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How Landau-Zener Tunneling Takes Time
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We calculate the time evolution of Landau-Zener tunneling for atoms in an accelerating optical
lattice. Analytical expressions are obtained that are in good agreement with a recent observation
of nonexponential decay. We identify new experimental regimes that show a crossover from strong
coherent oscillations to exponential decay in the temporal evolution of the survival probability. We
establish the time scale of this crossover, and make connection to a tunneling time of Zener breakdown.
[S0031-9007(98)05754-8]

PACS numbers: 42.50.Vk, 03.65.Bz

Unstable quantum systems exhibit exponential desystem. The tunneling rate in this case is given by
cay of the survival probability, but deviations from I' = a exp(—a./a), where a. is a critical acceleration
this law at short and long times were predicted [1,2].defined below [10]. Our goal is to calculate the survival
The experimental observation has not been possible [Fjrobability in the lowest band as a function of time.
until recently, when clear evidence of short-time deviation Model and formulation—We will work in a regime
from exponential decay was seen in the survival probawhere the time dependence due to acceleration is almost
bility of ultracold atoms tracking an accelerating optical adiabatic for the first gap, but is sudden for the higher
lattice [4]. gaps. This is possible for a relatively weak potential,

In this Letter, we provide a theoretical analysis ofbecause for the first gag, = Vo, while for the second
the atomic-optical system in terms of Landau-Zener (LZ)gap, € = V¢. Subsequent gaps scale with even higher
tunneling between Bloch bands [5]. We find an initial orders of the potential. The critical accelerations for
nonexponential regime that starts with a quadratic timehe first and second gaps ate = 7753/2 and a’. =
dependence, then becomes a damped oscillation, aqgi(eé)2/4' respectively [11]. In the parameter space of
finally settles into exponential decay. We establish the; and v, (see Fig. 1), our theory will be valid inside
charactgrlstlc time separating the two regimes, and makge region bounded by the two curves= z V¢ and
connection to a tunneling time of Zener breakdown [6,7]., — z v, and to the left of the lind/y = 1 [12]. Our

We suggest future experiments for the measurement @fanq structure is modeled as in Fig. 2, where all of the

this time. ~ gaps except for the first are neglected.
We consider an ensemble of ultracold atoms in an’ wye start by expanding the wave function in terms of
accelerating optical potential of the forify cod2k,x —  the eigenstates’* u, (x, k + ar) of the Hamiltonian (1)

A : : . _ .
kpat”), where a is the accelerationk, is the wave \ith energye,(k + ar) for a particular wave numbe.

number of the laser that creates the potential, ¥1dS  Tq |eading order in the nonadiabatic couplifig|u, ), the
proportional to the average light intensity. This system

was used earlier to observe Bloch oscillations, Wannier-

Stark ladders, and LZ tunneling [8]. In the accelerating S
reference frame, the Hamiltonian of the system may be L 4
written as 10" F / 4
Lo+ man? + Vo cot2k.x), ) 0 F a=a 5 :
2m a e ° o =
where the inertial force-ma has been represented in the 10° F Vo=l o
vector potential gauge. For simple notation, we take the 2 a=a' E
system’s natural units in which = m = 2k; = 1. 10°° 2 ¢ E
The energy spectrum of the above Hamiltonian with L 7 3
zero acceleration is well known, and consists of Bloch 10 10°2 107! 10° 10"
bands separated by gaps [9]. As an initial condition, v

we assume that the lowest band is uniformly occupied, _ _
while the higher bands are empty. When an acceleratioh!G. 1. The parameter space of potentigland acceleration
is imposed, the atomic quasimomentum changes as iffein the system’s natural units. The present theory is valid

t d Bloch illati The at I inside the region defined by, < 1, a/. < a < a.. The circle
atoms undergo bloch oscillations. € atoms can alsQ,responds to the recent experiment (Ref. [4]), and the square

escape from the accelerating lattice by interband Landaundicates a regime where coherent oscillations of the survival
Zener tunneling and hence form an unstable quanturprobability are predicted.
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dependence is a general property of quantum mechanics.
Because the Schrodinger equation is first order in the
time derivative, the transition amplitude out of an initial

S state must be linear in time at short times, implying a
o0 € quadratic time dependence of the transition probability.
a") At long times, the kerneW () drops rapidly (see below)
(o) - which leads to an exponential law for the decay of the
88 /\/\/\ survival probability. Replacing the upper limit in Eq. (4)
) by infinity, we find the asymptotic form of the survival

probability asPy, = ¢ '"To, with ' = [, W(r) dt, and
Lo = [o tW()dr.

k To show that the kernel decays fast at long times, we
FIG. 2. Model band structure used in the theory, in which a”model the two bandhs at_';a twoflevetl_ Sy;;[eg \(/leth-t(tj_llagonaI
of the gaps above the lowest gap are neglected. The arroyf'MS crossing each other as functionskpiand with an

indicates the crossing point where tunneling occurs most easily2ff-diagonal coupling being constant i In order to
produce the right ga, at the crossing point, the off-

diagonal coupling should be set #,/2. In order to
survival amplitudeCy in the lowest band changes at the produce the right level spacing, the differenceetween
rate the diagonal terms should satisfy + €2 = €. Note
v , o i [ (eomendr” that, unlike the standard Zener model [10], we do not
-> f dt' Co(t) (unlito)(itolun e’ v . (@) assume, until later, a linearly varyingk). The kernel
n#0 40 then has the expression (remembet at/2)

X - % 7k — 5)7'(k + s)«sﬁoz2
the corresponding quantities are evaluated. Becayge W = ] dk 5
changes slowly in time due to the smallness of the above — ek = s)ek + )]
expression, we can mov€y(t) out of the integral by {f“s
X co
k

where the subscripts and indicate the times at which

setting its argument tag. This replacement yields an
exponent of the probability?, correct to leading order
in the perturbation, which changes at a rate equal to theherez’ is the derivative ot (k), and we have taken the
real part of the following expression: crossing point (arrow in Fig. 2) as the origin bf Since

t ) ) i [ (et the spectrum is symmetric about the crossing point, the
-2y j;) dt'Cuy lig)v(itolun e’ /""" (3)  stationary phase occurs at= 0, which dominates the

dk/ Elo/ai|, (6)

)

n#0 integral and yields
Next, we make an average over the initial distribution 1/2F 1 2
. ) . . ma Z/(s)ega
in the lowest band. This amounts to integrating the above W=|— 5
result over a Brillouin zone of siz€k; = 1 (in the €10(s) €io(s)

system’s natural units). The result is simplified by the s
y ) P y X COS{% + ] dk'elo/ai|, @)

following considerations. First, the integrand is periodic
in k, and the time and dependences enter only through
the combinationg + ar andk + ar’. Second, the set of where the prime inejy(s) indicates a derivative with
the higher bands in a single Brillouin zone is equivalent tarespect to the argument. At very large times, we have
a single band, displayed as a thick curve among the highetio(s) = s2/2, yielding aW that falls off like r='3/2.

bands in Fig. 2, over the entife space [13]. Therefore, Next, we examine how the survival probability goes
to leading order in the nonadiabatic perturbation, theéfrom a quadratic to an exponential decay. Because

exponent of the survival probability is of the form the kernel has decayed substantially whep > €,
v , . according to Eq. (7), we need only to consider the region
InPy = —fo dr'(t — YW('). (4)  wheree) is comparable ta,. For this region, we can

take ejo(k) = e; + k*, with z(k) = k and e, = Vj,
based on a perturbation theory for the energy gap [9].
o . Our model reduces to the standard Zener model in this
2a2] dk<u1|M6>k—s<1/t6|l/t1>k+s€7ifk*“'emdk//a’ (5) region [10]. The numerical results of Eq. (6) are shown
—oo in Fig. 3 (solid lines) for the cases of (&')E/a =16
wheres = at/2, ande;g = €; — €y with €, representing and (b) eﬁ/a = 5. One can see that the kernel is an
the single upper band in the extendedpace. oscillatory decaying function of time, with the frequency
Characteristics of time evolution-At short times, the of oscillation larger for a larger value of the adiabaticity
exponent (4) goes as%W(O)tZ. This quadratic time parameteeg/a. In both cases, the amplitude of the kernel

Here, the transition kernéV (¢) is equal to the real part of
the following expression:
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4 T seen how our crossover time compares with other defini-
' ] tions of tunneling time [14].

The crossover can be seen more clearly from the
analytical result of Eq. (7), which takes the following
form for the Zener model'

_ (ma/s)'?e; dk
g re ke R MR

)
Since s = at/2, the kernel decays with the time scale
of €,/a, the tunneling time discussed above. Within
this time, the kernel oscillates with the frequency of the
band gape,, a very reasonable result. How good is the
stationary phase approximation? The dash-dotted lines
in Fig. 3 are obtained from the approximation, which
agrees with the numerical result almost perfectly after the
first minimum. When the adiabaticity parame%r/a is

1.5

(4g /) W

-3 FUSEUR S TS much larger than unity, such as in the case of Fig. 3(b),
o 1 2 3 4 the location of the first minimum is estimated to be
at/2&g t = 37 [4¢€, using the above expression, which is much

smaller than the tunneling time,/a. In the case of

Fig. 3(a), where the adiabaticity parameter is 1.6, we see
of the scaled time:r/2¢,. The shape of the plot depends only . . S .
on the adiabaticity pa?ameterz/a which is taken as 1.6 in from the figure that these two time scales coincide with

(a) and 5 in (b). The envelopes of both curves fall off in the €ach other.
same fashion, but more coherent oscillations are seen when the Finally, analytic expressions for the short- and long-
adiabaticity parameter is larger. The dash-dotted curves artme characteristic parameters can also be obtained within

from the asymptotic expression [Eq. (8)]. the Zener model. At very short times, the coefficient of
the quadratic time dependence is given by

FIG. 3. The scaled transition kern@le,/a*)W as a function

. L 2 a“e;dk T a2
has decayed to about half of its initial val¢ea“/4e,) W(0) = f s _ T2 (9)
whenat/2e, = 1/2. e + KX 4 €

We therefore identifyr. = €,/a as the time scale for op the other hand, the rate of exponential decay at
crossing over from the short-time regime of nonexpo-, ong times is found as = (/3)%ae ¢ (m€}/2a) \where
nential behavior to the long-time regime of exponentlalWe assumed2/a > 1 and used the method of steepest

decay. Since an exponential decay of the survival prObdescent This is a standard result of LZ tunneling except

?hb'“ty ﬁuggestst_a Io?s of cohe:ence Vi)/ne mtaythalf(:hca:l}fr an unimportant prefactor dfr/3)?> =~ 1.1 [15]. The
edc? _erenlgg |m|e OL ours_ys em. vve note tha h € LZonstant term in the long-time exponent of the survival
model is valid only when this crossover time is s Orterprobability is given by

than the Bloch timep = 1/a, the period of Bloch oscil-
lations. This condition yields, < 1, which is consistent Ty = _3m eg(a/€2)2, (10)
with our initial assumptions (see Fig. 1). 16 ¢

Our crossover time is also identical in value to a tun-which is not exponentially small. A negative valuelaf
neling time of Zener breakdown. In 1986, Biittiker andrepresents an initial loss of the survival probability over
Landauer [6] considered Zener tunneling of Bloch electhe scale of the tunneling time.
trons in an electric field. They chose to consider a tilted In conclusion, we compared our theory with the data of
band picture, where the electric field is represented by a recent experiment, and found very good agreement [4].
scalar potential. They found a tunneling time identical toln the experiment, the band gap was about 0.4, and the
ours, if the electric force is replaced by our inertial forceacceleration was about 0.1, corresponding to the circle in
and the lattice constant by/k;. The same conclusion can Fig. 1. The theoretical time dependence of the logarithm
be reached in the vector potential gauge that we used in thief the survival probability for such a situation is plotted in
Letter, where Zener breakdown becomes LZ transitions ba-ig. 4(a). All of the characteristics of the curve, including
tween energy dispersions of different Bloch bands. In factthe initial flat region, the first minimum, and the constant
Mullen et al. [7] found the same result in their study of part of the asymptotic exponety, agree quantitatively
the tunneling time, in the Landauer-Blittiker sense, for LZwith the experimental data [4].
transitions by looking at how the transition probability de- This experiment cannot yet be used to determine the
pends on the frequency of a perturbation. It remains to berossover time or the tunneling time discussed in the main

3493



VOLUME 80, NUMBER 16 PHYSICAL REVIEW LETTERS 20 ARIL 1998

LARRARRARRE AR AARRERRRRE This work was supported by NSF and the R. A. Welch
Foundation. We thank Rolf Landauer for many useful
conversations.

[1] L. A. Khalfin, Sov. Phys. JETB, 1053 (1958).

[2] R.G. Winter, Phys. Rev.123 1503 (1961); E.C.G.
Sudarshan, C.B. Chiu, and G. Bhamathi,Advances in
Chemical Physigsedited by I. Prigogine and S.A. Rice
(Wiley, New York, 1997), Vol. XCIX, pp. 121-209.

[3] P.T. Greenland, Nature (LondoBp5 298 (1988).

[4] S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W.

-0.02 [

; Madison, P.R. Morrow, Q. Niu, B. Sundaram, and M. G.
- Raizen, Nature (London387, 575 (1997); see also P.T.
Greenland, Nature (Londor®87, 548 (1997).

"0.04 [5] Tunneling between Bloch bands should not be confused
S T D P P T with the totally different process of tunneling between
0 1 2 3 4 different wells of the periodic potential. Unlike the latter,
the former occurs only in the presence of external force.
at/2€g [6] M. Biittiker and R. Landauer, Festkorperproble@t 711
FIG. 4. The scaled exponent of the survival probability  (1988); IBM J. Res. Dev30, 451 (1986).
(InPy)/e, as a function of the scaled time/2¢,. Again, the ~ [7] K. Mullen, E. Ben-Jacob, Y. Gefen, and Zeev Schuss,
shape of the plot depends only on the adiabaticity parameter,  Phys. Rev. Lett62, 2543 (1989).
which is 1.6 in (a) and 5 in (b). The decay crosses over to an[8] M. Raizen, C. Salomon, and Q. Niu, Phys. Tod&y 30
exponential at a time scale of= €,/a in each case. As the (1997).
tunneling becomes more adiabatic, one sees more oscillationgg] N.w. Ashcroft and N.D. Mermin,Solid State Physics
and a smaller drop over the initial stage as well as a smaller (Saunders, Philadelphia, 1976).
asymptotic exponential rate. [10] G. Zener, Proc. R. Soc. London A37, 696 (1932):

Y. Gefen, E. Ben-Jacob, and A.O. Caldeira, Phys. Rev.
text, because all of the time scales of the system become B 36, 2770 (1987). _ _
degenerate wheaZ/a ~ 1. We thus show, in Fig. 4(b), [11] (P?h Nlufq X'GL- ftl;zo;].?%-ftlggeg)rgaklsy and M.G. Raizen,

2/ = Mati ys. Rev. Lett76, )
D iy Srepene conerent oscltions S 12 o . Ramer, iy, v, 1455 1561
. X . : . [13] J. Avron, Ann. Phys. (N.Y.143 33 (1982).
Flon _Of this regime ShOU|d_ address the issue Of_ tunnel[14] Proceedings of the Adriatico Research Conference: Tun-
ing time or the crossover time from coherent oscillations neling and Its Implicationsedited by D. Mugnaiet al.
to exponential decay. This may be achieved by taking  (world Scientific, Singapore, 1997).
a = 0.01 ande, = 0.224 (square in Fig. 1), well inside [15] V. Grecchi and A. Sacchetti, Phys. Rev. Let8, 4474
the regime of validity of our theory. (1997); M. V. Berry, J. Phys. A5, 3693 (1982).

3494



