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Broadband boundary effects on Brownian motion
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Brownian motion of particles in confined fluids is important for many applications, yet the effects of the
boundary over a wide range of time scales are still not well understood. We report high-bandwidth, comprehensive
measurements of Brownian motion of an optically trapped micrometer-sized silica sphere in water near an
approximately flat wall. At short distances we observe anisotropic Brownian motion with respect to the wall. We
find that surface confinement not only occurs in the long time scale diffusive regime but also in the short time
scale ballistic regime, and the velocity autocorrelation function of the Brownian particle decays faster than that
of a particle in bulk fluid. Furthermore, at low frequencies the thermal force loses its color due to the reflected
flow from the no-slip boundary. The power spectrum of the thermal force on the particle near a no-slip boundary
becomes flat at low frequencies. This detailed understanding of boundary effects on Brownian motion opens a
door to developing a 3D microscope using particles as remote sensors.
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I. INTRODUCTION

Understanding the influence of boundaries on particle
dynamics is of great significance, from both a fundamental
and an applied point of view [1–9]. For example, blood cells
moving in vessels, particles migrating in porous media, and
macromolecules diffusing in membranes are all affected by
the presence of boundaries. It is well known that the mobility
of particles decreases as they approach boundaries at which
the fluid does not slip. This effect of “surface confinement”
was predicted by Lorentz in 1907 [10]. The increase of the
drag force is attributed to the alteration of the hydrodynamic
interaction between the particle and the fluid generated by
the no-slip boundaries. The motion of the particle becomes
anisotropic because the drag force parallel to the wall is
typically less than that perpendicular to the wall. This effect is
significant when the dimensions of the confining geometry and
the suspended particles are comparable. There have been many
experiments verifying this surface confinement effect, mainly
focusing on measuring the changes in the diffusion coefficient
of micron-sized particles near surfaces using dynamic light
scattering [11], video microscopy [12], total internal reflection
microscopy [13], or oscillating optical tweezers [14]. However,
all these experiments have only addressed boundary effects in
the long time scale diffusive regime of Brownian motion.

In addition to surface confinement, it has been reported that
the presence of a no-slip boundary also affects the velocity au-
tocorrelation function (VACF) of a Brownian particle [15,16].
The long time tail of the VACF in the bulk case is largely
canceled by reflected flow from the wall, resulting in a more
quickly decaying VACF. Boundary effects on the position
power spectral density (PSD) in a limited frequency window
have also been reported [17,18]. These experiments have
observed a resonance caused by the color of the thermal force,
and its suppression as the sphere-wall separation decreases. A
broadband, comprehensive experimental study of effects of the
boundary via hydrodynamic interaction on Brownian motion
is still lacking in spite of the previous work on boundary effects

*raizen@physics.utexas.edu

mentioned above [11–18] and the fact that Brownian motion
of a sphere in bulk has been well studied [18–22].

Here we investigate the effects of a boundary on the Brown-
ian motion of a sphere in water both in the diffusive regime and
the ballistic regime. It is important to note that the boundary
effects in this article occur only through hydrodynamic interac-
tion. Other close-range forces between particles and surface,
like the electrostatic force [23], van der Waals force [24],
and Casimir force [25] can be neglected because we keep the
sphere-wall separation (�3 μm) much larger than the length
scales at which those forces need to be considered. The point
approximation [26] used in presently available theoretical
models for Brownian motion with boundary effects also sets a
lower bound on the sphere-wall separation of interest.

This paper is organized as follows. In Sec. II, we review
the theory of Brownian motion near a flat wall with no-slip
boundary conditions. In Sec. III, we describe our experimental
setup. In Sec. IV, we describe our calibrations and data
analysis procedures. In Sec. V, we present and discuss our
experimental results. In Sec. VI, we discuss a numerical
simulation performed using COMSOL Multiphysics software.
We conclude with a discussion in Sec. VII.

II. THEORY

A. Statistical properties of Brownian motion

The position x(t) and velocity v(t) = ẋ(t) of a Brownian
particle in equilibrium may be regarded as stationary and er-
godic random processes. Our experimental study of Brownian
motion involves the description of various statistical properties
that we shall define below. The parentheses 〈 〉 denote
equilibrium ensemble averages, which may be reinterpreted
as time averages through the assumption of ergodicity.

To a good approximation, the dynamics of the three spatial
dimensions are decoupled from each other. Hence we shall usu-
ally consider one spatial component of the position vector x(t),
and denote it by x(t). The corresponding velocity component
will be denoted as v(t) = ẋ(t). The position autocorrelation
function (PACF) of the particle is defined through PACF(t) ≡
〈x(t + τ )x(τ )〉. The mean-square displacement (MSD) of
the particle is defined as MSD(t) ≡ 〈[x(t + τ ) − x(τ )]2〉.
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The velocity autocorrelation function (VACF) of the particle
is defined through VACF(t) ≡ 〈v(t + τ )v(τ )〉. The position
power spectral density (PSD) and velocity power spectral
density (VPSD) are, by the Wiener-Khinchin theorem, the
Fourier transforms of the PACF and VACF, respectively.

In the hydrodynamic theory of Brownian motion, the
Green-Kubo formula is used to relate these statistical proper-
ties to the admittance of the particle coupled to the fluid, which
is the linear velocity response of the particle to an applied
external force, whose theoretical computation is discussed in
the following subsection.

B. Computation of the admittance

Here, we review briefly a modified form of the theoretical
work of Felderhof [26] on the Brownian motion of a spherical
particle in an incompressible fluid near a flat and infinite no-
slip wall. In this work, we shall denote the radius of the particle
by a, and the distance to the wall as measured from the center
of the sphere by h. The modifications to Felderhof’s theory will
be justified and discussed in detail in a future publication [27].

Felderhof’s framework assumes that the sphere may be
approximated by a point force for purposes of calculating the
fluid flow. The small amplitude incompressible fluid motion
is governed by the linearized incompressible Navier-Stokes
equations,

ρf

∂v
∂t

= η�v − ∇P, ∇ · v = 0, (1)

where v and P denote the velocity and pressure fields
respectively, η is the dynamic shear viscosity of the fluid,
and ρf is the density of the fluid. Upon Fourier analysis in
time, the first equation transforms into

η(�vω − α2vω) − ∇Pω = 0, (2)

where vω, Pω denote the Fourier transforms of v and
P , respectively, and we have used the notation α =
(−iωρf /η)1/2, Re[α] > 0 for the complex wave number that
appears in the equation. We remark that by taking the curl of
the above equation, it is seen that the vorticity, defined as the
∇ × v, satisfies a Helmholtz equation with this wave number.

The equation of motion for the particle can be written as

−iω(mp − mf )Uω = Eω −FFFω, (3)

where Uω is the particle velocity, Eω is an external force
applied on the particle, and FFFω is the induced force [28];
mp and mf are the masses of the particle and the displaced
fluid, respectively. Within the point particle approximation,
inhomogeneity of the flow over the scale of the particle
is ignored and the induced force is calculated using the
generalized Faxén theorem [29] with the incident flow field
replaced by the flow at the center of the sphere. The proposed
expression for FFFω is given by [27]

FFFω = [
γs(1 + αa) − 3

2 iωmf

]
[Uω − R ·FFFω], (4)

where γs = 6πηa is the steady Stokes friction coefficient, and
R is the reaction field tensor as defined and calculated by
Felderhof [26]. The reaction field tensor, when contracted with
the point force that represents the presence of the particle,
yields the velocity of the reflected flow from the wall at the
position of the sphere, which enters the generalized Faxén
theorem in the point particle approximation. In the above,
Felderhof’s expression for FFFω has been modified to use the
point force that correctly reproduces the far-field behavior of
a sphere [27]. The equation may be rearranged appropriately
to solve for FFFω in terms of the particle velocity Uω.

Three time scales occur in the description of Brownian
motion near a plane wall [16,18]: τf = a2ρf /η, the time scale
over which the vorticity diffuses over the size of the spherical
particle; τw = h2ρf /η, the time scale over which the vorticity
diffuses the sphere-wall distance; and τp = 2a2ρp/(9η), the
momentum relaxation time of the microsphere. Here, ρp

denotes the density of the spherical particle.
The admittance tensor YYY(ω), defined through Uω = YYY(ω) ·

Eω, is a useful quantity for the characterization of the linear
response of the particle’s velocity to thermal fluctuations [26].
It may be computed using Eqs. (3) and (4). Once the admittance
tensor is known, various statistical properties of Brownian
motion may be computed.

By application of the Green-Kubo formula, the velocity
autocorrelation function Cv(t) is related to the frequency-
dependent admittance [26] through

YYY(ω) = 1

kBT

∫ ∞

0
dt eiωtCv(t), (5)

where kB is Boltzmann’s constant and T is the absolute
temperature. It must be noted that the short-time behavior
of Cv(t) obtained from Felderhof’s theory is in disagreement
with the modified equipartition theorem [30] using well-known
results for the effective mass of a sphere in a bounded fluid [31].
The proposed correction [27] to Felderhof’s theory resolves
this issue.

The position and velocity power spectral densities can also
be calculated from the admittance using [16]

Sx(ω) = 2kBT Re[YYY(ω)]

ω2
(6)

and

Sv(ω) = 2kBT Re[YYY(ω)]. (7)

For a spherical Brownian particle trapped in a harmonic
potential in an unbounded fluid, the (scalar) admittance is
given by

Y0(ω) = −iω

−mω2 − iωγ (ω) + K
, (8)

where K is the trap stiffness constant and γ (ω) = γs(1 +√−iωτf − iωτf /9). The proposed expression for the admit-
tance in the presence of the boundary, but without a harmonic
trap is given by [27]

YYYB(ω) = [1 + γs(1 + √−iωτf − iωτf /3)R(ω)]

iω(mf − mp)[γs(1 + √−iωτf − iωτf /3)R(ω)] + (γ (ω) − iωmp)
. (9)
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The tensorsYYY and R in our case are diagonal [26], whereby
no ambiguity is caused by their occurrence in the denominators
of equations. We shall denote the relevant components of
R by R‖ [corresponding to Eq. (3.9) in Ref. [26]] and
R⊥ [corresponding to Eq. (3.10) in Ref. [26]; also see
erratum [32]]. The admittance in the presence of the boundary,
including the effect of a harmonic trap is then given by [16]

YYYK
B (ω) = −iωYYYB(ω)

−iω + KYYYB(ω)
. (10)

With this admittance, one can calculate all the statistical
properties of a trapped Brownian particle near a wall using
Eqs. (5)–(7) and the procedures described in Sec. IV.

The drag coefficients in the presence of the boundary are
related to the admittance and reaction field tensor through

γγγ B(ω) = 1

YYYK
B (ω)

+ iωmp + K

iω

= 1

YYYB(ω)
+ iωmp

= γ (ω) + γs(1 + √−iωτf − iωτf /3)(iωmf )R(ω)

[1 + γs(1 + √−iωτf − iωτf /3)R(ω)]
.

(11)

In an unbounded fluid, the effective inertial mass of a
spherical particle is given by the mass of the particle mp,
plus an added mass of ma = mf /2, where mf is the mass
of the liquid displaced by the particle [30]. The presence of
the boundary alters this effective mass. The effective mass
becomes anisotropic and also depends on the distance to the
wall. Near a flat wall, the expressions for the effective mass in
the perpendicular and parallel directions are given by

m∗
⊥ = mp + mf

2

[
1 + 3

8

(
a

h

)3]
,

(12)

m∗
‖ = mp + mf

2

[
1 + 3

16

(
a

h

)3]
,

respectively [31]. The modified energy equipartition theorem
prediction [30] for the mean-squared thermal velocity of the
hydrodynamically coupled particle is thus

〈(v∗)2〉 = kBT /m∗, (13)

where m∗ is either m∗
⊥ or m∗

‖ for velocities perpendicular or
parallel to the boundary respectively.

C. Statistical properties of the thermal force

Brownian motion with memorylike damping can also be
described and solved using a generalized Langevin equation
(GLE) [33] in which the damping is expressed as convolution
of the velocity ẋ(t) with a memory kernel. For a Brownian
particle in a harmonic potential, the GLE is most often written
as

mpẍ(t) +
∫ t

−∞
ζζζ (t − t ′)ẋ(t ′)dt ′ + Kx(t) = Fth(t), (14)

where x(t) denotes the position of the Brownian particle, and
ζζζ (t − t ′) is a memory kernel tensor that comes from the drag

exerted on the particle by the fluid. The thermal force Fth(t) is a
random process that captures the effect of thermal fluctuations
in the fluid on the particle. In the frequency domain, we may
write the GLE as

[−mpω2 − iωγγγ B(ω) + K] x̂(ω) = F̂th(ω), (15)

where the hats indicate Fourier transformed quantities. The
statistics of the thermal force are related to the drag coefficient
γγγ B through the fluctuation-dissipation theorem [34].

The one-sided thermal force power spectral density SF (ω)
is related to the drag coefficient γγγ B(ω) through a form of the
fluctuation-dissipation theorem [18,34],

SF (ω) = 4kBT Re[γγγ B(ω)]. (16)

In the Einstein-Ornstein-Uhlenbeck model [35] of Brownian
motion, which is valid only when the inertia of the fluid is
negligible, the corresponding thermal force is white noise,
with the flat (one-sided) spectrum SF = 4kBT γs . Addition
of the Basset force [33] to the Einstein-Ornstein-Uhlenbeck
model to account for the history of the fluid flow induced
by the particle’s motion results in the colored thermal force
spectral density SF = 4kBT γs(1 + √

ωτf /2) on a particle in
an unbounded fluid. Surprisingly, the thermal force loses its
color at low frequencies in the presence of a boundary. The
thermal force power spectral density (FPSD) on the particle
near a no-slip wall becomes flat at low frequencies (when
ωτf 
 1 and ωτw 
 1).

The low frequency asymptotic behavior of the thermal force
PSD on a particle near a flat wall is found by expanding the
reaction field tensor and the expression for the drag coefficient
to lowest few orders in ω, and is valid for ω 
 1/τf ,1/τw. We
find that, as ω → 0, the asymptotic forms of the (one-sided)
PSD of the thermal force on the particle in the parallel and
perpendicular directions near a no-slip flat wall are given by

SF,‖(ω) = 4kBT Re[γ‖(ω)]

∼4kBT γs

(
1

1 − 9a
16h

+ 128
√

2(3h4 − a2h2)

3a2(16h − 9a)2
(ωτf )

3
2

)
,

(17)
SF,⊥(ω) = 4kBT Re[γ⊥(ω)]

∼ 4kBT γs

(
1

1 − 9a
8h

− 32
√

2h2

3(9a − 8h)2
(ωτf )

3
2

)
,

respectively. In contrast, the (one-sided) PSD of the thermal
force on the sphere in bulk is given by

SF (ω) = 4kBT Re[γ (ω)] = 4kBT γs

(
1 +

√
ωτf

2

)
. (18)

The enhanced flatness of the thermal force PSD observed in
the presence of a no-slip plane wall, which can be understood
as resulting from destructive interference of the reflected flow,
is seen in the above expressions through the lack of

√
ωτf

and ωτf terms. In contrast, this effect is not seen in the
parallel direction in the case of a perfect slip plane wall,
presumably due to constructive interference from the reflected
flow. However, in the perpendicular direction to a perfect
slip wall, the flatness is still seen, presumably due to the no
penetration boundary condition keeping the reflected flow out
of phase.
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For completeness, we give the results for a perfect slip flat
boundary as well [36]. The asymptotic forms of the (one-sided)
PSD of the thermal force in the parallel and perpendicular
directions, on a sphere near a perfect-slip boundary for
ωτf ,ωτw 
 1, are given by

S
slip
F,‖(ω) ∼ 4kBT γs

(
1

1 + 3a
8h

+ 64
√

2h2

(3a + 8h)2
(ωτf )

1
2

)
,

(19)

S
slip
F,⊥(ω) ∼ 4kBT γs

(
1

1 − 3a
4h

+ 8
√

2(6h4 − 5a2h2)

15a2(4h − 3a)2
(ωτf )

3
2

)
,

respectively.

III. EXPERIMENT

A simplified schematic of our experimental setup for
measuring the Brownian motion of a micrometer-sized silica
sphere in water near an approximately flat wall, both in
perpendicular and parallel directions, is shown in Fig. 1.
An approximately 3 μm diameter silica glass microsphere
is trapped by a 1064 nm laser (Mephisto, Innolight) focused
by a water-immersion microscope objective (LOMO OM-25,
numerical aperture 1.23). The laser is introduced into the
objective through a polarization-maintaining single-mode fiber
(Thorlabs, P3-1064PM-FC-5) followed by a 200 mm tube
lens. The trapping laser beam also serves as the detection
beam, which is collected by an identical objective and then
split into two roughly equal halves in the horizontal direction
in the laboratory frame using a D-shaped mirror (Thorlabs,
BBD05-E03). An AC-coupled, homemade, high-bandwidth
balanced detector [21] is used to amplify the power difference
between the halves, which depends linearly on the position of

FIG. 1. (Color online) Schematic of setup to study the Brownian
motion of an optically trapped glass microsphere in water near a
boundary. (a) Simplified schematic showing a glass microsphere
(3 μm diameter) trapped at the focus of a 1064 nm optical tweezer
near a boundary. The trapping beam is used to detect the horizontal
motion of the particle using a high bandwidth balanced detection
system [21]. (b) Two 80 ± 1 μm diameter cylindrical fibers are sealed
in the chamber with their axes in the vertical and horizontal directions,
respectively, providing well-defined no-slip cylindrical boundaries.
(c) The geometry of the sphere and cylindrical boundary to scale. The
sphere-wall separation h refers to the distance between the center of
the sphere and the surface of the boundary. The perpendicular (⊥)
and parallel (‖) directions referred to in the text are as marked.

the trapped particle. These aspects of the setup are shown in a
simplified manner in Fig. 1(a). The position of the D-shaped
mirror is adjusted before every data acquisition to balance the
laser power in the two halves. We also set up optics to allow
redirection of the detection beam to a DC-coupled balanced
detector (Thorlabs PDB120C) to enable calibration procedures
described in Sec. IV B. In this experiment, the trapping laser
beam power is around 400 mW and the detection beam power
is set to about 150 mW.

The fluid chamber is constructed within a layer of nescofilm
(Bando Chemical Ind. LTD., ∼80 μm thickness) sandwiched
between two number 0 microscope coverslips (Ted Pella,
∼100 μm thickness). Two 80 ± 1 μm diameter cylindrical
glass fibers (Thorlabs SM980G80, with coating layer stripped)
are heat sealed in the chamber with their axes in the vertical and
horizontal directions, respectively, providing two well-defined
cylindrical boundaries with no-slip boundary conditions in
either direction. This is done so as to enable measurement of
the Brownian motion in perpendicular and parallel directions
to the wall independently with vertical and horizontal fibers, re-
spectively, since our detection system measures the horizontal
motion of the microsphere. A 3D schematic of this is shown in
Fig. 1(b). The geometry of the sphere and cylindrical boundary
is shown to scale in Fig. 1(c). The cylindrical boundary can be
approximated as a flat wall when the sphere-wall separation h

and the size of the sphere a are much smaller than the radius
of the fiber, as shown later in the text.

The cylindrical boundary is intentionally chosen to avoid
clipping the laser beam with the boundary for small sphere-
wall separations. In our setup, the waist of the trapping beam
is estimated to be around 1 μm, and as long as the sphere-
wall separation h is more than 3 μm, the clipping effect can
be neglected. We confirm the lack of clipping by monitoring
the trapping beam transmission through the chamber and by
the observed stability of the fitting parameters at different
positions.

The position of the chamber is adjusted so that the optical
trap confines the particle to the center of the chamber in
the beam propagation direction. This is to avoid coverslip
boundary effects, which may then be neglected since the
sphere-coverslip separation is ∼40 μm, which is considerably
larger than the size of the sphere.

The whole chamber is mounted onto a piezo stage (two
Thorlabs DRV517, with controller BPC301 and a strain gauge
giving relative positions), which gives us the ability to position
the cylindrical fibers with a precision of ∼10 nm in two
directions, in order to control the sphere-wall separation.
There are two main sources of fluctuations in the sphere-wall
separation: relative vibration motion between the fibers and
laser trapping focus, and the thermal motion of the microsphere
in the trap. The relative vibration is reduced to on the
order of 10 nm by using a gas floating optical table (TMC
Vibration Control). The thermal motion fluctuations in the
trap can be reduced by increasing the trap strength, resulting√

kBT /K ∼ 10 nm in our system. The piezo stage PID control
loop is kept open while taking data to avoid additional noise
introduced by it. In Sec. V, the boundary effects on the motion
of a sphere at four positions, with sphere-wall separations of
30 μm, 6.1 μm, 4.6 μm, and 3.1 μm, will be presented and
discussed in detail.
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FIG. 2. (Color online) Measurements of the absolute sphere-wall separations in the perpendicular direction with a 3 μm diameter silica
microsphere. (a) Obtained from fitting the data recorded by the AC-coupled detector to the no-slip flat-wall theoretical VACF. The green
squares with error bars represent the experimental data and statistical errors obtained by averaging from 10 measurements at each position. The
horizontal axis denotes the distance measured by the strain gauge after subtraction of the fitted offset (discussed in the text). The red line is the
y = x line; the VACF fitting gives reliable results as long as the sphere-wall separation is smaller than 7 μm. (b) Obtained from measuring the
hindered diffusion coefficient using the DC-coupled detector with sphere-wall separations from 2.5 μm to 30 μm. The red line is the flat-wall
theory, and the blue dashed line is the modified cylindrical-wall theory (see text). The green squares with error bars represent the experimental
data and statistical errors obtained by averaging from 10 measurements at each position.

Experiments are performed using silica microspheres
(Bangs Laboratories SS05N, n = 1.46, ρp = 2.0 g/cm3) in
HPLC-grade water (n = 1.33, ρf = 1 g/cm3, η = 10−3 Pa s)
at 22 ± 1 ◦C. High sphericity of the microspheres is necessary
to eliminate the rotational motion contribution due to asymme-
try of the microspheres, and is confirmed by scanning electron
microscope images [22].

The voltage signal from the balanced detector is recorded by
a 16-bit digitizer (GaGe applied, CS1622) at a sampling rate of
200 MSa/s. Each continuous trajectory contains 227 samples,
corresponding to about 0.7 s acquisition time. We take 10
such measurements at each position. The voltage signal from
the digitizer is, to a very good approximation, proportional to
the displacement of the particle in the trap. This calibration
factor is determined by fitting of the measurements to theory
as described in Sec. IV A.

IV. CALIBRATION AND DATA ANALYSIS

A. Calibration of the tweezers and computation
of statistical properties

In this section, we describe the calibration methods and the
data analysis techniques used to obtain the results presented
in Sec. V. The numerical computation, of both theoretical
predictions and measured values of the various statistical
properties characterizing Brownian motion that were defined
in Sec. II A, is outlined.

We first compute the voltage power spectral density (voltage
PSD) by means of a fast Fourier transform (FFT) of the
voltage signal, followed by taking the magnitude squared and
appropriately scaling it [37]. The measured magnitude of the
transfer function of the detection system is then squared and
divided out of this PSD [21].

The Wiener-Khinchin theorem states that for wide-sense
stationary random processes, the power spectral density and

autocorrelation are Fourier transform pairs. We make use
of this to calculate the PACF, up to a calibration constant,
by FFT of the voltage PSD. In doing so, we discard data
points at frequencies much lower than the trap frequency
Fk = 1/(2πτk), which are plagued by low-frequency noise
in the system, and assume that the power spectrum is flat in
this region. We then calculate the experimental MSD, up to a
calibration constant, from the PACF. In a similar manner, we
numerically compute the theoretical MSD from the theoretical
PACF, by a Filon Fourier transform [38] of the analytic
expression for the position PSD given by Eq. (6).

A least-squares fit of the MSD of the recorded trajecto-
ries to the theory of Brownian motion near a no-slip flat
wall [16,26,32] is used to determine the sphere diameter d =
2a, the trap stiffness K , and the volts-per-meter calibration
factor C. The fitting results for the sphere diameter (d =
3.06 ± 0.19 μm), trap stiffness (K = 151 ± 31 μN/m), and
volts-per-meter calibration factor (C = 20.1 ± 2.0 mV/nm)
are similar at those four positions (with sphere-wall separations
of 30 μm, 6.1 μm, 4.6 μm, and 3.1 μm), which indicates
that the laser is not clipped by the cylindrical boundary.
The uncertainty of each fit parameter is determined from
the variance in the results of independent MSD fits of 10
trajectories per position.

Once the calibration factor C is determined, the voltage
signal may be calibrated to a position signal. The velocity
signal is then computed by means of a discrete derivative
operator applied to the position signal. The VPSD may be
then calculated from the velocity signal in a similar manner to
the position PSD. The VACF of the measured trajectory is then
obtained through FFT of the VPSD. The theoretical VPSD is
similarly computed through the analytic expression (7), and the
theoretical prediction for the VACF is numerically computed
from the VPSD using the Filon Fourier transform algorithm.

The piezo stage only gives us the relative distances between
different positions of the particle. As described in detail in
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FIG. 3. (Color online) Experimental and theoretical mean square displacements (MSDs) at four positions in the perpendicular direction
with respect to the wall. (a) With a sphere-wall separation (h) of 30 μm (τw = 0.9 ms). (b) h = 6.1 μm (τw = 37 μs). (c) h = 4.6 μm
(τw = 21 μs). (d) h = 3.1 μm (τw = 9.6 μs). The blue circles are the experimental data (τp = 1 μs, τf = 2.3 μs, τk = 190 μs); the black
lines are the unbounded theoretical predictions [33] and the red dashed lines correspond to the bounded theoretical predictions at various
sphere-wall separations. The MSD becomes suppressed as the sphere approaches the wall. The insets show higher resolution of the suppression
of the MSD.

Sec. IV B, the sphere-wall separation h may be determined by
fitting of the VACF to theoretical predictions.

For each acquisition of Brownian motion with a sphere, we
also make an acquisition of noise from the detection laser with
no sphere in the trap. For spectra and correlation functions, we
analyze the noise acquisition in the same way as the data and
subtract it to remove the contribution of noise from that of the
sphere’s motion. This method is valid as long as the noise is not
correlated to the sphere’s motion. The error bars in Figs. 3–8
represent two sources of error: the first is statistical error,
calculated from distributions of points within each “block”
used for plotting data [37]. The second is the uncertainty in
the amplitude of the subtracted noise, which is significant at
high frequencies (or short time scales), where noise dominates
the signal.

The measured stochastic thermal force power spectral
density (FPSD) is numerically calculated from the measured
position PSD by inverting the generalized Langevin equation
in the frequency domain [Eq. (15)]. The Green’s function for
the GLE may thus be written as [18]

Ĝ(ω) = [−ω2mp − iωγγγ B(ω) + K]−1, (20)

and is used to compute the FPSD by evaluating

SF (ω) = |Ĝ(ω)|−2Sx(ω) (21)

numerically. We remark that this procedure assumes the
hydrodynamic theory for the drag coefficient, but does not
assume the validity of the fluctuation-dissipation theorem.

The theoretical FPSD is computed from the analytic ex-
pression for the drag coefficient [Eq. (11)] and the fluctuation-
dissipation theorem [Eq. (16)].

The observation that the thermal force PSD calculated
from experimental data matches the theoretical prediction
within experimental error (see Sec. V) can be interpreted as
a verification of the fluctuation-dissipation theorem subject to
the assumption that the hydrodynamic theory is correct.

B. Calibration of the absolute sphere-wall separation

The piezo stage used in the experiment gives us precise
measurements of the position of the particle relative to an
arbitrary origin. It is not possible to determine the absolute
distance to the wall precisely from the optical image of
the chamber due to diffraction fringes around and errors in
adjusting the focal plane. The absolute separations between the
sphere and the wall (h) reported in this paper are obtained by
calibrating the piezo against results from least-squares fitting
of the experimental VACF to the theoretical predictions from
the no-slip flat wall boundary theory [16,26,32]. In principle,
any of the statistical properties can be fit to the theoretical
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FIG. 4. (Color online) Experimental and theoretical velocity autocorrelation functions (VACFs) at the same positions as in Fig. 3 in the
perpendicular direction with respect to the wall. The plots show the absolute value (normalized to 〈(v∗

⊥)2〉 = kBT /m∗
⊥) on a log-log scale. The

sharp cusplike features correspond to zero crossings. (a) With a sphere-wall separation (h) of 30 μm (τw = 0.9 ms). (b) h = 6.1 μm (τw = 37 μs).
(c) h = 4.6 μm (τw = 21 μs). (d) h = 3.1 μm (τw = 9.6 μs). The blue circles are the experimental data (τp = 1 μs,τf = 2.3 μs,τk = 190 μs);
the black lines are the unbounded theoretical predictions [33] and the red dashed lines correspond to the bounded theoretical predictions at
various sphere-wall separations. The VACF decays faster as the sphere approaches the wall.

predictions to calibrate the piezo readings. It turns out that
the fitting of the VACF gives the most reliable results; hence
our choice. The boundary effects with sphere-wall separations
larger than 10 μm become so weak that the VACF fitting
becomes unreliable. But for smaller separations, the VACF
is evidently very sensitive to the sphere-wall separation, and
therefore can be used to precisely measure this separation.
The offset between the piezo reading and the actual distance
is then determined by fitting a line with a slope of unity to the
distance obtained from the VACF fit against the piezo readings
at 10 positions. The results are shown in Fig. 2(a). With this
method of calibration, the sphere-wall separations at the four
positions shown in Figs. 3–7 are 30 μm, 6.1 μm, 4.6 μm, and
3.1 μm, respectively. This is in agreement with the piezo strain
gauge readings for the latter three positions, as they differ by
1.5 μm.

The absolute sphere-wall separations can also be obtained
by another method, namely by the measurements of the
hindered diffusion coefficients. The variation of the diffusion
coefficient near a no-slip wall has been well studied by nu-
merous experiments [11–13]. Keeping the same microsphere
in the trap, we reduce the optical trap strength (by reducing
the power from 400 mW to 50 mW) so as to permit the MSD
to enter the diffusive regime before flattening out. We redirect
the detection beam to a DC-coupled balanced detector, and
acquire data with the same digitizer at a lower sampling rate
of 5 MSa/s. Each continuous trajectory contains 225 samples,

corresponding to about 7 s. We take 10 such measurements
at each position. The hindered diffusion coefficients are then
obtained at many positions by analyzing the PACF as described
below.

The diffusion of a sphere near a wall becomes anisotropic
and can be separated into parallel (axial) and perpendicular
(radial) directions. The hindered diffusion coefficients are a
function of size of the sphere a and sphere-wall separation
h, and can be obtained by measuring the Brownian motion
in the diffusive regime [39]. The translational motion of a
spherical particle in a fluid trapped by an optical tweezer at
low frequencies can be described using

Kx(t) + γ (h)ẋ(t) = Fth(t), (22)

where Fth is the thermal stochastic force. The inertial term is
neglected as it is not significant in the long time scale motion
of the particle. At long time scales t � τf , the damping factor
is approximately frequency independent but depends on the
sphere-wall separation. In this regime, the equation may be
easily solved to obtain the position autocorrelation function
(PACF) as

〈x(τ )x(t + τ )〉 = 〈x2〉e−[K/γ (h)]t = 〈x2〉e−t/τk , (23)

where τk = γ (h)/K gives the time scale during which the
particle experiences a drift back toward to the trap center.
With trap stiffness fixed, the larger the damping factor γ (h),
the longer it takes to drift back to the center of the trap. The
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FIG. 5. (Color online) Experimental and theoretical velocity power spectrum (VPSD) at the same positions as in Fig. 3 in perpendicular
direction to the wall. (a) h = 30 μm (Fw = 177 Hz). (b) h = 6.1 μm (Fw = 4.3 kHz). (c) h = 4.6 μm (Fw = 7.5 kHz). (d) h = 3.1 μm
(Fw = 16.6 kHz). The blue circles are the experimental data (Fp = 153 kHz, Ff = 68 kHz, Fk = 833 Hz); the black lines are the unbounded
theoretical predictions and the red dashed lines correspond to the bounded theoretical predictions at various sphere-wall separations.

diffusion coefficient D can be obtained from the damping
factor using the Stokes-Einstein relation D(h) = kBT /γ (h).

We are able to measure the hindered diffusion coefficients
in the radial direction Dr̂ (h) with the vertical fiber as the
boundary and the axial direction Dẑ(h) with the horizontal
fiber as the boundary.

These measurements may then be fit to predictions obtained
either from the flat-wall theory [Eq. (4) of Ref. [39] and Eq. (4)
of Ref. [12]] or from the cylindrical-wall theory [40]. The
cylindrical-wall theory is improved by adding a geometric
series summation for higher order reflections, as suggested
in Chap. 7 of Ref. [41], to obtain Dr̂ = D0(1 − (a/R0)kr ),
where R0 is the radius of the cylinder, kr is the correction
defined in Eq. (4.5) of Ref. [40], and D0 is the free-space
value of the diffusion coefficient. Similarly, the hindered
diffusion coefficients in the axial and azimuthal directions
can be obtained through Dẑ = D0(1 − (a/R0)kz) and Dθ̂ =
D0(1 − (a/R0)kθ ), respectively (see also erratum [42]).

The diffusion coefficient in the perpendicular direction
(normalized to its bulk value D0 = 0.14 μm2/s) of a 3 μm
sphere is shown as a function of sphere-wall separation from
2.5 μm to 30 μm [Fig. 2(b)]. The mobility of the sphere
decreases as it approaches the wall. The absolute position
offset is obtained by a least-squares fit of the measured
diffusion coefficients to the flat-wall theory [41], which is
the red solid line shown in Fig. 2(b). The blue dashed
line is the cylindrical-wall theory for Dr̂ [40], improved
as described before. The green squares with error bars are
the experimental data. With this method of calibration, the

sphere-wall separations at the four positions shown in Figs. 3–7
are 29.7 μm, 5.8 μm, 4.3 μm, and 2.8 μm, respectively. The
discrepancy of the absolute distance calibration between the
two methods is within 300 nm.

The absolute positions presented in the results section
were obtained by fitting the VACF. The experimental results
agree with the theoretical predictions within the uncertainty
irrespective of the calibration method used.

Both absolute distance calibration methods suggest that
once the sphere-wall separation is larger than about 7 μm, the
curvature of the cylindrical fiber becomes important.

V. RESULTS

The MSDs at four different positions (with sphere-wall
separations of 30 μm, 6.1 μm, 4.6 μm, and 3.1 μm) in the
perpendicular direction to the wall are shown in Fig. 3. The
optical trapping causes the MSD to plateau around τk , the
time scale during which the particle experiences a drift back
towards the trap center, before the purely diffusive regime is
reached. The Brownian motion reaches the ballistic regime at
time scales shorter than both τp and τf (see Sec. II B).

With a large sphere-wall separation of h = 30 μm, the
boundary effects are negligible: as shown in Fig. 3(a), the
experimental data agrees well with both free-space theory and
boundary theory. Figures 3(b)–3(d) show the surface confine-
ment effects appear on the time scale of τw (see Sec. II B). The
MSD is suppressed as the sphere-wall separation decreases.
When τw is comparable to τp and τf , the surface confinement
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FIG. 6. (Color online) Experimental and theoretical thermal force power spectral density (FPSD) at the same positions as in Fig. 3 in
perpendicular direction to the wall. (a) h = 30 μm (Fw = 177 Hz). (b) h = 6.1 μm (Fw = 4.3 kHz). (c) h = 4.6 μm (Fw = 7.5 kHz).
(d) h = 3.1 μm (Fw = 16.6 kHz). The blue circles are the experimental data (Fp = 153 kHz, Ff = 68 kHz, Fk = 833 Hz); the black lines are
the unbounded theoretical predictions [18,21] and the red dashed lines correspond to the bounded theoretical predictions at various sphere-wall
separations.

on the motion of the particle due to boundaries not only occurs
in the diffusive regime, but also in the ballistic regime.

The VACFs, normalized to 〈(v∗)2〉 as given by Eq. (13), in
the perpendicular direction to the wall, are shown in Fig. 4,
for the same positions as in Fig. 3 (with h = 30 μm, 6.1 μm,
4.6 μm, and 3.1 μm). The boundary effects are negligible
with a large sphere-wall separation h = 30 μm, as shown in
Fig. 4(a). Figures 4(b)–4(d) show that the VACF of a particle
near a boundary decreases faster as the sphere-wall separation
decreases. The rapid decay of the VACF reflects the loss of
fluid momentum at the no-slip boundary, which is consistent
with previous numerical simulations [43–45] as well as those
presented in Sec. VI. The time at which the VACF near a wall
starts falling remarkably below that in an unbounded fluid is
related to the time scale τw.

The velocity power spectral density (VPSD) is the Fourier
transform of the VACF, and characterizes the distribution of
power in the fluctuations of the velocity at various frequencies.
The VPSD for motion perpendicular to the wall is shown
in Fig. 5 with the same sphere-wall separations as in Fig. 3
(with h = 30 μm, 6.1 μm, 4.6 μm, and 3.1 μm). The reduced
correlation seen in the VACF close to the wall is seen as
an increased flatness of the velocity PSD at similar time
scales (or corresponding frequency scales). The frequency at
which the VPSD near a wall starts to deviate remarkably from
that in an unbounded fluid is related to the frequency scale
Fw = 1/(2πτw). The suppression of the velocity PSD from
the free-space theory seen at these scales is complemented by

an increase in the VPSD at other frequencies, thus keeping the
area under the curve to 〈(v∗)2〉.

As described in Sec. II C, the thermal stochastic force
acting on a Brownian particle is known to be “white” in
the Einstein-Ornstein-Uhlenbeck model. It is also well known
that the thermal force develops a colored spectrum due to hy-
drodynamic interactions, as has recently been experimentally
verified [18,21]. Surprisingly, the thermal force loses its color
at low frequencies in the presence of a boundary. The thermal
force power spectral density (FPSD) acting on the particle near
a no-slip wall becomes flat at low frequencies (ωτf 
 1 and
ωτw 
 1), as described in Sec. II C. This is believed to be
a result of destructive interference between the incident and
reflected flows, though more study is needed.

The FPSDs in the direction perpendicular to the wall are
shown in Fig. 6, for the same positions as in Fig. 3 (with
h = 30 μm, 6.1 μm, 4.6 μm, and 3.1 μm). Figure 6(a), which
has a large sphere-wall separation of h = 30 μm, shows that
the boundary effects are negligible and verifies the colored
thermal force spectral density. Figures 6(b)–6(d) show that the
FPSDs in the perpendicular direction flatten at low frequencies
and their DC values increase to 4kBT γs/(1 − 9a

8h
) from the

bulk value of 4kBT γs . The increase in the thermal force is
consistent with the increase in the drag force, in accordance
with the fluctuation-dissipation theorem [34]. It is worth noting
that this flattening of the FPSD explains the suppression of a
resonance in the position power spectrum of a particle near a
wall observed in previous experiments [17,18].
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FIG. 7. (Color online) Experimental and theoretical position power spectrum (PSD) at the same positions as in Fig. 3 in perpendicular
direction to the wall. (a) h = 30 μm (Fw = 177 Hz). (b) h = 6.1 μm (Fw = 4.3 kHz). (c) h = 4.6 μm (Fw = 7.5 kHz). (d) h = 3.1 μm
(Fw = 16.6 kHz). The blue circles are the experimental data (Fp = 153 kHz, Ff = 68 kHz, Fk = 833 Hz); the black lines are the sum of
the unbounded theoretical predictions and a constant shot noise and the red dashed lines correspond to the sum of the bounded theoretical
predictions at various sphere-wall separations and a constant shot noise. At high frequencies, the position PSDs flatten at 3 × 10−15 m/

√
Hz,

limited by the shot noise of the detection beam [21,22].

Previous work [17,18] has discussed the behavior of the
position PSD at low frequencies, up to about the trap corner
frequency. They observe a resonance caused by the color of
the thermal force, and its suppression as the distance to the
wall decreases. Our observations suggest that this suppression
is due to the enhanced flatness in the FPSD near a no-slip
boundary.

We complement these works by observing the position PSD
and velocity PSD at frequencies higher than the trapping
frequency. The position PSD for motion perpendicular to
the wall is shown in Fig. 7 at four different sphere-wall
distances. The DC value of the position PSD increases as we
go closer to the wall (an effect that is not evident in previous
work due to normalization), resulting from an increase in
the thermal force at low frequencies, consistent with the
increased Stokes drag coefficient. Observation of this in the
experiment is obscured by low-frequency noise. However,
corresponding to the increased flatness of the thermal force
near the wall, the position PSD decays faster than it would
in free space. We observe this effect, especially when the
particle is close to the boundary. The observation is plagued
by low-frequency noise at larger sphere-wall separations. At
high frequencies, the position PSDs flatten at around 3 ×
10−15 m/

√
Hz, limited by the shot noise of the detection beam

[21,22].

All of the observed statistical properties, namely MSD,
VACF, FPSD, VPSD, and the position PSD, in the presence
of the wall approach the corresponding free-space theories for
time scales much shorter than τw (or frequency scales much
larger than Fw). This is expected, as the numerical simulations
(see Sec. VI) suggest that the vorticity from the wall takes time
on the order of τw to reach the sphere. The inertial effects due
to the boundary, which persist at high frequencies in the form
of an increased effective mass, are too insignificant to discern.

The presence of a no-slip boundary has similar effects
on the dynamics of the particle in the direction parallel
to the boundary, except less pronounced. Thus the motion
of the sphere becomes anisotropic. For brevity, we show
boundary effects in the parallel direction only for a sphere-wall
separation of 2.9 μm. We acquire and analyze the data in the
parallel direction in the same way as in the perpendicular
direction. The MSD, VPSD, VACF, and FPSD in the parallel
direction are shown in Fig. 8.

VI. NUMERICAL SIMULATION

We study the fluid dynamics around a sphere both in free
space and near a no-slip wall numerically using COMSOL
Multiphysics (COMSOL Inc., Palo Alto, CA) with a 2D
axisymmetric configuration [5,46]. The fluid in this simulation
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FIG. 8. (Color online) Experimental and theoretical Brownian dynamics in the parallel direction with a sphere-wall separation of 2.9 μm.
(a) MSD. (b) VPSD. (c) Absolute VACF (normalized to 〈(v∗

‖ )2〉 = kBT /m∗
‖). (d) FPSD. The blue circles are the experimental data; the black

lines are the unbounded theoretical predictions and the red dashed lines correspond to the bounded theoretical predictions.

has the same properties as water and the diameter of the
sphere is 3 μm. Figure 9 shows the longitudinal section
of Stokes flow field around a moving sphere both in an
unbounded and bounded fluid. The white half circle represents
the sphere, which is moving downwards at 1 μm/s. The
pressure field, shear stress magnitude field, velocity magnitude
field, and vorticity field (azimuthal component) are plotted in
a 20 μm by 20 μm view. The left edge represents the axis of
cylindrical symmetry. The fields around the free-space sphere

have up-down symmetry (antisymmetry in the pressure field),
while the wall (the purple solid line) breaks this symmetry.
In the bounded case, the sphere-wall separation h is 3 μm.
The fields above the sphere both in the bounded case and
unbounded case are similar. The fields below the sphere are
significantly altered by the wall. The fluid builds up much
higher pressure and shear stress, which is responsible for the
faster-decay VACF of a bounded sphere. The same conclusion
has been drawn for a sphere in a confined fluid between two

FIG. 9. (Color online) Fluid fields of steady Stokes flow near a sphere both in free space and bounded fluid (a) pressure field. (b) Shear
stress magnitude field. (c) Velocity magnitude field. (d) Vorticity field (azimuthal component). The top four figures are for the unbounded
case and the bottom four figures are for the bounded case. The white half circle represents the sphere (3 μm diameter) and the left boundary
corresponds to the axis of cylindrical symmetry. The purple solid lines represent the no-slip wall and all other boundaries are open boundaries.
The sphere is moving downwards at 1 μm/s. In the bounded case, the sphere is at position with a sphere-wall separation of 3 μm.
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FIG. 10. (Color online) Study of the onset of boundary effects by observing the vorticity field (azimuthal component). The sphere (purple
half circle, 3 μm diameter), initially at rest, receives a 1-μs impulse in the downward direction, with an acceleration of 2 m/s2 in the first 0.5 μs
and a deceleration of 2 m/s2 in the second 0.5 μs. Unbounded case (a) vorticity field at t = 1 μs. (b) Vorticity field at t = 5 μs. (c) Vorticity
field at t = 10 μs. (d) Vorticity field at t = 20 μs. Bounded case with the sphere initially at a sphere-wall separation of 6 μm. (e) Vorticity field
at t = 1 μs. (f) Vorticity field at t = 5 μs. (g) Vorticity field at t = 10 μs. (h) Vorticity field at t = 35 μs. The left edge is the axis of cylindrical
symmetry, and top and right boundaries are open boundaries. The white areas are out-of-range clippings: the white areas should be redder than
their surrounding color. The bottom edge is an open boundary in the unbounded case and a no-slip boundary in the bounded case.

flat walls by numerical simulation [43]. The fluid flow has a
significant transverse component parallel to the wall, due to the
presence of the impermeable boundary. Vorticity is generated
not only on the surface of the sphere but also on the surface of
the wall but with opposite sign.

Conventionally, the boundary effects are assumed to start
becoming important around τw, which is the time scale over
which the vorticity generated on the surface of the sphere (or
the wall) propagates across the sphere-wall separation. It turns
out that τw is just a rough estimation. Our data (both in VACF
and MSD) starts to deviate from the free-space theory well
before τw. We study the onset of boundary effects by observing
the dynamics of the vorticity field (azimuthal component), as
shown in Fig. 10. Initially, both the 3 μm diameter sphere and
fluid are at rest. At t = 0 the sphere receives a 1 μs downwards
impulse accelerating with a constant acceleration of 2 m/s2

for 0.5 μs and then decelerates with a constant deceleration
of 2 m/s2 to a stop in another 0.5 μs. The vorticity field
(region shown is 40 μm × 40 μm) shows up-down symmetry
in the unbounded case, which is plotted in the top half
[Figs. 10(a)–10(d)]. In the bounded case [Figs. 10(e)–10(h)],
the sphere moves in the same way except near a no-slip wall
with a sphere-wall separation of 6 μm. The wall starts to
break the vorticity field symmetry in a visible way around
5 μs, which is well before τw = 36 μs. It must be noted that in
addition to vorticity diffusion, there are inertial effects of the
boundary at much shorter time scales due to the propagation
of sound waves. To the approximation that the fluid is incom-
pressible, these effects occur almost instantaneously. However,

these effects are difficult to discern in our experimental
work.

VII. DISCUSSION

A Brownian particle located near a flat wall provides a
model system to study the behavior of more complex systems
whose boundaries can be modeled as effective walls, such as
blood vessels, cell membranes, and a variety of microfluidic
geometries. Our techniques will find broad applications in
precise biophysical measurements [8,9], and in particular are
capable of significantly speeding up the technique of thermal
noise imaging [47]. Using a micro- or nanosphere as a remote
sensor to measure the distances to nearby boundaries in porous
media can potentially map out boundary contours and build a
3D microscope. The theory of boundary effects on Brownian
motion near full-slip boundaries predicts significant qualitative
differences [36]. Future work will study the effects of partial
and full slip boundaries [36,48,49] on Brownian motion with
these techniques.
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