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Atomic Landau-Zener Tunneling and Wannier-Stark Ladders in Optical Potentials
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We calculate the quantum motion of ultracold atoms in an accelerating optical potential, and show
how they may be used to observe Landau-Zener tunneling and Wannier-Stark ladders, two fundamental
guantum effects in solid state physics. The optical potential is spatially periodic, yielding an energy
spectrum of Bloch bands for the atoms. The acceleration provides an inertial force in the moving
frame, emulating an electric force on Bloch electrons. [S0031-9007(96)00402-4]

PACS numbers: 32.80.Pj, 42.50.Vk, 71.70.Ej

Quantum transport is a very important subject in solidr = (4%k: /m)t, and accelerationy = m2a/8%%k;, the
state physics and electronics applications. Two fundapotential has the form
mental quantum effects, Landau-Zener (LZ) tunneling and hQ2
Wannler—S.tark_(WS) Ia_ddgrs, occur in a system of eIec-VO cod¢p — %m.z), with V, = m ’
trons moving in a periodic potential and driven by an (2hikL)? 8(wr — wo)
electric field. Because of complications such as impuri-

; T e . @
ties, lattice vibrations, and multiparticle interactions, clean

observations of these effects have been difficult. In thisvhere the unit of energy is taken as 8 times the photon
Letter, we show theoretically how these effects may be obrecoil energy#i2k; /2m. In the moving frame of the po-
served in a very different physical system: ultracold atomdential, the atoms feel a constant inertial force, simulating
in optical potentials. Such observations should also havthe electric force in the usual electronic experiment.

an important impact on the development of atom optics.  Bloch bands and rates of LZ tunnelirg.The eigenen-

In a periodic potential of the solid, the electronic energyergy equation for the above potential (1) with= 0 can
spectrum is known to be in the form of Bloch bandsbe solved in terms of the Mathieu functions. We show the
separated by energy gaps [1]. The states in each bamhergy bands in Fig. 1 for the caselgf = 0.4. There is
are labeled by the so-called crystal wave numbdive  one band deep below the potential barriers, which may be
consider only one dimensional systems for simplicity).regarded as the ground state levels of the potential wells
In a weak external electric field; changes in time and broadened into a band due to tunneling through the barri-
the electrons move periodically within each band (Blochers. The second band lies about the barrier tops and has
oscillation). When the field is high enough, tunnelinga substantial width. The gap above this band is located
between different bands becomes possible, which is calleabout the energ¥ = 0.5, corresponding to second order
LZ tunneling [2]. On the other hand, for sufficiently small Bragg scattering. The third band has an even wider width,
electric field, LZ tunneling is negligible, and a Bloch band with a tiny gap atE = 1.125 corresponding to third order
splits into a series of equally spaced energy levels [3]Bragg scattering. We study how the atoms are trapped in
called WS ladders, which are observed in superlatticethe first and second bands and how they are dragged when
[4]. The spacing is given by the electric force times thethe potential accelerates.
lattice constant, and the corresponding wave functions are
localized over a length scale equal to the lattice constant
times the band width divided by the ladder spacing.

A periodic potential for the atoms can be generated by 1.5
two counterpropagating laser beams at the same frequency
via the dipole force effect [5]. For a two-level atom of 1
transition frequencyw,, the optical potential is given by g5l |

[A0?/8(w; — wp)]coq2k;x) wherek; andw; are laser w / .
wave number and angular frequency, respectively,@nd ol :
is the resonant Rabi frequency proportional to the square )

root of the laser intensity [6]. We neglect spontaneous

scattering, which is valid for sufficiently large detuning 1
from resonance. We consider the case of an accelerating

standing wave, which is created when the frequency ®

difference of the two beams varies linearly in time. Then,F|G. 1. Potential energy,cosp and the Bloch bands for
in terms of scaled dimensionless length= 2k, x, time  V, = 0.4.
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The LZ tunneling rate across a gap under acceleration = 10 (in units of 2%k, /m). The standard deviation of
« of the potential can be estimated as [2] the initial Gaussian distribution was = 1.5, and the po-
tential was suddenly turned on to a strengthVpf= 0.4
y = aexp—ac/a), (2) 4t time zero when the acceleration began. We will ad-
where a. = wA2/K is the critical acceleration, witk dress the effects of sudden and adiabatic turning on of the
the half width of the gap, an& = n/2 the wave number potential later.
of Bragg scattering corresponding to thénh gap. For ~ We identify the states in the dragged peak in Fig. 2(a)
the gap above the third band, we find = 1.43 x 107*.  (for « = 0.02) as being from the first band. We can es-
Therefore, for the range of accelerations that we considetimate the velocity distribution in the following approxi-
a = 0.01, this gap (and all the higher ones) may bemations: (i) We neglect the tunneling between the wells,
ignored. In other words, the atoms in the third andso that the velocity distribution of the band is the sum of
higher bands move quite freely and are not dragged byelocity distributions in the lowest states of the different
the potential. For the gap above the second band we findells. (i) The lowest state in a well is taken as the ground
a. = 0.01, while for the gap below it we find. = 0.23.  state of the harmonic approximation of the well bottom, so
Therefore, for accelerations between these critical ratehat its velocity distribution is given by the Gaussian
we expect that only the states in the lowest band are exp(—v2/203), 3)
dragged with appreciable probability. s
Atomic dragging by an accelerating potentiatWe  where oy = V' /+/2 = 0.56. This is also the distri-
now describe a practical procedure for observing LZ tunbution of the first band up to a normalization constant,
neling, which will also serve an important function for the because the velocity distributions for different wells are
observation of WS ladders to be discussed below. Coridentical. The peak width estimated this way is very close
sider an ensemble of atoms with a Gaussian spread in vée the numerical result for the dragged peak shown in
locity and uniform distribution in space. We numerically Fig. 2(a).
integrate the time-dependent Schrédinger equation to ob- The tail between the original peak and the dragged
tain the velocity distribution of the atoms (Fig. 2) at timespeak consists of atoms that have tunneled out of the
when the velocity of the potential has been accelerated teecond band and have been left along the way during
dragging (“debris”). From a simple model calculation,
the probability density of this tail should be given by

A P e~ 22), (4)
> i where P, is the initial probability of trapping into the
* oorg E second band, ang is the rate of LZ tunneling from
- (2). The log plot of Fig. 2(a) gives a straight line for
0.001 the tail, confirming the functional form of the above
expression. From the slope, the tunneling rate is found
o1 L i to bey = 0.014. This gives the critical acceleration via
' Eq. (4) to bea. = 0.0076, which is somewhat lower than
S ] the earlier rough estimate of. = 0.01.
< oo01f 3 For higher accelerations, the tail from the second band
] quickly becomes negligible, but the dragged peak remains
0.001 i the same untikx is increased to about 0.1, when it starts
to diminish due to appreciable LZ tunneling from the first
- band. This is seen in Fig. 2(b), where the new tail is
o1E E now due to atoms lost from the dragged peak along the
~ . way. From the slope of this tail, the tunneling rate is
T 001k - found to be about 0.008, and the critical acceleration for
E tunneling is found to be about 0.25, which is very close
0,001 - to the previous estimate af, = 0.23. Also, the initial

trapping probability in the lowest ban#, is estimated
v to be about 0.25 using (4) (witR, replaced byP;). At

o o a = 0.3, the dragged peak disappears almost completely
FIG. 2. Velocity distribution of the atoms (solid lines) when [Fig. 2(c)].

the potential has been accelerated to a velocityvof 10

with different accelerations: (ay = 0.02, (b) & = 0.1, and We also present the corresponding classical results in
(c) @ = 0.3. The dotted lines are classical results. Dashed™g. 2 for comparison. It is convenient to consider the
lines are for the initial Gaussian distribution. problem in the moving frame, where the potential is
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o

stationary but is tilted by the inertial force &g cosp + L
critical valuea = V; at which the tilted potential ceases |
to have potential wells. There are two notable differences: 0.5

(i) There is a gap between the main peak and dragged

the atoms are either dragged or nondragged because there -0.5f

is no possibility of tunneling in classical mechanics. (ii)

For the range of accelerations considered, the line widths Uo-dm =In ] n 4n

results because of the absence of energy quantization. _

Atomic trapping in a periodic potentia.L_For the FIG. 3. Tllteq b.andS and WS Iadder$ fop = 0.4 anda = )
observation of LZ tunneling and WS ladders (see below .02. Arrows indicate resonant excitations by an ac modulation
and many other purposes, it is desirable to have as many
atoms as possible trapped in the lowest band. We would
like to discuss two schemes of trapping and compare their
Ve|0C|ty and un|f0rm |n pos|t|0n broader“ng |S about 10 t|meS Sma”er than the SpaCIng

The results in Fig. 2 were obtained in the sudderPetween the levels.
limit where the potential was turned on in a very short In order to observe the WS ladders, we add an os-
the integral of the initial thermal distribution times the &C electric lforce), so that the potential has the form
velocity distribution in the lowest band. In the GaussianVo€0$¢ — za7* — Acogw,7)], wherew,, is the mod-

a¢. Dragging is possible for all accelerations below the
peak in which the velocity distribution vanishes, because
of the dragged peaks are wider than those of the quantum

f the acceleration.
efficiency. Our initial distribution is always a Gaussian in b€ estimated a& exp(—a./a), wherea, = 0.01. The
time before acceleration. The trapping probability is justCillatory component in the acceleration (simulating an
approximation (3) for the states in the lowest band, theulation frequency and the amplitude. This should be

result is able to resonantly excite the atoms in the lowest lev-
1 els to the ladders in the second band (arrows in Fig. 3).
Py = T . (5)  Once the atoms are excited to the higher levels, they are

\/277'(02 + o) much less likely to be dragged by the wells. The energy

This has the numerical value of 0.25 for the parameterstructure of the WS ladders is then observed through the

that we used, and is very close to the weight of thenumber of atoms that are dragged as a function of the

dragged peak in Fig. 2. excitation frequency. In Fig. 4, we show the calculated
In the adiabatic limit, all the atoms initially in the probability density at the center of the dragged peak as

first Brillouin zone,(—% <k< %), are trapped in the

lowest band [7]. The probability approaches unity when

o < 1/2, and approaches/v27o? for o bigger than 1 :

half. Therefore, if the initial thermal distribution is 10 .

wider than the first Brillouin zone, there is not much ® o8 i TN, '8

difference in trapping efficiency between the adiabatic £ 6 f ] (a)

and sudden limits. However, adiabatic turning-on can T o, (]

lead to dramatic improvements when the initial width is 2 0'2 |

narrower. In general, those atoms initially in thé¢h 3 0'0 \

Brillouin zone,[(n — 1)/2 < |k| < n/2], are trapped in g 1'2

the nth band in the adiabatic limit. It is interesting to 5 1'0 i P

note that the adiabatic trapping probabilities in the band c L\ et

are independent of the potential strength. % 0-8 \ (b)
WS ladders—In Fig. 3 we show the tilted bands at s 00 !y

a = 0.02 in the moving frame, with the levels of WS b 04 | U

ladders (of spacin@ma) schematically drawn for the 0.2 |

lowest two bands. The ladders for higher bands are too 0 08 04 05 06 07 o8

short lived to make any physical sense and are therefore
ignored completely. The ladder states in the lowest band
are essentially localized within individual potential wells. FIG. 4.  Fraction of dragged atoms as a function of the exci-
Their broadening due to LZ tunneling at this acceleratiorfalion energyw,, with excitation amplitudeA = 0.75a/w,,

. i ith « = 0.02. In (a), resonances appear with a spacing
is negligible. The ladder states fOF. the seconql band extgnﬁwm — 27 of the WS ladders. In (b), the extra resonances
over several periods of the potential, and their broadeningre due to an additional (strong) modulation of frequency

(full width at half maximum) due to LZ tunneling can o, = 3wa and amplituder; = 3a/w;.

m
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a function of the excitation frequency, where the verti- The work was supported by ONR, the Welch Founda-
cal scale is normalized against the number in the absend®n, the NSF, and the CAS (LWTZ-1298).
of excitation. The sequence of equally spaced dips cor- Note added—After the submission of this Letter,
respond to the resonant excitations to the ladder stateg/e learned that Bloch oscillation in a similar atomic
with the spacing equal to that of the WS ladders. Also asystem was observed [M. Ben Dahan, E. Peik, J. Reichel,
expected, the range of frequency showing appreciable re¥- Castin, and C. Salomon, [12]. Also, experimental
onant excitations is roughly the width of the second bandg¢onfirmation of the predicted Wannier-Stark ladders has
and this range is centered at a frequency correspondingeen carried out [13].
to the spacing between the centers of the first two bands.
The fine scale oscillations of the spectrum are due to finite
interaction time(7 = 1000).

An extension of this method can be used to observe
fractional WS ladders, which were found theoretically [8],  «permanent address: Institute of Theoretical Physics,

but have not yet been observed in experiments. Con-  Academic Sinica, P.O. Box 2735, Beijing 100080, China.
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