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Brownian motion has played important roles in many dif-
ferent fields of science since its origin was first explained
by Albert Einstein in 1905. Einstein’s theory of Brownian
motion, however, is only applicable at long time scales. At
short time scales, Brownian motion of a suspended parti-
cle is not completely random, due to the inertia of the par-
ticle and the surrounding fluid. Moreover, the thermal force
exerted on a particle suspended in a liquid is not a white
noise, but is colored. Recent experimental developments in
optical trapping and detection have made this new regime
of Brownian motion accessible. This review summarizes re-
lated theories and recent experiments on Brownian motion
at short time scales, with a focus on the measurement of
the instantaneous velocity of a Brownian particle in a gas
and the observation of the transition from ballistic to diffu-
sive Brownian motion in a liquid.

1 Introduction

Brownian motion is the apparently perpetual and ran-
dom movement of particles suspended in a fluid (liq-
uid or gas), which was first observed systematically by
Robert Brown in 1827 [1]. When Brown used a simple mi-
croscope to study the action of particles from pollen im-
mersed in water [1], he “observed many of them very evi-
dently in motion”. The size of those particles was about
5 μm. He also observed the same kind of motion with
powders of many other materials, such as wood and
nickel, suspended in water.

As first explained by Einstein in 1905 [2], the Brown-
ian motion of a suspended particle is a consequence of
the thermal motion of surrounding fluid molecules. Ein-
stein’s theory of Brownian motion predicts that

〈[�x(t)]2〉 ≡ 〈(x(t) − (x(0))2〉 = 2Dt, (1)

where 〈[�x(t)]2〉 is the mean-square displacement (MSD)
of a free Brownian particle in one dimension during time

t , and D is the diffusion constant. The diffusion constant
can be calculated by D = kB T/γ , where kB is the Boltz-
mann constant, T is the temperature, and γ = 6πηR is
the Stokes friction coefficient for a sphere with radius R.
Here η is the viscosity of the fluid.

M. von Smoluchowski also derived the expression of
MSD independently in 1906 [3], with a result that differed
from Eq. (1) by a factor of about 2. In 1908, Paul Langevin
introduced a stochastic force and derived Eq. (1)
from Newton’s second law [4, 5]. Langevin’s approach is
more intuitive than Einstein’s approach, and the result-
ing “Langevin equation” has found broad applications
in stochastic physics [6]. Experimental confirmation of
Eq. (1) was provided by the brilliant experiments of
Jean Perrin [7], recognized by the Nobel Prize in Physics
in 1926. Theodor Svedberg also verified the Einstein-
Smoluchowski theory of Brownian motion and won the
Nobel Prize in Chemistry in 1926 for related work on col-
loidal systems [8].

Persistence and randomness are generally accepted
as two key characteristics of Brownian motion. The tra-
jectories of Brownian particles are classic examples of
fractals [9]. They are commonly assumed to be contin-
uous everywhere but not differentiable anywhere [10].
Since its trajectory is not differentiable, the velocity of a
Brownian particle is undefined. According to Eq. (1), the
mean velocity measured over an interval of time t is v̄ ≡√

〈[�x(t)]2〉/t = √
2D/

√
t. This diverges as t approaches

0, and therefore does not represent the real velocity of the
particle [11, 12].

At short time scales (t � τp, where τp = M/γ is the
momentum relaxation time of a particle with mass M),
the dynamics of a Brownian particle is expected to be
dominated by its inertia and its trajectory cannot be self-
similar. This is termed “ballistic Brownian motion” to
be distinguished from the common “diffusive Brownian
motion”. Figure 1 shows a 2D trajectory of a Brownian
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T. Li and M. G. Raizen: Brownian motion at short time scales

Figure 1 (online color at: www.ann-phys.org) A 2D trajectory of a
Brownian particle. The black curve is assumed to be a true tra-
jectory of the particle. Red dots are measured positions, and red
curves are measured trajectories. The sampling rate of (B) is 10
times of that of (A).

particle. The black curve is assumed to be a true trajec-
tory of the particle. Red dots are measured positions. In
Fig. 1 A, the sampling rate is too small to measure the ve-
locity of the Brownian particle. The measured trajectory
(red curve) is completely different from the true trajec-
tory, and appears chaotic. It is impossible to obtain the
velocity of the particle from the measured trajectory in
Fig. 1 A. In Fig. 1 B, the sampling rate is much larger. Now
the measured trajectory is very close to the true trajec-
tory of the particle. If the measured displacement of the
particle is �	x(t) during time �t, then the velocity of the
particle is approximately 	v = �	x(t)/�t.

In 1900, F. M. Exner made the first quantitative study
of Brownian motion by measuring the velocity of Brown-
ian particles suspended in water [13, 14]. He found that
the measured velocity decreased with increasing parti-
cle size and increased with increasing water temperature.
However, his measured velocities were almost 1000-fold
smaller than those predicted by the energy equipartition
theorem [13]. The reason of this discrepancy was not un-
derstood until A. Einstein developed his kinetic theory
about Brownian motion [2].

In 1907, Einstein published a paper entitled “Theo-
retical observations on the Brownian motion” in which
he considered the instantaneous velocity of a Brown-
ian particle [11, 12]. Einstein showed that by measuring
this quantity, one could prove that “the kinetic energy of
the motion of the centre of gravity of a particle is inde-
pendent of the size and nature of the particle and inde-
pendent of the nature of its environment”. This is one
of the basic tenets of statistical mechanics, known as
the equipartition theorem. However, Einstein concluded
that due to the very rapid randomization of the motion,
the instantaneous velocity of a Brownian particle would
be impossible to measure in practice [11, 12]:

“We must conclude that the velocity and direction
of motion of the particle will be already very greatly al-

tered in the extraordinary short time θ , and, indeed, in
a totally irregular manner. It is therefore impossible – at

least for ultramicroscopic particles – to ascertain
√

v2 by
observation.”

Einstein’s conclusion was unchallenged for more
than 100 years because of the exclusive difficulty of such
a measurement. For a 1 μm diameter silica (SiO2) sphere
in water at room temperature, the momentum relaxation
time τp is about 0.1 μs and the root mean square (rms)
velocity vrms = √

kB T/M is about 2 mm/s in one dimen-
sion. To measure the instantaneous velocity with 10%
uncertainty, one would require 2 pm spatial resolution
and 10 ns temporal resolution, which is a very difficult
task. Due to the lower viscosity of gas as compared to liq-
uid, the momentum relaxation time τp of a particle in air
is much larger. This lowers the requirements of both tem-
poral and spatial resolution.

Nondiffusive Brownian motion of colloidal suspen-
sions with high concentrations at short time scales have
been studied by measuring the autocorrelation functions
of multiply scattered, transmitted light [15–17]. Recent
developments in optical tweezers and detection systems
with unprecedented resolution now prove to be an in-
dispensable tool for studying the Brownian motion of
a single particle at short time scales [18–26]. For exam-
ple, we have observed the ballistic Brownian motion and
measured the instantaneous velocity of a Brownian par-
ticle for the first time with an optically trapped bead in
air [21]. Huang et al. have observed the transition from
ballistic Brownian motion to diffusive Brownian motion
in a liquid [24]. Franosch et al. have observed resonances
arising from hydrodynamic memory in Brownian motion
in a liquid and the long-sought colored spectrum of the
thermal force [25, 27].

Besides Brownian motion at short time scales, the-
oretical and experimental studies of anisotropic Brow-
nian motion and Brownian motion in nonequilibrium
systems are currently pursued by many groups. For ex-
ample, several groups reported anisotropic Brownian
motion of particles near interfaces [28–32], and Brow-
nian motion of anisotropic particles such as ellipsoids
[33, 34], nanotubes [35, 36] and helical bacteria [37].
Brownian motion in nonequilibrium systems is of par-
ticular interest because it is directly related to the trans-
port of molecules and cells in biological systems. Impor-
tant examples include Brownian motors [38, 39], active
Brownian motion of self-propelled particles [40–46], hot
Brownian motion [47], and Brownian motion in shear
flows [48]. Recent theoretical studies also found that the
inertias of particles and surrounding fluids can signif-
icantly affect the Brownian motion in nonequilibrium
systems [49–54].
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In this review, Section 2 introduces the theories of
Brownian motion of particles in a gas, and the recent
measurement of the instantaneous velocity of a Brown-
ian particle in air. Section 3 introduces the theories of
Brownian motion of particles in a liquid at short time
scales, the experimental observation of the colored ther-
mal force, and the transition from ballistic to diffusive
Brownian motion in a liquid. Section 4 discusses the ef-
fects of detection noise on the measurement of different
quantities of Brownian motion. Finally, in Section 5, we
discuss future experiments on Brownian motion at short
time scales.

2 Brownian motion in a gas

In this section, we assume that the density of a gas is
much smaller than the density of the suspended Brow-
nian particles. So the inertia effects of the gas can be
neglected.

2.1 Theory

The mean free path of molecules in air at 1 atmosphere at
room temperature is about 68 nm [55]. The collision rate
between a 1-μm-diameter microsphere suspended in air
and surrounding air molecules is about 1016 Hz at ambi-
ent conditions. The observed Brownian motion is an av-
eraged effect of these ultrafast collisions. Because of the
huge difference between the mass of a microsphere and
that of an air molecule, the motion of a microsphere can
only be changed significantly by a large number of col-
lisions. This is reflected in the fact that τp = 6 μs for a 1-
μm-diameter silica microsphere in air at ambient condi-
tions. The dynamics of a Brownian particle at time scales
much longer than that of individual collisions can be de-
scribed by a Langevin equation [4, 5]. Here we introduce
the theory of Brownian motion in a gas following the
classic work of Uhlenbeck and Ornstein [56].

2.1.1 A free particle in a gas

The dynamics of a Brownian particle with mass M in a
gas can be described by a Langevin equation [4, 5, 56]:

M
d2x
dt2

+ γ
dx
dt

= Ftherm(t), (2)

where

Ftherm(t) = (2kB Tγ )1/2ζ (t) (3)

is the Brownian stochastic force. ζ (t) is a normalized
white-noise process. Hence for all t and t′,

〈ζ (t)〉 = 0 , and 〈ζ (t)ζ (t′)〉 = δ(t − t′). (4)

The MSD for a Brownian particle at thermal equilib-
rium with the air is [56]:

〈[�x(t)]2〉 = 2kB T

M
2
0

(
0 t − 1 + e−
0 t), (5)

where 
0 = γ /M is the damping coefficient. We have
τp = 1/
0. At long time scales (t � τp), the MSD is the
same as that predicted by Einstein’s theory (Eq. (1)). At
very short time scales, the MSD is

〈[�x(t)]2〉 = kB T
M

t2 for t � τp. (6)

The velocity autocorrelation function is [56]:

〈v(t)v(0)〉 = kB T
M

e−
0t. (7)

Although these equations are initially derived for an
ensemble of particles, the ergodic theorem dictates that
they are also valid for measurements of a single particle
taken over a long time.

The damping coefficient 
0 in a gas can be calcu-
lated by kinetic theory. Assuming the reflection of gas
molecules from the surface of a microsphere is diffusive,
and the molecules thermalize with the surface during
collisions, we obtain [57, 58]


0 = 6πηR
M

0.619
0.619 + Kn

(1 + cK ), (8)

where η is the viscosity coefficient of the gas, R is
the radius of the microsphere, and Kn = s/R is the
Knudsen number. Here s is the mean free path of the
gas molecules. cK = (0.31 Kn)/(0.785 + 1.152 Kn + Kn2)
is a small positive function of Kn [58]. At high pres-
sures where Kn � 1, the damping coefficient is 
0 =
6πηR/M, which is the same as the prediction of Stokes’
law.

At very short time scales, the motion is ballistic and its
instantaneous velocity can be measured as v = �x(t)/t,
when t � τp [56]. The ballistic Brownian motion is dif-
ferent from a simple ballistic motion. For a simple bal-
listic motion with velocity u, we have �x(t) = ut and
[�x(t)]2 = u2t2. The velocity u can be any value and usu-
ally has no relation with the temperature of the environ-
ment. For the ballistic Brownian motion, the amplitude
of the velocity is determined by the temperature of the
environment. The 1D Maxwell-Boltzmann distribution
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of the velocity of a particle in thermal equilibrium is

fv(vi) =
√

M
2πkB T

exp
(

− Mv2
i

2kB T

)
, (9)

where vi is the velocity of the particle along direction i,
which can be any direction.

2.1.2 An optically trapped microsphere in a gas

For small displacements, the effect of optical tweezers on
the microsphere’s motion can be approximated by that of
a harmonic potential. The Brownian motion of a particle
in a harmonic trap has been studied by Uhlenbeck and
Ornstein [56], and Wang and Uhlenbeck [59]. The equa-
tion of the Brownian motion of a microsphere in a har-
monic trap is:

d2x
dt2

+ 
0
dx
dt

+ �2x = �ζ (t), (10)

where � = √
κ/m is the natural angular frequency of the

trapped microsphere when there is no damping, and � =
(2kB T
0/M)1/2. The cyclic frequency of the damped os-

cillator is ω1 =
√

�2 − 
2
0/4. The system is underdamped

when ω1 is real (� > 
/2), critically damped when ω1 =
0, and overdamped when ω1 is imaginary (� < 
/2).

The MSD of a Brownian particle in an underdamped
harmonic trap in air is [59]:

〈[�x(t)]2〉 = 2kB T
M�2

[
1 − e−t/2τp

(
cos ω1t + sin ω1t

2ω1τp

)]
.

(11)

The position autocorrelation function is related to the
MSD by:

〈[�x(t)]2〉 = 2〈x2〉 − 2〈x(t)x(0)〉, (12)

where 〈x2〉 = kB T/(M�2). The rms amplitude is xrms =√
kB T/(M�2). The normalized position autocorrelation

function (PACF) of the particle is [59]:

〈x(t)x(0)〉
〈x2〉 = e−t/2τp

(
cos ω1t + sin ω1t

2ω1τp

)
. (13)

The normalized velocity autocorrelation function (VACF)
of the particle is [59]:

〈v(t)v(0)〉
〈v2〉 = e−t/2τp

(
cos ω1t − sin ω1t

2ω1τp

)
. (14)

Both the position autocorrelation function and the ve-
locity autocorrelation function oscillate for an under-
damped system.

Similar to the optical spectrum of an atom, the power
spectrum of the Brownian motion of a trapped micro-
sphere contains a lot of information about the system.
The power spectral density (PSD) of a variable is the
squared modulus of its Fourier transform [59–61]. The
expected values of the PSD of an optically trapped mi-
crosphere in air is

S(ω) ≡< Srec
k >= 2kB T

M�2

�2
0

(�2 − ω2)2 + ω2
2
0

. (15)

Eq. (15) is valid for both underdamped [57] and over-
damped systems. The measured PSD of a recorded x(t) is
Srec

k , which depends on a sample of the white noise ζ (t).
Thus an experimental PSD will appear noisy. Averaging
many measured Srec

k will result in a spectrum close to the
expected spectrum S(ω). Another way to reduce the noise
in a measured spectrum is “blocking” [60]. A “block” of
consecutive data points (ωk1 ,Srec

k1
) . . . (ωk2 ,Srec

k2
) can be rep-

resented by a single new “data point” (ωk,Srec
k ) which are

the block averages.

2.2 Experimental observation of the instantaneous
velocity of a Brownian particle in air

Because of the lower viscosity of air as compared to that
of liquid, a particle suspended in air is an ideal system
for studying the ballistic Brownian motion. The main
difficulty of studying Brownian motion in air, however,
is that the particle will fall under the influence of grav-
ity. To overcome this problem, Fedele et al. used aerosol
suspensions with small particles (∼ 0.2 μm diameter)
to achieve a long sedimentation time [62], Blum et al.
performed the experiment under microgravity condi-
tions in the Bremen drop tower [63]. Due to the lack of
a detection system with a sufficient resolution, neither
experiment was able to measure the instantaneous ve-
locity of Brownian motion. We overcame this problem
by using optical tweezers to simultaneously trap and
monitor a silica bead in air and vacuum, allowing long-
duration, ultra-high-resolution measurements of its
motion. Here we review this experiment that was orig-
inally reported in Ref. [21] with more experimental
details.

2.2.1 A fast detection system

In order to measure the instantaneous velocity of the
Brownian motion of a trapped microsphere in air, we im-
plemented an ultrahigh resolution detection system.

4 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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Figure 2 (online color at: www.ann-phys.org) This simplified
schematic shows our counter-propagating dual-beam optical
tweezers, and a novel detection system (Figure adapted from Ref.
[21]). The s-polarized beam is reflected by a polarizing beam split-
ter cube after it passes through a trapped bead inside a vacuum
chamber. Then, for detection, it is split by a mirror with a sharp
edge. The p-polarized beam passes through the cube.

We used an ultra-stable NPRO laser (Model: 126-
1063-700, Lightwave Electronics (now JDSU)) to trap and
monitor a silica bead in vacuum. Its rms intensity noise is
< 0.05 % over the range from 10 Hz to 2 MHz, and is shot
noise limited above 10 MHz. It is a single frequency laser
with a wavelength of 1064 nm and a coherence length
longer than 1000 m. A detailed characterization of this
type of laser can be found in Ref. [64]. We used this laser
for both trapping and detection. This is achieved by us-
ing a polarizing beam splitter cube to reflect one of the
trapping beams for detection (Fig. 2).

Our lab has previously developed a fast position-
sensitive laser beam detector [20]. The previous detec-
tor used a bundle of optical fibers that spatially splits
the incident beam, and a fast balanced photodetector
to measure the difference between the two halves of the
beam. We simplified the detection system by using a mir-
ror with a sharp edge (BBD05-E03, Thorlabs) to replace
the fiber-optic bundle for splitting the beam (Fig. 2).
The sharp edge of a mirror is much smoother than the
boundary between the two halves of a fiber bundle. So it
is much simpler and has less noise than a fiber bundle
for splitting the laser beam.

We used a balanced detector (PDB120C, photodiode
diameter: 0.3 mm, Thorlabs) with a bandwidth of 75 MHz
for detection. The detector is sensitive to light with wave-
lengths in the range of 800–1700 nm. It has a high tran-
simpedance gain of 1.8 × 105 V/A. The detector mea-
sures the difference between the two halves of the beam,

which is proportional to the particle excursion. The in-
tensity noise of the laser is contained in both halves and
is thus canceled in the measurement. This detection sys-
tem enables us to monitor the real-time position of a
trapped microsphere in air with Ångstrom spatial resolu-
tion and microsecond temporal resolution [21]. We have
also developed a 3D detection system that can monitor
the 3D motion of a microsphere trapped in vacuum with
a sensitivity of about 39 fm Hz−1/2 over a wide frequency
range [57].

2.2.2 Experimental results

A simplified scheme of our setup for measuring the
instantaneous velocity of a Brownian particle in air is
shown in Fig. 2. The trap is formed inside a vacuum
chamber by two counter-propagating laser beams fo-
cused to the same point by two identical aspheric lenses
with focal length of 3.1 mm. The two 1064 nm laser
beams are orthogonally polarized, and their frequencies
differ by 160 MHz to avoid interference.

The two laser beams are aligned with the help of a
pinhole aperture whose diameter is 1.0 ± 0.5 μm. We in-
tentionally make the waist of one beam larger than the
other to make this alignment less critical. The measured
waists of the two beams are about 2.2 μm and 3.0 μm,
respectively. Once a bead is trapped, we keep the power
of one beam constant, and tune the power of the other
beam to maximize the trapping frequency.

When the bead deviates from the center of the trap, it
deflects both trapping beams. We monitor the position
of the bead by measuring the deflection of one of the
beams, which is split by a mirror with a sharp edge. This
simple, yet novel, detection scheme has a bandwidth of
75 MHz and ultra-low noise [20, 65]. The position signal
of a trapped bead is recorded at a sampling rate of 2 MHz.
Because of the detection noise, we are not able to obtain
accurate instantaneous velocities of a bead at this rate.
To reduce the noise, we average every 10 successive posi-
tion measurements, and use these averages to calculate
instantaneous velocities with time resolution of 5 μs. Al-
though this method reduces the temporal resolution by
a factor of 10, it greatly increases the signal-to-noise ra-
tio if both the trapping period (2π/ω0) and momentum
relaxation time are much larger than 5 μs. These condi-
tions are satisfied here since the trapping period is about
320 μs, τp = 48 μs at 99.8 kPa (749 torr), and τp = 147 μs
at 2.75 kPa (20.6 torr).

Figure 3 shows typical samples of position and ve-
locity traces of a trapped bead. The position traces of
the bead at these two pressures appear very similar. The

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 5www.ann-phys.org
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Figure 3 (online color at: www.ann-phys.org)
One-dimensional trajectories of a 3 μm diam-
eter silica bead trapped in air at 99.8 kPa (A)
and at 2.75 kPa (B). The instantaneous veloci-
ties of the bead corresponding to these trajec-
tories are shown in (C) and (D). Figure adapted
from Ref. [21].

Figure 4 (online color at: www.ann-phys.org) The mean square
displacements of a 3 μm silica bead trapped in air at 99.8 kPa (red
square) and 2.75 kPa (black circle). The solid lines are the theoreti-
cal predictions of Eq. (11). The prediction of Einstein’s theory of free
Brownian motion in the diffusive regime is shown in dashed lines
for comparison. Figure adapted from Ref. [21].

instantaneous velocity of the bead at 99.8 kPa changes
more frequently than that at 2.75 kPa, because the mo-
mentum relaxation time is shorter at higher pressure.

Figure 4 shows the mean square displacements of a
3 μm silica bead as a function of time. The measured
MSD’s fit excellently with Eq. (11) over three decades of
time for both pressures. The measured MSD’s are com-
pletely different from those predicted by Einstein’s the-
ory of Brownian motion in a diffusive regime. The slopes
of measured MSD curves at short time scales are double

of those of the MSD curves of diffusive Brownian motion
in the log-log plot (Fig. 4). This is because the MSD is
proportional to t2 for ballistic Brownian motion, and it is
proportional to t for diffusive Brownian motion. Another
important feature is that the MSD curves are indepen-
dent of air pressure at short time scales, as is predicted by
Eq. (6) for ballistic Brownian motion, whereas the MSD
in the diffusive regime does depend on the air pressure.
At long time scales, the MSD oscillates and saturates at a
constant value because of the optical trap.

The distributions of the measured instantaneous ve-
locities are displayed in Fig. 5. They agree very well
with the Maxwell-Boltzmann distribution. The measured
rms velocities are vrms = 0.422 mm/s at 99.8 kPa and
vrms = 0.425 mm/s at 2.75 kPa. These are very close
to the prediction of the energy equipartition theorem,
vrms = √

kB T/M, which is 0.429 mm/s. As expected, the
velocity distribution is independent of pressure. Thus
the Maxwell-Boltzmann distribution of velocities and the
equipartition theorem of energy for Brownian motion
were verified directly.

Figure 6 shows the normalized VACF of the bead at
two different pressures. They fit with Eq. (14) nicely.
At 2.75 kPa, one can clearly see the oscillations due to
the optical trap. Eq. (14) is independent of the calibra-
tion factor of the detection system. The only indepen-
dent variable is time t, which we can measure with high
precision. Thus the normalized VACF provides an accu-
rate method to measure τp and ω0. We can also calcu-
late the diameter of the silica bead from the τp value at
99.8 kPa [66]. The obtained diameter for this microsphere
is 2.79 μm. This is within the uncertainty range given by

6 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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Figure 5 (online color at: www.ann-phys.org) The distribution of
the measured instantaneous velocities of a 3 μm silica bead. The
statistics at each pressure are calculated from 4 million instanta-
neous velocities. The solid lines are Maxwell-Boltzmann distribu-
tions. Figure adapted from Ref. [21].

Figure 6 (online color at: www.ann-phys.org) The normalized ve-
locity autocorrelation functions of the 3 μm bead at 99.8 kPa (red
square) and at 2.75 kPa (black circle) from the measurements. The
solid lines are fittings with Eq. (14). Figure adapted from Ref. [21].

the supplier of 3.0 μm silica beads. We use this value in
the calculation of MSD and normalized VACF.

For a particle at a certain pressure and temperature,
τp should be independent of the trapping frequency. We
verified this by changing the total power of the two laser
beams from 25 mW to 220 mW. The measured τp of a
microsphere trapped at 19.6 torr and 749 torr as a func-
tion of the total laser power is shown in Fig. 7. Here we
use a new microsphere and a smaller data set to calcu-
late the τp than those used in the previous figures. Al-
though the data points for each pressure are not perfectly

Figure 7 (online color at: www.ann-phys.org) Measured momen-
tum relaxation times (τp) of a microsphere trapped at 2.61 kPa
and 99.8 kPa as a function of the total power of the two trapping
beams.

on a line, it is clear that the τp’s are independent of the
laser power within the experimental uncertainty. Fitting
the data for each pressure with a straight line, we obtain
τp = [151.3 + 0.00168 P/(1 mW)] μs at 2.61 kPa, and τp =
[53.74 − 0.00275 P/(1 mW)] μs at 99.8 kPa for this micro-
sphere, where P is the total power of the two trapping
beams. Thus τp changes less than 1.3% for both pressures
when the total laser power is changed from 0 to 230 mW.
This proves that the fitting method is very accurate, and
the heating due to the laser beams (which would change
the viscosity [67, 68] and affect τp) is negligible at these
pressures.

3 Brownian motion in a liquid

The main difference between the Brownain motion in a
liquid and that in a gas is the hydrodynamic effects of the
liquid [46]. The Brownian motion of colloidal particles in
a liquid at high concentrations have been studied with
diffusing wave spectroscopy, which requires each photon
to be scattered many times before reaching the detec-
tor [15–17]. The recent developments in optical tweez-
ers provide a new tool for studying the Brownian mo-
tion of single particles with unprecedented precision
[18, 20, 21, 24, 25]. Meanwhile, precise calibrations (force,
position, etc.) of optical tweezers demand better under-
standing of the Brownian motion of trapped particles
[60, 68–70].

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 7www.ann-phys.org
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Table 1 Characteristic time scales of an optically trapped silica
microsphere in water at 20 ◦C. Some examples of the spring
constant of the optical trap (k) are shown in the 5th column. It
is assumed to be inversely proportional to the diameter of the
microsphere when the laser power is constant.

Diameter τp τ f τc k τk

(μm) (μs) (μs) (ns) (μN/m) (μs)

1.0 0.11 0.25 0.34 100 94

3.0 1.0 2.2 1.01 33.3 851

4.7 2.45 5.51 1.58 21.3 2083

10 11.1 25.0 3.4 10 9443

3.1 Theory

Besides the inertia of the particle itself, the inertia of
the surrounding liquid is also important for Brownian
motion of particles in a liquid. The motion of a parti-
cle will cause long-lived vortices in the liquid that will
affect the motion of the particle itself. This is the hy-
drodynamic memory effect of the liquid, which domi-
nates the dynamics of the particle at short time scales.
These hydrodynamic memory effects were first studied
by Vladimirsky in 1945 [71]. In 1960s, several authors
found in computer simulations that the velocity autocor-
relation function (VACF) of fluid molecules had a power-
law tail in the form of t−3/2 [72, 73], in contrast to the
exponential decay in a dilute gas. Hinch obtained an an-
alytical solution of the VACF for free particles from the
original Langevin analysis [74]. Clercx and Schram calcu-
lated the MSD and VACF of a Brownian particle in a har-
monic potential in an incompressible liquid [75], which
can be used to describe the Brownian motion of an opti-
cally trapped microsphere in a liquid directly [24, 30, 76].

3.1.1 A free particle in a liquid

The effective mass of the microsphere in an incompress-
ible liquid is the sum of the mass of the microsphere and
half of the mass of the displaced liquid [77, 78]:

M∗ = Mp + 1
2

Mf , (16)

where Mp = (4/3)π R3ρp is the mass of the microsphere,
Mf = (4/3)π R3ρ f is the mass of displaced liquid, ρp is
the density of the microsphere, and ρ f is the density
of liquid. The energy equipartition theorem needs to be

modified to:

1
2

M∗〈v2〉 = 1
2

kB T (17)

where v is the velocity of the microsphere in one dimen-
sion. Thus the rms velocity is vrms = √

kB T/M∗. Because
of the memory effect of liquid, the velocity autocorrela-
tion function (VACF) of a free particle in a liquid will not
be 〈v(t)v(0)〉 = kB T

M e−t/τp as in air, but [46, 74, 75, 79]

〈v(t)v(0)〉
kB T/M∗ = α+eα2

+t erfc(α+
√

t) − α−eα2
−t erfc(α−

√
t)

α+ − α−
, (18)

where

α± = 3
2

· 3 ± (5 − 36τp/τ f )1/2

τ
1/2
f (1 + 9τp/τ f )

. (19)

τp = Mp/(6πηR) = 2
9 R2ρp/η is the momentum relaxation

time of the particle due to its own inertia, τ f = R2ρ f /η

characterizes the effect of liquid. Here η is the viscosity
of liquid and R is the radius of the microsphere.

At long time scales, Eq. (18) approaches

〈v(t)v(0)〉
kB T/M∗ ∝ 1

t3/2
for t → ∞. (20)

At short time scales, Eq. (18) approaches

〈v(t)v(0)〉
kB T/M∗ = exp

(
−b

√
t/τ f

)
for t → 0, (21)

where

b = 18√
π(1 + 2ρp/ρ f )

.

For a silica microsphere in water, b = 2.03. The normal-
ized VACF approaches 1 at short time scales as

exp(−b
√

t/τ f ), rather than exp(−t/τp). Thus the dy-
namics of the particle is dominated by the hydrodynamic
effects of the liquid. This is very different from the case in
air.

3.1.2 An optically trapped microsphere in a liquid

The optical trap provides a harmonic force Ftrap = −kx
on the microsphere when the displacement of the mi-
crosphere is small. k = Mp�

2 where � is the natural an-
gular frequency of the trap. Clercx and Schram [75] gave
analytical solutions for the MSD and VACF of a trapped
Brownian particle in a liquid, and Berg-Sørensen and
Flyvbjerg [60] gave a solution for the power spectrum
density (PSD) of a trapped Brownian particle in a liq-
uid. This section introduces their analytical solutions
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and provides some numerical results to visualize those
solutions.

Because the velocity of the Brownian motion of a mi-
crosphere in liquid is much smaller than the speed of
sound in the liquid, the fluid motion can be described by
the linearized incompressible time-dependent Navier-
Stokes equation. The Langevin equation of the motion
of a trapped microsphere in an incompressible liquid is
[75]:

M∗ ẍ(t) = −kx(t) − 6πηRẋ(t) − 6R2√πρ f η

×
∫ t

−∞
(t − t′)−1/2 ẍ(t′)dt′ + Ftherm(t). (22)

The first term after the equal sign of Eq. (22) is the har-
monic force, the second term is the ordinary Stokes’s fric-
tion, the third term is a memory term associated with the
hydrodynamic retardation effects of the liquid, and the
last term is the Brownian stochastic force.

By the famous fluctuation-dissipation theorem, the
thermal force is directly related to the frictional force. So
the hydrodynamic memory of the liquid will affect both
the thermal force and the frictional force. The thermal
force is not a white noise, but becomes colored. The cor-
relation in the thermal force is [25, 27, 46, 75]

〈Ftherm(t)Ftherm(0)〉 = −γ kB T

√
τ f

4π
t−3/2, (23)

which is very different from a delta function (Eq. (4)).
The mean-square displacement of a trapped micro-

sphere in a liquid is [75, 80]

〈[�x(t)]2〉trap = 2kB T
k

+ 2kB T
M∗

[
ez2

1t erfc(z1
√

t)
z1(z1 − z2)(z1 − z3)(z1 − z4)

+ ez2
2t erfc(z2

√
t)

z2(z2 − z1)(z2 − z3)(z2 − z4)

+ ez2
3t erfc(z3

√
t)

z3(z3 − z1)(z3 − z2)(z3 − z4)

+ ez2
4t erfc(z4

√
t)

z4(z4 − z1)(z4 − z2)(z4 − z3)

]
(24)

The coefficients z1, z2, z3, and z4 are the four roots of the
equation [80]
(

τp + 1
9
τ f

)
z4 − √

τ f z3 + z2 + 1
τk

= 0, (25)

where τk = 6πηR/k. For t → ∞, Eq. (24) approaches

〈[�x(∞)]2〉trap = 2kB T
k

.

The normalized VACF of a trapped microsphere in a
liquid is [75, 80]

A(t) = 〈v(t)v(0)〉
kB T/M∗ = z3

1 ez2
1t erfc(z1

√
t)

(z1 − z2)(z1 − z3)(z1 − z4)

+ z3
2 ez2

2t erfc(z2
√

t)
(z2 − z1)(z2 − z3)(z2 − z4)

+ z3
3 ez2

3t erfc(z3
√

t)
(z3 − z1)(z3 − z2)(z3 − z4)

+ z3
4 ez2

4t erfc(z4
√

t)
(z4 − z1)(z4 − z2)(z4 − z3)

. (26)

The power spectral density is [60, 80]:

S( f ) = D
2π2 f 2

× 1 + √
f/2φ f

(φk/ f − √
f/2φ f − f/φp − f/9φ f )2 + (1 + √

f/2φ f )2
, (27)

where f is the observation frequency, φk = 1/(2πτk) is the
corner frequency of the power spectrum due to the trap,
and φp, f = 1/(2πτp, f ). For f → 0, Eq. (27) approaches

S(0) = 2kB Tγ

k2
,

where γ = 6πηR.
At t → 0, Eq. (26) predicts 〈v(0)v(0)〉 = kB T/M∗,

which is different from the energy equipartition theorem
〈v(0)v(0)〉 = kB T/Mp. This conflict is caused by the as-
sumption in Eq. (22) that the liquid is incompressible.
For t < tc, we need to consider the liquid to be compress-
ible. Here tc = R/c is the time required for a sound wave
to travel a sphere radius, where c is the speed of sound in
the liquid. The effects of compressibility have been stud-
ied by Zwanzig and Bixon [77]. The normalized velocity
autocorrelation function at t ∼ tc is [77]:

A(t) = 〈v(t)v(0)〉
kB T/M∗

= 1 + Mf

2Mp

[
1
2

− i M∗
(
4M2

p − M2
f

)1/2

]

e−ix1t/tc

+ Mf

2Mp

[
1
2

+ i M∗
(
4M2

p − M2
f

)1/2

]

e−ix2t/tc , (28)

where

x1 = −i
M∗

Mp
+

[

1 − M2
f

4M2
p

]1/2

, (29)

x2 = −i
M∗

Mp
−

[

1 − M2
f

4M2
p

]1/2

. (30)
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Figure 8 (online color at: www.ann-phys.org) Calculated mean
square displacement of an optically trapped silica microsphere in
water at 20 ◦C. Parameters are the same as those in Table 1.

Figure 9 (online color at: www.ann-phys.org) Calculated power
spectra of an optically trapped silica microsphere in water at
20 ◦C. Parameters are the same as those in Table 1.

At very short time scales t � tc, Eq. (28) approaches
A(0) = 1 + Mf

2Mp
. The short time limit A(0) �= 1 because

the normalization factor is kB T/M∗ in Eq. (28), rather
than kB T/Mp.

The calculated MSD’s of microspheres with different
diameters in water are shown in Fig. 8, and the corre-
sponding power spectra are shown in Fig. 9. Fig. 10 dis-
plays the normalized velocity autocorrelation function
(A(t)) of an optically trapped silica microsphere in water
at 20 ◦C. The thick solid lines are calculated from Eq. (26),
which treats the water as an incompressible fluid. The
thin solid lines at short time scales (t < 10−8 s) are cal-
culated from Eq. (28), which includes the compressibility

Figure 10 (online color at: www.ann-phys.org) Calculated normal-
ized velocity autocorrelation function of an optically trapped silica
microsphere in water at 20 ◦C. Parameters are the same as those in
Table 1. The thin solid lines (t < 10−8 s) are calculated from Eq. (28),
and the thick solid lines are calculated from Eq. (26). The dashed
lines are exponential decays with τp = 1.0μs, corresponding to a
3.0 μm microsphere.

effects of water. The dashed lines are exponential decays
with τp = 1.0 μs, corresponding to a 3.0 μm microsphere.
As clearly shown in Fig. 10, the VACF of a microsphere in
water is very different from exponential decay because of
the hydrodynamic memory effects of water.

The thin solid lines are expected to be correct for
t ∼ tc, and the thick sold lines are expected to be cor-
rect for t � tc. The intermediate regime tc < t < 100tc is
poorly understood. A recent experiment has measured
the VACF of a Brownian particle in water at VACF< 0.35
[24, 30]. A measurement of the VACF between 1 and 0.35
is required in order to better understand the hydrody-
namic effects and compressibility effects of water on
Brownian motion [81–84].

3.2 Experimental observation of the color of thermal
force in a liquid

Conventionally, the thermal force exerted on a Brown-
ian particle are assumed to be a white noise. Due to the
hydrodynamic memory effects of the liquid, this thermal
force is in fact colored. Direct experimental observation
of the color of the thermal force in a liquid was elusive
until the recent work by Franosch et al. [25]. They used
optical tweezers with very large stiffness (k ≈ 205 μN/m
for 2.9 μm diameter particles) to study the Brownian
motion of a trapped microsphere. Their key insight is
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Figure 11 (online color at: www.ann-phys.org) The color of ther-
mal force (Figure adapted from Ref. [25]). (a), The normalized power
spectral density (PSD) of thermal force of an optically trapped
melamine resin sphere (R = 1.45 μm) in water (green circles) or
acetone (blue circles). The black lines are predictions of the hy-
drodynamic theory. (b), The normalized power spectral density of
position.

that at long times, strong trapping eventually dominates
over friction and becomes the main force counteract-
ing thermal force [27]. So the Langevin equation reduces
to kx(t) ≈ Ftherm(t). Consequently, the correlations in the
thermal force can be obtained by the position autocorre-
lation function 〈Ftherm(t)Ftherm(0)〉 ≈ k2〈x(t)x(0)〉.

Figure 11 shows the results of Franosch et al.’s ex-
periment on the color of thermal force [25]. The data

in Fig. 11(a) clearly shows the departure of thermal
force from a white noise whose power spectrum is a
horizontal line. The measured spectrum of the thermal
force increases at higher frequencies. Franosch et al. also
observed resonances in Brownian motion in liquid where
overdamped motion is often assumed. In order to ob-
serve the resonance, they used optical tweezers with
very large stiffness, and acetone as a liquid rather than
water. The viscosity of acetone is about 3 times smaller
than that of water. So the motion of a trapped bead is less
damped in acetone than in water. The resonance can be
clearly seen in Fig. 11(b). Remarkably, this resonance is
mainly due to the inertia of the liquid, rather than the in-
ertia of the particle itself.

3.3 Experimental observation of the transition from
ballistic to diffusive Brownian motion in a liquid

Recently, Huang et al. studied the Brownian motion of
a single particle in an optical trap in water with sub-
Angstrom resolution and measured the velocity autocor-
relation function of the Brownian motion [24]. In their
experiments, τk due to the confinement of the optical
tweezers was typically two orders of magnitude larger
than τ f . So the role of the optical confinement can be
neglected during the transition from ballistic to diffusive
Brownian motion.

Figure 12 shows Huang et al.’s results of MSD’s for
1 μm and 2.5 μm silica particles from 10 ns to 1 ms
[24]. The MSD’s increase at short time scales, and reach

Figure 12 (online color at: www.ann-phys.org) Measured mean
square displacement of silica spheres with diameters of 1 μm and
2.5 μm (Figure adapted from Ref. [24]). The red lines with slope 2
show the expected behavior of ballistic Brownian motion.
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Figure 13 (online color at: www.ann-phys.org) Normalized exper-
imental VACF for a 2 μm diameter resin sphere in an optical trap
(Figure adapted from Ref. [24]). The blue line shows the fitting of
the Clercx-and-Schram theory (Eq. (26)) to the whole experimental
VACF. The grey (dashed) and green lines show the expectations of
VACF for the same particle if the inertia of the liquid is ignored, in
the absence (grey) and presence (green) of the harmonic trap.

plateaus at long time scales due to the confinement of
the optical trap. At short time scales, the particle under-
goes free, but correlated Brownian motion because of the
inertia of the particle and the surrounding liquid. The ef-
fect of the particles’ inertia on Brownian motion is visible
in Fig. 12. The slopes of the MSDs are close to 2 at short
time scales, as predicted for ballistic Brownian motion. It
is remarkable that Huang et al. achieved a temporal res-
olution of about 10 ns in the case of a 1 μm silica particle.
At this temporal resolution, Huang et al. resolved a MSD
as small as 0.0005 nm2, corresponding to 22 pm spatial
resolution. The temporal resolution shown in Fig. 12 is
about 0.1 τp for a 1 μm particle, and about 0.15 τp for a
2.5 μm particle.

Figure 13 shows Huang et al.’s experimental results of
the VACF of a 2 μm resin particle and a theoretical fit
with the Clercx-and-Schram theory (Eq. (26)) [75]. The
predictions of VACF from Langevin equations neglect-
ing the hydrodynamic effects of water are also displayed
for comparison. The experimental results agree with the
Clercx-and-Schram theory. For times shorter than τ f =
1 μs, the velocity correlations are smaller than the pre-
dictions of the Langevin equation neglecting the inertia
of the fluid. At longer times, the correlations are stronger
because of the vortex developed in the fluid. The small
anti-correlation dip near 300 μs is because of the optical
trap.

Although the spatial resolution of Huang et al.’s ex-
periment is sufficient to observe the transition from bal-
listic to diffusive Brownian motion in MSD and even
compute a VACF, it is not enough to measure the instan-
taneous velocity of Brownian motion in a liquid. The rea-
son is that both MSD and VACF are insensitive to white
noise of the detection system since they are averages over
large data sets. On the other hand, the measurement of
the instantaneous velocity is very sensitive to the detec-
tion noise. We will discuss about this issue in the follow-
ing section.

4 Effects of detection noise on studying
Brownian motion

In the presence of detection noise [20, 21, 24], the mea-
sured position of the microsphere can be expressed as

xmsr (t) = xp(t) + xn(t), (31)

where xp(t) is the real position of the microsphere, and
xn(t) is the noise of the detection system. The mean
square displacement (MSD) of the measured positions
is [79]:

MSDmsr (t) = 〈[xmsr (t0 + t) − xmsr (t0)]2〉
= 〈[xp(t0 + t) − xp(t0)]2〉 + 〈[xn(t0 + t) − xn(t0)]2〉

+ 2〈[xp(t0 + t) − xp(t0)] · [xn(t0 + t) − xn(t0)]〉
= MSDp(t) + MSDn(t), (32)

where the average is taken over all possible t0. This
derivation assumes no correlation between the real po-
sition of the microsphere and the detection noise. In this
case, the real MSD of the microsphere can be obtained
by MSDp(t) = MSDmsr (t) − MSDn(t), as in Ref. [18, 24].
MSDn(t) is usually independent of time, as shown in
Fig. 4.

The measured velocity of the microsphere is

vmsr (t) = xmsr (t + �t
2 ) − xmsr (t − �t

2 )

�t

= xp(t + �t
2 ) − xp(t − �t

2 )

�t

+ xn(t + �t
2 ) − xn(t − �t

2 )

�t

= vp(t) + vn(t), (33)

where �t � τp. Because the measured velocity contains
a noise signal vn(t), the smallest �t of the detection
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system may not be the best value for measuring the
velocity. The data acquisition (DAQ) card creates noise
when it converts an analog signal to a digital signal due
to the finite number of bits. The minimum value of xn(t +
�t
2 ) − xn(t − �t

2 ) is limited by the DAQ card, thus vn(t) may
be larger than the real velocity of the microsphere (vp(t))
if �t is too small.

The measured velocity represents the real instanta-
neous velocity of the microsphere if �t � τp and vn(t)
is negligible. This requires 〈v2

msr 〉 � 〈v2
n〉. One can check

whether this condition is satisfied by comparing the sig-
nal when a microsphere is trapped in the optical tweezer
and when there is no microsphere in the optical tweezer.
The relation between 〈v2

msr 〉 and 〈v2
n〉 can be obtained

from the measured MSD’s:

〈
v2

msr

〉 =
〈[

xmsr
(
t + �t

2

) − xmsr
(
t − �t

2

)]2

�t2

〉

= MSDp(�t)
�t2

+ MSDn(�t)
�t2

= 〈v2
p〉 + 〈v2

n〉. (34)

Thus 〈v2
msr 〉 � 〈v2

n〉 is equivalent to MSDmsr (�t) �
MSDn(�t).

The measured velocity autocorrelation function is

〈vmsr (t + t0)vmsr (t0)〉 = 〈vp(t + t0)vp(t0)〉
+ 〈vn(t + t0)vn(t0)〉. (35)

If the noise of the detection system has almost no corre-
lation (white noise), the last term of this equation can be
neglected. Thus

〈vmsr (t + t0)vmsr (t0)〉 = 〈vp(t + t0)vp(t0)〉. (36)

So the measurement of the velocity autocorrelation func-
tion is not sensitive to the noise of the detection system
[24]. On the other hand, the measurement of the instan-
taneous velocity is very sensitive to the noise of the de-
tection system [21].

If the detection system samples the position of the
microsphere every dt that is much shorter than the re-
quired temporal resolution �t, we can reduce the noise
in the measured velocity by using successively averaged
positions to calculate the velocity. Let �t = N dt, where
N � τp/dt, then

xavr (t) = 1
N

N∑

j=1

xmsr (t + jdt − N + 1
2

dt). (37)

The measured velocity becomes

vmsr (t) = xavr (t + �t
2 ) − xavr (t − �t

2 )

�t
. (38)

Then the velocity noise is

vn(t) = 1
N2dt

⎡

⎣
N∑

j=1

xn

(
t + jdt − N + 1

2
dt + �t

2

)

−
N∑

j=1

xn

(
t + jdt − N + 1

2
dt − �t

2

)⎤

⎦ . (39)

On average, the rms amplitude of vn(t) in Eq. (39) is N
√

N
times smaller than that of [xn(t + dt/2) − xn(t − dt/2)]/dt
if the position noise xn(t) is a white noise. If N = 10,
the noise can be reduced by a factor of 32, which is a
significant number. The condition of using the averag-
ing method is that dt � τp/N. So the detection system
must have a very high temporal resolution. This averag-
ing method has been utilized in both the measurement
of the VACF of a Brownian particle in a liquid [24] and the
measurement of the instantaneous velocity of a Brown-
ian particle in air [21].

5 Future

As shown in this review, optical tweezers have become
an indispensable tool for studying Brownian motion at
short time scales. The instantaneous velocity of a Brow-
nian particle trapped in a gas has been measured [21].
Recently, the velocity autocorrelation function of a Brow-
nian particle in water was measured successfully for
〈v(t)v(0)〉

〈v2〉 < 0.35 [24, 30, 79].
The instantaneous velocity of a Brownian particle in

liquid is much more difficult to measure, and has not
been measured to date. A successful measurement of the
instantaneous velocity of a Brownian particle in a liquid
will complete the task that was considered by Einstein
more than 100 years ago [11,12] and open a new door for
studying Brownian motion. For example, the results can
be used to test the modified energy equipartition the-
orem 〈v(0)v(0)〉 = kB T/M∗ and the Maxwell-Boltzmann
velocity distribution. A measurement of the VACF > 0.35
will deepen our understanding of the hydrodynamic ef-
fects and compressibility effects of a liquid on Brown-
ian motion [81–84]. The ability to measure the instanta-
neous velocity of a Brownian particle will be invaluable in
studying nonequilibrium statistical mechanics [85, 86].
The Brownian motion of a suspended particle can be
used for microrheology to probe the properties of fluids,
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such as viscoelastic fluids [87–89], and surrounding en-
vironments [90–92].
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