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This dissertation describes the experimental study of atomic motion in opti-

cal potentials. Our system consists of ultra-cold sodium atoms in an optical

potential created by a standing wave of light. As we will show, the properties

of this system are closely related to those of an electron in a crystal lattice.

First, we describe the study of the transport properties of an atom in an

accelerated lattice. For moderate acceleration, we can observe coherent effects

in our system that are obscured by short relaxation times in the corresponding

condensed matter system. Bloch states and how they are modified by applied

static and time-dependent fields are investigated with spectroscopic tools.

For a large acceleration of the lattice, atoms can escape from the trap-

ping potential via tunneling. The behavior of this unstable system may be

expected to follow the universal exponential decay law. This exponential law,

however, is not fully consistent with quantum mechanics. Initially the number

of trapped atoms shows strong non-exponential decay features before evolving

into the characteristic exponential decay. We repeatedly measure the num-

ber of atoms that remain trapped during the initial period of non-exponential

decay. Depending on the time delay between successive measurements we ob-

serve a decay that is suppressed or enhanced as compared to the unperturbed
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system. The experiments described here are the first and only observation of

these Quantum Zeno and Anti-Zeno effects in an unstable quantum system.

The manipulation of the atomic motional state, as described here, is

based on the exchange of momentum between the atom and the light beams

forming the optical potential. An atom, changing its momentum due to the

interaction with the optical lattice, will cause a corresponding change of the

number of photons in the constituent light beams. We can measure this change

of optical power in order to obtain information about the momentum distribu-

tion of the atomic sample. The fundamental properties of this method, named

the method of recoil-induced resonances, are derived here. Furthermore, a

novel experimental method is presented that greatly improves the sensitivity

of the measurement.
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Chapter 1

Introduction

1.1 The interaction of atoms and light

The manipulation of the motional state of individual atoms with electromag-

netic light fields was observed as early as 1930, when Frisch measured the

deflection of an atomic beam with resonant light from a sodium lamp [1]. The

measured deflection was caused by the recoil momentum that an atom acquires

when absorbing or emitting a single photon of light. When an atom absorbs

a photon from a beam of light, it acquires momentum in the direction of the

light beam. Since scattered photons are emitted without preferred direction,

the momentum acquired during the emission averages to zero over many cy-

cles. This leads to a net force on the atom which is called the spontaneous

force, or radiation pressure. The spontaneous force scales with the scattering

rate and for large detunings falls off quadratically with the detuning ∆L of the

light from the atomic resonance [2]

Fspont ∝ I

∆2
L

, (1.1)

where I is the laser intensity.

Another type of force is based on the coherent scattering of photons.

The oscillating electric field of light can induce a dipole moment in the atom.

If the induced dipole moment is in phase with the the electric field, the inter-

action potential is lower in regions of high field and the atom will experience

1
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a force towards those regions. If it is out of phase, a force pointing away from

regions of high field results. This force is called the dipole force. As opposed to

the spontaneous force, the dipole force only falls off linearly with the detuning

from the atomic resonance in the limit of large detuning [2]

Fdipole ∝ ∇I

∆L

. (1.2)

From the scaling laws for the two types of forces it is clear that with

sufficient laser intensity, the spontaneous force can be made negligibly small

while still generating an appreciable dipole force. As early as 1970, Ashkin

succeeded in trapping small particles with a pair of opposing, focused laser

beams, making use of both types of forces. However, only the relatively recent

development of laser cooling and trapping techniques have created the con-

ditions for controlled manipulation of atoms with the dipole force alone [3].

While the laser cooling and trapping required to prepare our atomic sample

utilized near resonant light and thus both types of light forces, the optical

lattices were composed of far-detuned light, so that only the dipole interaction

was important.

1.2 Optical lattices and the connection to solid state
physics

In all the experiments described in this work, we created a periodic optical

potential by spatially overlapping two laser light beams. The periodicity of

the resulting standing wave was determined by the interference pattern in

the region of overlap. In the nodes of a standing wave, the electric field of the

light interferes destructively and atoms at those positions are unaffected by the

light. Away from the nodes, the dipole interaction causes a light-induced shift

of the atomic energy levels, which is maximal at the anti-nodes. This shift of

the energy levels is another way of describing the aforementioned dipole force.
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It is important to note that this force or level shift is periodic in space. The

system of a particle in a periodic potential has been studied in great detail.

It is a textbook model of an electron in a crystal lattice. In the 1920’s Bloch

studied the states in such a system and arrived at the conclusion that due to the

periodicity of the lattice, the eigenstates are plane waves modulated by periodic

functions of position [4]. The implications of these findings on the description

of transport in periodic potentials under the influence of externally applied

fields are profound. Some of the resulting effects, such as Bloch oscillations and

Wannier-Stark states, are treated in more detail in Chapter 3. Experimental

verification of those predicted effects in crystal lattices, however, has been

hindered by extremely short relaxation times. Electrons in a crystal lattice

can scatter on impurities, dislocations, phonons and even on other electrons.

If the scattering occurs on a time scale faster than the time scale for coherent

evolution of the system, coherent transport effects are destroyed. Advances in

the production of very high purity superlattice structures in the 1970’s allowed

the experimental investigation of some of those coherent effects for the first

time [5]. However, the ratio of the relaxation time to the characteristic time

scale for coherent evolution in those systems was still only on the order of

unity.

In our system we can achieve a ratio on the order of 103. The relaxation

time is mainly limited by spontaneous emission during the interaction, which

can be made very small by detuning far from resonance. This high ratio and

the ability to dynamically control the interaction potential in real-time during

the experiment allowed us to observe many of the coherent effects which are

inaccessible in solid state systems. A more detailed comparison of the solid

state and atom optics system is given in a recent overview article [6] and the

dissertation of Madison [7].
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1.3 Theoretical description

1.3.1 Interaction Hamiltonian

In this section, we derive the effective Hamiltonian for a two-level atom in a

standing wave of far-detuned light. In the semiclassical derivation we treat the

electromagnetic field classically. This formulation closely follows the derivation

by Graham et al. [8].

The atom is assumed to have a ground state |g〉 and an excited state
|e〉, separated in energy by h̄ω0. For a single atom of such type in a light field

E(r, t), the Hamiltonian is the sum of three contributions: the center of mass

part, the internal energy, and the interaction energy [9]

H = HCM +Hinternal +Hinteraction, (1.3)

where

HCM =
p2

2M
, (1.4)

Hinternal =
1

2
h̄ω0 σz, (1.5)

and

Hinteraction = −d · E(r, t) (1.6)

= −
(
〈e|d · E|g〉σ+ + 〈g|d · E|e〉σ−)

. (1.7)

The symbols σ± and σz denote the Pauli spin matrices. For a linear polariza-

tion vector ε of the light, we can define the resonant Rabi frequency as

Ω = −〈e|d · E|g〉
h̄

= −〈g|d · E|e〉
h̄

= −〈g|d · ε|e〉
h̄

E, (1.8)

where in the last step we have assumed a slow variation of the electric field

amplitude E(r, t).
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One of the simplest methods of creating an optical lattice is to overlap

two laser beams spatially. To simplify the analysis, we assume that the polar-

ization of both beams is linear and their polarization vectors are parallel. The

electric field is then of the form

E(r, t) =
1

2
ε

(
E1 e

i(k1·r−ω1 t) + E2 e
i(k2·r−ω2 t)

)
+ c.c. (1.9)

Using this light field, we find that the interaction term is

Hinteraction = h̄
Ω1
2

(
σ−e−i(k1·r−ω1t) + σ+ei(k1·r−ω1t)

)

+ h̄
Ω2
2

(
σ−e−i(k2·r−ω2t) + σ+ei(k2·r−ω2t)

)
, (1.10)

where we have used the rotating wave approximation to drop the counter-

rotating terms σ+e+iωt and σ−e−iωt [9]. To separate the center of mass motion

of the atoms from their internal state we write the atomic state as

|Ψ(r, t)〉 = cg(r, t)|g〉+ ce(r, t)|e〉. (1.11)

If we insert |Ψ〉 into the Schrödinger equation,

ih̄
∂

∂t
|Ψ〉 = H|Ψ〉, (1.12)

with the full Hamiltonian as in Eq. (1.3) and project onto the internal states

|g〉 and |e〉, we find the set of equations

ih̄∂tcg =

(
−h̄

ω0
2
+

p2

2M

)
cg (1.13)

+
h̄

2

(
Ω1 e

−i(k1·r−ω1t) + Ω2 e
−i(k2·r−ω2t)

)
ce

ih̄∂tce =

(
h̄
ω0
2
+

p2

2M

)
ce (1.14)

+
h̄

2

(
Ω1 e

i(k1·r−ω1t) + Ω2 e
i(k2·r−ω2t)

)
cg.
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We can define δ = ω2 − ω1 as being the frequency difference between the

two constituent beams and ∆L =
ω1+ω2

2
− ω0 as their average detuning from

resonance. The phase transformations

c̃g(r, t) = exp

[
i(
δ

2
− ω0

2
)t

]
cg(r, t) (1.15)

c̃e(r, t) = exp
[
i(∆L +

ω0
2
)t

]
ce(r, t) (1.16)

then yield

ih̄∂tc̃g =

(
−h̄

δ

2
+

p2

2M

)
c̃g +

h̄

2

(
Ω1e

−ik1·r + Ω2e−ik2·reiδt
)
c̃e (1.17)

ih̄∂tc̃e =

(
−h̄∆L +

p2

2M

)
c̃e +

h̄

2

(
Ω1e

ik1·r + Ω2eik2·re−iδt
)
c̃g. (1.18)

For a sufficiently large detuning from resonance, we can neglect spon-

taneous scattering and simplify these equations by adiabatically eliminating

the excited state amplitude [8]. This procedure follows from a comparison of

the time or energy scales represented by each of the terms in Eq. (1.18):

1

h̄

p2

2M
≈ 1 MHz (several recoil energies)

Ω =
d · E0

h̄
≈ 500 MHz

∆L ≈ 100 GHz

Due to the small contribution we can safely discard the kinetic energy term

in Eq. (1.18). The largest term in this equation is the first term on the right-

hand side. This indicates that the dominant behavior of the solution to this

equation is an oscillation with a frequency of ∆L. This time scale is faster than

the evolution of Eq. (1.17) and will therefore contribute only with an averaged

contribution evolving on the same (slow) time scale as Eq. (1.17). To obtain
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the averaged contribution one can set ∂tc̃e = 0 and solve for c̃e. Inserting the

solution

c̃e =
1

2∆L

(
Ω1 e

ik1·r + Ω2 eik2·re−iδt
)
c̃g (1.19)

into Eq. (1.17) one obtains

ih̄∂tc̃g =

[
p2

2M
+ h̄

Ω1
2 + Ω2

2

4∆L

− h̄
δ

2
+ h̄

Ω1Ω2
4∆L

(
ei(q·r−δt) + e−i(q·r−δt)

)]
c̃g

(1.20)

where q = k2 − k1. The second and third terms on the right side of the

equation have no spatial dependence and correspond to an overall energy shift

which does not affect the dynamics. Here, we can therefore safely neglect those

two terms. This leads to an effective Hamiltonian for an atom in the ground

state

H =
p2

2M
+ h̄

Ω1Ω2
4∆L

(
ei(q·r−δt) + e−i(q·r−δt)

)
(1.21)

=
p2

2M
+ V0 cos (q · r− δt) (1.22)

that contains again the kinetic energy and a spatially dependent potential.

The amplitude of the potential term is

V0 = h̄
Ω1Ω2
2∆L

. (1.23)

The constant frequency difference δ corresponds to a change of the potential

phase which is linear in time. For an arbitrary time dependence of the phase

φ(t), we can generalize the equations above to

H =
p2

2M
+ h̄

Ω1Ω2
4∆L

(
ei(q·r−φ(t)) + e−i(q·r−φ(t))

)
(1.24)

=
p2

2M
+ V0 cos (q · r− φ(t)) , (1.25)

where the instantaneous frequency difference is

δ(t) =
dφ

dt
. (1.26)
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F=3
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Figure 1.1: Term diagram for the sodium D2 line. The nuclear spin of sodium
is I = 3/2, and so the ground state of sodium 3S1/2 has two hyperfine levels
F = 1, 2. For the 3P3/2 excited state we have J = 3/2 so that F = 0, 1, 2, 3.
The 2F +1 magnetic sublevels are also shown. Representative examples of (a)
the cooling and trapping light, (b) the optical pumping sideband, and (c) the
far-detuned optical lattice light are shown as arrows.
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The expression for the well depth V0 contains the resonant Rabi fre-

quencies Ω1 and Ω2. The calculation of these frequencies is complicated by the

fact that sodium is by no means a system with a two-level structure, as can

be seen in the term diagram for the levels contributing to the sodium D2 line

in Fig. 1.1. However, several factors make a determination of the well depth

possible. Our initial condition (before the atoms interact with the light) is

such that almost all atoms populate the hyperfine F = 2 level in the lower

manifold. For linearly polarized light, all of the (nearly) degenerate mF levels

experience the same level shift in the far detuned regime. Therefore the entire

sample experiences the same effective potential [2, 10]. The actual dipole cou-

pling for a particular ground state sublevel |F mF 〉 is obtained by summing
over its couplings to all of the available excited states. When the detuning

is large compared to the excited state frequency splittings, all of the excited

states participate, and the detuning for each excited state is approximately

the same. In addition, the dipole coupling summed over all excited states and

all polarizations is independent of the mF sublevel considered [10, 11]. Be-

cause of the spherical symmetry of the dipole operator, the three Cartesian

components in this sum are equal and therefore the effective dipole coupling

for the case of linearly polarized light and large detuning, regardless of the

ground state population, is one third the square of the dipole matrix element

for the full D2 (J = 1/2↔ J ′ = 3/2) transition

|deffective|2 = e2|D12|2
3

. (1.27)

The dipole matrix element e2|D12|2 can be obtained from the Einstein A co-

efficient,

A21 = Γ =
1

τ
=

ω30e
2|D12|2

3πε0h̄c3
2J + 1

2J ′ + 1
, (1.28)

which is related to the radiative lifetime [9]. Here, J = 1/2 is the ground state

and J ′ = 3/2 is the excited state. The radiative lifetime, τ = 16.2 ns, is known



10

empirically. Using Eqs. (1.27) and (1.28), the effective dipole moment is then

deffective =

√
ε0h̄λ3L
4π2τ

= 1.71× 10−29Cm. (1.29)

The time averaged intensity (defined as the absolute value of the Poynting

vector) of a beam of light is related to the amplitude of the electric field by

I =
1

2
cε0E

2. (1.30)

Using this relation together with Eqs. (1.8) and (1.23) yields an expression for

the well depth in terms of measurable quantities

V0 =
2πc2

τω30

√
I1I2
∆L

, (1.31)

where I1 and I2 are the intensities of the traveling wave components. If the

light beams we consider have a Gaussian intensity profile, then

IGauss(ρ) = I0 e
− 2ρ2

w2
0 , (1.32)

where ρ is the radial distance from the beam axis. The peak intensity I0 can

then be expressed in terms of the integrated power P0 over the whole profile

as

I0 = 2
P0
πw2

0

. (1.33)

Using this relation in Eq. (1.31) yields for the well depth at the center of the

beam profile

V0 =
4c2

τω30
·
√
P1P2

w1w2∆L

. (1.34)

1.3.2 Spontaneous emission rate

In deriving the Hamiltonian for our system, we made the assumption that

spontaneous emission can be neglected. Since spontaneous emission is the
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largest source of decoherence, this statement needs to be quantitatively ver-

ified. The total spontaneous photon scattering rate is given by the product

of the lifetime and the (steady state) excited-state population, Γρee. Ignoring

collisional relaxation we have for the scattering rate [9, 11]

Rsc =
(
Γ

2

)
S

1 + S + 4(∆L/Γ)2
, (1.35)

where the saturation parameter is given by

S =
I

Isat
= 2

(
Ω

Γ

)2
. (1.36)

The resonant Rabi frequency Ω is defined in Eq. (1.8). Using this definition,

the saturation intensity Isat can be expressed as

Isat =
cε0Γ

2h̄2

4d2effective
. (1.37)

For a linearly polarized far-detuned light beam we can use the effective dipole

matrix element defined in Eq. (1.29) and obtain

Isat =
π2h̄cΓ

λ3
= 9.39mW/cm2. (1.38)

For a large detuning we can also approximate the scattering rate to be

Rsc =
(
Γ

2

)
S

4(∆L/Γ)2
. (1.39)

Using this approximation together with the expression for Isat and the defini-

tion of the well depth for equal beam intensities

V0 = h̄
Ω

2∆L

(1.40)

from Eq. (1.23), we obtain

Rsc ≈ πΓ

∆L

V0
h
. (1.41)

For typical experimental parameters of V0/h = 80 kHz and ∆L = 2π · 40 GHz
we get Rsc = 60 s−1 or roughly one event every 20 ms. For the tunneling
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experiments of Chapter 4, where the requirements on the spontaneous emission

were the most stringent, the relevant interaction duration ( the time of large

acceleration) was at most 100 µs. In this time, less than 1% of the atoms

scattered a spontaneous photon.



Chapter 2

Experimental Apparatus

2.1 Overview

The experiments on quantum transport and tunneling (Chapters 3 and 4)

and recoil-induced resonances (Chapter 5) described in this work have been

performed utilizing very similar experimental techniques. Many aspects of the

setup are common to all experiments and will be described in this chapter.

Details specific to each experiment will be described in the corresponding

subsequent chapter.

Three important steps were necessary to perform the experiments de-

scribed here: the preparation of the initial condition, the generation and ap-

plication of the interaction potential, and the measurement of the final state

of the atoms. To outline the experimental sequence, a simplified schematic is

shown in Fig. 2.1. The starting point for the interaction was an atomic cloud

that was trapped and cooled in a magneto-optic trap (MOT). The cloud was

then further cooled with a stage of molasses cooling. The trapping and cooling

fields were then switched off and the interaction beams were turned on. After

a typical interaction duration of not more than a few milliseconds, all fields

were turned off and the atoms were allowed to expand freely. After expanding

for several milliseconds the light beams were again turned on and the spatial

location of the atoms was recorded.

During the course of this work, the entire experimental setup underwent

13
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Load MOT
(1 - 20 s)

Interaction with
optical lattice

(1 ms)

Ballistic expansion
(3 ms)

Freezing molasses
and CCD exposure

(10 ms)

Figure 2.1: Schematic of the experimental sequence. First the atoms are col-
lected and cooled in a magneto-optic trap. The trapping fields are extinguished
and the the optical interaction potential is introduced. After interacting with
the optical lattice, the atoms are allowed to expand freely in the dark. Fi-
nally, the cooling beams are turned on, freezing the atoms in place, and the
fluorescence is imaged onto a charge-coupled device (CCD) camera.



15

radical changes. The apparatus which was used for the quantum transport ex-

periments described in Chapter 3 was completely disassembled and replaced by

a new system designed to accommodate the necessary tools and techniques to

perform experiments investigating the quantum reflection of ultra-cold atoms

from surfaces [12, 13]. For this purpose a much colder atomic sample will be

prepared via evaporative cooling in a magnetic trap [14]. With the method

of accelerating lattices described in Chapter 3, these atoms can be acceler-

ated without increasing their momentum spread. They will be launched on

a ballistic trajectory towards a prism. A blue detuned laser undergoing total

internal reflection inside the prism creates a repulsive potential that decays ex-

ponentially from the surface. This combines with the attractive atom-surface

potential to form a potential barrier, from which the incoming atoms can be

reflected. Optionally, nanofabricated surfaces can be used to study the quan-

tum reflection without an evanescent wave. For potentials that vary on the

scale of the atomic de Broglie wavelength, a significant reflection probability is

expected. The rebuild included the complete vacuum system and optics setup,

as well as most of the electronics involved. The computer system underwent

a major upgrade and was outfitted with new hardware and software.

The apparatus utilized for the quantum transport experiments is de-

scribed in detail in the dissertation of Kirk Madison [7] and will not be ex-

plained further here. Most of the techniques described there also overlap

strongly with the ones described here. The new work on the Quantum Zeno

and Anti-Zeno effects (Chapter 4) and on recoil-induced resonances (Chap-

ter 5) was performed utilizing the new setup, which will be described in the

following sections. As mentioned above, the current system was designed with

further experiments in mind. Many features and techniques of the new design

were not necessary for the work described here and were not used. The system

is still undergoing changes and many of the parameters were not optimized for
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maximum performance at the time the data presented here was taken. I will

therefore describe only those parts of the setup that were utilized in the recent

experiments. A description of the complete system will be deferred to a report

of the experiments currently in progress.

2.2 Trapping and cooling

The starting point for all experiments described here was a sample of ultra-cold

sodium atoms. In our apparatus, atoms were cooled and trapped in a double

MOT system. This setup consisted of two spatially separated magneto-optic

traps in the standard σ+−σ− configuration [15, 16]. The motivation for using

two traps was to collect more atoms and to have a longer storage time as

compared to a single vapor-cell MOT.

The light for both magneto-optic traps was provided by a Coherent 899-

21 single-mode CW dye laser pumped by a Coherent Sabre argon ion laser as

shown in Fig. 2.2. Typical output power was 1 W single mode using 33% of

the 19 W pump power. The laser was actively locked 60 MHz to the blue of

the sodium D2 transition (3S1/2, F = 2) → (3P3/2, F
′ = 3) at a wavelength

of 589 nm using saturated-absorption FM spectroscopy. The beam providing

light for the MOT cycling transition was deflected by an acousto-optic modu-

lator (AOM2) which shifted it down by 80 MHz so that the light incident on

the atoms was roughly 20 MHz to the red of the transition. This AOM also

provided the means for the intensity control of the light by adjusting its radio-

frequency drive power. The frequency-downshifted beam was aligned through

a short section of polarization-preserving single-mode fiber. Since the spatial

output mode of the fiber was fixed and stable in time, it prevented difficult

realignment of the MOT beam setup after performing daily alignment of the

laser. The MOT light emerging from the fiber was monitored continuously on

a photodiode (power lock PD) and provided the feedback signal necessary to
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Figure 2.2: Schematic of the laser setup. The argon ion laser pumps two CW
single-mode dye lasers. The commercial dye laser (Coherent 899-21) provides
the cooling and trapping beams. The home-built dye laser provides the optical
lattice interaction beams.
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stabilize the output intensity of the fiber by controlling the drive power into

AOM2. Residual fluctuations were less than 1% of the average intensity. When

the far-detuned optical lattice was on, a MOT inhibit signal (see Figures 2.8

and 2.9) disconnected the driver from the modulator (AOM2) to prevent any

residual RF leakage that would allow resonant light to reach the atoms during

the interaction.

The near-resonant light for the MOT is tuned close to the F = 2 ground

to F ′ = 3 excited state cycling transition; however, it also can populate the

F ′ = 2 excited state. If this happens, the atom can either decay back to the

F = 2 ground state or fall to the F = 1 ground state, as can be seen from the

term diagram in Fig. 1.1. If it falls to the lower ground state, the interaction

with this light stops abruptly since it is now 1.772 GHz (the ground state

splitting) away from resonance. In order to prevent this optical pumping into

the ‘dark’ ground state, repump light resonant with the F = 1 ground to the

F ′ = 2 excited state transition was provided. Atoms that fell into the lower

ground state were re-excited to the F ′ = 2 excited state where they could fall

back to the F = 1 state or back to the “correct” F = 2 ground state. In

order to have independent control of the MOT beam and the repump beam,

part of the laser output was deflected by a 270 MHz AOM (AOM1) and the

up-shifted portion of the beam was passed through an electro-optic modulator

that shifted the maximal amount (about 35%) of the optical power into the

first sideband at 1.462 GHz. The upper sideband was then nearly resonant

with the F = 1 ground to the F ′ = 2 excited state transition. The carrier

and the other sidebands were too far from resonance to affect the performance

of the MOT. Similar to the main MOT light, the repump beam was then

passed through an 80 MHz acousto-optic modulator (AOM3) that provided

the intensity control. For this beam no intensity stabilization was employed.

Both beams were split in equal amounts to provide light for both traps.
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Figure 2.3: Sketch of the double MOT system. Two vacuum chambers are
connected via a differential pumping tube (transfer tube). A magneto-optic
trap is operated in each chamber. MOT1 is loaded with atoms captured from
the vapor phase. A push beam is used to transfer the captured atoms to
MOT2 where they are accumulated and cooled further. All experiments were
performed at the location of MOT2. The prism indicated in the main chamber
is not currently used. It was included for future experiments on quantum
reflection of cold atoms from surfaces.
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A sketch of the vacuum chamber is displayed in Fig. 2.3. The two

magneto-optical traps are located in different parts of the chamber which are

connected through a differential pumping section.

In the first (upper) MOT of the ‘double MOT’ system, atoms are col-

lected directly from the vapor phase. The partial pressure of sodium in the

first chamber was increased over the room temperature value by heating the

sodium reservoir to about 100 ◦C. A 20 l/s ion pump was used to maintain high

vacuum in the chamber. The MOT, in a standard σ+− σ− configuration, was

formed by intersecting six circularly polarized laser beams at the center of the

chamber. In addition, two current-carrying coils in an anti-Helmholtz config-

uration were placed around the chamber to provide a magnetic field gradient

with a zero point in the magnetic field that coincided with the intersection

of the six beams. Approximately 5 · 106 atoms were trapped when the MOT
was maximally loaded. After collecting enough atoms the MOT cycling light

was turned off. A short pulse of near-resonant light was imposed onto the

atoms along the direction of the transfer tube as indicated in Fig. 2.3. This

push pulse accelerated the atoms in the direction of the second MOT where

the atoms were recaptured. The duration of the push pulse, and therefore

the resulting final velocity of the atoms leaving the upper MOT region, was

adjusted to maximize the transfer efficiency between the two traps. If the

velocity was chosen too low, the atoms were not able to traverse the transfer

tube due to the gravitational sag and would hit the inside of the tube. If, on

the other hand, the velocity was too high, the capture velocity of the second

MOT was exceeded and the atoms were too fast to be re-trapped. A further

complication was the transverse velocity spread of the atoms perpendicular to

the transfer axis. The initial finite temperature as well as heating during the

push contributed to the spread. To prevent the atoms from hitting the transfer

tube due to the transverse expansion, magnetic guiding along the tube was
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employed. The atoms, which were optically pumped into the state with maxi-

mummagnetic moment during the push, were guided through the transfer tube

by a magnetic hexapole field created by permanent magnets along the tube.

Even though in a comparable system with Rubidium a transfer efficiency near

unity has been reported [17], our efficiency was limited to about 10%. Due to

mechanical constraints of the vacuum chamber a continuous arrangement of

magnetic material along the entire transfer tube was not possible. This left

segments along the tube without a guiding field. We attribute the low trans-

fer efficiency to incomplete guiding caused by regions of low magnetic field

between the magnet arrangement. Design changes to improve the magnetic

guiding are currently under way.

In the main vacuum chamber a background pressure of approximately

5 · 10−11 torr was maintained by a 65 l/s ion pump in combination with a
titanium sublimation pump. Good optical access was ensured by operating

the MOT in an all-optical quartz cell attached to the main chamber. Re-

trapping of the transferred atoms was achieved using a ‘dark spot’ MOT in

the σ+ − σ− configuration [18]. In this type of MOT the central region of the

repump beam is blocked by a round obstacle whose shadow is imaged onto

the MOT region. This leaves the central part of the MOT region illuminated

only with the MOT ‘cycling’ light. As described above, the absence of the

repump light forces the atoms to be optically pumped into the lower hyperfine

state. Since for atoms in that ‘dark’ state the interaction with the MOT light

is negligible, light-assisted collisions are strongly suppressed. Storage times in

the lower MOT longer than 60 s were achieved using this technique. Since the

upper MOT had a load time much shorter than this storage time, multiple

transfers of atoms to the lower MOT were possible. To maximize the average

load rate, atoms trapped in the upper MOT were transferred after a load time

of 1 s, at which point about 3 · 106 atoms were captured. About 10% of the
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accumulated atoms were recaptured in the lower MOT after each push.

To outline the different trapping and cooling stages in the lower MOT,

a timing diagram of the core elements in the experimental sequence is provided

in Fig. 2.4. The atoms stored in the dark MOT are confined by the boundary

of the dark spot in the repump beam. To temporarily increase the density

of the stored atoms, a repump beam without a dark spot was superimposed

with the light beams after the number of desired loads had been performed.

This provided spatial confinement in a conventional MOT. Additional spatial

compression with the cost of an increase in temperature was achieved by ramp-

ing up the magnetic field gradient of the trapping field [19]. To compensate

for this temperature increase, a molasses cooling stage was performed follow-

ing the compression. During this stage the anti-Helmholtz magnetic trapping

fields were extinguished and the light intensity was reduced. The temperature

of the atoms was reduced by the polarization gradient cooling process [20].

This seemingly counterproductive procedure of first compressing while heat-

ing the cloud and then cooling while letting it expand does, however, lead to

an increase in overall phase space density.

For the experiments described in the following chapters a large number

of trapped atoms was not crucial. To allow for a high repetition rate of the

experiment, the number of loads into the lower MOT was typically not larger

than five loads. Optionally the regular (bright) MOT could be loaded directly,

bypassing the ‘dark MOT’ stage, as was done for the quantum tunneling ex-

periments. Even though fewer atoms were loaded, the experimental sequence

simplified substantially. Loading into the dark MOT typically resulted in a

cloud of 1.5 · 106 atoms with a final Gaussian distribution with a width of
σx = 0.35 mm in position and σp = 8 h̄kL in momentum, where h̄kL is the

momentum of a single photon of resonant light. For the direct load into the

bright MOT the atomic cloud had a typical width of σx = 0.3 mm in position
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Figure 2.4: Timing diagram for the loading, trapping and cooling sequence as
well as the detection following the interaction. The lower MOT in the ‘dark
spot’ configuration is loaded multiple times with atoms from the upper MOT.
A repump beam without the dark spot is turned on and the magnetic field
gradient is increased to spatially compress the atomic cloud (C-MOT). By
suddenly switching off the anti-Helmholtz magnetic field coils and reducing
the intensity of the trapping light, the atoms are further cooled. Then the
resonant light is turned off and the interaction beams are introduced. After
the interaction period the atoms are allowed to expand ballistically in the
dark, after which time the cooling beams are turned on, freezing the atoms in
place. At this point a picture of the atomic distribution is taken by imaging
the fluorescence onto a CCD camera.
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and σp = 6 h̄kL in momentum, containing about 3 · 105 atoms.

2.3 Interaction

The interaction beams were generated by a home-built dye laser based on a

design by Jim Bergquist at NIST in Boulder, CO [21]. This laser was also

pumped by the Coherent Sabre argon ion laser, as shown in Fig. 2.2. Typical

output power was 1 W single mode using 66% of the 19 W pump power. The

wavelength was monitored with a NIST LM-11 wavemeter and was stabilized

using the Hänsch-Couillaud lock scheme [22]. The invar reference cavity used

in this locking scheme drifted less than 100 MHz per hour, which is a very small

amount compared to the typical 40 GHz detuning. The frequency could also

be measured relative to the cycling transition of the MOT by coupling both

lasers into the same Fabry-Perot monitor cavity. However, with this method

the frequency difference could only be determined modulo the free spectral

range of the cavity (1.5 GHz).

The optical potential was formed by overlapping two linearly polarized

traveling waves with parallel polarization vectors. Both beams were derived

from the same laser in order to reduce sensitivity to frequency fluctuations

originating in the laser. A schematic of the setup is shown in Figure 2.5.

The overall power of the beams was adjusted by a 40 MHz acousto-optic

modulator (AOM4). The frequencies of the two beams were controlled in-

dependently by two acousto-optic modulators (AOM5 and AOM6). During

the tunneling experiments described in Chapter 4 the atoms needed to be ac-

celerated to a velocity of up to 3 m/s. This corresponds to 100 vr, where vr

is the single photon recoil velocity of the atom. To reach this velocity, the

counter-propagating beams need to differ in frequency by 10 MHz. During the

experiment the frequency difference needed to be adjusted from zero to this

maximum value without misalignment. For this reason a double-pass AOM
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vides the global control of the intensity. AOM6 is a double-passed, 40 MHz
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configuration shifting down the beam frequency by 80 MHz.
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setup was chosen. The frequency of the double-passed beam was scanned

whereas the frequency of the counter-propagating beam was held constant.

The beam in the variable frequency arm of the arrangement was focused by a

lens of focal length f = 500 mm through the acousto-optic modulator (AOM6)

operating at (40±∆ν) MHz. An identical lens was placed 500 mm after the

AOM in the first order diffracted beam. The undeflected portion of the beam

was discarded. After being reflected by a mirror the diffracted beam retraced

its path through AOM6 and was diffracted again in the same manner. The

beam was deflected twice on its path back and forth through the AOM and

the frequency was therefore down-shifted by twice the drive frequency. Any

change in the drive frequency of AOM6 led to an angle change of the first order

diffracted beam. By choosing this particular setup, the beam completing both

passes through the AOM was still overlapped with the incoming beam regard-

less of the deflection angle. To separate the backreflected from the incoming

beam the polarization was rotated along the path with a quarter-wave plate

(λ/4) so that a polarization beam splitter cube could be used for separation.

To compensate for the frequency offset of 80 MHz introduced by AOM6, the

frequency in the second arm was down-shifted by AOM5, also by 80 MHz. The

frequency difference between both beams was therefore (2 · ∆ν) MHz. After

passing through the acousto-optic modulators each beam was spatially filtered.

The resulting transverse beam intensity profiles could be approximated by a

Gaussian

IGauss(ρ) = I0 exp

(
−2ρ

2

w2
0

)
, (2.1)

where ρ is the radial distance from the beam axis. A typical value of w0 in

the quantum transport and tunneling experiments was about 2 mm. In the

recoil-induced resonance experiments w0 was in the range of 200µm−400µm.
The size and divergence of the beams were matched to avoid transverse spatial

interference fringes, which could have created local variations of the well depth.



27

A small part of each beam was diverted onto a photodiode and the signal was

captured on a digitizing oscilloscope during the experiment. The photodiodes

were calibrated by measuring the power in the beams with a power meter

before entering the interaction region while recording the photodiode voltage.

Comparing the power meter to a NIST traceable reference, a calibration with

an accuracy of 10% was achieved. Analysis of the photodiode signals provided

a means of determining the power in each beam during the interaction and

was used for post-selection of the data. The well depth was calculated using

Eq. (1.34). Runs for which the well depth was not within a certain window

due to laser intensity fluctuations, could be re-taken or simply discarded.

2.4 Detection

After the interaction the light beams were turned off and the atoms were

allowed to expand freely. During this period of ballistic expansion, each atom

moved a distance proportional to its velocity. This allowed us to determine

the velocity distribution by recording the spatial distribution of the atomic

cloud. For this purpose the resonant light was turned on after the free drift

period to produce a viscous optical molasses that halted the ballistic motion of

the atoms and provided spontaneously scattered resonant light for detection.

This light was imaged onto a charge-coupled device camera (CCD) to obtain

the desired spatial information. Although the atomic cloud expansion in the

optical molasses can be made to be spherically symmetric and slow compared

to the exposure time, the MOT beams have a Gaussian profile with a finite

size (typically 2 cm in diameter). Since the beam intensity decreases with

the distance from the center of the chamber the atomic fluorescence will also

decrease. In order to correct for this effect, we characterized the fluorescence

as a function of position. For this purpose a certain fraction of the atoms

was accelerated to a particular velocity as described in Chapter 3. During
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Figure 2.6: A typical detection efficiency envelope of the freezing molasses.
The horizontal scale denotes the horizontal position within the detection
beams. The line represents a Gaussian fit which was then used to scale the
one-dimensional integrated line shapes.
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a fixed drift time the atoms traveled a certain distance away from the rest

of the atomic cloud. The resulting distribution was imaged and the relative

fluorescence of the two subsets of atoms was determined. By varying the

initial launch velocity the entire width of the beam could be mapped out and

calibrated. In this way, we obtained an empirical measure of the detection

efficiency. An example of a typical detection efficiency envelope is shown in

Fig. 2.6. The fluorescence profiles acquired during the experiments were then

scaled by this function before the distribution was analyzed.

2.5 Control of the experiment

In order to perform the experiments many devices had to be controlled and

synchronized with great precision. A variety of parameters had to be adjusted

and the resulting changes had to be analyzed and documented. To handle all

these tasks the control sequence was fully automated. The core of the control

was a PC equipped with multiple National Instruments (NI) data acquisition

boards. A layout grouped by functionality is shown in Fig. 2.7. All of the

programming was performed in the ‘ANSI-C’ language within the NI Lab-

Windows/CVI environment. Including the library interfaces that had to be

written for various devices, the total number of program lines amounted to a

mere 23,000 lines of code.

All of the time-critical sections of the experimental sequence were con-

trolled with the digital pattern generation board (NI PCI-DIO-32HS) which

could be pre-programmed and triggered externally. It provided trigger and

timing signals to most external devices with a time resolution of 100 ns. Digi-

tal signals that were not time-critical were generated with the interrupt-driven

digital output board (NI PC-DIO-24). A multi-function I/O board (NI PCI-

6024E) was used to read in slowly varying analog signals during the exper-

iment. External, programmable arbitrary-function generators were used to
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Figure 2.7: Schematic of the computer controlling the experiment. The
200 MHz PC was equipped (via a PCI expansion chassis) with a variety of
data acquisition, image acquisition and communication cards from National
Instruments. Programming was done using the LabWindows/CVI environ-
ment.



31

output analog signals. These devices were programmed using the GPIB proto-

col via an NI PCI-GPIB controller card. Analog signals for the MOT light and

magnetic fields were provided by two Tektronix AWG 5105 arbitrary function

generators, whereas the signal that controlled the frequency of AOM6 in the

interaction setup was created using Stanford Research Systems DS345 func-

tion generators. Two of those generators were used in conjunction to increase

the voltage and timing resolution.

Several charge-coupled device (CCD) cameras were utilized to capture

the spatial distribution of atoms during the experiment. To measure the tem-

perature and number of atoms in the upper (MOT1) and the lower (MOT2)

magneto-optic traps, two digital cameras (Pulnix TM 9701) with an 8-bit res-

olution were used. Both were controlled and read out by NI image acquisition

boards. In order to capture the spatial distribution of the atoms after the

interaction, a higher resolution camera system was necessary. For this pur-

pose we used a Princeton Instruments (PI) 12-bit cooled CCD camera which

was controlled by a PI ST-135 controller via the GPIB interface. Background

subtraction was employed to reduce unwanted signals due to stray or room

light.

Simplified control hierarchies for the electronics controlling the lower

MOT and the interaction beams are shown in Fig. 2.8 and Fig. 2.9, respectively.
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Figure 2.8: Simplified schematic of the devices involved in controlling the
lower MOT (MOT2). Timing signals were created with the digital pattern
generation board. Arbitrary function generators were utilized to control the
intensity of the trapping light and the strength of the necessary magnetic fields.
CCD cameras recorded the spatial distribution of the atoms.
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Figure 2.9: Simplified schematic of the devices involved in controlling the
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frequency difference between the two arms of the interaction beam setup. The
intensities of the beams could be extinguished quickly by disconnecting the
drive sources from the AOM amplifiers with TTL-controlled RF switches.
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Chapter 3

Quantum transport

The system of ultra-cold atoms in a periodic optical potential offers a unique

means of studying solid state effects with quantum optics tools. In order to

gain insight into the possibilities for experiments, some of the basic properties

of this system will be reviewed. A thorough treatment of the fundamental

properties can be found in many solid state textbooks, such as Ashcroft and

Mermin [23] or Marder [24]. The specifics of our system are described more

thoroughly by Madison [7].

3.1 Stationary lattice

As described in Chapter 1 we created the optical potential by spatially over-

lapping two traveling light beams. For the quantum transport experiments

we chose the beams to be counterpropagating (kL ≡ k2 = −k1), which yields

q = k2 − k1 = 2kL. Choosing the same frequency for both beams (δ = 0)

simplifies the effective Hamiltonian in Eq. (1.22) to

H =
p2

2M
+

V0
2

(
e2ikL·r + e−2ikL·r

)
(3.1)

=
p2

2M
+ V0 cos (2kL · r) (3.2)

=
p2

2M
+ V0 cos (2kLx) , (3.3)

assuming that beam propagation is along the x-axis.

35
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This form of the Hamiltonian is a textbook example for a particle placed

in a spatially periodic potential, and many general properties of this system can

be derived by symmetry arguments alone. The most fundamental properties

are expressed in Bloch’s theorem. It states that the eigenstates ψ(x) of this

Hamiltonian take on the form of a plane wave multiplied by a function u(x)

with the periodicity d = π
kL
= λ

2
of the potential:

ψn,k(x) = eikxun,k(x), (3.4)

where

un,k(x+ d) = un,k(x) (3.5)

and k is the quasi-momentum of the particle. The index n is called the band

index and appears in Bloch’s theorem because for a given k there are many

solutions to the Schrödinger equation. An important consequence of Bloch’s

theorem is that the wave functions and the energy dispersion of the particle

are periodic in quasi-momentum (reciprocal) space

ψn,k+K(x) = ψn,k(x) (3.6)

En(k +K) = En(k), (3.7)

whereK = 2π
d
= 2kL is the periodicity in reciprocal space. Another property of

paramount importance concerns the mean velocity of a particle in a particular

Bloch state ψn,k. It can be shown that the velocity is determined by the energy

dispersion relation as

vn(k) =
1

h̄

∂En(k)

∂k
, (3.8)

in analogy to the free particle case [23].

The problem of finding the energy eigenstates of H, that is solving

H|ψ〉 = E|ψ〉, is equivalent to solving Mathieu’s equation, whose properties
and solutions can be found in most handbooks of mathematical functions [25].
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A numerical method of calculating the eigenvalues and eigenfunctions is de-

scribed in Appendix A. Using these routines, sample dispersion curves (energy

versus the quasi-momentum k) are calculated and plotted in Fig. 3.1

For a vanishing well depth V0 the dispersion curve is the free parti-

cle energy parabola E(k) = h̄2k2

2M
. To make the connection to the repetitive

nature of the band description in Eq. (3.7) for finite V0, the parabola is re-

peatedly plotted at multiples of the reciprocal space period in the left panels

of Fig. 3.1(a). Since this is a highly redundant picture, the curves are con-

ventionally restricted to the fundamental period in reciprocal space (the first

Brillouin zone), as indicated in the right panels of the same figure. Higher

branches of the dispersion curves are assigned successive band indices. For

finite well depth V0, the lowest crossing points of the free energy parabolas at

k = ±kL develop a level repulsion due to the coupling of the levels by the po-

tential term. The amount of repulsion in this avoided level crossing can easily

be estimated by first order degenerate perturbation theory. The unperturbed

eigenstates of the momentum operator at the first crossing are plane waves

ψ1 = eikLx (3.9)

ψ2 = e−ikLx. (3.10)

Since these states become coupled by the potential term, they will in general

no longer be eigenstates of the full Hamiltonian. We try to find new eigenstates

that are linear combinations of ψ1 and ψ2,

Ψ = aψ1 + bψ2, (3.11)

and solve for the solution of

HΨ = EΨ. (3.12)

This leads to the set of equations(
H11 − E H12

H21 H22 − E

) (
a
b

)
= 0, (3.13)
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Figure 3.1: Dispersion curves of a particle in a sinusoidal potential. Plotted
here are the energy (in units of E0 = 8 h̄ωr) versus the quasi-momentum k (in
units of kL) in the repeated-zone scheme (left panels) and in the reduced-zone
scheme (right panels). The well depth V0/h of the potential is (a) 0, (b) 40 kHz
and (c) 200 kHz.
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where Hij = 〈ψi|H|ψj〉. The existence of a solution requires∣∣∣∣∣ H11 − E H12

H21 H22 − E

∣∣∣∣∣ = 0, (3.14)

yielding as solutions of the characteristic polynomial

E1,2 =
1

2
(H11 +H22)± 1

2

√
(H22 −H11)2 + 4|H12|2. (3.15)

The energy degeneracy of the unperturbed states has been removed by the

coupling between them. The matrix elements can immediately be written

down using the orthonormality condition of the momentum eigenstates

H11 =

〈
ψ1

∣∣∣∣∣ p2

2M

∣∣∣∣∣ψ1
〉
=

h̄2k2L
2M

= H22 (3.16)

H12 = 〈ψ1 |V0 cos(2kLx)|ψ2〉 = V0
2
= H21. (3.17)

Inserting these values yields

E1,2 =
h̄2k2L
2M

± 1

2
V0. (3.18)

The energy splitting for the first crossing and therefore the width of the first

band gap is, to first order in V0, equal to V0 itself. The coupling term cos(2kLx)

connects only states with a difference in momentum of 2 h̄kL. For the calcu-

lation of the splitting at higher crossing points we therefore need to resort to

perturbation expansions of higher order.

The energy values evaluated at the band edges as a function of the

well depth V0 have been determined numerically for several crossings and are

displayed in Fig. 3.2. From this figure one can see that the energy bands

evolve from a continuum of allowed energies, for a vanishing well depth, into

the linearly spaced discrete energy levels of a harmonic oscillator, in the limit

of large well depth.
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periodic potential as a function of the well depth. The energy is measured
relative to the bottom of the well. Indicated as a dashed line is the top edge
of the potential (2V0).
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3.2 Accelerating lattice

In the previous section we showed that the study of the band structure of

an atom in an optical lattice can reveal information about the behavior of

electrons in a crystal lattice. Although interesting, these considerations are

of limited use if no external influence on the system is considered. For elec-

trons in a crystal lattice the most commonly encountered perturbation is an

applied static electric field. This seemingly simple perturbation leads to a very

rich system, whose properties were controversial for quite some time. Exper-

imental tests in the field of solid state physics were hindered by decohering

processes such as scattering of the electrons on impurities in the crystal lattice

or scattering among themselves. These effects are negligible in our atom optics

system and we were able to contribute to this field by studying some of the

effects previously inaccessible to experiment.

3.2.1 Semiclassical equations of motion

A static electric field, which exerts a strong force on the electrons in a crystal,

does not have the desired effect on a neutral atom in an optical potential.

However, we can simulate the corresponding force by introducing an appropri-

ate time dependence of the optical lattice. Let us consider an optical lattice

composed of two counterpropagating light beams that do not possess the same

frequency. As derived in Chapter 1, the effective Hamiltonian for this system

is given by

H =
p2

2M
+ V0 cos (2kLx− φ(t)) , (3.19)

where the same assumptions were made as for Eq. (3.3), except for allowing

a time dependent phase shift of the standing wave. A constant acceleration

of the ‘standing’ wave pattern is generated by linearly chirping the frequency

difference of the counterpropagating beams. This is described by φ(t) = kLat
2,



42

where a is the acceleration. Inserting this into the equation above yields

H =
p2

2M
+ V0 cos

[
2kL

(
x− 1

2
at2

)]
. (3.20)

To make the connection to the solid state system, one can transform Eq. (3.20)

to the frame of reference accelerated with the potential by applying a unitary

transformation, following the recipe outlined by Peik et al. [26]. The unitary

transformation performs a translation of the position, momentum, and overall

energy:

U(t) = eiα(t)p/h̄e−iβ(t)x/h̄eiγ(t)/h̄. (3.21)

For a time dependent unitary transform the Hamiltonian will be transformed

as

H̃ = UHU † + ih̄
∂U

∂t
U †. (3.22)

A transformation to the accelerating frame is achieved by choosing

α(t) =
1

2
at2 (3.23)

β(t) = Mat (3.24)

γ̇(t) =
β2

2M
+ β̇α. (3.25)

Applying this transformation yields

H̃ =
p2

2M
+ V0 cos(2kLx) +Max. (3.26)

The last term containing the massM of the atom is an inertial term, resulting

from the transformation to an accelerating frame of reference. It mimics the

role of the interaction potential between an electric field E and the electron

Uel = Ee x, (3.27)

where e is the electric charge of the electron.

Having established this connection, we can directly apply the results

for the solid state system to an atom in the accelerated optical potential. A
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derivation of the semiclassical equations of motion for small electric fields can

be found in standard text books [23, 24] and are simply stated here without

proof. The equations of motion express the relationship of the state’s quasi-

momentum (k), band index (n), energy (En(k)), and mean velocity (vn(k)). By

replacing the force F = e E with F = Ma, we obtain the following equations

of motion:

1. The band index n is a constant of motion.

2. The evolution of the system is described by

vn(k) =
1

h̄

∂En(k)

∂k
(3.28)

k̇n(t) = −1
h̄
Ma. (3.29)

3. The form of the band structure En,k is unchanged.

The restriction of small fields, mentioned above, deserves special attention.

The statement that the band index is a constant of motion indicates that

inter-band transitions are being neglected in this derivation. However, for

larger fields electrons can tunnel across the band gap from one band into the

next. An estimate for the field strength is given by Ashcroft and Mermin

as E � E2
g

eh̄vF
, with vF being the typical electron velocity in the originating

band [23]. In our system this transforms to a condition for the acceleration

a � E2
g

h̄2kL
(3.30)

where vr = h̄kL/M serves as the typical velocity at the edge of the Brillouin

zone. Since for higher band indices the gaps get smaller and the typical velocity

gets higher, a dramatic increase in the tunneling probability is to be expected.

A more detailed study of the tunneling process across the band gaps will be

provided in Chapter 4.



44

3.2.2 Bloch oscillations and Wannier-Stark states

One remarkable consequence of the equations of motion stated above is that

particles exposed to a static field are predicted to oscillate in space rather than

increase their velocity steadily. As can be seen by integrating Eq. (3.29), the

quasi-momentum increases linearly with time as

k(t) = k0 − Mat

h̄
. (3.31)

The velocity of the particle with a given quasi-momentum k is given by

Eq. (3.28) as the derivative of the dispersion curve at the point k. Since

En(k) is oscillatory in reciprocal space and k varies linearly with time, the

velocity vn(t) is oscillatory in time. The period of oscillation τB is the time

it takes for a particle to traverse the Brillouin zone of width K = 2kL and

calculates to

τB =
2h̄kL
Ma

=
2vr
a
. (3.32)

A sketch of these Bloch oscillations is graphically depicted in Fig. 3.3(a).

An atom starting in the lowest band of the potential will increase its quasi-

momentum k due to the applied force, as given by Eq. (3.31). As it approaches

the edge of the Brillouin zone at a constant rate ∂tk, the velocity decreases as

the slope of the dispersion curve decreases. At k = kL the derivative ∂kE0(k)

is zero and according to Eq. (3.28) the particle is at rest. It will then reverse

its velocity and continue its motion, until the velocity is reversed again at the

next minimum of the dispersion curve. The reversal of its velocity at k = kL

can be viewed as a first order Bragg reflection of the particle wave by the

periodic potential. The arguments above also hold for atoms in higher bands.

They oscillate at the same Bloch frequency. However, the velocity reversal

in higher bands corresponds to a higher order Bragg scattering process. It is

important to note that this reversal of the atomic velocity occurs relative to
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Figure 3.3: Sketch of a particle trajectory in reciprocal space. In part (a) the
rate of change of the quasi-momentum is slow enough for the particle to follow
the dispersion curve adiabatically across the Brillouin zone boundary. This is
equivalent to discontinuing the motion at one edge of the Brillouin zone and
emerging from the other side in the same band. Panel (b) illustrates a case for
a larger force, where the particle cannot follow the curve and tunnels through
the band gap.
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the accelerated frame. In the laboratory frame the constant acceleration of

the potential is superimposed on the oscillation of the atom.

For a higher field strength (or acceleration, in the atom optics system)

the particle might not be able to follow the dispersion curve adiabatically

as it approaches the edge of the Brillouin zone. It can cross the band gap

and continue its motion in a higher band, as indicated in Fig. 3.3(b). This

corresponds to a tunneling process through the band gap, in which case the

semiclassical equations stated above no longer hold. For a particle undergoing

tunneling, the transformation back to the laboratory frame reveals no change

of velocity at all. The particle is simply lost out of the potential and can no

longer track the acceleration.

The Bloch bands of an atom in a stationary potential are, by definition,

continuous regions in the energy spectrum. Bloch oscillations in an acceler-

ated lattice reveal themselves in the energy spectrum as discrete peaks with an

energy separation of hνB, where νB =
1
τB
. This is a consequence of the Bloch

bands splitting up into discrete Wannier-Stark states. A physical interpreta-

tion of these states can be obtained by regarding the transition between bands

as a temporal interference effect. Quantum mechanically, atoms can tunnel be-

tween bands at all positions within the Brillouin zone. Since Bloch oscillations

lead to multiple passes through the Brillouin zone, transition amplitudes can

interfere constructively or destructively, depending on the rate at which the

particle traverses the Brillouin zone. This is in analogy to the optical interfer-

ence pattern generated by a plane wave of light illuminating an array of slits or

a grating. The temporal interference produces sharp resonances spaced at the

(temporal) grating period τB. The more traversals of the Brillouin zone the

particle completes, the sharper the resonance becomes. If the particle tunnels

out of the band quickly, the resonances are broad, indicating a short lifetime

of the associated state. Following the arguments of Krieger and Iafrate [27],
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one obtains the transition probability P0→1 from the lowest into the second

band after N traversals of the Brillouin zone:

P0→1 ∝ sin2(Nβ)

sin2(β)
, (3.33)

where

β =
1

2Ma

∫ kL
−kL

[E0(k)− E1(k)] dk (3.34)

and we have assumed that the initial population was in the first band. The

resonances for the transition occur for β = nπ. Defining the average band

separation to be

Ēg ≡ 1

2kL

∫ kL
−kL

[E0(k)− E1(k)] dk (3.35)

and using

νB =
a

2vr
=

aM

2h̄kL
, (3.36)

we find the tunneling resonance condition to be

nνB =
Ēg

h
. (3.37)

This condition indicates the presence of discrete states. The tunneling out of a

bound state is enhanced by the presence of a Wannier-Stark state of the same

energy, but in a higher band and displaced by one or more lattice sites. This

situation is depicted in Fig. 3.4(a).

Krieger and Iafrate also consider the possibility of driving transitions

between bands with an external alternating probe field. Assuming that the

transition due to the probe drive is the dominant loss process from the first

band (neglecting tunneling), they obtain a resonance condition for the drive

frequency νp

νp =
Ēg

h
+ nνB. (3.38)

Here, the driving field provides a direct spectroscopic tool to probe the lat-

tice structure of the Wannier-Stark states by allowing transitions between the

states, as indicated in Fig. 3.4(b).
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Figure 3.4: Schematic of the Wannier-Stark ladder within the bands. In (a)
the tunneling process is indicated. The presence of a Wannier-Stark state in
the continuum of the higher band enhances the tunneling probability across
the gap. In (b) a weak spectroscopic drive couples the states and introduces
transitions. In either case, once an atom is in the second band, it can easily
tunnel across successive band gaps into higher bands.
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3.3 Band spectroscopy and Rabi oscillations

In Section 2.2 the method of preparing a sample of cold and trapped atoms

was outlined. For the experiments described in this chapter [28], the final

atomic distribution was approximately Gaussian with a width of σx = 0.3 mm

in position and σp = 6 h̄kL in momentum. However, to be able to study

tunneling and transitions between single bands, an initial condition with only

one populated band, preferably the lowest, was desired. If we suddenly turn

on the optical potential within the molasses distribution, only a fraction of the

atoms are transferred into the lowest band [29]. Most atoms will be projected

into higher index bands. The location of the bands relative to the potential is

indicated in Fig. 3.2. For a typical well depth of V0/h = 70 kHz, we can see

that atoms in the lowest band are trapped within the potential wells, whereas

atoms in the second band are only partially trapped. Atoms in even higher

bands have energies well above the potential and hence are effectively free.

The location of the bands with respect to the potential well can be regarded

as an indicator for the tunneling rates between bands when an acceleration is

applied. Bands that lie entirely within the wells have a much smaller tunneling

rate than bands outside the range of the potential. To empty all but the lowest

band, we took advantage of this difference in tunneling rates across successive

band gaps. After turning on the standing wave, it was accelerated to a velocity

of v0 = 40 vr, as indicated in Fig. 3.5. During this acceleration the atoms in

the first band performed a sequence of Bloch oscillations within the potential

and were accelerated in the laboratory frame. Atoms in higher bands could

tunnel through the successively smaller band gaps and were lost out of the

potential. The transport acceleration atrans was chosen to maximize tunneling

out of the second band while minimizing losses from the first trapped band.

For typical experimental parameters of V0/h = 70 kHz and atrans = 2000m/s2,

the Landau-Zener expression derived in Chapter 4 for the lifetime of the first
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Figure 3.5: Interaction beam timing diagram for the band spectroscopy exper-
iments. After the molasses stage the resonant light is turned off and the optical
lattice was turned on. A subset of atoms is projected into the fundamental
band and separated in velocity by an acceleration atrans. After this preparation
stage, the optical lattice position and amplitude are varied to realize the po-
tential under study. This step is followed by separating the atoms in the lowest
band from those in higher bands by the same acceleration atrans. The atoms
are then allowed to expand freely in the dark and the spatial distribution is
illuminated with the resonant molasses light.



51

and second band yields 24 ms and 40 µs respectively. This ensured that after

600 µs of acceleration only the first band still contained a significant number

of atoms.

After reaching the velocity v0, the chirp was stopped and the frequency

difference was held constant. At that point, a phase modulation at the fre-

quency of νp was added to one of the two counterpropagating beams forming

the standing wave, as indicated in Fig. 3.5. This phase modulation could drive

transitions between bands, if the band separation for some value of k was close

to E = hνp. The modulation was switched on and off smoothly over 16 µs

to avoid any discontinuous phase changes in the potential that could induce

transition to higher bands. The amplitude of the modulation was chosen to

be small enough to not perturb the band structure. For large amplitudes of

the modulation the band structure can undergo a dynamical suppression, ef-

fectively turning off Bloch tunneling. This effect has been observed previously

in our system [30]. After a fixed time interval the modulation was turned off

and the frequency chirping resumed at a rate corresponding to atrans. This sep-

arated in momentum space the remaining trapped atoms in the lowest band

from those having made the transition into higher bands. After reaching a

final velocity vfinal = 80 vr the interaction beams were switched off suddenly.

In the detection phase we needed to distinguish three classes of atoms:

(1) atoms that were not initially trapped in the lowest band and immediately

tunneled out of the well during the initial acceleration, (2) atoms which were

trapped in the first band at the beginning of the interaction but were driven

out by the modulation, and (3) atoms that remained in the first band during

the entire sequence. Since the atoms in different classes had left the trapping

potential at different stages of the experimental sequence, they were acceler-

ated to different velocities. Therefore, after drifting in the dark for 3 ms, these

classes separated in space and could be distinguished by recording their po-
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sition. For this purpose the atoms were imaged in the “freezing molasses” as

described in Section 2.4. A typical fluorescence image of the atoms is shown in

Fig. 3.6(a). The two-dimensional image was then integrated in the direction

perpendicular to the axis of the interaction beams to obtain a one-dimensional

distribution along the beam direction, containing all three classes of atoms.

The corresponding integrated distribution is shown in Fig. 3.6(b). In order

to reduce sensitivity to fluctuations of the number of atoms in the MOT, the

number of survivors (atoms in class (3)) was normalized by the total number

of atoms initially trapped in the first band, which was obtained by summing

the contributions of class (2) and class (3). To observe the temporal evolution

of the fundamental band population we repeated the experiment for various

modulation durations, holding the probe frequency νp and amplitude m fixed.

The phase modulation added to one of the beams changes the potential

term in the Hamiltonian (3.3) to

H =
p2

2M
+ V0 cos (2kLx+m cos[2πνpt]) , (3.39)

where νp is the probe frequency and m is the dimensionless modulation am-

plitude. The effect of this modulation can be elucidated by expanding the

potential for small modulation amplitude m. To first order one obtains

V (x, t) = V0 cos(2kLx) + V0m sin(2kLx) cos(2πνpt). (3.40)

The harmonic drive term preserves the periodicity of the lattice and can induce

transitions between bands, leaving the quasi-momentum k unchanged.

Figure 3.7 shows the energy bands in the reduced zone scheme for a well

depth of V0/h = 71 kHz. As indicated in this figure, the drive frequency νp can

be chosen resonant with the transition between the first two bands (1 ↔ 2),

but far from resonance for transitions between successive bands [arrow (a) and

(b)] for some value of k. In this case only two eigenstates of the atoms need
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Figure 3.6: Part (a) shows an image of resonance fluorescence from an atomic
distribution acquired by the CCD camera. This exposure is taken during the
freezing molasses period following a time of ballistic expansion. Part (b) shows
the same distribution integrated in the vertical direction. The large peak on
the right is the part of the atomic cloud that was not trapped during the
initial acceleration. The center peak indicates the atoms that were trapped in
the first band at the beginning of the interaction but were driven out by the
modulation. The leftmost peak corresponds to atoms that remained trapped
during the entire sequence. The survival probability is the area under the left
peak normalized by the sum of the areas under the left and center peak.
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Figure 3.7: Band structure for an atom in a stationary lattice for a well depth
of V0/h = 71 kHz. In the reduced zone scheme the quasi-momentum k is
limited to the first Brillouin zone [−kL,+kL]. The arrows correspond to a
modulation frequency of (a) 70 kHz, (b) 75 kHz and (c) 85 kHz. The dashed
line indicates the top edge of the potential (2V0). The band gap for this value
of V0 is Eg/h = 69 kHz.
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to be considered. The analytic solutions for such a driven two-level system

are well known and for the population evolution one expects to find Rabi

oscillations between the bands. We assume that initially only the first band is

populated. Then the initial population P0 in the first band at a given value of

k is P0 = 1. The expectation value of the population P1 in the second band

at the same value of k evolves according to

P1(t) =
Ω2R
Ω2eff

sin2(
1

2
Ωefft), (3.41)

where ΩR is the resonant Rabi frequency and Ωeff is called the effective or

off-resonant Rabi frequency. The resonant Rabi frequency is proportional to

the matrix element of the driving term between the two coupled Bloch states,

ΩR =
1

h̄
|〈Ψ0,k |V0m sin(2kLx)|Ψ1,k〉| , (3.42)

and the effective Rabi frequency is given by

Ωeff =
√
(ω − ω0)2 + Ω2R, (3.43)

where ω = 2πνp is the drive frequency and ω0(k) is the transition frequency

for a given value of k,

h̄ω0(k) = E1(k)− E0(k). (3.44)

Here, ω and ω0 do not refer to the laser beam parameters as do the symbols

introduced in Chapter 1.

If the drive frequency νp is close to resonance for both 1↔ 2 and 2↔ 3

[arrow (c) in Fig. 3.7], more than two levels participate in the interaction and

more complicated dynamics are to be expected.

Figure 3.8 compares the evolution of the first band survival probability

for increasing modulation amplitude. The data were recorded for V0/h =

71 kHz and νp = 70 kHz, which corresponds to a drive resonant with states near
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Figure 3.8: Measured survival probability in the lowest band as a function of
modulation duration. The modulation amplitude was set to be (a) m = 0.1,
(b) m = 0.2 and (c) m = 0.3. The data were taken at a well depth of
V0/h = 71 kHz and a modulation frequency of νp = 70 kHz corresponding
to a drive near the band edge [as indicated in Fig. 3.7, arrow (a)]. Each run
was repeated several times and the error bar denotes the one-sigma error of
the mean. The solid line displays the fit of an exponentially damped cosine
function to the data.
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the band edge, as indicated by arrow (a) in Fig. 3.7. All graphs clearly show

damped Rabi oscillations of the population in the first band. The damping

can be explained by taking off-resonant transitions into account. Atoms with a

quasi-momentum close to the value for which the resonance occurs can undergo

Rabi oscillations with different frequencies and different amplitudes. Summing

over the distribution of quasi-momenta leads to a dephasing of the oscillations

and therefore to a decrease of the average oscillation. It is important to note

that this damping effect is not caused by level decay, since the Bloch states

involved are stable. The plots of the survival probability in the first band

in Fig. 3.8 show an overall offset from unity at zero modulation duration.

We attribute this to residual phase modulation of our standing wave caused

by incomplete extinction of the modulation signal, which drives transitions

to higher bands. This introduces a constant loss independent of the chosen

modulation duration and does not affect the curve shape. Because the strength

of the residual modulation depends on the set modulation amplitude m, the

curve offset changes with increasing m.

As is evident from Fig. 3.8, the frequency of the Rabi oscillation in-

creases with the modulation amplitude. By fitting an exponentially damped

cosine function to the experimental data, the value for the oscillation frequency

can be extracted.

The solid squares in Fig. 3.9 show the result of the least square fits. The

error bars denote the uncertainty in the frequency fitting parameter. The plot

shows a Rabi frequency that varies linearly with modulation amplitude m. As

was discussed above, we can expect this linear relationship for a driven two-

level system for the case of exact resonance. To compare to the experimental

data, we calculated the Rabi oscillation frequency for a modulation driving

transitions only at the band edge. Since the chosen value of νp = 70 kHz does

not quite correspond to the band separation at the band edge (Eg/h = 69 kHz),
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Figure 3.9: The solid squares show the measured Rabi frequency versus mod-
ulation amplitude for a well depth of V0/h = 71 kHz and a drive frequency
of νp = 70 kHz. Uncertainties in the least square fit of the frequency are
indicated as error bars. The line depicts the result of a linear least square
fit through the experimental data. The hollow dots are the calculated Rabi
frequencies for a drive at the band edge (νp = Eg/h), corresponding to the
experimental parameters.
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a slight detuning of the drive from the transition 1↔ 2 has been taken into ac-

count. The resulting frequencies are displayed as hollow dots in Fig. 3.9. The

calculation results are in good overall agreement with the experimental data.

The slight deviation in frequency of the measured versus calculated data can

be attributed to the experimental uncertainty in the determination of the well

depth V0. We could measure the intensity of the interaction beams to within

±10%, which lead to the same relative error in the value for the well depth. To
check the validity of restricting the range of quasi-momenta to the band edge,

we performed a numerical integration of Schrödinger’s equation including the

full potential in Eq. (3.39), with an initial condition that was taken to be a

uniform distribution of atoms in the first band. A more detailed description

of the numerical procedure can be found in Appendix A. The frequencies of

the resulting population oscillations are not plotted in Fig. 3.9 because, on

the scale used, they are indistinguishable from the calculated values, shown

by the hollow dots. The calculation and the numerical integrations were per-

formed using experimental values for the well depth and drive frequency with

no adjustable parameters.

Driving transitions at the band edge (νp = Eg/h) has several advan-

tages, one of which is the high density of states in that region. This results

in a large number of atoms that can participate in the population transfer,

therefore yielding a large detection signal. Another advantage is the slow

damping rate of the Rabi oscillations. Since there is a large fraction of atoms

contributing to the oscillation with the same frequency, the small number of

off-resonantly driven atoms will not significantly decrease the amplitude of the

averaged oscillation. Away from the band edge however, the relative weight of

the resonant oscillation frequency becomes less dominant and the off-resonant

drives lead to an increased damping rate. The evolution of the first band pop-

ulation for three different drive frequencies is depicted in Fig. 3.10. The data
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Figure 3.10: Measured survival probability in the lowest band as a function
of modulation duration for three different frequencies. All data were recorded
at a well depth of V0/h = 71 kHz and a modulation amplitude of m = 0.3.
The points are connected by solid lines for clarity. The insets show the result
of numerical simulations at V0/h = 72 kHz and m = 0.3. Note that the
modulation duration does not include the 16 µs turn-on and turn-off time.
The modulation frequency was set to be (a) νp = 70 kHz, (b) νp = 75 kHz,
and (c) νp = 85 kHz corresponding to drives indicated by the arrows in Fig. 3.7.



61

were recorded at a well depth of V0/h = 71 kHz and a modulation amplitude

of m = 0.3. The insets show the result of the numerical integrations, for which

the well depth was adjusted to V0/h = 72 kHz in order to produce matching

damping rates. The modulation frequencies in Fig. 3.10(a) through (c) match

the corresponding arrows in Fig. 3.7 [(a) 70 kHz, (b) 75 kHz and (c) 85 kHz].

Larger damping rates for increasing modulation frequencies are clearly visible.

In addition, we observed a decrease in oscillation amplitudes due to a smaller

density of states at the center of the band. At the opposite side of the energy

band (2πνp = ω0(k = 0)) lower damping rates are recovered. Modulating the

potential with frequencies beyond the band edges (2πνp > ω0(k = 0)) lead to

Rabi oscillations with higher frequency and lower amplitude, as expected for

off-resonantly driven systems (not shown).

3.4 Wannier-Stark ladder

In order to study the Wannier-Stark states experimentally, we used a similar

spectroscopic technique as the one described above [31]. However, to create the

Wannier-Stark states a constant acceleration of the optical potential was nec-

essary. Therefore the frequency chirp was not stopped during the modulation

time. The chirp rate, however, was adjusted to yield the desired value of the

acceleration a. To spectroscopically investigate the states, we superimposed

the phase modulation at frequency νp onto this frequency chirp. The time

during which the atoms were exposed to the phase modulation (while under-

going an acceleration) was 500 µs. To obtain a spectrum of the Wannier-Stark

states we repeated the experiment for various probe modulation frequencies,

holding the modulation amplitude m and the duration fixed.

Figure 3.11 shows three measured spectra for the accelerations of 947

m/s2, 1260 m/s2, and 1680 m/s2, which correspond to the Bloch frequencies

ωB/2π = 16.0 kHz, 21.4 kHz, and 28.5 kHz respectively. The spectra were



62

40 60 80 100 120 140 160

0.2

0.3

0.4

0.5

0.6

0.7

0.8 (c)

 

probe frequency [kHz]

0.3

0.4

0.5

0.6

0.7
(b)

su
rv

iv
al

 p
ro

ba
bi

lit
y

0.3

0.4

0.5

(a)

Figure 3.11: Wannier-Stark ladder resonances for a well depth of V0/h =
91.6 kHz and accelerations of (a) 947 m/s2, (b) 1260 m/s2, and (c) 1680 m/s2,
which correspond to the Bloch frequencies ωB/2π = 16.0 kHz, 21.4 kHz and
28.5 kHz respectively. For the chosen well depth, the average band spacing is
Ēg/h = 104 kHz which is in good agreement with the location of the central
resonance. The points are connected by thin solid lines for clarity. The thick
solid lines shows the results of numerical simulations using the experimental
parameters.
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obtained at a fixed well depth of V0/h = 91.6 kHz and a fixed probe modulation

amplitude of m = 0.05. For a well depth of V0/h = 91.6 kHz, the average band

spacing is Ēg/h = 104 kHz, which is in good agreement with the location

of the central resonance in the three spectra of Fig. 3.11. While Eq. (3.38)

predicts the location of the spectral features, it is simply a statement of energy

conservation and does not include the attenuation of the transition probability

for states lying outside the allowed energy bands.

Also shown in Fig. 3.11 is the result of a numerical integration of the

time-dependent Schrödinger equation using the experimental parameters. We

believe that phase noise in the interaction beams prevented the survival proba-

bility from reaching unity, when the probe was far from resonance, and reduced

the depth of the spectral features by a constant factor. For this reason, the

y-values of the theory curves were shifted and scaled to match the baseline

and amplitude of the central resonance. In addition, the value for the probe

modulation amplitude m was adjusted in the numerical simulations from 0.05

to 0.035 to reproduce the relative peak heights.

The spectral width of the resonances is fundamentally determined by

the finite lifetime of the Wannier-Stark states due to tunneling. For the case

of a = 1680 m/s2, where the tunneling rate is the highest, the Landau-Zener

lifetime of the states in the second band exceeds 125 µs, leading to a broad-

ening of less than 1.3 kHz. Due to the finite probe interaction time of 500 µs,

one would expect the resonances to be further broadened by 2 kHz; however,

there were a number of experimental mechanisms which contributed to the

measured width being substantially broader than that predicted by the sim-

ulations. The first source of line broadening was due to phase noise in the

standing wave beams with a 5 kHz bandwidth resulting from mirror vibra-

tions and electronic noise in the acousto-optic modulator drivers. The second

source of broadening came from variations in the well depth which, for the
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range considered, is approximately proportional to the average band spacing

and therefore the absolute position of the resonances. Although the transverse

Gaussian width of the standing wave beams was large compared to the initial

size of the atomic distribution, fast atoms could move radially out of the center

and across the profile producing a time-dependent variation in their effective

well depth. By limiting the binning window of the 2D images in order to re-

strict our measurement to a colder subset of atoms in one of the transverse

directions, we were able to reduce but not totally eliminate this effect.

A series of Wannier-Stark spectra were taken at different accelerations

while keeping the well depth constant. The peak locations were determined in

each case and are plotted versus the acceleration in Fig. 3.12, generating the

Wannier-Stark fan. The solid lines are the resonance locations as predicted

by Eq. (3.38). In accordance with theory there is one resonance (m = 0) at

a frequency corresponding to the average band spacing. The location of this

resonance does not change as the acceleration is varied, while the other peaks

spread out with a slope proportional to m.
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Figure 3.12: A fan plot of the Wannier-Stark resonances for a well depth of
V0/h = 91.6 kHz. The position of the center resonance is independent of
acceleration and corresponds to the average band spacing. The solid lines
represent the resonance locations as predicted by Eq. (3.38).
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Chapter 4

Quantum Tunneling

In the previous chapter we studied the spectral features of Bloch states and

Wannier-Stark states by driving transitions between those states. These inter-

band transitions, which provided the basis for the experimental study, were

imposed externally by a modulation of the potential. Without modulation

the band index was conserved. The accelerations that transported the atoms

through reciprocal space were small enough to preserve the validity of the

semiclassical equations of motion in Section 3.2.1.

In this chapter we investigate the effect of a large acceleration of the

optical potential. In this case the semiclassical equations no longer hold and

inter-band tunneling can occur. The atoms can leave the trapping potential

via tunneling into the continuum of free states. The system is therefore un-

stable and the number of trapped atoms decays with time. By adjusting the

acceleration the stability of the system can be altered dynamically and the

decay rates vary over a wide range. In this system, short-time deviations from

the universal exponential decay law are observed [32]. In addition, we study

the fundamental effects of measurements on the decay rate and report on the

first observation of the Quantum Zeno and Anti-Zeno effects in an unstable

system.

67
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4.1 Classical limits

As derived in Chapter 3, atoms in an accelerated standing wave are subject

to a potential

V (x) = V0 cos(2kLx) +Max. (4.1)

This potential is stated in the reference frame accelerated with the potential

as given in Eq. (3.26). For a small enough acceleration a particle can be

classically trapped within the wells of this ‘washboard’ potential as indicated

in Fig. 4.1(a). In this case the particle will accelerate along with the potential.

For a larger acceleration the potential wells become increasingly asymmetric

up to a point where the particle is no longer confined by the potential. A

sketch of this situation is given in Fig. 4.1(b). The critical acceleration ac,class,

for which the potential looses its ability to confine the particle can be found

by solving for the extrema of the potential in Eq. (4.1)

dV

dx
= −2kLV0 sin(2kLx)−Ma = 0. (4.2)

This equation only has solutions for

|a| < ac,class =
2kLV0
M

. (4.3)

For accelerations smaller than ac,class the particle gets accelerated along with

the potential whereas for larger accelerations there are no local potential min-

ima.

4.2 Landau-Zener tunneling

4.2.1 Tunneling rates

In this section we provide a short description of the Landau-Zener tunnel-

ing process based on diabatic transitions in momentum space [29, 33]. An

alternative description can be derived in the position representation [7, 34].
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Figure 4.1: Sketch of the classical confinement of a particle in the tilted wash-
board potential of an accelerated lattice. Part (a) shows the case for small
acceleration where the particle is confined within the potential wells. In part
(b) the acceleration has been increased to a point where the wells no longer
provide confinement.
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As a starting point for the derivation of the tunneling rates we consider

the semiclassical equations of motion as derived in Section 3.2.1. These equa-

tions describe the time evolution of the quasi-momentum in reciprocal space.

In order to allow for inter-band transitions we now must abandon the condition

that the band index be a constant of motion. The shape of the Bloch bands

and the time evolution equation for the quasi-momentum are still assumed to

be valid. As we pointed out in Section 3.2.2, the stationary periodic potential

causes the free particle energy levels to undergo a level repulsion. This shift

is most pronounced at the edges of the Brillouin zone. A particle approaching

the avoided level crossing might not be able to follow the dispersion curve adi-

abatically, in which case it continues its motion and diabatically changes levels

across the energy gap. In 1932 Zener derived an expression for the probability

P of diabatic transfer between two repelled levels [33]

P = exp

(
− π

2h̄

E2
g

d
dt
(ε1 − ε2)

)
, (4.4)

where Eg is the minimum energy separation of the perturbed levels and ε1,2

are the unperturbed energy eigenvalues of level 1 and 2, respectively. In our

case the unperturbed energy curve is simply the free particle kinetic energy

dispersion Ep = p2/2M . Since at the edges of the Brillouin zone the levels are

symmetric with respect to reflection at the zone boundary we can evaluate

d

dt
(ε1 − ε2) = 2

dEp
dt

∣∣∣∣∣
p=n h̄kL

= 2Ma
dEp
dp

∣∣∣∣∣
p=n h̄kL

= 2n a h̄kL, (4.5)

where we used p = p0 +Mat to describe the evolution of the momentum, and

n is the band index. In using this relation we have implicitly made use of the

semiclassical equation of motion for the quasi-momentum. Inserting Eq. (4.5)

into Eq. (4.4) we obtain for the probability of transfer

P = e−ac/a, (4.6)
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where the critical acceleration ac is given by

ac =
π

4

E2
g

n h̄2kL
. (4.7)

Let N denote the number of particles populating the lowest band within the

first Brillouin zone. Then the rate r of atoms crossing the band gap is equal

the rate of atoms approaching the transition region times the probability of

tunneling

r = −dN

dt
=

N

2kL

dk

dt
P = N

Ma

2h̄kL
P, (4.8)

where we have assume the band to be uniformly populated. Solving the above

equation for N yields an exponential decay of the population in the band under

consideration as

N = N0 e
−ΓLZ t (4.9)

with the Landau-Zener (LZ) decay rate ΓLZ given by

ΓLZ =
a

2vr
e−ac/a. (4.10)

Experimental studies of the tunneling rates out of the lowest band were per-

formed in our group and the decay rates were compared to the Landau-Zener

prediction [35, 36].

4.2.2 Deviations from Landau-Zener tunneling

The expression for the LZ tunneling rate derived above is based on a single

transit of the atom through the region of an avoided crossing. However, for

small tunneling probability the atom can undergo Bloch oscillations within

a given band, leading to multiple passes through the Brillouin zone. As de-

scribed in Section 3.2.2, the tunneling amplitudes can interfere constructively

or destructively depending on the rate at which the atom traverses the Bril-

louin zone. This mechanism is responsible for the formation of the tunneling
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resonances in Eq. (3.37). For small accelerations the tunneling rate is small

and the atoms can perform many Bloch oscillations before leaving the band.

Therefore large deviations from the Landau-Zener prediction for the tunneling

rate are to be expected. For a larger acceleration the atom leaves the band

quickly and the interference effects are less pronounced. For those cases the

LZ prediction is a good approximation for the actual tunneling rate. These

statements are in agreement with the observed tunneling rates [35, 36].

4.3 Non-exponential decay

4.3.1 Theoretical description

An exponential decay law is the universal hallmark of unstable systems and

is observed in all fields of science. This law is not, however, fully consistent

with quantum mechanics and deviations from exponential decay have been

predicted for short as well as long times [37, 38, 39]. In 1957 Khalfin showed

that if H has a spectrum bounded from below, the survival probability is not

a pure exponential but rather of the form

lim
t→∞P (t) ≈ exp(−ctq) q < 1, c > 0. (4.11)

Later Winter examined the time evolution in a simple barrier-penetration

problem [38]. He showed that the survival probability begins with a non-

exponential, oscillatory behavior. Only after this initial time does the system

start to evolve according to the usual exponential decay of an unstable system.

Finally, at very long times, it decays like an inverse power of the time. The

initial non-exponential decay behavior is related to the fact that the coupling

between the decaying system and the reservoir is reversible for short enough

times. Moreover, for these short times, the decayed and undecayed states are

not yet resolvable, even in principle.
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A simple argument will illustrate this point. We assume that the system

is initially in the undecayed state |Ψ0〉 at t = 0, and that the state evolves

under the action of the Hamiltonian H,

|Ψ(t)〉 = e−iHt/h̄|Ψ0〉 = A(t)|Ψ0〉+ |Φ(t)〉, (4.12)

where A(t) is the probability amplitude for remaining in the undecayed state

A(t) = 〈Ψ0|e−iHt/h̄|Ψ0〉, (4.13)

and the state |Φ(t)〉 denotes the decayed state with 〈Ψ0|Φ(t)〉 = 0. The prob-

ability of survival P in the undecayed state is therefore

P (t) = |A(t)|2. (4.14)

Acting with the time evolution operator e−iH(t+t
′)/h̄ on the state |Ψ0〉 and

projecting onto the initial state yields

A(t+ t′) = A(t)A(t′) + 〈Ψ0|e−iHt′/h̄|Φ(t)〉, (4.15)

where we have made use of Eq. (4.12) and the orthonormality relation. If it

were not for the last term, the equation above would generate the character-

istic exponential decay law of an unstable system. However, the term under

consideration describes the possibility for the decayed state |Φ(t)〉 to re-form
the initial state |Ψ0〉 under the time evolution operator for time t′.

For very short times we can determine the time evolution of the survival

probability P explicitly. Given that the mean energy of the decaying state is

finite, one can show following the arguments of Fonda et al. [39], that

dP (t)

dt

∣∣∣∣∣
t→0

= 0. (4.16)

To derive this property, we consider a complete set of commuting observables

H and α and their common eigenstates |φE,a〉 with discrete and/or continuous
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spectra. The completeness relation is

∫
dE da |φE,a〉〈φE,a| = 1, (4.17)

and we can expand our state in terms of this basis set. Doing so, we have

A(t) =
∫ ∞

−∞
dE ω(E)e−iEt/h̄, (4.18)

where

ω(E) =
∫
da |〈φE,a|Ψ0〉|2 . (4.19)

Now, we make the assumption that H has a spectrum that is bounded from

below. This assumption is reasonable and necessary for a physical system.

This allows us to restrict the range of integration in Eq. (4.18) to

A(t) =
∫ ∞

Emin

dE ω(E)e−iEt/h̄, (4.20)

Utilizing the normalization condition for Ψ we get

∫ ∞

Emin

dE ω(E) =
∫ ∞

Emin

dE
∫
da |〈Ψ|φE,a〉〈φE,a|Ψ〉|

= 〈Ψ|Ψ〉 = 1. (4.21)

Since we have from Eq. (4.21) that

∫ ∞

Emin

dE |ω(E)| < ∞, (4.22)

it can be shown that it is possible to extend the definition of A(t) to negative

times. This condition also ensures that the integral defining A(t) is uniformly

convergent and that A(t) is continuous for all times. Since ω(E) is real, one

can see that

A∗(t) = A(−t). (4.23)

Now, we make the second assumption that the mean energy in the state |Ψ〉
is finite:

〈E〉 = 〈Ψ|H|Ψ〉 =
∫
dE ω(E)E < ∞. (4.24)
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This assumption implies that the derivative of A is well defined and is contin-

uous everywhere, since

dA(t)

dt
= − i

h̄

∫
dE ω(E)Ee−iEt/h̄. (4.25)

Using Eq. (4.23), the survival probability can be rewritten as

P (t) = A∗(t)A(t) = A(−t)A(t). (4.26)

Taking the derivative, we have, using the chain rule,

dP (t)

dt
=

dA(−t)

dt
A(t) + A(−t)

dA(t)

dt
, (4.27)

and since both A and its derivative are continuous and A → 1 as t → 0 we

have immediately that
dP (t)

dt

∣∣∣∣∣
t=0

= 0. (4.28)

The form of the expression for the survival probability P in Eq. (4.14)

implies the shape of the initial time dependence. As outlined by Grotz and

Klapdor [40] we can expand A(t) in a power series

A(t) = 〈Ψ0|e−iHt/h̄|Ψ0〉 (4.29)

= 1− i
t

h̄
〈Ψ0|H|Ψ0〉 − t2

2h̄2
〈Ψ0|H2|Ψ0〉+O(t3). (4.30)

Using this expansion results in an expression for the survival probability

P (t) = |A(t)|2 = 1− t2

h̄2
〈Ψ0|(H − Ē)2|Ψ0〉+O(t4), (4.31)

where Ē = 〈Ψ0|H|Ψ0〉. This form also indicates a population transfer begin-

ning with a flat slope in accordance with Eq. (4.28) and suggests an initial

quadratic time dependence. However, this simple argument neglects the con-

vergence properties of the series and can not be considered as rigorous as the

arguments leading to the derivation of Eq. (4.28).
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The results stated here are general properties independent of the details

of the interaction. However, the time scale over which the deviation from

exponential behavior is apparent depends on the particular time scales of the

decaying system. Greenland and Lane point out a number of time scales which

are relevant [41]. The first time scale τe is given by the time that it takes the

decay products to leave the bound state region. This time can be estimated

as

τe =
h̄

E0

, (4.32)

where E0 is the energy released during the decay. It determines the amount of

time required to pass before the decayed and undecayed states can be resolved.

The second time scale τw is related to the bandwidth ∆E of the continuum to

which the state is coupled

τw =
h̄

∆E
. (4.33)

The phases of all states in the continuum evolve at a rate corresponding to

their energy. Thus after the time τw the phases of these states have spread

over such a wide range as to prevent the reformation of the initial undecayed

state. After this dephasing time, the coupling is essentially irreversible.

Although these predictions are of general nature and applicable in every

unstable system, deviations from exponential decay have not been observed

experimentally in any other system than the one described here [32]. The

primary reason is that these characteristic time scales in most naturally oc-

curring systems are extremely short. For the decay of a spontaneous photon,

the time τe it takes a photon to traverse the bound state size is approximately

an optical period, 10−15 s. For a nuclear decay this time scale is orders of

magnitude shorter, about 10−21 s. By contrast, the dynamical time scale for

an atom bound in an optical lattice is just the inverse band gap energy, which

in our experiments is on the order of several microseconds.
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Niu and Raizen [42] performed a more detailed investigation of a two-

band model of our system. They find an initial non-exponential regime that

starts with a quadratic time dependence, then becomes a damped oscillation,

and finally settles into an exponential decay. The time scale for which the

coherent oscillations damp out and the exponential decay behavior sets in is

identified as the crossover time tc equal to

tc =
Eg

a

1

2h̄kL
. (4.34)

For a typical value for the acceleration of a = 10, 000m/s2 and a band gap of

Eg/h = 80 kHz the crossover time calculates to tc = 2µs.

4.3.2 Experimental realization

To observe tunneling out of the lowest band of an optical potential some

changes had to be made to the setup used in the quantum transport ex-

periments described in Chapter 3. The procedure for cooling and trapping

a sample of atoms is outlined in in Section 2.2. For the experiments described

in this chapter the final atomic distribution had a width of σx = 0.3 mm in

position and σp = 6 h̄kL in momentum.

The preparation of the initial state was done in a similar fashion as

described earlier. After turning on the interaction beams, a small acceleration

of atrans = 2, 000m/s2 was imposed to separate those atoms projected into

the lowest band from the rest of the distribution. After reaching the velocity

v0 = 35 vr the acceleration was suddenly increased to a value atunnel where

appreciable tunneling out of the first band occurred. Unlike in the quantum

transport experiments no phase modulation was added to induce transitions

between the bands. The large acceleration atunnel was maintained for a period

of time ttunnel, after which time the frequency chirping continued again at the

decreased rate corresponding to atrans. This separated in momentum space
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the atoms that were still trapped in the lowest band from those in higher

bands. After reaching a final velocity of vfinal = 80 vr the interaction beams

were switched off suddenly. A diagram of the velocity profile versus time is

shown in Fig. 4.2(a).

In the detection phase we determined the number of atoms that were

initially trapped and what fraction remained in the first band after the tunnel-

ing sequence. After an atom tunneled out of the potential during the sequence,

it would maintain the velocity that it had at the moment of tunneling. Turn-

ing off the light beams allowed the atoms to expand freely. During this period

of ballistic expansion each atom moved a distance proportional to its velocity.

Due to the difference in final velocity, trapped and tunneled atoms separated

and could be spatially resolved. After the expansion the position distribution

of the atoms was determined by imaging their fluorescence in a ‘freezing mo-

lasses’ as described in Section 2.4. Regions of the two-dimensional image were

then integrated to obtain the desired fraction of remaining atoms over the

number of initially trapped atoms. A typical integrated distribution is shown

in Fig. 4.2(b). For this trace, about one third of the initially trapped atoms

have tunneled out of the optical potential during the fast acceleration dura-

tion. To observe the temporal evolution of the fundamental band population

we repeated the experiment for various tunneling durations ttunnel, holding the

other parameters of the sequence fixed.

Since we were mainly interested in the decay behavior of the system for

very short times, a careful timing calibration was necessary. The time scale

for deviations from the exponential decay law was estimated in the previous

section to be on the order of 2µs. The timing resolution of the tunneling

duration needed to be much more precise than this time scale. The time of

tunneling was given by the duration of the large tunneling acceleration atunnel.

The scan rate of the frequency difference between the two beams therefore had
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Figure 4.2: Part (a) shows a diagram of the acceleration sequence to study
tunneling out of the lowest band. Part (b) shows a typical integrated spatial
distribution of atoms after the time of ballistic expansion. The large peak
on the right is the part of the atomic cloud that was not trapped during the
initial acceleration. The center peak indicates the atoms that tunneled out of
the optical potential during the fast acceleration period. The leftmost peak
corresponds to atoms that remained trapped during the entire sequence.
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to be switched from a rate corresponding to atrans to atunnel and back within

less than one microsecond.

In order to determine the time response of the system to a change of

acceleration, a Fourier analysis method was utilized. The starting point for

the analysis was the desired velocity profile that was programmed to control

the frequency difference between the counter-propagating interaction beams.

A repeated sequence of this velocity profile was expanded in a Fourier series.

In order to simplify the analysis and to treat the most demanding case en-

countered, atrans = 0 was chosen. An example of the profile to be analyzed is

shown in Fig. 4.3(a). In this example the desired time of large acceleration

is 1µs. Due to the simplicity of the function, an analytic solution for the

Fourier coefficients could be obtained. As indicated in Fig. 2.5, the signal of

the velocity ramp passes through various electronic devices on its way to a

voltage-controlled oscillator, where it determines the frequency of the AOM

RF drive. In the AOM it finally determines the frequency of the acoustic wave

and therefore the frequency shift of the light beam passing through it. Due

to frequency dependent losses in the electronic setup and the finite propaga-

tion speed of the sound wave within the AOM crystal, the shape of the signal

profile will undergo changes. In order to determine the response of the system

to the desired velocity profile, the frequency dependent transfer function was

experimentally determined. For this purpose a sinusoidal control signal was

applied to the control input and the size of the modulation in the light was

determined by acquiring a heterodyne spectrum [7]. The resulting transfer

function of the complete control system (electronics and AOM) is shown in

Fig. 4.4. The amplitude response is consistent with the amplitude transfer

function of a double-pole Butterworth low-pass filter [43]

Aout

Ain

=
1√

1 + (f/fc)4
. (4.35)
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Figure 4.3: Fourier analysis of the velocity profile. Part (a) shows an example
profile to be analyzed. In this case the desired tunneling duration is 1 µs.
Part (b) shows the central region of the transmitted profile after re-summation
of the first 30 Fourier components. For the thick line the transfer function has
been taken into account, whereas the thin line shows the sum for an ideal
transfer. Part (c) shows the derivative of the Fourier sums in (b). The time
to switch between the two accelerations is estimated as 220 ns.
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The cut-off frequency fc was determined with a least square fit to be fc =

0.98 MHz. With the knowledge of the transfer function we were able to calcu-

late the system response to an arbitrary velocity profile. For the example in

Fig. 4.3 we re-summed the Fourier series after multiplying each term with the

frequency dependent attenuation factor in Eq. (4.35). The resulting profile is

shown in Fig. 4.3(b), where the re-summation with no attenuation is included

for comparison. The acceleration of the potential was determined by taking

the derivative of the velocity curve, as shown in part (c) of the same figure.

From this graph we can estimate the time it takes to switch between atrans

and atunnel as the time during which the acceleration is outside the windows of

20% around the two values. For the worst-case example of Fig. 4.3 this time

was 220 ns. Subtracting this switching time from all the tunneling durations

in the analysis of the data ensured that only sections were included for which

tunneling was substantial. Since the values for atrans and atunnel were chosen to

correspond to the most stringent case, using this overestimated value for the

switching time of 220 ns established a lower bound for the actual tunneling

duration.

Figure 4.5 shows the probability of survival in the accelerated potential

as a function of the duration of tunneling for various values of the tunneling

acceleration atunnel between 6,000 m/s
2 and 20,000 m/s2. The value for the well

depth for all curves was V0/h = 92 kHz. Each point represents the average of

5 experimental runs, and the error bar denotes the error of the mean. Initially,

the survival probability shows a flat region, owing to the reversibility of the

decay process for short times. At intermediate times the decay shows a damped

oscillation, that for long times evolves into the characteristic exponential decay

law. By this time the coupling is essentially irreversible and reformation of

the undecayed state is prohibited. As a comparison we also show the results of

quantum mechanical simulations of the entire experimental sequence as solid



83

0.1 1

0.1

1

A
ou

t /
 A

in

frequency [MHz]

Figure 4.4: Measured amplitude transfer function of the combined system of
electronics and optics controlling the velocity profile of the standing wave.
The data points show the attenuation values as determined by analyzing a
heterodyne spectrum versus the frequency of the calibration signal. The solid
line shows a fit to a double-pole Butterworth low-pass filter response.
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Figure 4.5: Probability of survival in the accelerated potential as a function
of duration of the tunneling acceleration. Data points for different values of
the large acceleration atunnel are shown. The error bars denote the error of
the mean. These data were recorded for a well depth of V0/h = 92 kHz.
The data have been normalized to unity at ttunnel = 0 in order to compare to
the simulations. The solid lines are quantum mechanical simulations of the
experimental sequence with no adjustable parameters.
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lines in the same graph. The tunneling rates depend strongly on the well depth

of the potential. Considering the uncertainty of 10% in the calibration of the

power in the interaction beams, the simulations match the observed data quite

well.

4.4 Quantum Zeno and Anti-Zeno effects

The universal phenomenon of non-exponential decay of unstable systems led

Misra and Sudarshan in 1977 to the prediction that frequent measurements

during this non-exponential period could inhibit decay entirely [44, 45, 46].

They named this effect the Quantum Zeno effect after the Greek philosopher,

famed for his paradoxes and puzzles. In his most famous paradox, Zeno con-

siders an arrow flying through the air. The time of flight can be subdivided

into infinitesimally small intervals during which the arrow moves only by in-

finitesimal amounts. Assuming the summation of infinitesimal terms amounts

to nothing led Zeno to believe that motion is impossible and is merely an

illusion. The version put forth by Misra and Sudarshan is the quantum me-

chanical version of the paradox.

To illustrate their main point we consider the time evolution of a sys-

tem in the non-exponential regime, where the probability of remaining in the

undecayed state is given by Eq. (4.31)

P (t) = 1− t2

h̄2
〈H2〉. (4.36)

We now subdivide the time t into n time intervals of length τ and perform a

measurement of the system after each interval. Each measurement redefines

a new initial condition and effectively resets the time evolution. The system

must therefore start the evolution again with the same non-exponential decay

features. The probability of remaining in the undecayed state at time t (after
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n measurements at intervals τ) is therefore

P (t) = [P (τ)]n =

[
1− τ 2

h̄2
〈H2〉

]n
. (4.37)

Approximating the initial quadratic time evolution as an exponential, we can

simplify this equation to

P (t) = exp

(
−n τ 2

〈H2〉
h̄2

)
= e−γ t, (4.38)

where the decay rate γ is given by

γ = τ
〈H2〉
h̄2

. (4.39)

The time evolution of the system that is repeatedly measured is therefore an

exponential decay. The remarkable fact is that the decay rate depends on the

measurement interval τ and tends to zero as τ goes to zero

lim
τ→0

γ = 0. (4.40)

Reviews of the Quantum Zeno effect can be found in modern textbooks of

quantum mechanics [47]. Even though measurement-induced suppression of

the dynamics of a two-state driven system has been observed [48, 49], no such

effect was ever measured on an unstable system.

Whereas in the previous section we established the non-exponential

time-dependence, the focus of this section is the effect of measurements on the

system decay rate. The quantity to be measured was the number of atoms

remaining trapped in the potential during the tunneling segment. This mea-

surement could be realized by suddenly interrupting the tunneling duration

by a period of reduced acceleration ainterr, as indicated in Fig. 4.6(a). Dur-

ing this interruption tunneling was negligible and the atoms were therefore

transported to a higher velocity without being lost out of the well. This sep-

aration in velocity space enabled us to distinguish the remaining atoms from
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Figure 4.6: Part (a) shows a diagram of the interrupted acceleration sequence.
The total tunneling time is the sum of all the tunneling segments. Part (b)
shows a typical integrated spatial distribution of atoms after the time of bal-
listic expansion. The peaks can be identified as in Fig. 4.2. However, the
area containing the tunneled fraction of the atoms is now composed of two
peaks. Atoms that left the well during the first tunneling segment are offset in
velocity from the ones having left during the second period of tunneling. The
amount of separation is equal to the velocity increase of the well during the
interruption segment.
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the ones having tunneled out up to the point of interruption, as can be seen in

Fig. 4.6(b). By switching the acceleration back to atunnel the system was then

returned to its unstable state. The measurement of the number of atoms that

remained trapped defined a new initial state with the remaining number of

atoms as the initial condition. The requirements for this interruption section

were very similar to those during the transport section, namely the largest

possible acceleration while maintaining negligible losses for atoms in the first

band. Hence ainterr was chosen to be the same as atrans.

Figure 4.7 shows the dramatic effect of frequent measurements on the

decay behavior. The hollow squares indicate the decay curve without inter-

ruption. The solid circles in Fig. 4.7 depict the measurement of the survival

probability in which after each tunneling segment of 1 µs an interruption of

50 µs duration was inserted. Only the short tunneling segments contribute

to the total tunneling time. The survival probability clearly shows a much

slower decay than the corresponding system measured without interruption.

Care was taken to include the limited time response of the experimental setup

into the analysis of the data, as described above. Also indicated as solid lines

are quantum mechanical simulations of the decay by numerically integrating

Schrödinger’s equation for the experimental sequence and determining the sur-

vival probability numerically. Further details of the numerical procedure can

be found in Appendix A. The simulations contained no adjustable param-

eters and are in good agreement with the experimental data. We attribute

the seemingly larger decay rate for the Zeno experiment as compared to the

simulation to the under-estimate of the actual tunneling time.

Recently it was predicted that an enhancement of decay can be observed

for slightly longer time delays between successive measurements during the

non-exponential region. In contrast to the suppressed decay for the Zeno effect

this prediction was named the Anti-Zeno effect [50, 51, 52]. The shape of the
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Figure 4.7: Probability of survival in the accelerated potential as a function
of duration of the tunneling acceleration. The hollow squares show the non-
interrupted sequence, the solid circles show the sequence with interruptions
of 50 µs duration every 1 µs. The error bars denote the error of the mean.
The data have been normalized to unity at ttunnel = 0 in order to compare
to the simulations. The solid lines are quantum mechanical simulations of
the experimental sequence with no adjustable parameters. For these data the
parameters were: atunnel = 15, 000m/s2, ainterr = 2, 000m/s2, tinterr = 50µs
and V0/h = 91 kHz.
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Figure 4.8: Survival probability as a function of duration of the tunneling
acceleration. The hollow squares show the non-interrupted sequence, the solid
circles show the sequence with interruptions of 40 µs duration every 5 µs. The
error bars denote the error of the mean. The experimental data points have
been connected by solid lines for clarity. For these data the parameters were:
atunnel = 15, 000m/s2, ainterr = 2, 800m/s2, tinterr = 40µs and V0/h = 116 kHz.
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uninterrupted decay curve in Fig. 4.7 makes this suggestion fairly obvious.

After an initial period of slow decay the curve shows a steep drop as part of

an oscillatory feature, which for longer time damps away to show the well-

known exponential decay. If the system was interrupted right after the steep

drop, one would expect an overall decay that is faster than the uninterrupted

decay [51]. The solid circles in Fig. 4.8 show such a decay sequence, where

after every 5 µs of tunneling the decay was interrupted by a slow acceleration

segment. As in the Zeno-case, these interruption segments force the system

to repeat the initial non-exponential decay behavior after every measurement.

Here, however, the tunneling segments between the measurements are chosen

longer in order to include the periods exhibiting fast decay. The overall decay

is much faster than for the uninterrupted case, indicated by the hollow squares

in the same figure.

The key to observing the Zeno and Anti-Zeno effects is the ability to

measure the state of the system in order to repeatedly redefine a new initial

state. In our case the measurement is done by separating in momentum space

the atoms still left in the unstable state from the ones that decayed into the

reservoir. In order to distinguish the two classes of atoms, they must have a

separation of at least the size of the momentum distribution of the unstable

state, which in our case is the width of the first Brillouin zone of ∆p = 2h̄kL.

The time it takes for an atom to be accelerated in velocity by this amount is the

Bloch period τB = 2vr/ainterr, assuming an acceleration of ainterr. An interrup-

tion shorter than this time will not resolve the tunneled atoms from those still

trapped in the potential and therefore results in an incomplete measurement

of the atom number. To investigate the effect of the interruption duration we

repeated a sequence to measure the Anti-Zeno effect for varying interruption

durations while holding all other parameters constant. Fig. 4.9 displays the

results of this measurement, interrupting the decay every 5 µs with an ac-
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Figure 4.9: Survival probability as a function of duration of the tunneling
acceleration. The hollow squares show the non-interrupted sequence, other
symbols indicate the sequence with a finite interruption duration after every
5 µs of tunneling. The error bars denote the error of the mean. A further
increase of the interruption duration than as indicated does not result in a
further change of the decay behavior. The experimental data points have
been connected by solid lines for clarity. For these data the parameters were:
atunnel = 15, 000m/s2, ainterr = 2, 000m/s2 and V0/h = 91 kHz, leading to a
Bloch period of τB = 30µs.
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celeration of ainterr of 2000m/s2. The hollow squares show the uninterrupted

decay sequence as a reference. For an interruption duration smaller than the

Bloch period of 30 µs the measurement of the atom number is incomplete and

has little or no effect. For a duration longer than the Bloch period the effect

saturates and results in a complete restart of the decay behavior after every

interruption. Even though this method of interruption is not an instantaneous

measurement of the state of the unstable system, we can still accomplish the

task of redefining the initial state by first switching the system from an unsta-

ble to a stable one, then in a finite time perform the measurement and finally

switching the system back to being unstable again.
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Chapter 5

Recoil-Induced Resonance

In the previous chapters we were investigating the manipulation of atoms with

light. We used optical potentials to accelerate atoms or build barriers through

which the atoms could tunnel. The main interest was to manipulate the mo-

tional state of the atoms. So far we have not investigated at all whether the

optical potential undergoes any changes caused by the interaction with the

atoms. To change its motional state, an atom needs to acquire the corre-

sponding amount of momentum. The only possible source of momentum is

the light beams creating the optical potential. Therefore we should be able

to detect the change of momentum of the light beams as a signature of the

interaction. If we can gain access to this information encoded in the light, we

might be able to extract information about the motional state of the atom.

As described earlier, we measured the momentum distribution by let-

ting the atoms expand and then illuminating them with near-resonant light

to record their position. Owing to the dissipative nature of the spontaneous

emission process, this method is a destructive measurement. The spatial and

momentum distributions undergo severe changes. This precludes, for example,

a repeated measurement of the dynamics of an atomic sample without destroy-

ing it. Finding a way to measure the distribution while not severely perturbing

the sample clears the path for a whole range of interesting experiments, for

example, in the field of quantum chaos. Non-destructive measurements of the

95
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state of a system are difficult, if not impossible. One can, however, try to affect

the system to such a small extent that is acceptable to its further evolution.

We call this type of measurement a least invasive measurement.

The method of measuring recoil-induced resonances seems to be a prom-

ising candidate to accomplish this task. This method takes advantage of the

effect of the atoms on the optical potential as described above. The exchange

of photons between the constituent light beams is measured to obtain informa-

tion about the momentum distribution of the interacting atomic cloud. This

method was first demonstrated with a cold sample of cesium atoms [53, 54].

In our group, results for cesium atoms were obtained recently [55]. However,

the experiments performed so far did not meet the requirements for a least

invasive measurement. The atomic cloud was pushed away entirely during the

interaction and for a subsequent measurement the sample had to be prepared

again.

After briefly reviewing the theory of recoil-induced resonances, we will

present a refined method that greatly improves the sensitivity of the measure-

ment.

5.1 Quantum optics approach

In Section 1.3.1 we established the effective Hamiltonian for an optical po-

tential created by two overlapping light beams. In this section we calculate

a transition rate between momentum states coupled by the interaction. The

derivation is based on stimulated Raman transitions as the momentum trans-

fer mechanism. An illustration of this process is indicated in Fig. 5.1. An

alternate derivation based on tunneling in the band picture is given in Sec-

tion 5.2.

In the quantum transport and quantum tunneling experiments, we used
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Figure 5.1: Sketch of a stimulated Raman transition between motional states
of an atom. For a given frequency difference between the beams two velocity
classes are connected by the Raman process. The resonant velocity classes are
determined by energy and momentum conservation laws. If an atom undergoes
a stimulated Raman transition it transfers a photon from one beam to the
other.
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Figure 5.2: Sketch of the beam arrangement for the recoil induced resonance
experiments. Two linearly polarized beams with parallel polarization vectors
are overlapped enclosing a small angle at the position of the atomic cloud.
The vector q = k2 − k1 is the difference of the wave vectors of the beams.
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counterpropagating beams to form an optical potential of period λL/2. In

this section we focus on the case of two beams enclosing a small angle Θ as

indicated in Fig. 5.2. An atom undergoing a stimulated Raman transition

between motional states, as indicated in Fig. 5.1, transfers a photon from one

beam into the other. In the case of counterpropagating beams this corresponds

to a momentum transfer of 2h̄kL. This can be considered the basic quantization

unit of the momentum transfer. For the small-angle configuration, momentum

conservation leads to a transfer of

pfinal − pinitial = h̄k2 − h̄k1 = h̄q. (5.1)

For small angles the absolute value of the momentum difference h̄q can be

significantly smaller than 2h̄kL. This smaller unit of quantization allows us to

interact with a given momentum distribution on a scale much finer than the

single recoil momentum. The condition for energy conservation reads

p2final
2M

− p2initial
2M

= h̄δ, (5.2)

where δ = ω2 − ω1 as before. For ease of notation we assume that the beams

enclose the z-axis and propagate in the x-z plane. The momentum difference

q is then

q = qx = 2kL sin
Θ

2
. (5.3)

Combining Eqs. 5.1 and 5.2 results in

v · q = vxq = δ − h̄q2

2M
= δ − 4ωr sin

2 Θ

2
. (5.4)

This equation constitutes a resonance condition for the stimulated Raman

process. One can see that there is a one-to-one correspondence of the frequency

difference δ and the velocity vx of the atom undergoing the Raman transition.

By choosing δ appropriately, we can select a subset of the atomic ensemble

with velocity vx that will interact resonantly with the light. From Eq. (5.4) it

is apparent that only the velocity component along the x-direction is relevant.

In the following treatment we restrict ourselves to one dimension.
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5.1.1 Quasi-static solution

The Hamiltonian describing the coupling between atoms and the optical poten-

tial was derived in Section 1.3.1. We now assume a fixed frequency difference

δ between the beams. Equation (1.21) then becomes

H =
p2

2M
+ h̄

Ω1Ω2
4∆L

(
eiq·re−iδt + e−iq·reiδt

)
. (5.5)

We now define

ΩR =
Ω1Ω2
2∆L

(5.6)

to be the resonant Rabi frequency, which is related to the well depth previ-

ously introduced as V0 = h̄ΩR. The change of notation was done simply for

notational convenience. For a given frequency difference δ, the resonance con-

dition in Eq. (5.4) determines the momenta of the two motional states that are

resonantly coupled. The separation in momentum of the two coupled states is

h̄q. To investigate the time evolution of the system, we can therefore assume

the state to be a superposition of the form

|Φ〉 = α |p0〉+ β |p0 + h̄q〉, (5.7)

where the resonant momentum p0 has been restricted to one dimension. Ap-

plying Schrödinger’s equation with the Hamiltonian of Eq. (5.5) onto this state

results in a set of equations for the amplitudes

ih̄∂tα =
p20
2M

α+
h̄

2
ΩR e

iδtβ (5.8)

ih̄∂tβ =
(p0 + h̄q)2

2M
β +

h̄

2
ΩR e

−iδtα. (5.9)

This expression can be simplified by the transformations

α̃ = α exp

(
i

h̄

p20
2M

t

)
(5.10)

β̃ = β exp

(
i

h̄

(p0 + h̄q)2

2M
t

)
. (5.11)
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Defining the quantity

ωres = δ − p0q

M
− h̄q2

2M
(5.12)

results in the more instructive form for the time evolution equations,

i∂tα =
ΩR
2

eiωrest β (5.13)

i∂tβ =
ΩR
2

e−iωrest α, (5.14)

where the tildes have been dropped for notational convenience. It is impor-

tant to note that the case ωres = 0 corresponds to the resonance condition of

Eq. (5.4). We can see that transitions between the two levels involved can be

off-resonantly driven by the interaction. For the time being we assume that

only one momentum state is initially populated. Without loss of generality

we set |α(t = 0)|2 = 1 and |β(t = 0)|2 = 0. The solution for the population

probabilities can easily be found to be

|β(t)|2 = Ω2R
Ω2eff

sin2
(
1

2
Ωefft

)
= 1− |α(t)|2, (5.15)

where the effective Rabi frequency Ωeff is given by

Ωeff =
√
ω2res + Ω

2
R. (5.16)

It is important to note that the symbols ΩR and Ωeff do not refer to the the

same quantities as in Chapter 3, even though the qualitative behavior of the

solution in Eq. (5.15) is the same (Rabi oscillations). As can be seen from

Eq. (5.15) the population of the two momentum states involved exchanges

with an oscillation frequency of Ωeff .

In a realistic situation we have a continuous distribution of momenta

within the atomic cloud. Since transitions can be driven off-resonantly we can-

not simply restrict the attention to two resonantly coupled states. We have to

include the entire atomic distribution to calculate the change of momentum in
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the light field due to the interaction with the atoms. In order to simplify this

complex system, several approximations can be made. First we can assume

that different momenta within the distribution are initially uncorrelated. For

a thermal distribution in a MOT or molasses this assumption is justified. This

allows us to calculate the total transition probability as a sum over the individ-

ual transition probabilities of the momentum classes within the distribution.

It also justifies the choice for the initial population |α|2 and |β|2 used above.
For a general case the population for state |p0〉 and |p0 + h̄q〉 are

|α(t = 0)|2 = Np0 (5.17)

|β(t = 0)|2 = Np0+h̄q. (5.18)

Using an uncorrelated ensemble we can treat this as two separate initial condi-

tions. First we calculate the transition probability assuming one of the levels is

unpopulated and then we do the same assuming the other level is empty. The

quantity of interest is the total number of exchanged quanta of momentum.

For each atom changing its momentum state, one photon is transferred from

one beam to the other. If the number of atoms changing their momentum

from p0 to p0 + h̄q is the same as the number changing from p0 + h̄q to p0, no

net momentum is exchanged. In general the net number of photons exchanged

while evolving the two momentum classes is therefore

n(p0) =
Ω2R
Ω2eff

sin2
(
1

2
Ωefft

)
[Np0+h̄q −Np0 ] . (5.19)

Integrating over a continuous distribution of momenta gives the total number

of photons transferred as

ntot = N
∫ ∞

−∞
Ω2R
Ω2eff

sin2
(
1

2
Ωefft

)
[Π(p0 + h̄q)− Π(p0)] dp0, (5.20)

where Π(p) is the momentum distribution function normalized to unity, and

N is the total number of atoms interacting with the light. We can further sim-

plify this expression by approximating the difference term of the distribution
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function. The difference is evaluated at points in momentum space separated

by the value h̄q. We can compare this difference with the scale over which

the distribution function varies. The distributions we measure are smooth

distributions with a typical width of ∆p ≈ 10 h̄kL. With an angle of Θ = 5◦

we have h̄q ≈ 0.1 h̄kL, which is a factor of 100 smaller than the width of the

distribution. We can therefore safely assume

Π(p0 + h̄q)− Π(p0) ≈ h̄q
∂Π

∂p

∣∣∣∣∣
p=p0

, (5.21)

changing Eq. (5.20) to

ntot = Nh̄q
∫ ∞

−∞
Ω2R
Ω2eff

sin2
(
1

2
Ωefft

)
∂Π

∂p

∣∣∣∣∣
p=p0

dp0. (5.22)

Another approximation can be made with respect to the time-dependent part

of the integrand, which we can write as

sin2
(
1
2
Ωefft

)
Ω2eff

≡ f(ωres, t) · t. (5.23)

For small beam intensities we can disregard the power-dependent term in the

expression for the effective Rabi frequency. The function f can then be written

as

f(ωres, t) =
sin2

(
1
2
ωrest

)
ω2rest

. (5.24)

For large t this function is sharply peaked around the origin with a maximum

fmax and a width δωres of

fmax =
t

4
(5.25)

δωres =
2π

t
. (5.26)

We can now compare δωres to the width of the distribution of values ωres over

which we need to integrate in Eq. (5.22). For small angles in Eq. (5.12) we

can neglect terms of second order in q:

ωres = δ − p0q

M
. (5.27)
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If the momentum distribution we intend to measure has a typical width of

∆p then the corresponding width in the distribution of ωres is, according to

Eq. (5.27),

∆ωres =
q∆p

M
. (5.28)

Therefore, for times much larger than the inverse width,

t � 2π

∆ωres
=
2πM

q∆p
, (5.29)

the function f(ωres, t) can be approximated under the integral as

f(ωres, t) ≈ π

2
δ(ωres), (5.30)

where here the symbol δ denotes the Dirac delta function. As mentioned above

this approximation is valid if ΩR is sufficiently small. The arguments leading

to the substitution with the delta function are strictly correct only if we replace

ωres with the effective Rabi frequency Ωeff , but the required limiting value for

the area under the curve f remains a good approximation if the additional

condition

ΩRt � 1 (5.31)

is satisfied. This condition essentially ensures that the incident light is not so

strong as to produce a departure of the momentum transfer from the propor-

tionality to the light intensity. Inserting the approximation of Eq. (5.30) into

Eq. (5.22) results in

ntot = N
π

2
Ω2R h̄q t

∫ ∞

−∞
δ(ωres)

∂Π

∂p

∣∣∣∣∣
p=p0

dp0. (5.32)

Using Eq. (5.27), the delta-function can be expressed as

δ(ωres) =
M

q
δ

(
p0 − Mδ

q

)
, (5.33)



104

leading to the final expression

ntot = N
π

2
Ω2R h̄M t

∫ ∞

−∞
δ

(
p0 − Mδ

q

)
∂Π

∂p

∣∣∣∣∣
p=p0

dp0 (5.34)

= N
π

2
Ω2R h̄M t

∂Π

∂p

∣∣∣∣∣
p=Mδ

q

. (5.35)

The number of photons scattered from one beam to the other varies linearly

in time and we can define a scattering rate

W =
dntot
dt

= N
π

2
Ω2R h̄M

∂Π

∂p

∣∣∣∣∣
p=Mδ

q

. (5.36)

It is worth noting that the procedure of integrating over an ensemble of par-

ticles undergoing Rabi oscillations to obtain a transition rate is analogous to

the derivation of the Einstein B-coefficient from the solution of the Bloch

equations for broad-band incident light.

The derivation of Eq. (5.36) is based on the effect of stimulated Raman

transitions between motional states. A more thorough derivation taking into

account line broadening mechanisms and polarization effects can be found

in [56, 57]. Another approach to deriving this equation is to consider photon

scattering on a light-induced grating of atoms. The moving periodic potential

changes the momentum distribution of the atoms in a way as to imprint its

periodicity on the ensemble in the form of a traveling matter wave. The light

beams can then exchange photons by Bragg scattering on the matter wave. A

comparison of both approaches is given in [58].

5.1.2 Extension for changing frequency

So far we assumed that the frequency difference δ between the beams is not

changing with time. In the experiment we linearly chirp δ in order to sweep the

resonance condition for the Raman process through the entire distribution. We
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can estimate conditions for the chirp rate under which the result in Eq. (5.36)

is still applicable.

In order to resolve a resonance of width ∆ω with a chirped frequency

probe, the time during which the frequency has to hover in the range of the

resonance needs to be larger than ∆t = 2π/∆ω. This condition can be seen

explicitly in the resonance width of Eq. (5.26). During a linear scan δ = rt

the frequency stays in the range ∆ω for a time of τ = ∆ω/r. Setting τ = ∆t

gives an expression for the maximum scan rate rmax =
1
2π
∆ω2 which scales

as the square of the resonance width to be resolved. Utilizing Eq. (5.27) the

maximum scan rate to resolve a momentum distribution of width ∆p therefore

evaluates to

rmax ≈ 1

2π

(
q∆p

M

)2
. (5.37)

It is clear from this scaling that for the measurement of distributions with de-

creasing widths, increased measurement times must be accepted, even though

the range of momenta to be sampled is decreasing. Since for scan rates much

faster than rmax the approximation Eq. (5.30) no longer holds, we cannot de-

rive a momentum transition rate and very complicated coherent dynamics of

the system are to be expected.

Very small scan rates violate another approximation used in the deriva-

tion leading to Eq. (5.36). In Eq. (5.20) we assumed a given momentum dis-

tribution function Π(p). The measurement process, that is the scattering of

photons from one beam into the other, changes the momentum distribution of

the atoms. Even though the change in momentum for each photon transfer is

very small for a small angle between the beams, it will always be present. The

time scale over which the population of resonantly coupled momentum states

changes is the resonant Rabi frequency ΩR. If, during the scan, the frequency

remains in the vicinity of the resonance for the Raman process much longer
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than the inverse Rabi frequency, a substantial alteration of the momentum dis-

tribution is to be expected. The width of the resonance can be estimated to be

the frequency difference between two successive resonant Raman transitions.

Setting ∆p = h̄q in Eq. (5.27) yields a width of

∆δ = ∆p
q

M
=

h̄q2

M
. (5.38)

The time ∆t during which the frequency hovers in this range should be much

less than the inverse resonant Rabi frequency. A linear scan in frequency δ = rt

therefore leads to a condition for the minimum scan rate

rmin ≈ h̄q2

M
ΩR. (5.39)

For scan rates much slower than rmin the momentum distribution will be dy-

namically changed during the measurement to such an extent as to change the

outcome of the measurement itself. This is not to be confused with the heat-

ing of the atomic sample due to spontaneous scattering. The change of the

momentum distribution described here is inherent to the measurement process

and will occur even in the absence of spontaneous scattering.

5.2 Quantum transport approach

It is instructive to derive Eq. (5.36) using the framework of tunneling between

Bloch bands. To begin the analysis we consider the interaction beams to form

a “moving” standing wave of light as in the previous chapters. The lattice is

turned on at a large negative velocity and is decelerated during the frequency

scan towards the resonance condition for p = 0 at zero velocity. It then

is accelerated to a positive velocity as the scan continues. At the time the

optical potential is turned on, the atoms have a large velocity compared to

the well. They are therefore projected into bands with high band indices. A

sketch of the atomic motion through reciprocal space is shown in Fig. 5.3. The
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initial deceleration of the potential well moves the atomic distribution through

reciprocal space towards lower energy (i.e. lower band indices). In doing so

the atoms must tunnel through many band gaps. For the parameters used

in the experiment, the higher band gaps are so small that the probability for

tunneling is essentially unity. During the tunneling no photon transfer occurs

between the beams. However, as the atoms approach the lowest band they

can undergo Bragg reflections at the first band gap. In this case a photon is

removed from one beam and transferred into the other when an atom enters

the first Brillouin zone. As the optical potential crosses the point of zero

velocity the atoms get transported back to higher band indices.

To simplify the analysis we assume that the majority of atoms tunnel

through the lowest band gap and only few undergo a Bragg reflection. This

assumption is justified for a large enough acceleration and a small enough well

depth. The probability of tunneling from the second into the first band upon

entering the first Brillouin zone is equal to the probability of tunneling back

into the second band when leaving the Brillouin zone. Therefore only few

atoms will Bragg reflect back into the first band after traversing the Brillouin

zone. Extended Bloch oscillations of the atoms within the lowest band can

be neglected due to the small reflection probability at the first band gap.

This condition also ensures that the momentum distribution is not changed

significantly during the interaction. The Bragg scattering process transfers a

photon in opposite directions for scattering into and out of the first band. The

total photon transfer rate is therefore the difference in the rate of scattering

at the edges of the first Brillouin zone.

Let Π(p) denote the normalized momentum distribution of the atomic

ensemble. As we know from the semiclassical equations of motion in Eq. (3.29),

the quasi-momentum k varies linearly in time under the influence of a constant
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E
Π(k)~

0- q/2  q /2

Figure 5.3: Sketch of the dynamics of the atomic motion through reciprocal
space. The atomic ensemble starts out in high bands and approaches the
lowest band. At the first band gap there is a small probability of undergoing
a Bragg reflection, resulting in a change of momentum of +h̄q. Most of the
atoms, however, tunnel through the gap and transit the Brillouin zone in the
lowest band. Upon exiting the zone they can Bragg reflect again back into
the first band, changing their momentum by −h̄q. The remaining atoms then
continue their path towards higher band indices.
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acceleration:

k(t) = k0 − 1

h̄
Mat. (5.40)

Transforming the stationary momentum distribution Π(p) into the quasi-mo-

mentum distribution in the accelerated frame Π̃(k) yields

Π̃(k, t) = h̄Π(h̄k − h̄k(t)) = h̄Π(h̄k − [p0 −Mat]) , (5.41)

with the normalization
∫
Π̃(k, t)dk =

∫
Π(p)dp = 1. The quantity we need to

calculate is the number of particles per unit time undergoing a Bragg reflec-

tion at the first band gap. The rate of Bragg scattering upon entering the

first Brillouin zone n− is given by the rate of particles approaching that region

multiplied by the probability to follow the band adiabatically instead of tun-

neling through the gap. If we let P be the probability of tunneling, then the

probability of following the band adiabatically is 1 − P . The scattering rate

n− then evaluates to

n− = N Π̃
(
−q

2
, t

)
dk

dt
· (1− P ), (5.42)

where the quasi-momentum distribution is evaluated at the left edge of the

Brillouin zone and N is the total number of atoms participating. The proba-

bility of tunneling P is given by Eq. (4.6) as

P = e−ac/a. (5.43)

The critical acceleration ac for the first band gap is given by

ac =
π

4

E2
g

h̄2kL sin
Θ
2

, (5.44)

where the additional factor of sin(Θ/2) as compared to Eq. (4.7) takes into

account the angled beam configuration. As derived in Section 3.1 the width

of the first band gap Eg is, to first order,

Eg = h̄ΩR, (5.45)
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which gives for the critical acceleration

ac =
π

2

Ω2R
q
. (5.46)

For large acceleration we can write

n− = N Π̃
(
−q

2

)
dk

dt
· (1− e−ac/a) (5.47)

= Nh̄Π

(
− h̄q

2
− p0 +Mat

)
Ma

h̄

ac
a

(5.48)

= N
π

2

M

q
Ω2RΠ

(
− h̄q

2
− p0 +Mat

)
, (5.49)

where we approximated 1− e−ac/a as ac/a. Since each atom undergoing Bragg

reflection at the first band gap transfers one photon the photon scattering rate

W− is equal to the atomic Bragg scattering rate n−. The total photon transfer

rate W is the difference in the rate of scattering at the left (W−) and the right

(W+) edge of the first Brillouin zone. Evaluating W+ in a similar manner we

arrive at the expression for W as

W = W+ −W− (5.50)

= N
π

2

M

q
Ω2R

[
Π

(
h̄q

2
− p0 +Mat

)
− Π

(
− h̄q

2
− p0 +Mat

)]
(5.51)

= N
π

2
h̄MΩ2R

∂Π

∂p

∣∣∣∣∣
p=p0−Mat

, (5.52)

where in the last equation we again approximated the difference term with

the derivative. We can express the resonant momentum p in terms of the

frequency difference between the beams, making use of the relation a = r/q:

p = p0 −Mat =
M

q
(δ0 − rt) =

Mδ

q
. (5.53)

This finally leads us to

W = N
π

2
h̄MΩ2R

∂Π

∂p

∣∣∣∣∣
p=Mδ

q

, (5.54)

which is identical to Eq. (5.36) derived in the framework of Raman transitions.
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5.3 Experimental realization

All experiments on recoil-induced resonances performed to date measured the

momentum distribution of an atomic cloud by directly measuring the gain or

absorption of one of the beams interacting with the cloud. For this purpose

the intensity I of the probe beam passing through the sample was recorded

with a photodiode. The absorption coefficient

g =
I − I0
I0

(5.55)

was then determined by subtracting the value I0 for the impinging intensity

from the signal and by subsequent normalization with I0. Low-frequency noise

and incomplete subtraction of the signals typically limit the resolution for the

absorption coefficient of this setup to about 10−3. This forced the experi-

menters to choose a small value for the detuning of the interaction beams

from resonance in order to enhance the strength of the interaction and there-

fore increase the gain coefficient. However, the drawback of doing so was a

substantial number of spontaneous emissions during the interaction.

5.3.1 Frequency modulation spectroscopy

In order to increase the sensitivity of the detection we used a frequency mod-

ulation setup as sketched in Fig. 5.4. This method is commonly employed in

high resolution spectroscopy. In this setup the probe beam is phase modulated

at a frequency ωm. The central frequency is chosen such that the frequency

difference δ between the first lower-frequency modulation sideband and the

unmodulated pump beam is small. The amplitude Ei and intensity Ii of the

incident probe beam are changed by the interaction with the atoms to

Ef = t(δ)Ei (5.56)

If = T (δ) Ii. (5.57)
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ωm
δ

Pump

Probe

ωm

Ei

Ef

Scan

Figure 5.4: Sketch of the frequency modulation setup to increase the detection
efficiency. The probe beam is phase modulated at a frequency of ωm. The
lower sideband has a frequency difference of δ with respect to the pump beam.
By linearly ramping the frequency of the pump beam, δ is swept through
the Raman resonance condition for atoms within the distribution. Frequency
dependent absorption of the probe beam passing through the atoms causes an
imbalance of the sideband intensities. The resulting intensity variations at the
modulation frequency are detected by mixing the photodetector signal with
the modulation drive.
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These transmission coefficients are related to the gain coefficient by

T = t2 = 1 + g. (5.58)

Let us assume the momentum distribution to be measured has a width of

order ∆p. According to Eq. (5.27) the corresponding width of the distribution

of resonance frequencies is ∆ωres =
q
M
∆p. If the phase-modulation frequency

ωm is chosen much larger than ∆ωres then all but the first lower-frequency

sideband of the probe beam are too far from resonance to be affected by the

distribution. To analyze the resulting change of amplitude we can write the

electric field of the incident modulated probe beam as

Ei = E0 e
i(ω0t+m sin(ωmt)) (5.59)

= E0 e
iω0t

∞∑
n=−∞

Jn(m)e
inωmt, (5.60)

where m is the modulation amplitude and Jn is the Bessel function of order n.

Each frequency component is now amplified or attenuated according to the

amplitude transmission coefficient t to form the final amplitude

Ef = E0 e
iω0t

∞∑
n=−∞

t(ω0 + nωm)Jn(m)e
inωmt. (5.61)

The resulting intensity for the outgoing probe beam is

If =
1

2
cε0 |Ef |2 (5.62)

= Ii
∑
k,l

t(ω0 + kωm) t(ω0 + lωm)Jk(m)Jl(m) e
i(k−l)ωmt (5.63)

= Ii

[∑
k

t2(ω0 + kωm)J
2
k (m)

+2
∑
k<l

t(ω0 + kωm) t(ω0 + lωm)JkJl cos ([k − l]ωmt)


 . (5.64)

In the absence of the atoms the transmission coefficient is unity, independent

of the frequency, and the incident beam is unchanged (If = Ii). If atoms
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are present, the last sum in Eq. (5.64) will produce variations in the signal

at the modulation frequency ωm and higher harmonics. The signal at the

fundamental frequency ωm is given as

Iωm = 2Ii
∑
k

t(ω0 + kωm) t(ω0 + [k − 1]ωm)JkJk−1. (5.65)

The value for t(ω0 + kωm) is only appreciably different from unity if the fre-

quency ω0 + kωm is close to the frequency of the pump beam. As discussed

above only the first sideband fulfills this condition, so that t(δ) = t(ω0−ωm) �=
1 is the only term different from unity. Most terms in the sum cancel due to

the property J−n = (−1)nJn and the remaining terms leave us with

Iωm = 2Ii [1− t(δ)] (J0J1 + J1J2) (5.66)

= 2Ii [1− t(δ)]
2

m
J21 . (5.67)

The factor 2
m
J21 (m) has its global maximum of 0.42 at m = 1.36.

The change of power in the probe beam due to gain or absorption in

the atomic sample is given by

∆Pprobe = h̄ω0W = gPprobe. (5.68)

This gives an expression for the absorption coefficient g

g =
h̄ω0
Pprobe

W. (5.69)

For small values of g we see from Eq. (5.58) that 1− t ≈ −g/2. The maximum

change in the integrated power in the probe beam at the modulation frequency

ωm is then

∆Pωm = 0.42 · 2Pprobe [1− t(δ)] ≈ −0.42 gPprobe (5.70)

The maximum amplitude of the photocurrent signal corresponding to this

change in power is

Isig = R∆Pωm = 0.42Rh̄ω0W, (5.71)

where R is the photodiode responsivity.
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5.3.2 Experimental setup

The experimental apparatus used in this experiment is a refined version of

the one described in Chapter 3. The method for preparing the initial cloud

of atoms remains essentially unchanged. For this set of experiments the final

atomic distribution was approximately Gaussian with a width of σx = 0.35 mm

in position and σp = 8 h̄kL in momentum. The major change from the previous

setup occurred in the preparation of the interaction beams. A schematic of

the relevant parts of the experiment is shown in Fig. 5.5.

The frequency scanning arm of the setup provided the pump beam.

Whereas in the experiments described in previous chapters the well was turned

on at zero velocity, here it was turned on with a velocity corresponding to

a value far outside the velocity distribution of the atomic ensemble. The

frequency difference was then swept symmetrically through the resonance at

a fixed rate. The center frequency of AOM6 was 37.5 MHz and the scan

range was typically ±450 kHz. The beam was aligned through the position of

the atomic cloud overlapping with the probe beam. The small enclosed angle

effectively reduced the atomic recoil frequency and therefore reduced the scan

width as compared to the counterpropagating configuration.

The fixed frequency arm of the setup (probe beam) was phase modu-

lated with a Conoptics Model 370 electro-optic modulator (EOM). The EOM

was electrically integrated into a resonant circuit to reduce the drive power

necessary to obtain the optimum modulation index of m = 1.36 at the modu-

lation frequency of 20 MHz. A hand wound coil in a copper enclosure served

as the inductive part of the resonator. The tapping position into the coil was

optimized for minimum back reflection. The resulting linewidth of 300 kHz

and a VSWR of 1.12 was sufficient for this experiment. The adjustment of the

drive power for an optimum modulation index was performed by monitoring

a heterodyne spectrum. Because the first lower-frequency sideband was to be
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Figure 5.5: Sketch of the interaction beam setup for the recoil induced reso-
nance experiments. The frequency of the pump beam is adjusted by double-
passing it through an acousto-optic modulator. An electro-optic modulator
provides phase modulation sidebands on the probe beam. To cancel residual
amplitude modulation, a balanced photoreceiver is used for detection. The
recoil-induced resonance signal at the modulation frequency is extracted and
captured on a digitizing oscilloscope for further analysis.
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resonant with the atomic ensemble, the AOM in this path (AOM5) was oper-

ated at a frequency of 95 MHz. The optical axis of the EOM was aligned to

minimize residual amplitude modulation (AM). The ratio of amplitude modu-

lation to the steady state value of the power was about -50 dB, but this value

fluctuated by as much as ±5 dB, most likely caused by temperature variations
of the crystal. After passing through the EOM the beam was aligned through

the position of the atomic cloud overlapping with the pump beam. The en-

closed angle between the beams was measured to be Θ = 6.3◦ and was dictated

mainly by constraints of the vacuum chamber. After leaving the chamber the

beam was focused onto a photodetector. As discussed in the previous section

absorption or gain in the atomic sample lead to a signal component at the

frequency of modulation ωm. In order to obtain a high signal-to-noise ratio

the frequency dependent noise power density at the value for ωm should be

as small as possible. The value ωm = 20 MHz was chosen outside the range

of significant electronic 1/f -noise contributions while avoiding regions of in-

creased noise due to other high frequency sources. Because the frequency of

the signal to be recorded coincided with the frequency of the residual AM,

a further reduction of this effect was necessary. For this purpose half of the

power was split from the probe beam before entering the interaction region and

both beams were directed onto the input ports of a New Focus Model 1607-AC

balanced photoreceiver. Care was taken to equalize the beam intensities and

the optical pathlength of both beams. The subtraction of the signals in the

photodetector further reduced the AM contribution by 20 dB, suppressing it

below the noise level.

A measurement of the integrated noise level of the photodetector at

various levels of the incident light power was performed, and the results are

shown in Fig. 5.6. The maximum incident power at which the detector op-

erated linearly was 1.5 mW, corresponding to an output voltage of 5 V. For
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Figure 5.6: Plot of the standard deviation of the photodetector noise for var-
ious values of the incident light power. The incident power was converted
to a photodetector voltage within the linear operating range. The hollow
circles indicate the total noise level σtot, whereas the solid squares indicate
the noise values σlight caused by the light alone. These were calculated using
σ2light = σ2tot − σ2tot,P=0, where σtot,P=0 is the value for the total noise without
incident light.
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this maximum power, the noise doubled compared to the value without illu-

mination. The data points indicate that at the maximum power the largest

contribution to the noise of the photodetector is due to the shot noise of the

incident light.

After being recorded by the photoreceiver, an RF mixer multiplied

the amplified signal with a phase-shifted portion of the reference signal. The

output was a DC level proportional to the amplitude of the signal at the

modulation frequency. Higher harmonics were eliminated by a low pass filter

with a cut-off frequency of 200 kHz. After another amplification stage the

signal was captured by a digitizing oscilloscope and transferred to the control

computer for analysis.

5.4 Momentum measurements

Figure 5.7 shows an example of a single-shot, recoil-induced resonance trace.

No averaging was performed to obtain this signal. In this experiment an

integrated power of Ppump = 5 mW in the pump beam was focused onto the

atoms. The spot size at the position of the atomic cloud was wpump = 340 µm.

The corresponding values for the probe beam were Pprobe = 0.72 mW and

wprobe = 220 µm. The detuning from resonance was ∆L/2π = 1 GHz. The

frequency difference of the two beams was scanned over 900 kHz in 200 µs.

We can now compare the acquired signal to the theoretical approxima-

tion derived earlier. The initial condition of the atomic cloud before the RIR

interaction was a Gaussian distribution of momenta,

Π(p) =
1√
2πσp

e
− p2

2σ2
p , (5.72)

with σp = 8 h̄kL. This distribution had a size of roughly σx = 0.35 mm and

contained about 1.5·106 atoms. The expression for the RIR signal in Eq. (5.36)
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Figure 5.7: An example of a single-shot, recoil-induced resonance trace of the
atomic distribution after being released from the MOT. Indicated also is a best
fit of a derivative of a Gaussian curve to the experimental data. The fitted
value for the width of the momentum distribution is σp = 10 h̄kL.
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is

W = N

√
π

8
Ω2R

h̄M2δ

qσ3p
e
− 1

2

(
Mδ
qσp

)2

(5.73)

= N

√
π

8
Ω2R

1

8ω2r sin(Θ/2)

δ

n3rec
e−

1
2(

δ
4nωr sin(Θ/2))

2

, (5.74)

where we expressed the width of the momentum distribution as σp = nrech̄kL.

The maximum value Wmax for the scattering rate in Eq. (5.74) occurs when

the frequency difference has a value of δ = qσp

M
resulting in

Wmax = N

√
π

8
e−1/2Ω2R

1

2n2recωr
. (5.75)

To optimize the RIR signal the interaction beam size should be comparable

to the size of the atomic distribution. For much smaller beams only a fraction

of the atoms interact with the light. Choosing them much larger lets most

of the beams miss the atoms without interacting, unnecessarily increasing the

light induced noise in the photodetector. Integration over the momentum

distribution of width σx taking into account the Gaussian profile of the beam

intensity decreases the maximum scattering signal by a factor

ηGauss =

(
1 +

4σ2x
w2
probe

+
4σ2x

w2
pump

)−1
. (5.76)

Using Eq. (5.71) for the amplitude of the photocurrent signal at the modulation

frequency yields

Imax,rms = 0.42
1√
2

√
π

8
e−1/2NηGaussR h̄ω0Ω

2
R

1

2n2recωr
. (5.77)

The photodiode used had a responsivity of R = 0.4 A/W and a transim-

pedance gain of 700 V/A. Tracing the electronic gain of the signal through

the setup resulted in a voltage gain of Voutput/Vmax,rms ≈ 1900. Combining

Eq. (5.77) with the values for the experimental parameters yields an expected

maximum change of power in the probe beam of ∆Pprobe = 0.4µW and a cor-

responding signal of Voutput = 60 mV. The experimental trace has a maximum



122

value of roughly Voutput = 30 mV. Considering the difficult calibration of the

system and the strong dependence of the signal on the optical alignment the

theoretical approximation agrees quite well with the experiment.

We can also obtain a theoretical value for the signal-to-noise ratio. The

dominant noise source for the signal is the inherent fluctuation of the number

of photons in the probe beam (shot noise). The noise current of the photodiode

integrated over a bandwidth B is given by

Inoise =
√
2eIdcB, (5.78)

where e is the electron charge and Idc = RPprobe is the DC photocurrent. The

integration bandwidth is determined by the low-pass filter in the electronic

setup and was set to B = 200 kHz. Comparing Inoise to the value for the signal

photo current in Eq. (5.77) leads to a signal-to-noise ration of S/N ≈ 15, which

is not too far from the signal-to-noise ratio of the trace in Fig. 5.7.

Also indicated in Fig. 5.7 is a least-squares fit of a curve, as given in

Eq. (5.74), to the experimental data. The best-fit value for the temperature

of the atomic cloud was σp = 10 h̄kL. This value is slightly higher than the

value σp = 8 h̄kL measured with the ballistic-expansion method. We attribute

this to the measurement-induced heating described earlier.

To investigate this heating effect further we acquired RIR signals for

various detunings of the interaction beams from resonance. Figure 5.8(a) shows

the fitted value of σp in units of the single photon recoil momentum. For

comparison, the horizontal line indicates the measurement of the temperature

using the ballistic-expansion method. Part (b) of the same figure shows the

fitted value for the amplitude of the RIR signal and the amplitude predicted

from the theoretical approximation using Eq. (5.77).

It is important to note that for the RIR scans from which the data in

Fig. 5.8 were obtained, the repump beam was left on during the interaction.
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Figure 5.8: Dependence of the RIR signal parameters on the detuning of the
interaction beams relative to the transition (S1/2, F = 2) → (P3/2, F

′ = 3).
The data points in part (a) show the fitted value of nrec (σp in units of the
single photon recoil momentum). As a comparison the horizontal dotted line
indicates the value for nrec obtained with the method of ballistic expansion.
The solid line indicates the momentum variance of the cloud that one could
expect for the cloud being heated due to spontaneous emission alone. The
data points in (b) show the fitted value of the amplitude. Indicated as a solid
line is the dependence predicted from the theoretical approximation.
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For beam frequencies that were close to resonance for a particular hyperfine

level of the ground state, the absence of the repump beam allowed the atoms

to fall into the other hyperfine ground state, for which the light was much

further detuned. For detunings larger than roughly 1 GHz the presence of the

repump beam did not change the RIR signal shape.

The dominant heating effect present in the experiments on RIR per-

formed previously was the large number of spontaneous emissions during the

interaction. A ballistic-expansion measurement in the direction in which the

RIR measurement was performed was not possible due to limited optical ac-

cess for the CCD camera. To quantitatively study the amount of heating due

to spontaneous emission in our system, we determined the momentum that

the atomic cloud acquired during the push. For this purpose we placed the

CCD camera so that it was able to record the displacement of the atomic

cloud in the direction of the interaction beams after a time of free expansion.

The measurement of the mean acquired momentum in this direction enabled

us to estimate the number of spontaneous emissions. Each absorbed photon

leads to a momentum kick of h̄kL given to the atom. When an atom decays

into the lower hyperfine ground state, it will immediately be pumped back to

the excited state by the repump light . Since the repump beams illuminate

the atomic sample from all directions, the absorption of photons from these

beams does not lead to an average displacement of the cloud. However, this

process will contribute to the heating of the sample. Assuming an isotropic

emission we can then estimate the temperature increase due to the random

recoil momentum kicks. The temperature one could expect caused solely by

this heating effect is indicated as a solid line in Fig. 5.8(a). One can see that

the measured temperature increase can not be accounted for by spontaneous

emission alone.

A few simple arguments can give us an estimate for the size of the
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heating effects. First we consider the heating inherent to the measurement.

The energy transferred to the atom during a single Raman transition isE = h̄δ.

Integrating over the whole sweep duration yields the average energy transferred

per atom:

Einc,measure =
∫
W (δ)dt =

1

r

∫
W (δ)dδ (5.79)

=
4π

r
Ω2R h̄ωr sin

2(Θ/2) . (5.80)

This energy transfer leads to an increase in the momentum variance as

σ2p,final = σ2p,initial + 2MEinc,measure. (5.81)

The heating due to spontaneous emissions can be estimated by determining

the spread in momentum caused by random emission of photons. Since we are

only interested in the spread in one dimension, the increase in the variance

after nsc scattering events is [54]

σinc,spont =
2

5

√
nsc h̄kL. (5.82)

The number of scattered photons can be estimated according to Eq. (1.35) as

nsc = 2 ·
(
Γ

2

)
S

1 + S + 4(∆L/Γ)2
· τint, (5.83)

where τint is the duration of the interaction. The first factor of two in this

equation accounts for the fact that photons can reach the lower hyperfine

ground state. From there they are removed immediately by the repump beam,

adding to the number of spontaneously scattered photons. For the parameters

used to obtain the data in Fig. 5.8, the energy increase due to the measurement

is about three times larger than the increase due to spontaneous emission for

the range of detunings measured.

To test the limits of the semiclassical derivation given in Section 5.1.2

we changed the scan rate of the frequency difference over a wide range. Ex-

perimental traces for the RIR signals for various scan rates are displayed in
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Figure 5.9: The left panels show experimental RIR traces for different scan
rates. Each trace is an average over 20 acquisitions. The scan direction was
from negative to positive detunings. The frequency range of the scan was held
constant at δν = 900 kHz, but the scan time was changed to produce the
given scan rate. The right panels show quantum numerical simulations for
scan rates that are smaller (top), within (middle) or outside (bottom) of the
range [rmin, rmax]. It is important to point out that the parameters for the
experimental runs and the numerical simulations are not the same.
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the left panel of Fig. 5.9. For all traces the scan direction was from negative to

positive detunings. The estimates for the minimum and maximum scan rates

as given by Eqs. (5.39) and (5.37) for the parameters used in the experiments

give rmin ≈ rmax ≈ (2π) · 10 GHz/s. This indicates a small range of scan rates
for which the expression for the RIR signal is applicable.

For the top panel in Fig. 5.9, the scan rate was chosen much smaller

than rmin. The trace shows a strong asymmetry in the shape. The first (posi-

tive) peak is large and localized whereas the second (negative) peak after the

center of the resonance is small and returns to zero very slowly with a long tail.

The exchange of momentum within the atomic cloud always tends to increase

the momentum spread of the distribution. At the start of the frequency scan

the momentum is transferred from the central regions towards the wing in the

direction opposite to the scan direction. For small scan rates the light inter-

acts with a given velocity class for a time long enough to alter the distribution

significantly. Off-resonant interactions let the atoms transfer momentum even

before the light reaches the corresponding resonance condition. This transfers

most of the atoms prior to the frequency difference reaching zero for a reso-

nance at p = 0. Past this point the momentum transfer occurs in the direction

of the scan direction. The atoms which have not been transferred too far out of

resonance can be ‘dragged’ along in the scan direction to very high momenta,

explaining the long tail in the RIR signal trace. For the case of a fast scan

(bottom panel) no such simple explanation could be found. The frequency is

broadened substantially and the light is interacting with a large part of the

ensemble simultaneously. The RIR traces show an oscillatory behavior after

the frequency passes through the resonance.

We also compared the shape of the RIR signals to numerical quantum

mechanical simulations. For the case of small angles in the RIR setup the

momentum quantization unit h̄q was much smaller than the width in momen-
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tum of the real atomic sample. Therefore numerical simulations with actual

experimental parameters required the solution of a set of ordinary differential

equations of prohibitively large dimension, as discussed in Appendix A. Since

we were not intending to extract quantitative information from the simula-

tions we restricted the simulation runs to distributions much narrower than

the experimental ones. Because the scaling arguments for the scan rates in-

volve the width of the distribution the relative scan rates between experiment

and simulation cannot be directly compared.
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Appendix A

Numerical Methods

A.1 Scaling the effective Hamiltonian

Throughout this dissertation, most physical quantities have been quoted in

SI units. However, sometimes it is more convenient to express quantities in

natural units. An example of this practice is to quote momentum in units of

the single photon recoil momentum h̄kL. This practice greatly simplifies the

notation and facilitates the formulation of computer simulations [59, 60] as

well as the analytic, mathematical analysis. Moreover, these units reflect the

natural scales of the system.

The most general one-dimensional effective Hamiltonian used in this

work is given in Eq. (1.25) as

H(x, p) =
p2

2M
+ V0 cos (qx− φ(t)) . (A.1)

We define our new units by the relationships

H ′ =
H

Eu

(A.2)

V ′
0 =

V0
Eu

(A.3)

t′ =
t

tu
(A.4)

p′ =
p

pu
(A.5)

x′ =
x

xu
, (A.6)
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where the parameters measured in SI units are unprimed and their counterpart

measured in natural units are primed. The obvious choice for the scaling of

the position variable is x′ = qx. For the scaling of the remaining variables

we need to pay attention to some constraints of the transformation. First,

the transformation needs to be canonical in order to preserve the validity of

Hamilton’s equations of motion. Second, the commutator [x, p] = ih̄ should

also have a simple form in the natural units of the system; for convenience we

can choose [x′, p′] = i. These conditions define all of the scaling parameters

above to be

Eu = 8h̄ω̃r (A.7)

tu =
1

8ω̃r
(A.8)

pu = h̄q (A.9)

xu =
1

q
. (A.10)

The unit of momentum h̄q is the change of momentum due to a single photon

transfer from one beam to the other, and 1/q is the periodicity of the potential

divided by 2π. The recoil energy h̄ω̃r is defined as the kinetic energy of an atom

moving with half the momentum transferred during an exchange of photons,

with

ω̃r =
h̄q2

8M
=

h̄kL
2

2M
sin2

Θ

2
. (A.11)

With this change of units, the Hamiltonian of Eq. (A.1) becomes, after drop-

ping the primes,

H(x, p) =
p2

2
+ V0 cos(x− φ(t)), (A.12)

and the Schrödinger equation becomes

i
∂

∂t
|ψ〉 = H|ψ〉. (A.13)

With a unitary transformation we can write the Hamiltonian in Eq. (A.12) in a

form that is more convenient for numerical work. We can choose a translation
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in position space by the amount φ(t), combined with a phase shift of η(t),

described by the unitary transformation operator

U(t) = eiφ(t)pe−iη(t). (A.14)

Applying this transformation to the Hamiltonian and choosing η̇ = φ̇2/2 yields

H =

(
p− φ̇(t)

)2
2

+ V0 cosx, (A.15)

where the dot denotes a time derivative. For example, the Hamiltonian corre-

sponding to an accelerated standing wave with an added probe term as used

in the Wannier-Stark experiments would be

H =
(p− at−mpωp sin(ωpt))

2

2
+ V0 cos x. (A.16)

A.2 Time evolution

In this section, we calculate the time evolution of the system by evolving a

distribution in momentum space, following the procedure outlined by Geor-

gakis [60]. Assuming an initially uncorrelated distribution we can evolve each

momentum eigenstate separately and add the resulting momentum probability

distribution incoherently. If we match the momentum distribution to a given

experimental situation, we will most likely have a mismatch in the spatial ex-

tent. However, for cold but spatially extended atomic clouds, this approach is

justified.

The natural unit for the transfer of momentum, stimulated by the in-

teraction, is ∆p = 1. To solve Schrödinger’s equation (A.13) for a given mo-

mentum p0, we expand the eigenstate for p0 in the basis set of states spaced

by ∆p:

Ψx(p0, t) =
∑
n

An(p0, t) e
i(p0+n)x. (A.17)
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The momentum representation of this state is given by

Ψp(p0, t) =
1√
2π

∫
Ψx(p0, t)e

−ipx (A.18)

=
∑
n

An(p0, t) δ(p− [p0 + n]) . (A.19)

Inserting Eq. (A.17) into Eq. (A.13) and projecting the result onto the mo-

mentum eigenstates yields the evolution equation for the coefficients An(p0, t)

i∂tAn(p0, t) =
1

2

(
p0 + n− φ̇(t)

)2
An(p0, t)

+
V0
2
[An+1(p0, t) + An−1(p0, t)] . (A.20)

We now assume an initial distribution of momenta Π(p, t = 0). It is instruc-

tive to write the initial distribution in terms of the momentum eigenstates in

Eq. (A.19)

Π(p, 0) =
∫
Π(p0, 0) |Ψp(p0, 0)|2 dp0. (A.21)

The time-evolved distribution can be obtained in a similar fashion by (incoher-

ently) integrating over the time-evolved probabilities of the momentum states

with the initial distribution as the weight function

Π(p, t) =
∫
Π(p0, 0) |Ψp(p0, t)|2 dp0. (A.22)

Inserting Eq. (A.19) into this equation yields

Π(p, t) =
∫
Π(p0, 0)

∣∣∣∣∣
∑
n

An(p0, t) δ(p− [p0 + n])

∣∣∣∣∣
2

dp0 (A.23)

=
∫
Π(p0, 0)

∑
n

|An(p0, t)|2 δ(p− [p0 + n]) dp0 (A.24)

=
∑
n

|An(p− n, t)|2Π(p− n, 0). (A.25)

Note that in order to obtain the distribution Π(p, t), all the plane waves that

are within the range of the initial momentum distribution need to be propa-

gated.
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For the recoil-induced resonance signals as described in Chapter 5, the

quantity measured in the experiment is the number of transferred photons.

In order to extract this signal from the simulation we can calculate the mean

momentum of the sample

〈p〉t =
∫
pΠ(p, t)dp (A.26)

=
∫
p

∑
n

|An(p− n, t)|2Π(p− n, 0)dp (A.27)

at times t and t + ∆t, where ∆t is small. The photon transfer rate can then

be approximated as

W (t) =
〈p〉t+∆t − 〈p〉t

∆t
. (A.28)

The numerical integration of Eq. (A.20) with the appropriate expres-

sion for the time-dependent phase of the standing wave φ(t) was programmed

in ANSI-C and was performed on standard PC’s. When φ(t) is chosen to

correspond to a velocity profile of an acceleration sequence as used in the

experiments (for example as in Fig. 3.5), care must be taken to avoid dis-

continuous phase jumps of φ(t) when switching between accelerations. To

integrate Eq. (A.20) we used the ‘Numerical Recipes’ Burlisch-Stör integra-

tion routine [61]. For the equation at hand, this routine proved to be more

robust than the conventional Runge-Kutta method. Performance-optimized

ODE solvers for this type of ordinary differential equation were not tested

here.

A.3 Initial conditions

For most problems considered here it is advantageous to expand the initial

condition not in terms of plane waves but in terms of superpositions of plane

waves. A plane wave evolving in a periodic lattice will spread due to Bloch

tunneling. However, if we choose a superposition of plane waves corresponding



136

to an eigenstate of the lattice, no change over time will occur. This procedure

is especially suited for the calculation of the Rabi oscillations between Bloch

bands, since, in this case, the lattice itself is stationary. As an initial state we

choose a Bloch eigenstate in a certain band for a given quasi-momentum. This

state can be evolved in time with the method described above. The resulting

state can then simply be projected back onto the initial state to obtain the

probability of remaining within that state during the evolution. In the case of

an accelerating potential, the quasi-momentum, for which the eigenstate was

obtained, changes with time. Therefore, the projection method produces an

autocorrelation function which does not directly yield the survival probability

in the specified band any more [35].

To calculate the eigenfunction Ψn(k) and eigenenergy En(k) of a Bloch

state we first expand this state in plane waves

Ψn(k) =
∑
N

cn,k+N ei(k+N)x, (A.29)

where k is the quasi-momentum and n is the band index. Inserting this su-

perposition into the eigenvalue equation

HΨn(k) = En(k)Ψn(k) (A.30)

with the Hamiltonian for a stationary standing wave (φ = 0 in Eq. (A.12))

and projecting onto the plane waves yields

(k +N)2

2
cN +

V0
2
(cN−1 + cN+1) = E cN , (A.31)

where the indices k and n have been dropped. To solve this set of equations

we solve for the eigenvalues and eigenvectors of

Hc = Ec, (A.32)
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where H is the tri-diagonal matrix given by

HN,N =
(k +N)2

2
(A.33)

HN,N+1 = HN,N−1 =
V0
2
. (A.34)

Since H is real and symmetric, the eigenvalues and eigenvectors are real. For

each value of the quasi-momentum there is a set of possible eigenvalues and

eigenfunctions that correspond to states for different band index n. The appro-

priate eigenstate can then be chosen as the initial condition for the evolution

equation (A.20).
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[13] R. Côté, B. Segev, and M. G. Raizen, “Retardation effects on quantum

reflection from an evanescent-wave atomic mirror,” Phys. Rev. A 58,

R3999 (1998).

[14] K. B. Davis, M.-O. Mewes, M. A. Joffe, M. R. Andrews, and W. Ketterle,

“Evaporative cooling of sodium atoms,” Phys. Rev. Lett. 74, 5202

(1995).

[15] Steven Chu, “Laser manipulation of atoms and particles,” Science 253,

861 (1991).

[16] E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, “Trapping of

neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59,

2631 (1987).

[17] Christopher John Myatt, Bose-Einstein condensation experiments in a

dilute vapor of rubidium, Ph.D. thesis, University of Colorado (1997).

[18] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard,

“High densities of cold atoms in a dark spontaneous-force optical trap,”

Phys. Rev. Lett. 70, 2253 (1993).

[19] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Behavior

of atoms in a compressed magneto-optical trap,” J. Opt. Soc. Am. B

11, 1332 (1994).



141

[20] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts,

and C. I. Westbrook, “Optical molasses,” J. Opt. Soc. Am. B 6, 2084

(1989).

[21] Martin Christian Fischer, Design and Performance of a Ring Dye Laser,

Master’s thesis, The University of Texas at Austin (1993).

[22] T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polar-

ization spectroscopy of a reflecting reference cavity,” Optics Comm. 35,

441 (1980).

[23] Neil W. Ashcroft and N. David Mermin, Solid State Physics (Saunders

College, Philadelphia, 1976).

[24] Michael P. Marder, Condensed Matter Physics (Wiley and Sons, New

York, 2000).

[25] Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical

Functions (Dover, New York, 1965).

[26] E. Peik, M. B. Dahan, I. Bouchoule, Y. Castin, and C. Salomon, “Bloch

oscillations of atoms, adiabatic rapid passage and monokinetic atomic

beams,” Phys. Rev. A 55, 2989 (1997).

[27] J. B. Krieger and G. J. Iafrate, “Time evolution of Bloch electrons in a

homogeneous electric field,” Phys. Rev. B 33, 5494 (1986).

[28] M. C. Fischer, K. W. Madison, Qian Niu, and M. G. Raizen, “Observation

of Rabi oscillations betweeen Bloch bands in an optical potential,” Phys.

Rev. A 58, R2648 (1998).

[29] Qian Niu, Xian-Geng Zhao, G. A. Georgakis, and M. G. Raizen, “Atomic

Landau-Zener tunneling andWannier-Stark ladders in optical potentials,”

Phys. Rev. Lett. 76, 4504 (1996).



142

[30] K. W. Madison, M. C. Fischer, R. B. Diener, Qian Niu, and M. G. Raizen,

“Dynamical Bloch band suppression in an optical lattice,” Phys. Rev.

Lett. 81, 5093 (1998).

[31] K. W. Madison, M. C. Fischer, and M. G. Raizen, “Observation of the

Wannier-Stark fan and the fractional ladder in an accelerating optical

lattice,” Phys. Rev. A 60, R1767 (1999).

[32] S. R. Wilkinson, C. F. Bharucha, M. C. Fischer, K. W. Madison, P. R.

Morrow, Qian Niu, Bala Sundaram, and M. G. Raizen, “Experimental

evidence for non-exponential decay in quantum tunneling,” Nature 387,

575 (June 1997).

[33] C. Zener, “Non-adiabatic crossing of energy levels,” Proc. R. Soc. London

A 137, 696 (1932).

[34] C. Zener, “A theory of the electrical breakdown of solid dielectrics,” Proc.

R. Soc. London A 145, 523 (1934).

[35] C. F. Bharucha, K. W. Madison, P. R. Morrow, S. R. Wilkinson, Bala

Sundaram, and M. G. Raizen, “Observation of atomic tunneling from an

accelerating optical potential,” Phys. Rev. A 55, R857 (1997).

[36] K. W. Madison, C. F. Bharucha, P. R. Morrow, S. R. Wilkinson, Qian

Niu, Bala Sundaram, and M. G. Raizen, “Quantum transport of ultracold

atoms in an accelerating optical potential,” Appl. Phys. B 65, 693

(1997).

[37] L. A. Khalfin, “Contribution to the decay theory of a quasi-stationary

state,” JETP 6, 1053 (1958).

[38] R. G. Winter, “Evolution of a quasi-stationary state,” Phys. Rev. 123,

1503 (1961).



143

[39] L. Fonda, G. C. Ghirardi, and G. C. Rimini, “A decay theory of unstable

quantum systems,” Rep. Prog. Phys. 41, 587 (1978).

[40] K. Grotz and H. V. Klapdor, “Time scale of short time deviations from

exponential decay,” Phys. Rev. C 30, 2098 (1984).

[41] P. T. Greenland and A. M. Lane, “Exposure of decay at non-constant

rate by rapid fluctuations,” Phys. Lett. A 117, 181 (1986).

[42] Qian Niu and M. G. Raizen, “How Landau-Zener tunneling takes time,”

Phys. Rev. Lett. 80, 3491 (1998).

[43] David E. Johnson and John L. Hilburn, eds., Rapid Practical Designs of

Active Filters (Wiley and Sons, New York, 1975).

[44] B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum the-

ory,” J. Math. Phys. 18, 756 (1977).

[45] C. B. Chiu, E. C. G. Sudarshan, and B. Misra, “Time evolution of unsta-

ble quantum states and a resolution of Zeno’s paradox,” Phys. Rev. D

16, 520 (1977).

[46] P. Valanju, E. C. G. Sudarshan, and C. B. Chiu, “Spatial-temporal de-

velopment of hadron-nucleus collisions,” Phys. Rev. D 21, 1304 (1980).

[47] J. J. Sakurai, Modern Quantum Mechanics Revised Edition (Addison-

Wesley, New York, 1994).

[48] W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quan-

tum Zeno effect,” Phys. Rev. A 41, 2295 (1990).

[49] P. Kwiat, H. Weinfurter, T. Herzog, A. Zeilinger, and M. Kasevich,

“Interaction-free measurement,” Phys. Rev. Lett. 74, 4763 (1995).



144

[50] A. G. Kofman and G. Kurizki, “Quantum zeno effect on atomic excitation

decay in resonators,” Phys. Rev. A 54, R3750 (1996).

[51] A. G. Kofman and G. Kurizki, “Acceleration of quantum decay processes

by frequent observations,” Nature 405, 546 (2000).

[52] P. Facchi, H. Nakazato, and S. Pascazio, “From the quantum Zeno to the

inverse quantum Zeno effect,” Phys. Rev. Lett. 86, 2699 (2001).

[53] J.-Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced

resonances in cesium: An atomic analog to the free-electron laser,” Phys.

Rev. Lett. 72, 3017 (1994).

[54] D. R. Meacher, D. Boiron, H. Metcalf, C. Salomon, and G. Grynberg,

“Method for velocimetry of cold atoms,” Phys. Rev. A 50, R1992 (1994).

[55] Alexander Mück, Recoil induced resonances for velocimetry of cold cesium

atoms, Master’s thesis, The University of Texas at Austin (1999).

[56] J. Guo, P. R. Berman, B. Dubetsky, and G. Grynberg, “Recoil-induced

resonances in nonlinear spectroscopy,” Phys. Rev. A 46, 1426 (1992).

[57] J. Guo and P. R. Berman, “Recoil-induced resonances in pump-probe

spectroscopy including effects of level degeneracy,” Phys. Rev. A 47,

4128 (1993).
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