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Atomic Landau-Zener Tunneling and Wannier-Stark Ladders in Optical Potentials
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(Received 22 December 1995)

We calculate the quantum motion of ultracold atoms in an accelerating optical potential, and sho
how they may be used to observe Landau-Zener tunneling and Wannier-Stark ladders, two fundamen
quantum effects in solid state physics. The optical potential is spatially periodic, yielding an energ
spectrum of Bloch bands for the atoms. The acceleration provides an inertial force in the movin
frame, emulating an electric force on Bloch electrons. [S0031-9007(96)00402-4]

PACS numbers: 32.80.Pj, 42.50.Vk, 71.70.Ej
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Quantum transport is a very important subject in so
state physics and electronics applications. Two fun
mental quantum effects, Landau-Zener (LZ) tunneling a
Wannier-Stark (WS) ladders, occur in a system of el
trons moving in a periodic potential and driven by a
electric field. Because of complications such as impu
ties, lattice vibrations, and multiparticle interactions, cle
observations of these effects have been difficult. In t
Letter, we show theoretically how these effects may be
served in a very different physical system: ultracold ato
in optical potentials. Such observations should also h
an important impact on the development of atom optics

In a periodic potential of the solid, the electronic ener
spectrum is known to be in the form of Bloch band
separated by energy gaps [1]. The states in each b
are labeled by the so-called crystal wave numberk (we
consider only one dimensional systems for simplicit
In a weak external electric field,k changes in time and
the electrons move periodically within each band (Blo
oscillation). When the field is high enough, tunnelin
between different bands becomes possible, which is ca
LZ tunneling [2]. On the other hand, for sufficiently sma
electric field, LZ tunneling is negligible, and a Bloch ban
splits into a series of equally spaced energy levels
called WS ladders, which are observed in superlatti
[4]. The spacing is given by the electric force times t
lattice constant, and the corresponding wave functions
localized over a length scale equal to the lattice const
times the band width divided by the ladder spacing.

A periodic potential for the atoms can be generated
two counterpropagating laser beams at the same freque
via the dipole force effect [5]. For a two-level atom o
transition frequencyv0, the optical potential is given by
f"V2y8svL 2 v0dg coss2kLxd wherekL andvL are laser
wave number and angular frequency, respectively, andV

is the resonant Rabi frequency proportional to the squ
root of the laser intensity [6]. We neglect spontaneo
scattering, which is valid for sufficiently large detunin
from resonance. We consider the case of an accelera
standing wave, which is created when the frequen
difference of the two beams varies linearly in time. The
in terms of scaled dimensionless lengthf ­ 2kLx, time
0031-9007y96y76(24)y4504(4)$10.00
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t ­ s4"k2
Lymdt, and accelerationa ­ m2ay8"2k3

L, the
potential has the form

V0 cossf 2
1
2 at2d, with V0 ­

m
s2"kLd2

"V2

8svL 2 v0d
,

(1)

where the unit of energy is taken as 8 times the phot
recoil energy"2k2

Ly2m. In the moving frame of the po-
tential, the atoms feel a constant inertial force, simulatin
the electric force in the usual electronic experiment.

Bloch bands and rates of LZ tunneling.—The eigenen-
ergy equation for the above potential (1) witha ­ 0 can
be solved in terms of the Mathieu functions. We show th
energy bands in Fig. 1 for the case ofV0 ­ 0.4. There is
one band deep below the potential barriers, which may
regarded as the ground state levels of the potential we
broadened into a band due to tunneling through the ba
ers. The second band lies about the barrier tops and
a substantial width. The gap above this band is locat
about the energyE ­ 0.5, corresponding to second orde
Bragg scattering. The third band has an even wider wid
with a tiny gap atE ­ 1.125 corresponding to third order
Bragg scattering. We study how the atoms are trapped
the first and second bands and how they are dragged w
the potential accelerates.
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,FIG. 1. Potential energyV0 cosf and the Bloch bands fo
V0 ­ 0.4.
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The LZ tunneling rate across a gap under accelera
a of the potential can be estimated as [2]

g ­ a exps2acyad , (2)

where ac ­ pD2yK is the critical acceleration, withD
the half width of the gap, andK ­ ny2 the wave number
of Bragg scattering corresponding to thenth gap. For
the gap above the third band, we findac ­ 1.43 3 1024.
Therefore, for the range of accelerations that we consi
a $ 0.01, this gap (and all the higher ones) may
ignored. In other words, the atoms in the third a
higher bands move quite freely and are not dragged
the potential. For the gap above the second band we
ac ­ 0.01, while for the gap below it we findac ­ 0.23.
Therefore, for accelerations between these critical ra
we expect that only the states in the lowest band
dragged with appreciable probability.

Atomic dragging by an accelerating potential.—We
now describe a practical procedure for observing LZ tu
neling, which will also serve an important function for th
observation of WS ladders to be discussed below. C
sider an ensemble of atoms with a Gaussian spread in
locity and uniform distribution in space. We numerical
integrate the time-dependent Schrödinger equation to
tain the velocity distribution of the atoms (Fig. 2) at tim
when the velocity of the potential has been accelerate
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FIG. 2. Velocity distribution of the atoms (solid lines) whe
the potential has been accelerated to a velocity ofy ­ 10
with different accelerations: (a)a ­ 0.02, (b) a ­ 0.1, and
(c) a ­ 0.3. The dotted lines are classical results. Dash
lines are for the initial Gaussian distribution.
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y ­ 10 (in units of 2"kLym). The standard deviation o
the initial Gaussian distribution wass ­ 1.5, and the po-
tential was suddenly turned on to a strength ofV0 ­ 0.4
at time zero when the acceleration began. We will a
dress the effects of sudden and adiabatic turning on of
potential later.

We identify the states in the dragged peak in Fig. 2
(for a ­ 0.02) as being from the first band. We can e
timate the velocity distribution in the following approxi
mations: (i) We neglect the tunneling between the we
so that the velocity distribution of the band is the sum
velocity distributions in the lowest states of the differe
wells. (ii) The lowest state in a well is taken as the grou
state of the harmonic approximation of the well bottom,
that its velocity distribution is given by the Gaussian

exps2y2y2s2
0 d , (3)

where s0 ­ V
1y4
0 y

p
2 ­ 0.56. This is also the distri-

bution of the first band up to a normalization consta
because the velocity distributions for different wells a
identical. The peak width estimated this way is very clo
to the numerical result for the dragged peak shown
Fig. 2(a).

The tail between the original peak and the dragg
peak consists of atoms that have tunneled out of
second band and have been left along the way dur
dragging (“debris”). From a simple model calculatio
the probability density of this tail should be given by

P2
g

a
exp

µ
2

gy

a

∂
, (4)

where P2 is the initial probability of trapping into the
second band, andg is the rate of LZ tunneling from
(2). The log plot of Fig. 2(a) gives a straight line fo
the tail, confirming the functional form of the abov
expression. From the slope, the tunneling rate is fou
to beg ­ 0.014. This gives the critical acceleration vi
Eq. (4) to beac ­ 0.0076, which is somewhat lower than
the earlier rough estimate ofac ­ 0.01.

For higher accelerations, the tail from the second ba
quickly becomes negligible, but the dragged peak rema
the same untila is increased to about 0.1, when it star
to diminish due to appreciable LZ tunneling from the fir
band. This is seen in Fig. 2(b), where the new tail
now due to atoms lost from the dragged peak along
way. From the slope of this tail, the tunneling rate
found to be about 0.008, and the critical acceleration
tunneling is found to be about 0.25, which is very clo
to the previous estimate ofac ­ 0.23. Also, the initial
trapping probability in the lowest bandP1 is estimated
to be about 0.25 using (4) (withP2 replaced byP1). At
a ­ 0.3, the dragged peak disappears almost comple
[Fig. 2(c)].

We also present the corresponding classical result
Fig. 2 for comparison. It is convenient to consider t
problem in the moving frame, where the potential
4505
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stationary but is tilted by the inertial force asV0 cosf 1

af. Dragging is possible for all accelerations below t
critical valuea ­ V0 at which the tilted potential cease
to have potential wells. There are two notable differenc
(i) There is a gap between the main peak and drag
peak in which the velocity distribution vanishes, becau
the atoms are either dragged or nondragged because
is no possibility of tunneling in classical mechanics. (
For the range of accelerations considered, the line wid
of the dragged peaks are wider than those of the quan
results because of the absence of energy quantization

Atomic trapping in a periodic potential.—For the
observation of LZ tunneling and WS ladders (see belo
and many other purposes, it is desirable to have as m
atoms as possible trapped in the lowest band. We wo
like to discuss two schemes of trapping and compare t
efficiency. Our initial distribution is always a Gaussian
velocity and uniform in position.

The results in Fig. 2 were obtained in the sudd
limit where the potential was turned on in a very sh
time before acceleration. The trapping probability is ju
the integral of the initial thermal distribution times th
velocity distribution in the lowest band. In the Gaussi
approximation (3) for the states in the lowest band,
result is

P1 ­
1q

2pss2 1 s
2
0 d

. (5)

This has the numerical value of 0.25 for the paramet
that we used, and is very close to the weight of t
dragged peak in Fig. 2.

In the adiabatic limit, all the atoms initially in the
first Brillouin zone, s2 1

2 , k ,
1
2 d, are trapped in the

lowest band [7]. The probability approaches unity wh
s ø 1y2, and approaches1y

p
2ps2 for s bigger than

half. Therefore, if the initial thermal distribution i
wider than the first Brillouin zone, there is not muc
difference in trapping efficiency between the adiaba
and sudden limits. However, adiabatic turning-on c
lead to dramatic improvements when the initial width
narrower. In general, those atoms initially in thenth
Brillouin zone, fsn 2 1dy2 , jkj , ny2g, are trapped in
the nth band in the adiabatic limit. It is interesting t
note that the adiabatic trapping probabilities in the ba
are independent of the potential strength.

WS ladders.—In Fig. 3 we show the tilted bands a
a ­ 0.02 in the moving frame, with the levels of WS
ladders (of spacing2pa) schematically drawn for the
lowest two bands. The ladders for higher bands are
short lived to make any physical sense and are there
ignored completely. The ladder states in the lowest b
are essentially localized within individual potential wel
Their broadening due to LZ tunneling at this accelerat
is negligible. The ladder states for the second band ext
over several periods of the potential, and their broaden
(full width at half maximum) due to LZ tunneling ca
4506
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FIG. 3. Tilted bands and WS ladders forV0 ­ 0.4 and a ­
0.02. Arrows indicate resonant excitations by an ac modulat
of the acceleration.

be estimated asa exps2acyad, whereac ­ 0.01. The
broadening is about 10 times smaller than the spac
between the levels.

In order to observe the WS ladders, we add an
cillatory component in the acceleration (simulating
ac electric force), so that the potential has the fo
V0 cosff 2

1
2 at2 2 l cossvmtdg, wherevm is the mod-

ulation frequency andl the amplitude. This should be
able to resonantly excite the atoms in the lowest le
els to the ladders in the second band (arrows in Fig.
Once the atoms are excited to the higher levels, they
much less likely to be dragged by the wells. The ene
structure of the WS ladders is then observed through
number of atoms that are dragged as a function of
excitation frequency. In Fig. 4, we show the calculat
probability density at the center of the dragged peak
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FIG. 4. Fraction of dragged atoms as a function of the ex
tation energyvm with excitation amplitudel ­ 0.75ayvm,
with a ­ 0.02. In (a), resonances appear with a spac
dvm ­ 2pa of the WS ladders. In (b), the extra resonanc
are due to an additional (strong) modulation of frequen
vs ­ 3pa and amplitudels ­ 3ayvs.
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a function of the excitation frequency, where the ve
cal scale is normalized against the number in the abs
of excitation. The sequence of equally spaced dips
respond to the resonant excitations to the ladder sta
with the spacing equal to that of the WS ladders. Also
expected, the range of frequency showing appreciable
onant excitations is roughly the width of the second ba
and this range is centered at a frequency correspon
to the spacing between the centers of the first two ba
The fine scale oscillations of the spectrum are due to fi
interaction timest ­ 1000d.

An extension of this method can be used to obse
fractional WS ladders, which were found theoretically [8
but have not yet been observed in experiments. C
sider the potentialV0 cosff 2

1
2 at2 2 ls cossvstd 2

l cossvmtdg, wherels andvs are the amplitude and fre
quency of a strong ac modulation in addition to the ori
nal modulation for excitation. Ifvs matches the ordinary
ladder spacing by a fractional factor,qyp, the spectrum
becomes afractional ladder with a spacing which isp
times smaller. Figure 4(b) is for the case withq ­ 3 and
p ­ 2. As expected, additional resonances appear at
way between the peaks from the ordinary ladders.

Practical considerations and future directions.—We
now discuss the practical feasibility of the proposed
periments for the case of sodium atoms. Our assu
initial velocity spread corresponds to a few photon
coil velocity, which has been routinely achieved using
technique of laser cooling. The range of considered ac
erationsa ­ 0.01 1 corresponds toa ­ 0.74 74 kmys2

[9], and the resonance shown in Fig. 4(a) are at 44, 69
and 120 kHz. In order to resolve the ladder spacing,
transition rate of resonant excitation has to be less t
2pa. For a ­ 0.02, this requires the duration of exc
tation to be longer than 6.4ms. On the other hand, i
order to resolve the natural linewidth (and shape) of
ladders due to LZ tunneling, the required minimum du
tion of excitation should be about 10 times longer. Sin
the present experimental capability can allow a dura
as long as 200ms without any interruption (due to lase
instability, etc.), it is possible to observe the ladder str
ture cleanly and in detail. Complicated and interest
behavior of the linewidth as a function of ladder spac
has been predicted [10].

A future interesting direction is to study the effects
noise and dissipation on LZ tunneling [11] and WS ladde
Another direction is to utilize the dragging and excitati
technique to prepare atoms in different Bloch bands.
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Note added.—After the submission of this Letter
we learned that Bloch oscillation in a similar atom
system was observed [M. Ben Dahan, E. Peik, J. Reich
Y. Castin, and C. Salomon, [12]. Also, experiment
confirmation of the predicted Wannier-Stark ladders h
been carried out [13].
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