉 and doing

the summation over K and Q. The inner product 〈α jm|β jm〉 equals the reduced matrix

element 〈α j||Tk||α′ j′〉, and the scalar product 〈α jm|βKQ〉 vanishes unless j = K and

m = Q.

〈α jm|T(k, q′)|α′ j′m′〉 =
∑

KQ

〈α jm|βKQ〉〈kq, j′m′|KQ〉

= 〈kq, j′m′| jm〉〈α j||Tk||α′ j′〉. (A.5)

Hence we have successfully separated the dynamics from the geometrical properties

of the system.

By transforming the Clebsch-Gordan coefficients of eq. A.5 into Wigner-3j-

symbols we derive the Wigner-Eckart Theorem in the form used in this thesis,

〈α jm|T(k, q′)|α′ j′m′〉 = (−1) j−m
( j k k′

−m q m′

)
〈α j||Tk||α′ j′〉. (A.6)

One should be careful with the conventions of the reduced matrix elements. We

have adopt the convention of Zare [12] and Edmonds [32], while others, e.g. Brink [33],

define the reduced matrix element by a factor of 1√
2 j+1

smaller.
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Appendix B

Properties of Sodium

In this appendix we want to give a brief overview of the physical properties of Sodium

and the essential experimental parameters as far as they are needed in the context of

this thesis.

B.1 General properties

Sodium has one unpaired electron in the valence orbital, as all alkali atoms do. A

quantum mechanical description of a Sodium atom can be found by starting with

a hydrogen-like atom denoted by the state |nlml〉, where n is the principal quantum

number, l is the angular momentum quantum number and ml the magnetic quantum

number. The valence electron is in a spin state |sms〉. A coupling of the Spin ~S to the

angular momentum ~L leads to the total angular momentum ~J = ~L + ~S. Furthermore a

coupling to the nuclear spin~I leads to a total angular momentum of ~F = ~J +~I. The state

of the atom is then described by |αFmF〉, where α stands for all quantum numbers that

are not written explicitly, and |F| = |I − J|, ..., |I + J|, mF = −F, ...,F. In the absence of a

magnetic field, magnetic sublevels with the same value of F are degenerate.

A grotrian diagram of Sodium, neglecting fine and hyperfine splittings, is shown

in fig. B.1. A simple energy level diagram for the ground state and the first excited state,

including fine and hyperfine splittings as well as the magnetic splitting in agreement

53



Figure B.1: Grotrian diagram for Sodium, neglecting fine and hyperfine structure
splittings. Allowed transitions are indicated. The spectroscopic notation and the
atomic configuration are presented. Energy is not to scale.

with the anomalous Zeeman effect, is shown in fig. B.2.

The slowing transition for the Zeeman-slower is 20MHz red detuned from the

|F = 2〉 → |F′ = 3〉-transition. Eventually the atoms will leave the cycling-transition

used to slow and cool them, and will fall into the dark state (F=1). The repump beam

between the |F = 1〉 → |F′ = 2〉-transition pumps the atom back into the cycling-

transition, see fig. B.3.

In table B.1 we have summarized some basic physical properties.
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Figure B.2: Schematic of the ground state and the first excited state energy level. The
hyperfine splitting is indicated for the 32S1/2 ground state and the 32P3/2 state. The
magnetic splitting is according to the anomalous Zeeman effect. The wavelengths for
the resonant transitions are presented, as are the Landé-g-factors. Energy is not to scale.

B.2 Sodium in an external magnetic field

The degeneracy of the (2F+1) magnetic levels breaks down in an external magnetic

field. If we take the magnetic field to be along the atomic quantization axis (z-axis), the

Hamiltonian

HB =
µB

~

(
gSSz + gLLz + gIIz

)
Bz (B.1)

describes the interaction of the atom with the magnetic field. gS, gL and gI are the

Landé-g-factors for the electron spin, electron orbital and nuclear spin respectively

[20]. If hyperfine splittings are important, F is a good quantum number, and the
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Figure B.3: Schematic of the cycling transition F = 2 → F′ = 3 with the red detuned
beam (orange) and the repump beam (blue). Energy is not to scale.

interaction Hamiltonian becomes

HB = µBgFFzBz. (B.2)

In a weak external magnetic field the magnetic levels split according to the

anomalous Zeeman effect. The perturbation of the interaction Hamiltonian to the zero

field eigenstates is, to lowest order, given by

∆E = µBgFmFBz, (B.3)

where

gF ≈ gJ
F(F + 1) − I(I + 1) + J(J + 1)

2F(F + 1)
. (B.4)
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atomic number Z 11
number of nucleons Z+N 23
relative natural abundance η(23Na) 100%
nuclear spin I 3/2
D2-line frequency ω 2π· 508.8487162(13)THz
D2-line lifetime τ 16.249(19)ns
D1-line frequency ω 2π· 508.3324657(13)THz
D1-line lifetime τ 16.299(21)ns
Landé-g-factor gJ 32S1/2 2.0022969(7)
Landé-g-factor gJ 32P1/2 0.66581(12)
Landé-g-factor gJ 32P3/2 1.332(2)

Table B.1: Physical properties of Sodium atoms [20]

For high magnetic fields, the levels split according to the Paschen-Back-effect

∆E = Ah f smJmI + Bh f s
3(mJmI)2 + 3

2 mJmI − I(I + 1)J(J + 1)
2J(2J − 1)I(2I − 1)

+ µB(gJmJ + gImI)Bz, (B.5)

where Ah f s and Bh f s are hyperfine structure constants.

For intermediate magnetic fields the splitting is in general difficult to calculate,

but if either J = 1/2 or I = 1/2 an analytic description is given by the Breit-Rabi-formula.

For the ground state manifold in Sodium the Breit-Rabi-formula is

∆E = −
Ah f s(I + 1/2)

2(2I + 1)
+ gIµBmB ±

Ah f s(I + 1/2)

2

(
1 +

4mx
2I + 1

+ x2
)1/2

, (B.6)

with m = mI ±mJ (sign to be taken as in eq. B.6) and

x =
(gJ − gI)µBB
Ah f s(I + 1/2)

. (B.7)

Fig. B.4 shows the magnetic field dependance of the ground state manifold.
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Figure B.4: Sodium 32S1/2 ground state hyperfine structure in an external magnetic
field. In the anomalous Zeeman-regime the levels are grouped according to the value
of F, in the Paschen-Back-regime according to the value of mJ [20].
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B.3 Dipole matrix elements for Sodium

The hyperfine dipole matrix elements for the Sodium D1 and D2 line are calculated

using the Wigner-Eckart Theorem, see appendix A.

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=3
√

1
60

√
1
20

√
1
10

√
1
6

1
2

F’=2
√

1
24

1
4

1
4

√
1
24

F’=1
√

1
40

√
1
80

√
1

240

Table B.2: Sodium D2-line hyperfine dipole transition matrix elements for σ+ transitions
(F = 2mF → F′m′F = mF + 1) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=3 −
√

1
12 −

√
2
15 −

√
3
20 −

√
2
15 −

√
1

12

F’=2 −
√

1
12 −

√
1
48 0

√
1
48

√
1
12

F’=1
√

1
80

√
1
60

√
1
80

Table B.3: Sodium D2-line hyperfine dipole transition matrix elements for π transitions
(F = 2mF → F′m′F = mF) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=3 1
2

√
1
6

√
1
10

√
1
20

√
1
60

F’=2 −
√

1
24 −1

4 − 1
4 −

√
1

24

F’=1
√

1
240

√
1
80

√
1
40

Table B.4: Sodium D2-line hyperfine dipole transition matrix elements for σ− transitions
(F = 2mF → F′m′F = mF − 1) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉
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mF = −1 mF = 0 mF = 1

F’=2
√

1
48

1
4

√
1
8

F’=1
√

5
48

√
5
48

F’=0
√

1
12

Table B.5: Sodium D2-line hyperfine dipole transition matrix elements for σ+ transitions
(F = 1mF → F′m′F = mF + 1) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉

mF = −1 mF = 0 mF = 1

F’=2 −1
4 −

√
1
12 −1

4

F’=1 −
√

5
48 0

√
5

48

F’=0
√

1
12

Table B.6: Sodium D2-line hyperfine dipole transition matrix elements for π transitions
(F = 1mF → F′m′F = mF) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉

mF = −1 mF = 0 mF = 1

F’=2 1
4

1
4

√
1

48

F’=1 −
√

5
48 −

√
5
48

F’=0
√

1
12

Table B.7: Sodium D2-line hyperfine dipole transition matrix elements for σ− transitions
(F = 1mF → F′m′F = mF − 1) in multiples of 〈J = 1

2 ||µ2||J′ = 3
2〉

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=2
√

1
12

√
1
8

√
1
8

√
1
12

F’=1 1
2

√
1
8

√
1
24

Table B.8: Sodium D1-line hyperfine dipole transition matrix elements for σ+ transitions
(F = 2mF → F′m′F = mF + 1) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉
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mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=2 −
√

1
6 −

√
1
24 0

√
1
24

√
1
6

F’=1
√

1
8

√
1
6

√
1
8

Table B.9: Sodium D1-line hyperfine dipole transition matrix elements for π transitions
(F = 2mF → F′m′F = mF) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉

mF = −2 mF = −1 mF = 0 mF = 1 mF = 2

F’=2 −
√

1
12 −

√
1
8 −

√
1
8 −

√
1

12

F’=1
√

1
24

√
1
8

1
2

Table B.10: Sodium D1-line hyperfine dipole transition matrix elements for σ− transi-
tions (F = 2mF → F′m′F = mF − 1) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉

mF = −1 mF = 0 mF = 1

F’=2 −
√

1
24 −

√
1
8

1
2

F’=1 −
√

1
24 −

√
1
24

Table B.11: Sodium D1-line hyperfine dipole transition matrix elements for σ+ transi-
tions (F = 1mF → F′m′F = mF + 1) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉

mF = −1 mF = 0 mF = 1

F’=2
√

1
8

√
1
6

√
1
8

F’=1
√

1
24 0 −

√
1
24

Table B.12: Sodium D1-line hyperfine dipole transition matrix elements forπ transitions
(F = 1mF → F′m′F = mF) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉

mF = −1 mF = 0 mF = 1

F’=2 −1
2 −

√
1
8 −

√
1
24

F’=1
√

1
24

√
1

24

Table B.13: Sodium D1-line hyperfine dipole transition matrix elements for σ− transi-
tions (F = 1mF → F′m′F = mF − 1) in multiples of 〈J = 1

2 ||µ2||J′ = 1
2〉

61



Appendix C

Einstein-coefficients for Rubidium

The values for the Einstein-coefficients used to calculate the magic wavelength in Ru-

bidium are summarized in table C.1 and C.2, together with the respective wavelengths

for the observed transition. If experimental data is not available we use dipole transition

matrix elements calculated by Safronova et al. [19] to determine the Einstein-coefficients

using eq. 2.34.
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transition λ (nm) source Aik(·1061/s) source

5S1/2 → 5P1/2 794.9788509 [34] 36.1285 [34]
5S1/2 → 5P3/2 780.241209686 [34] 38.1156 [34]
5S1/2 → 6P1/2 421.6726 [18] 1.769 [35]
5S1/2 → 6P3/2 420.2989 [18] 1.499 [35]
5S1/2 → 7P1/2 359.2597 [18] 0.2890 [35]
5S1/2 → 7P3/2 358.8073 [18] 8.300 [35]
5S1/2 → 8P1/2 335.1775 [18] 8.912 · 10−2 [35]
5S1/2 → 8P3/2 334.9658 [18] 0.1370 [35]
5S1/2 → 9P1/2 323.0088 [18] 4.231 · 10−2 [35]
5S1/2 → 9P3/2 322.8911 [18] 6.380 · 10−2 [35]

5S1/2 → 10P1/2 315.9173 [18] 2.209 · 10−2 [35]
5S1/2 → 10P3/2 315.8444 [18] 3.716 · 10−2 [35]
5S1/2 → 11P1/2 311.3950 [18] 1.398 · 10−2 [35]
5S1/2 → 11P3/2 311.3468 [18] 2.763 · 10−2 [35]
5S1/2 → 12P1/2 308.3229 [18] 7.692 · 10−3 [35]
5S1/2 → 12P3/2 308.2893 [18] 1.639 · 102 [35]
5S1/2 → 13P1/2 306.1375 [18] 4.955 · 10−3 [35]
5S1/2 → 13P3/2 306.1131 [18] 1.155 · 10−2 [35]

Table C.1: Wavelengths and Einstein-coefficients for the calculation of the energy shift
of the ground state

transition λ (nm) source Aik(·1061/s) source

5P3/2 → 6S1/2 1366.875 [18] 14.63 [36]
5P3/2 → 7S1/2 741.02136 [18] 4.552 [19]
5P3/2 → 8S1/2 616.13310 [18] 2.183 [19]
5P3/2 → 4D3/2 1529.261 [18] 1.776 [19]
5P3/2 → 4D5/2 1529.366 [18] 10.67 [19]
5P3/2 → 5D3/2 776.15716 [18] 0.6711 [19]
5P3/2 → 5D5/2 775.97855 [18] 3.937 [19]
5P3/2 → 6D3/2 630.09666 [18] 0.6305 [19]
5P3/2 → 6D5/2 630.00670 [18] 3.717 [19]

Table C.2: Wavelengths and Einstein-coefficients for the calculation of the energy shift
of the 5P3/2 state
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