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How Landau-Zener Tunneling Takes Time
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We calculate the time evolution of Landau-Zener tunneling for atoms in an accelerating op
lattice. Analytical expressions are obtained that are in good agreement with a recent obser
of nonexponential decay. We identify new experimental regimes that show a crossover from s
coherent oscillations to exponential decay in the temporal evolution of the survival probability.
establish the time scale of this crossover, and make connection to a tunneling time of Zener break
[S0031-9007(98)05754-8]
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Unstable quantum systems exhibit exponential d
cay of the survival probability, but deviations from
this law at short and long times were predicted [1,2
The experimental observation has not been possible
until recently, when clear evidence of short-time deviatio
from exponential decay was seen in the survival prob
bility of ultracold atoms tracking an accelerating optica
lattice [4].

In this Letter, we provide a theoretical analysis o
the atomic-optical system in terms of Landau-Zener (LZ
tunneling between Bloch bands [5]. We find an initia
nonexponential regime that starts with a quadratic tim
dependence, then becomes a damped oscillation,
finally settles into exponential decay. We establish th
characteristic time separating the two regimes, and ma
connection to a tunneling time of Zener breakdown [6,7
We suggest future experiments for the measurement
this time.

We consider an ensemble of ultracold atoms in a
accelerating optical potential of the formV0 coss2kLx 2

kLat2d, where a is the acceleration,kL is the wave
number of the laser that creates the potential, andV0 is
proportional to the average light intensity. This syste
was used earlier to observe Bloch oscillations, Wannie
Stark ladders, and LZ tunneling [8]. In the acceleratin
reference frame, the Hamiltonian of the system may
written as

1
2m

sp 1 matd2 1 V0 coss2kLxd , (1)

where the inertial force2ma has been represented in the
vector potential gauge. For simple notation, we take th
system’s natural units in which̄h ­ m ­ 2kL ­ 1.

The energy spectrum of the above Hamiltonian wit
zero acceleration is well known, and consists of Bloc
bands separated by gaps [9]. As an initial conditio
we assume that the lowest band is uniformly occupie
while the higher bands are empty. When an accelerati
is imposed, the atomic quasimomentum changes as
atoms undergo Bloch oscillations. The atoms can al
escape from the accelerating lattice by interband Landa
Zener tunneling and hence form an unstable quantu
0031-9007y98y80(16)y3491(4)$15.00
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system. The tunneling rate in this case is given b
G ­ a exps2acyad, where ac is a critical acceleration
defined below [10]. Our goal is to calculate the surviva
probability in the lowest band as a function of time.

Model and formulation.—We will work in a regime
where the time dependence due to acceleration is almo
adiabatic for the first gap, but is sudden for the highe
gaps. This is possible for a relatively weak potential
because for the first gap,eg ­ V0, while for the second
gap, e0

g ­ V 2
0 . Subsequent gaps scale with even highe

orders of the potential. The critical accelerations fo
the first and second gaps areac ­ pe2

gy2 and a0
c ­

pse0
gd2y4, respectively [11]. In the parameter space o

a and V0 (see Fig. 1), our theory will be valid inside
the region bounded by the two curvesa ­

p

2 V 2
0 and

a ­
p

4 V 4
0 , and to the left of the lineV0 ­ 1 [12]. Our

band structure is modeled as in Fig. 2, where all of th
gaps except for the first are neglected.

We start by expanding the wave function in terms o
the eigenstateseikxunsx, k 1 atd of the Hamiltonian (1)
with energyensk 1 atd for a particular wave numberk.
To leading order in the nonadiabatic couplingk Ùu0junl, the

FIG. 1. The parameter space of potentialV0 and acceleration
a in the system’s natural units. The present theory is vali
inside the region defined byV0 , 1, a0

c , a , ac. The circle
corresponds to the recent experiment (Ref. [4]), and the squa
indicates a regime where coherent oscillations of the surviv
probability are predicted.
© 1998 The American Physical Society 3491
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FIG. 2. Model band structure used in the theory, in which a
of the gaps above the lowest gap are neglected. The arr
indicates the crossing point where tunneling occurs most eas

survival amplitudeC0 in the lowest band changes at the
rate

2
X
nfi0

Z t

0
dt0 C0st0d kunj Ùu0lt0 k Ùu0junlte

i
Rt

t0
se02enddt00

, (2)

where the subscriptst0 and t indicate the times at which
the corresponding quantities are evaluated. BecauseC0std
changes slowly in time due to the smallness of the abo
expression, we can moveC0st0d out of the integral by
setting its argument tot. This replacement yields an
exponent of the probabilityP0 correct to leading order
in the perturbation, which changes at a rate equal to t
real part of the following expression:

22
X
nfi0

Z t

0
dt0kunj Ùu0lt0k Ùu0junlte

i
Rt

t0
se02enddt00

. (3)

Next, we make an average over the initial distributio
in the lowest band. This amounts to integrating the abo
result over a Brillouin zone of size2kL ­ 1 (in the
system’s natural units). The result is simplified by th
following considerations. First, the integrand is periodi
in k, and the time andk dependences enter only through
the combinationsk 1 at andk 1 at0. Second, the set of
the higher bands in a single Brillouin zone is equivalent t
a single band, displayed as a thick curve among the high
bands in Fig. 2, over the entirek space [13]. Therefore,
to leading order in the nonadiabatic perturbation, th
exponent of the survival probability is of the form

ln P0 ­ 2
Z t

0
dt0st 2 t0dW st0d . (4)

Here, the transition kernelW std is equal to the real part of
the following expression:

2a2
Z `

2`
dkku1ju

0
0lk2sku0

0ju1lk1se
2i

Rk1s

k2s
e10dk0ya,

(5)

wheres ­ aty2, ande10 ­ e1 2 e0 with e1 representing
the single upper band in the extendedk space.

Characteristics of time evolution.—At short times, the
exponent (4) goes as2 1

2 Ws0dt2. This quadratic time
3492
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dependence is a general property of quantum mechan
Because the Schrödinger equation is first order in th
time derivative, the transition amplitude out of an initia
state must be linear in time at short times, implying
quadratic time dependence of the transition probabilit
At long times, the kernelW std drops rapidly (see below)
which leads to an exponential law for the decay of th
survival probability. Replacing the upper limit in Eq. (4)
by infinity, we find the asymptotic form of the survival
probability asP0 ­ e2Gt1G0 , with G ­

R`

0 W std dt, and
G0 ­

R`
0 tWstd dt.

To show that the kernel decays fast at long times, w
model the two bands as a two level system with diagon
terms crossing each other as functions ofk, and with an
off-diagonal coupling being constant ink. In order to
produce the right gapeg at the crossing point, the off-
diagonal coupling should be set toegy2. In order to
produce the right level spacing, the differencez between
the diagonal terms should satisfyz2 1 e2

g ­ e
2
10. Note

that, unlike the standard Zener model [10], we do no
assume, until later, a linearly varyingzskd. The kernel
then has the expression (remembers ­ aty2)

W ­
Z `

2`
dk

z0sk 2 sdz0sk 1 sde2
ga2

2fe10sk 2 sde10sk 1 sdg2

3 cos

∑Z k1s

k2s
dk0 e10ya

∏
, (6)

wherez0 is the derivative ofzskd, and we have taken the
crossing point (arrow in Fig. 2) as the origin ofk. Since
the spectrum is symmetric about the crossing point, th
stationary phase occurs atk ­ 0, which dominates the
integral and yields

W ­

∑
pa

e
0
10ssd

∏1y2∑z0ssdega

e
2
10ssd

∏2

3 cos

∑
p

4
1

Z s

2s
dk0 e10ya

∏
, (7)

where the prime ine
0
10ssd indicates a derivative with

respect to the argument. At very large times, we hav
e10ssd ø s2y2, yielding aW that falls off like t213y2.

Next, we examine how the survival probability goe
from a quadratic to an exponential decay. Becau
the kernel has decayed substantially whene10 ¿ eg

according to Eq. (7), we need only to consider the regio
wheree10 is comparable toeg. For this region, we can
take e10skd ­

p
e2

g 1 k2, with zskd ­ k and eg ­ V0,
based on a perturbation theory for the energy gap [9
Our model reduces to the standard Zener model in th
region [10]. The numerical results of Eq. (6) are show
in Fig. 3 (solid lines) for the cases of (a)e2

gya ­ 1.6
and (b) e2

gya ­ 5. One can see that the kernel is an
oscillatory decaying function of time, with the frequency
of oscillation larger for a larger value of the adiabaticity
parametere2

gya. In both cases, the amplitude of the kerne
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FIG. 3. The scaled transition kernels4egya2dW as a function
of the scaled timeaty2eg. The shape of the plot depends onl
on the adiabaticity parametere2

gya, which is taken as 1.6 in
(a) and 5 in (b). The envelopes of both curves fall off in th
same fashion, but more coherent oscillations are seen when
adiabaticity parameter is larger. The dash-dotted curves
from the asymptotic expression [Eq. (8)].

has decayed to about half of its initial valuespa2y4egd
whenaty2eg ­ 1y2.

We therefore identifytc ­ egya as the time scale for
crossing over from the short-time regime of nonexp
nential behavior to the long-time regime of exponenti
decay. Since an exponential decay of the survival pro
ability suggests a loss of coherence, one may also ca
the coherence time for our system. We note that the
model is valid only when this crossover time is shorte
than the Bloch timetB ­ 1ya, the period of Bloch oscil-
lations. This condition yieldseg ø 1, which is consistent
with our initial assumptions (see Fig. 1).

Our crossover time is also identical in value to a tun
neling time of Zener breakdown. In 1986, Büttiker an
Landauer [6] considered Zener tunneling of Bloch ele
trons in an electric field. They chose to consider a tilte
band picture, where the electric field is represented by
scalar potential. They found a tunneling time identical
ours, if the electric force is replaced by our inertial forc
and the lattice constant bypykL. The same conclusion can
be reached in the vector potential gauge that we used in
Letter, where Zener breakdown becomes LZ transitions b
tween energy dispersions of different Bloch bands. In fa
Mullen et al. [7] found the same result in their study o
the tunneling time, in the Landauer-Büttiker sense, for L
transitions by looking at how the transition probability de
pends on the frequency of a perturbation. It remains to
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seen how our crossover time compares with other defi
tions of tunneling time [14].

The crossover can be seen more clearly from t
analytical result of Eq. (7), which takes the followin
form for the Zener model:

W ­
spaysd1y2e2

ga2

2fe2
g 1 s2g7y4

cos

∑
p

4
1

Z s

2s

q
e2

g 1 k2 dk
a

∏
.

(8)

Since s ­ aty2, the kernel decays with the time scal
of egya, the tunneling time discussed above. With
this time, the kernel oscillates with the frequency of th
band gapeg, a very reasonable result. How good is th
stationary phase approximation? The dash-dotted lin
in Fig. 3 are obtained from the approximation, whic
agrees with the numerical result almost perfectly after t
first minimum. When the adiabaticity parametere2

gya is
much larger than unity, such as in the case of Fig. 3(
the location of the first minimum is estimated to b
t ­ 3py4eg using the above expression, which is muc
smaller than the tunneling timeegya. In the case of
Fig. 3(a), where the adiabaticity parameter is 1.6, we s
from the figure that these two time scales coincide w
each other.

Finally, analytic expressions for the short- and lon
time characteristic parameters can also be obtained wit
the Zener model. At very short times, the coefficient
the quadratic time dependence is given by

Ws0d ­
Z a2e2

g dk

2fe2
g 1 k2g2 ­

p

4
a2

eg
. (9)

On the other hand, the rate of exponential decay
long times is found asG ­ spy3d2ae2spe2

gy2ad, where
we assumede2

gya ¿ 1 and used the method of steepe
descent. This is a standard result of LZ tunneling exce
for an unimportant prefactor ofspy3d2 ø 1.1 [15]. The
constant term in the long-time exponent of the surviv
probability is given by

G0 ­ 2
3p

16
egsaye2

gd2, (10)

which is not exponentially small. A negative value ofG0

represents an initial loss of the survival probability ov
the scale of the tunneling time.

In conclusion, we compared our theory with the data
a recent experiment, and found very good agreement
In the experiment, the band gap was about 0.4, and
acceleration was about 0.1, corresponding to the circle
Fig. 1. The theoretical time dependence of the logarith
of the survival probability for such a situation is plotted i
Fig. 4(a). All of the characteristics of the curve, includin
the initial flat region, the first minimum, and the consta
part of the asymptotic exponentG0, agree quantitatively
with the experimental data [4].

This experiment cannot yet be used to determine
crossover time or the tunneling time discussed in the m
3493
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FIG. 4. The scaled exponent of the survival probabilit
sln P0dyeg as a function of the scaled timeaty2eg. Again, the
shape of the plot depends only on the adiabaticity paramet
which is 1.6 in (a) and 5 in (b). The decay crosses over to
exponential at a time scale oft ­ egya in each case. As the
tunneling becomes more adiabatic, one sees more oscillati
and a smaller drop over the initial stage as well as a smal
asymptotic exponential rate.

text, because all of the time scales of the system beco
degenerate whene2

gya , 1. We thus show, in Fig. 4(b),
the case ofe2

gya ­ 5, where coherent oscillations of the
survival probability are prominent. Experimental realiza
tion of this regime should address the issue of tunne
ing time or the crossover time from coherent oscillation
to exponential decay. This may be achieved by takin
a ­ 0.01 and eg ­ 0.224 (square in Fig. 1), well inside
the regime of validity of our theory.
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