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Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, phar-
maceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian
motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed
in the vicinity of a plane wall. For the first case, we show the effects of wettability on the statistical
properties of the particles’ motion, such as velocity autocorrelation, velocity, and thermal force power
spectra over a large range of time scales. We also propose a new method to measure wettability based
on the particles’ Brownian motion. In addition, we compare the boundary effects on Brownian motion
imposed by both no-slip and perfect-slip flat walls. We emphasize the surprising boundary effects on
Brownian motion imposed by a perfect-slip wall in the parallel direction, such as a higher particle
mobility parallel to a perfect flat wall compared to that in the absence of the wall, as well as compared to
a particle near a no-slip flat wall. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979177]

I. INTRODUCTION

Wettability plays an important role in many situations,
such as the self-cleaning mechanism of the lotus leaf due
to its low wettability and waxing cars to protect them from
rust. In industry, wettability plays a key role for optimizing
oil recovery,1 semiconductor manufacturing,2 pharmaceutical
industry,3 and electrowetting.4 The manufacture and charac-
terization of materials of different wettabilities are thus of
immense practical importance.

In addition, surface wettability can have a huge impact on
Brownian motion. For example, it is well known that the mag-
nitude of the steady Stokes drag force on a sphere of radius
a moving at velocity 3 in a fluid with viscosity η is reduced
from Fs = 6πηa3 in the conventional case of a no-slip bound-
ary condition to Fs = 4πηa3 if the sphere has a perfect-slip
boundary condition.5

Wettability, or slippage, is usually quantified in terms of an
extrapolation length, the so-called slip length. The slip length δ
is defined as the distance inside the solid wall where the linearly
extrapolated fluid flow profile vanishes. The three boundary
conditions are illustrated in Fig. 1. Figure 1(a) shows the case
of the no-slip boundary condition, δ = 0; Fig. 1(b) shows the
case of a partial-slip boundary condition, where δ is finite; and
Fig. 1(c) shows the case of the perfect-slip boundary condi-
tion, where δ = ∞. The slip boundary condition can also be
characterized by the contact angle θc, which in many cases is
related to the slip length through δ = δ0(1 + cos θc)−2, where
δ0 is an empirical quasi-universal length scale and typically
obtained from experiments.6,7

In fluid dynamics, the no-slip boundary condition is
a conventional assumption at a fluid-solid interface, mean-
ing that the fluid particles along the interface have zero
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velocity with respect to the solid surface. At macroscopic
scales, the no-slip boundary condition is generally valid
because in most cases the adhesive forces between the fluid
molecules and solid particles are greater than the cohesive
forces between the fluid molecules. This force imbalance
brings down the fluid velocity to zero relative to the solid
surface. Previous work8,9 has shown that the assumption of
no-slip boundary conditions on glass-water and glass-acetone
interfaces is consistent with experiment. This is because the
contact angle between water and glass (as well as acetone
and glass) typically lies in the range 20◦ to 30◦, resulting
in a slip length of about 0.1 nm.6,7 The diameters of parti-
cles used were about 104 times larger than the slip length,
whereby the interface between water and micron-sized glass
particles can be approximated with the no-slip boundary
condition. We will show that this is a good assumption in
Section III.

However, hydrophobic (and superhydrophobic if con-
tact angle θc ≥ 150◦) surfaces with slip lengths ranging from
nanometers to even micrometers have been reported, showing
that the no-slip assumption is insufficient and the partial-slip
boundary condition must be used.7,10–18 The two key fea-
tures of superhydrophobic surfaces are low surface energy
and micro- or nano-roughness typical with certain patterns,
often called the lotus leaf structure.6 The combination of sur-
face roughness and hydrophobicity can trap an air layer in
the depressions on the surface and result in the formation of
an air-water interface that is supported by the peaks in the
surface roughness. Therefore, the effective slip length can
be increased significantly. In addition, the slip length can be
increased by coating a hydrophobic self-assembled monolayer
on the solid surface.18 Glass microspheres with a partial-
slip or even a near perfect-slip boundary condition can be
created.

In this letter, we analyze the effects of wettability on
Brownian motion in two systems: an unbounded spherical
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FIG. 1. Fluid flow boundary conditions at solid-fluid interfaces: (a) no slip,
δ = 0; (b) partial slip, δ is finite; (c) perfect slip, δ =∞. The light blue block
represents the solid, the light green area indicates the fluid, and black arrows
represent the fluid flow profile in the vicinity of the interface.

particle with different wettability conditions at its surface,
leading to a proposal for a new method of wettability mea-
surement; and a no-slip sphere bounded by a flat wall, which
may offer either no-slip or perfect-slip boundary conditions.
This paper is organized as follows. In Section II, we review the
theory of Brownian motion of an unbounded particle with the
arbitrary wettability condition and that for a no-slip sphere near
a perfect-slip flat wall. In Section III, we give the numerical
results for some statistical properties of Brownian motion and
propose our new method of measuring wettability. In Section
IV, we give numerical results comparing the boundary effects
imposed on Brownian motion by both no-slip and perfect-slip
flat walls. We conclude with a discussion in Section V.

II. THEORY
A. Hydrodynamic theory of Brownian motion

The position x(t) and velocity v(t) of a Brownian parti-
cle in equilibrium may be regarded as stationary and ergodic
random processes. In all cases that we consider in this work
(including the presence of a flat boundary), the Brownian
motion in the three spatial directions decouples, whereby it
is possible to consider each dimension separately. Thus, for
simplicity of analysis, we shall consider the motion in any one
direction, described by x(t) and 3(t) in the following.

The position auto-correlation function (PACF) of the
particle is defined through Cx(t)≡ 〈x(t + τ)x(τ)〉. The mean
square displacement (MSD) of the particle is defined as
MSD(t) ≡

〈
[x(t + τ) − x(τ)]2

〉
. The velocity auto-correlation

function (VACF) of the particle is defined through C3 (t)
≡ 〈3 (t + τ) 3 (τ)〉. The parentheses 〈 〉 denote equilibrium
ensemble averages, which may be reinterpreted as time aver-
ages through the assumption of ergodicity.

In the hydrodynamic theory of Brownian motion,19–22 the
Green-Kubo formula is used to relate these statistical proper-
ties to the admittance of the particle coupled to the fluid, which
is the linear velocity response of the particle to an applied
external force and defined as

Y(ω) =
3̃(ω)

Ẽ(ω)
, (1)

where 3̃(ω) and Ẽ(ω) are the Fourier transforms of the velocity
of the particle and the applied force, respectively.

By the application of the Green-Kubo formula, equiv-
alently the fluctuation-dissipation theorem, the velocity
autocorrelation function C3 (t) is related to the frequency-
dependent admittance20 through

Y(ω) =
1

kBT

∫ ∞
0

dt eiωtC3 (t) , (2)

where kB is the Boltzmann’s constant and T is the absolute
temperature.

The Wiener-Khinchin theorem23 states that the power
spectral density (PSD) Sε (ω) of a stationary random pro-
cess ε(t) and its autocorrelation function are Fourier trans-
form pairs. Combining the Wiener-Khinchin theorem and the
Green-Kubo formula Eq. (2), the position power spectral den-
sity (PSD) and velocity power spectral density (VPSD) can
also be calculated from the admittance using21

Sx(ω) =
2kBT <[Y (ω)]

ω2
(3)

and

S3(ω) = 2kBT <[Y (ω)], (4)

where< denotes the real part. Through the Wiener-Khinchin
theorem, the velocity autocorrelation function C3(t) and posi-
tion autocorrelation function Cx(t) can be obtained from their
corresponding power spectra

C3(t) =
∫ ∞
−∞

e−iωtS3(ω)dω/(2π)

= 2kBT
∫ ∞
−∞

e−iωt<[Y(ω)]dω/(2π), (5)

Cx(t) =
∫ ∞
−∞

e−iωtSx(ω)dω/(2π)

= 2kBT
∫ ∞
−∞

e−iωt<[Y(ω)]

ω2
dω/(2π). (6)

Furthermore, the mean square displacement (MSD) of
the particle can be found from the position autocorrelation
function Cx(t) via the identity

〈∆x2(t)〉 = 〈[x(t0 + t) − x(t0)]2〉 = 2〈x(t)2〉 − 2Cx(t). (7)

Alternatively, we may describe the Brownian motion x(t)
of the particle using a Generalized Langevin Equation (GLE).
For a Brownian particle of mass mp subject to a harmonic
restoring force of stiffness K and frequency-dependent friction
coefficient γ(ω), we may write the Fourier-transformed form
of the GLE as

[
−mpω

2 − iωγ(ω) + K
]

x̃(ω) = F̃(ω), (8)

where x̃(ω) is the Fourier transform of x(t) and F̃(ω) is the
thermal force,24,25 a random force that represents the effect of
thermal fluctuations in the medium acting on the particle.

The thermal force power spectral density (FPSD, one-
sided) acting on the particle can be obtained as9,22

SF(ω) = 4πkBT<[γ(ω)]. (9)

Later, it will be shown that the drag coefficient γ(ω) is
directly related to the admittance. Therefore, if the admit-
tance of the particle’s velocity Y(ω) in the system of interest
is known, the statistical properties of Brownian motion can be
at least numerically obtained.
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B. Theory of Brownian motion of an unbounded sphere
with arbitrary wettability

The frequency dependent friction coefficient of a sphere
in a liquid with an arbitrary wettability condition has been
studied.26 For a sphere of radius a offering a surface with a
slip-length δ, oscillating with an angular frequencyω in a fluid
of dynamic viscosity η, and density ρf , the friction coefficient
is given by

γδ(ω) =
2πηa

3
(1 + 2δ̃)(9 + 9α̃ + α̃2) + δ̃α̃2(1 + α̃)

1 + (3 + α̃)δ̃
, (10)

where the dimensionless quantities α̃ =
√
−iωτf (<[α̃] > 0),

δ̃ = δ/a, and τf =
ρf a2

η is the time for the vorticity in the fluid

to travel one sphere radius.24

In the case of a no-slip boundary condition, namely, δ = 0,
γδ(ω) reduces to the well known frequency dependent friction
coefficient of a no-slip sphere γδ→0(ω)= γs(1 + α̃ + α̃2/9),24,25

where γs = 6πηa. The steady drag coefficient reduces to the
well known result γδ→0(ω = 0) = 6πηa, as α̃ → 0. As dis-
cussed in Section I, the slip length of water and acetone on
conventional glass surfaces is about 0.1 nm, which is about
10�4 of the particle radius a ∼ 1 µm, meaning δ̃ ∼ 10−4.
The first-order correction in δ̃ to the no-slip drag coefficient
takes the form −6πηa(1 + α̃)2 δ̃ and is negligible compared
to γδ→0(ω) for all values of ω when δ̃ ∼ 10−4. Therefore,
the no-slip boundary condition is a good assumption for those
systems.

In the perfect-slip limit, namely, as δ → ∞, γδ(ω) reduces
to

γδ→∞(ω) = 6πηa
2 + 2α̃ + α̃2/3 + α̃3/9

3 + α̃
. (11)

The steady drag coefficient reduces to the well known result5

γδ→∞(ω = 0) = 4πηa, as α̃ → 0.
The admittance of a harmonically trapped sphere in a liq-

uid with an arbitrary wettability condition can be obtained from

the frequency-dependent friction coefficient through8,9,25

Yδ(ω) =
1

−iωmp + γδ(ω) + K
−iω

, (12)

where mp is the sphere mass and K is the trapping strength of
the harmonic trap.

C. Theory of Brownian motion of a no-slip sphere near
a perfect-slip wall

We have reported the effects imposed on the Brown-
ian motion of a microsphere by a much larger cylindrical
glass wall, which approximates an idealized no-slip infinite
flat wall.9 In this section, we will discuss theoretical predic-
tions for the boundary effects on the Brownian motion of
a no-slip microsphere imposed by a perfect-slip infinite flat
wall.

The theory for Brownian motion in such a system can
be obtained similarly to the one presented in our previous
work.9,22 Whereas, the reaction field tensors in this system
are different than that for a no-slip wall and have been given
by Felderhof.27,28 The reaction field tensor element for motion
parallel to the wall is

Rδ→∞
‖

(h,ω) =
−1

32πηhν2

[
1 − (1 + 2ν + 4ν2)e−2ν

]
(13)

and in the perpendicular direction is given by

Rδ→∞⊥ (h,ω) =
−1

16πηhν2

[
1 − (1 + 2ν)e−2ν

]
, (14)

where h is the distance between the center of the sphere and the

wall, ν ≡
√
−iωρf h2/η =

√
−iωτw, and τw is the time taken

for vorticity in the fluid to traverse the distance from the wall
to the sphere.

Furthermore, we may obtain the admittance of a no-slip
particle near a perfect-slip flat wall for both directions in a
similar manner, as9,22

Y⊥δ→∞(ω) =
1 + γs(1 + α̃ + α̃2/3)Rδ→∞⊥ (h,ω)

(γ0(ω) − iωmp) + iω(mf − mp)γs(1 + α̃ + α̃2/3)Rδ→∞⊥ (h,ω)
, (15)

Y‖δ→∞(ω) =
1 + γs(1 + α̃ + α̃2/3)Rδ→∞

‖
(h,ω)

(γ0(ω) − iωmp) + iω(mf − mp)γs(1 + α̃ + α̃2/3)Rδ→∞
‖

(h,ω)
, (16)

where mp is the particle mass, mf is the mass of the fluid
displaced by the sphere, and γ0(ω) ≡ γs(1 + α̃ + α̃2/9).

The effective masses of the particle near a flat wall in
perpendicular and parallel directions become9,22,29,30

m∗⊥ = mp +
1
2

mf

(
1 +

3
8

(a
h

)3
)

, (17)

m∗
‖
= mp +

1
2

mf

(
1 +

3
16

(a
h

)3
)

. (18)

It is worth emphasizing that the effective masses m∗⊥ and
m∗
‖

do not depend on the wettability condition on the wall.

According to the modified energy equipartition theorem,31 the
velocity variance becomes anisotropic as well and is

〈(3∗
‖
)2
〉 =

kBT
m∗
‖

, (19)

〈(3∗⊥)2
〉 =

kBT
m∗⊥

(20)

in the parallel and perpendicular directions, respectively.
The apparent conflict with the equipartition theorem can be
resolved by considering the effects of compressibility of the
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liquid.31 Below time scales on the order of τc = a/c, where
c is the speed of sound in the liquid and a is the radius
of the sphere, the compressibility of the liquid cannot be
neglected and the velocity variance will approach the energy
equipartition theorem.

III. BROWNIAN MOTION OF AN UNBOUNDED
MICROSPHERE WITH DIFFERENT WETTABILITY
CONDITIONS

In this section, we give numerical predictions for the
Brownian motion of a harmonically trapped microsphere with
arbitrary wettability conditions in water (ρf = 1 g/cm3, η
= 0.9× 10−3 Pa s). The sphere has a diameter of 3 µm and a den-
sity of 2 g/cm3. The trap strength used in this numerical study
is K = 150 µN/m, which is typical in previous experimental
work.8,9,25 As discussed in Section II, once the admittance of
the particle is obtained using Eq. (12), the statistical properties
of the particle’s Brownian motion can be calculated through
Eqs. (3)–(9).

A. Mean square displacement

The predictions for the mean square displacement of the
particle with different boundary conditions on the particle’s
surface are shown in Fig. 2. At long time scales, the har-
monic trap confines the particle and causes the MSD to plateau
to the same value independent of the slippage. This value
depends only on the trapping strength and the temperature and
may be calculated by applying the equipartition theorem as
1
2 K〈∆x2〉 = 1

2 kBT . At short time scales, the slippage on the par-
ticle surface results in a reduced friction force on the particle.
Therefore, the MSD increases more rapidly with increasing
the slip length.

B. Velocity autocorrelation function

The numerical predictions for the velocity autocorrelation
function C3(t) (normalized to kBT/m∗, where m∗ = (mp + 1

2 mf ))
with different boundary conditions on the sphere’s surface
are shown in Fig. 3. The red solid line represents the pre-
diction for the VACF in the no-slip limit and the green solid
line predicts the VACF in the perfect-slip limit. The dashed
lines are the predictions with partial-slip boundary conditions.
In particular, the agreement between the VACF with the no-
slip boundary condition and the VACF with a slip length of
0.1 nm (the cyan dashed line) indicates that the interface

FIG. 2. The numerical predictions for the mean square displacements of an
unbounded microsphere (3 µm in diameter, density of 2 g/cm3) held by a
harmonic trap (K = 150 µN/m) in a fluid with density ρf = 1 g/cm3 and
dynamic viscosity η = 0.9 × 10−3 Pa s with different surface wettability
conditions.

between glass and water can indeed be assumed to be no-slip in
experiments.8,9

With a larger slip length, the particle VACF decays
less rapidly over time, owing to a lower dissipation rate.
Measurements of the particle’s instantaneous velocity are of
great significance to test the tenets of statistical mechan-
ics, such as the Maxwell-Boltzmann distribution.8,25,32 To be
ableat high frequencies causes the power to measure the instan-
taneous velocity of the particle, one needs to have a detection
system with a temporal resolution that is high enough to mea-
sure the normalized VACF close to 1. Therefore, it is much
easier to measure the particle’s instantaneous velocity of a par-
ticle with a perfect-slip boundary, than with a no-slip boundary.

C. Velocity power spectral density

The predictions for the velocity power spectral density
with different boundary conditions on the sphere’s surface
are shown in Fig. 4. With increasing the slip length, the
power of the velocity is redistributed towards low frequen-
cies, which facilitates precise measurements of the instanta-
neous velocity of a particle with large slip lengths. This may
be explained in terms of the behavior of the thermal force
(which we shall investigate in Sec. III D). At high frequen-
cies, the thermal force grows asymptotically as

√
ω for the

no-slip case, whereas this is suppressed by saturation to a con-
stant value in the full-slip case. As a result of the area under
the entire curve being held constant (at kBT/m∗), the lowered

FIG. 3. The numerical predictions for the velocity auto-
correlation functions (normalized to kBT/m∗) of an
unbounded microsphere (3 µm in diameter, density of
2 g/cm3) in a fluid with densityρf = 1 g/cm3 and dynamic
viscosity η = 0.9×10−3 Pa s with different surface wetta-
bility conditions (a), on a log-linear plot; (b), the absolute
value on a log-log scale. The cusps indicate zero cross-
ings, which are a consequence of the presence of the
harmonic trap (K = 150 µN/m).
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FIG. 4. The numerical predictions for the velocity power spectral densities
of an unbounded microsphere (3 µm in diameter, density of 2 g/cm3) held
by a harmonic trap (K = 150 µN/m) in a fluid with density ρf = 1 g/cm3

and dynamic viscosity η = 0.9 × 10−3 Pa s with different surface wettability
conditions.

force at high frequencies causes the power to shift to lower
frequencies.

D. Thermal force power spectral density

Figure 5 shows the predictions for the power spectral
density of the thermal force on the sphere with different bound-
ary conditions on the sphere’s surface. The thermal force on
the sphere with partial (and perfect) slip boundary condi-
tions becomes less colored, as the thermal force PSD tends
to flatten with increasing the slip length. Both the DC val-
ues of the thermal force spectrum and the drag force decrease
with increasing the slip length, which is consistent with the
fluctuation-dissipation theorem.33 The high frequency behav-
ior is significantly affected by the slippage on the particle’s
surface. The thermal force spectrum with slip boundary con-
ditions no longer has an asymptotic dependence of

√
ω and

instead tends towards saturation. In the perfect-slip limit, the
thermal force at high frequencies saturates at

SF(ω → ∞) ' 48π2ηakBT (21)

which is 3 times that of the corresponding DC value.
In summary, the sphere’s surface wettability condition can

drastically affect Brownian motion. Therefore, by measuring

FIG. 5. The numerical predictions for the power spectral density of the ther-
mal force on an unbounded microsphere (3µm in diameter, density of 2 g/cm3)
in a fluid with density ρf = 1 g/cm3 and dynamic viscosity η = 0.9 × 10−3

Pa s with different surface wettability conditions.

the particle’s motion, we can extract the wettability of the fluid
on the particle’s surface. This can be accomplished in a manner
similar to previous work by treating the slip length as one of
the fitting parameters.8,9,25 We will propose the detail of such
an experiment in Section III E.

E. Experimental proposal of measuring wettability
using Brownian motion

Wettability, as we have discussed, has a direct bearing on
the drag experienced by a particle in a liquid, which in turn
has a measurable impact on its Brownian motion. In this sec-
tion, we propose an experiment to determine the wettability
of the surface of a sphere in a given liquid by making pre-
cise measurements of its Brownian motion. The setup under
consideration is similar to the setups used in previous exper-
iments,8,25 with some modifications, which we shall describe
in greater detail here.

A schematic of such a setup is shown in Fig. 6. A pair of
optical tweezers is constructed using a laser beam focused by
a microscope objective of sufficiently high numerical aperture
to trap a transparent spherical particle within a liquid chamber.
The trapping beam after passing through the trapped particle
is re-collimated by an identical objective and is then split into
two roughly equal halves by a D-shaped mirror before being
focused onto a high-bandwidth balanced detector. The trapped
particle near the trapping laser focus scatters some of the inci-
dent photons in a direction which depends on the particle’s
position. Changes in the particle’s position are encoded in the
spatial distribution of the scattered laser beam, which can be
measured with a high sensitivity using a balanced detection
system. The result is a measurement of the projection of the
particle’s Brownian motion along one dimension, which is suf-
ficient to determine the slip length δ of the fluid on the particle’s
surface.

The laser should be chosen such that both the fluid and
the particle used have low absorption for its wavelength, since
absorption of the laser by the liquid or the particle can cause
local heating, leading to a non-equilibrium state.34 Exam-
ples of fluids and particles that have been used in previous
experiments include water, acetone and silica glass, barium
titanate glass, and polystyrene. For these fluids and particles,
some possible choices of laser wavelength include 532 nm and
1064 nm.

One of the major differences between the previous exper-
iments and the proposed experiment lies in the wettability
conditions on the particles’ surface. Particles with large slip
lengths on the surface can be created by two economical meth-
ods: one is by coating the glass surface with a superhydropho-
bic structure with nano-scale roughness,35 which increases the
effective slip length to the order of 100 nm; the other is to coat

FIG. 6. A simplified schematic of an experimental setup for measuring
wettability on a sphere’s surface using Brownian motion.
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FIG. 7. The numerical predictions for the velocity power
spectral density of a no-slip microsphere (3 µm in diam-
eter, density of 2 g/cm3) held by a harmonic trap (K
= 150 µN/m) in a fluid with density ρf = 1 g/cm3 and
dynamic viscosity η = 0.9× 10−3 Pa s in three cases:
unbounded (free space, black line), 3 µm away from a flat
infinite no-slip wall (blue dashed line), and 3 µm away
from a flat infinite perfect-slip wall (red dashed line) (a)
in the direction parallel to the wall and (b) in the direction
perpendicular to the wall.

the glass with a self-assembled monolayer of phosphonates,36

with which a slip length of larger than 10 nm can be achieved.
A high-bandwidth, high-gain, and low-noise lab-built bal-

anced detector25 may be used in this proposed experiment. The
detector signal can be digitized and saved on a computer by a
high-resolution, high-speed digitizer (∼100 MHz, 200 MSa/s,
such as GaGe Razor 1622). The position, velocity, and ther-
mal force power spectra as well as the MSD and VACF can be
numerically calculated from the acquired data.8,25,37

Among those statistical quantities, we consider the VACF
to be the statistic of choice for fitting because it is less sensi-
tive to noise and shows significant variation with different slip
lengths. In our previous work, we have shown that the VACF
is the best statistic to determine the distance to a boundary for
similar reasons.9 It is however easy to try out various statistics
and see which ones give the most reliable results.

The experimentally obtained VACF is then fit to the the-
oretical VACF function, which is calculated numerically as
described by Eq. (5). Least-squares fitting of the VACF can be
performed to determine four fitting parameters: a calibration
factor having units of V/m that defines the linear relation-
ship between the measured voltage and the displacement of
the particle; the particle’s radius a; the stiffness of the optical
harmonic trap K ; and the desired slip length δ.

IV. COMPARISON OF THE BOUNDARY EFFECTS
ON BROWNIAN MOTION IMPOSED BY BOTH
NO-SLIP AND PERFECT-SLIP FLAT WALLS

In this section, we will give the numerical predictions for
a variety of statistical quantities for the Brownian motion of
no-slip sphere in three cases: unbounded, near a no-slip flat
infinite wall, and near a perfect-slip (full slip) flat infinite wall.

These predictions will be used to study both boundary effects
and wettability effects. The particle considered here is a 3 µm
diameter silica sphere (ρ = 2.0 g/cm3) trapped in water by a
harmonic trap with a trap strength of 150 µN/m. In the cases
with the wall, the sphere-wall separation is set to h = 3 µm.
As pointed out in previous work,9,22 the theory we use20,27

works well when the ratio between the sphere radius and the
sphere-wall separation a/h equals to or is smaller than 1/2. The
admittance of the particle may be obtained using Eqs. (15) and
(16), and as before, the statistical properties of the particle’s
Brownian motion can be calculated using Eqs. (3)–(9).

A. Velocity power spectral density

The predictions for the velocity power spectral density
(VPSD) of the sphere in the three cases are shown in Fig. 7.
At frequencies much higher than F4 = 1/(2πτ4), the bound-
ary effects imposed by both no-slip and perfect-slip walls are
negligible. This is because it takes time τ4 for the vorticity
in the fluid to traverse the distance from the wall to the cen-
ter of the sphere. In the perpendicular direction, as shown in
Fig. 7(b), the boundary effects imposed by the perfect-slip wall
are similar to those imposed by the no-slip wall, which is due
to the fact that the no penetration boundary condition holds
for both no-slip and perfect-slip boundary conditions. How-
ever, they are qualitatively different in the parallel direction as
shown in Fig. 7(a). Unlike the case of a no-slip wall, the par-
allel VPSD of the sphere near a perfect-slip wall is suppressed
at low frequencies and enhanced at intermediate frequencies.

B. Mean square displacement

The predictions for the mean square displacement (MSD)
of the sphere in the three cases are shown in Fig. 8. At long

FIG. 8. The numerical predictions for the mean square
displacements of a no-slip microsphere (3 µm in diam-
eter, density of 2 g/cm3) held by a harmonic trap (K
= 150 µN/m) in a fluid with density ρf = 1 g/cm3 and
dynamic viscosity η = 0.9 × 10−3 Pa s in three cases:
unbounded (free space, black line), 3 µm away from a flat
infinite no-slip wall (blue dashed line), and 3 µm away
from a flat infinite perfect-slip wall (red dashed line) (a)
in the direction parallel to the wall and (b) in the direction
perpendicular to the wall.



134707-7 Mo, Simha, and Raizen J. Chem. Phys. 146, 134707 (2017)

FIG. 9. The numerical predictions for the velocity auto-
correlation function of a no-slip microsphere (3 µm in
diameter, density of 2 g/cm3) in a fluid with density
ρf = 1 g/cm3 and dynamic viscosity η = 0.9× 10−3 Pa s
in three cases: unbounded (free space, black line), 3 µm
away from a flat infinite no-slip wall (blue dashed line),
and 3 µm away from a flat infinite perfect-slip wall (red
dashed line) (a) in the direction parallel to the wall and
(b) in the direction perpendicular to the wall. The plots
show the absolute value on a log-log scale, normalized
to 〈(3∗

‖
)2〉 and 〈(3∗⊥)2〉 in the parallel and perpendicular

directions, respectively. The cusps indicate zero cross-
ings, which are a consequence of the presence of the
harmonic trap (K = 150 µN/m).

time scales, the MSDs of each case in both parallel and perpen-
dicular directions plateau to the same value due to confinement
caused by the trap. As compared to the MSD of an unbounded
particle, the MSDs of particle in the perpendicular direction to
no-slip and perfect-slip walls are both suppressed, as shown
in Fig. 8(b), implying that the sphere experiences a stronger
drag force for motion perpendicular to a wall regardless of the
boundary condition on the wall surface. However, the amount
by which the drag force is strengthened depends on the bound-
ary condition at the wall. In the parallel direction, however,
there is also a qualitative dependence of the drag force on the
wettability conditions on the surface of the wall. It is surpris-
ing that the MSD of the sphere in the parallel direction to
the perfect-slip wall actually increases more rapidly as com-
pared to that of an unbounded sphere, which means that the
sphere experiences less drag force when moving in parallel to
a perfect-slip wall as compared to that in the absence of the
wall.

Here, we give the DC values of the drag coefficients of a
sphere near a perfect-slip wall in both directions (to the first
order in a/h),

γ ‖δ→∞(ω = 0) = 6πηa
1

1 + 3a
8h

, (22)

γ⊥δ→∞(ω = 0) = 6πηa
1

1 − 3a
4h

. (23)

With these, the diffusion coefficients to first order in a/h in
the two directions can be obtained using the Einstein-Stokes
relation

D‖δ→∞(ω = 0) =
kBT

6πηa

(
1 +

3a
8h

)
= D0

(
1 +

3a
8h

)
, (24)

D⊥δ→∞(ω = 0) =
kBT

6πηa

(
1 −

3a
4h

)
= D0

(
1 −

3a
4h

)
, (25)

where D0 =
kBT

6πηa is the particle’s diffusion coefficient in

unbounded fluid. The diffusion coefficient D‖δ→∞(ω = 0) is
actually larger than D0, meaning the particle has a higher
mobility when closer to a perfect-slip wall. This surprising
effect has been experimentally demonstrated for a sphere mov-
ing near a fluid-air interface, which can be considered to be
nearly perfect-slip.38

C. Velocity autocorrelation function

The numerical predictions for the velocity autocorrelation
function C3(t) of the sphere (normalized to 〈(3∗

‖
)2〉 and 〈(3∗⊥)2〉

in the parallel and perpendicular directions, respectively) in the
three cases are shown in Fig. 9. In the perpendicular direction,
the boundary effects imposed by both no-slip and perfect-slip
walls cause a more rapid decay in the VACF as compared to
that in the unbounded case, which is consistent with previous
numerical simulations.39,40 However, in the parallel direction,
the VACF of a sphere near a perfect-slip wall initially decays
faster than the one in the unbounded case, followed by a slower
decay at intermediate time scales.

D. Thermal force power spectral density

The predictions for the power spectral density of the
thermal force in the three cases are shown in Fig. 10. As

FIG. 10. The numerical predictions for the thermal force
power spectra on a no-slip microsphere (3µm in diameter,
density of 2 g/cm3) in a fluid with density ρf = 1 g/cm3

and dynamic viscosity η = 0.9× 10−3 Pa s in three cases:
unbounded (free space, black line), 3 µm away from a flat
infinite no-slip wall (blue dashed line), and 3 µm away
from a flat infinite perfect-slip wall (red dashed line) (a)
in the direction parallel to the wall and (b) in the direction
perpendicular to the wall.
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discussed in previous work,9,22 the thermal force loses its color
at low frequencies as the particle approaches a no-slip wall.
The same holds true for motion perpendicular to a perfect-slip
wall. However, the behavior is qualitatively different in the
parallel direction. The thermal force in the parallel direction
on a sphere near a perfect-slip wall does not lose its color.

The low frequency behavior of the thermal force near a
perfect-slip wall can be understood by the asymptotic form of
the thermal force PSD (one-sided) exerted on the particle as
ω → 0, which is given (to the first order in a/h) in the parallel
direction by

Sδ→∞F,‖ (ω) = 4kBTγs

(
1

1 + 3a
8h

+
64
√

2h2

(8h + 3a)2
(ωτf )

1
2

)
(26)

and in the perpendicular direction by

Sδ→∞F,⊥ (ω) = 4kBTγs

(
1

1 − 3a
4h

+
8
√

2(6h4 − 5a2h2)

15a2(4h − 3a)2
(ωτf )

3
2

)
.

(27)

The DC values of Sδ→∞F,‖ and Sδ→∞F,⊥ change to 4kBTγs
1

1+ 3a
8h

and

4kBTγs
1

1− 3a
4h

from the bulk value of 4kBTγs, respectively. The

change in the thermal force is consistent with the change in
the drag force, in accordance with the fluctuation-dissipation
theorem.33

The flatness of the power spectral density of the thermal
force on a sphere near a perfect-slip flat wall in the perpen-
dicular direction can be understood in a manner akin to the
no-slip wall case.9,22 In contrast, this effect is not seen in the
parallel direction in the case of a perfect-slip plane wall. This is
observed in Eq. (26) through the presence of the leading term
(ωτf )

1
2 , in contrast with Eq. (27) where this leading term is

absent. This is probably due to constructive interference from
the reflected flow.

In summary, some conclusions drawn in previous work9

still hold for the case of a sphere near a perfect-slip wall.
For instance, boundary effects imposed by a perfect-slip flat
wall occur at time scales longer than τ4, equivalently, fre-
quency scales lower than F4. In the perpendicular direction,
the boundary effects imposed by a perfect-slip wall are only
quantitatively different from those caused by a no-slip wall,
which can be ascribed to the no-penetration boundary con-
dition remaining the same for both cases. With the same
sphere-wall separation, the boundary effects in the perpendicu-
lar direction near a perfect-slip wall are weaker than those near
a no-slip wall. However, in the parallel direction, the bound-
ary effects caused by the two types of walls are qualitatively
different. We expect that the boundary effects imposed by a
partial-slip flat wall will manifest as a hybrid of the effects
caused by a no-slip wall and a perfect-slip wall.

V. DISCUSSION

In this letter, we studied the effects of arbitrary wettability
conditions on the sphere’s surface on its Brownian motion. Our
new proposed method for measuring wettability could be used
in many applications, such as pharmaceutical development,3

emulsions’ preparation and stability,41 and animal suspension-
feeding.42 In addition, we also compared the boundary effects

on Brownian motion imposed by both no-slip and perfect-slip
flat walls and pointed out the surprising boundary effects on
Brownian motion imposed by a perfect-slip wall in the parallel
direction.

Further avenues for research include an experimental
study of the effects of wettability on Brownian motion. By
coating the glass surface with a superhydrophobic structure
with nano-scale roughness or with a self-assembled mono-
layer of phosphonates, we can achieve different wettability
conditions with a slip length of up to a few hundred nm both
on the sphere and the boundary wall.
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