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We study theoretically the interference of the resonance fluorescence from two atoms coupled to an

optical cavity mode.

Atom-atom correlations induced by the cavity alter the fringe visibility, which

provides a measurement of collective atomic behavior. We use quantum trajectories to explain the loss
of mutual coherence for strong excitation and propose a phase-selective measurement to partially restore
the coherence. A “which-path” explanation for the loss of coherence is also discussed.

PACS numbers: 42.50.Ar, 42.50.Dv

The scattering of light by an atom driven near reso-
nance is one of the most elementary physical processes.
Despite the outward appearance of simplicity, however, a
remarkably complex phenomenon was revealed by stud-
ies of the spectrum and statistics of the emitted radia-
tion [1]. Given the attention the subject subsequently
received, it is perhaps surprising that the coherence prop-
erties of resonance fluorescence still have not been stud-
ied fully experimentally. For example, for many years
no experiments were performed on the mutual coher-
ence of two radiating atoms. Here, first-order coherence
must be measured using interference, as in the Young
two-slit experiment, which requires the isolation and lo-
calization of the atoms—clearly a major experimental
challenge. With recent advances in ion trapping technol-
ogy [2], such experiments are now possible and a Young
two-slit experiment with trapped and laser-cooled ions
was recently reported [3]. Based on these first results it
is now important to study first-order coherence in differ-
ent excitation regimes. For example, for weak excitation
the scattering is predominantly elastic and the interfer-
ence fringe visibility should be unity (to the extent that
ion motion can be neglected). Under stronger excitation,
inelastic scattering increasingly occurs and the interfer-
ence pattern is expected to disappear. In this Letter we
present some ideas concerning the latter regime. We re-
port three main results: (i) We analyze a modified version
of the two-slit experiment in which the atoms are cou-
pled through a mode of the field in an optical cavity and
propose that Young’s interference can be used to detect
the collective character of the emission into the cavity
mode. (ii) We present a quantum trajectory analysis [4]
of the loss of visibility with increasing excitation strength
in free space. The analysis points to a method for par-
tially restoring the visibility in a cavity by conditioning
its measurement on the detection of photons transmit-
ted through the cavity mirrors. (iii) We analyze the role
of “which-path” information on the loss of visibility in
free space. We show that which-path information is pro-
vided by the internal state (dressed state) of the atoms; a
strongly coupled cavity can track the internal state [as a
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quantum nondemolition (QND) detector] so that a con-
ditioned measurement restores the full visibility.

A model suitable for addressing all of these issues
consists of a pair of two-state atoms, coupled to a mode
of an optical cavity, and driven by coherent light of
amplitude £. The atoms, cavity mode, and driving field
are all on resonance. One detector, A (Fig. 1), records
the interference pattern and a second detector, B, is used
to make conditioned measurements. For simplicity we
assume that the atoms couple to the cavity mode with the
same coupling constant g = (u/A)\/hiw/2€yV, where u
is the dipole moment and V is the cavity mode volume.
The atoms are at rest, separated by a distance s > A,
where A is the optical wavelength; thus, in the absence
of the cavity they radiate independently. <, is the cavity-
inhibited spontaneous emission rate out the sides of the
cavity and 2« is the photon decay rate from the cavity
mode. The model is described by the master equation

p=[E+gah(o +3)— €+ ga)o: + 24).p]
+ kQapat — atap — pata)
+ (v1/2)R6-pb+ — 6+6_p — pb+6-)
+ (/23 p2s = 3.3 p - p3:30), ()

where p is the density operator (in the interaction picture),
6+ (2+) and 6— (%) are dipole raising and lowering
operators for the first (second) atom, and at and a are
creation and annihilation operators for the cavity mode.
Free-space conditions [3] are obtained with g = k =0
and y; = v, where v is the Einstein A coefficient.
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Schematic representation of the physical model.
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The electric field operator at detector A is proportional
to the sum of the atomic dipole operators, and the mean
intensity of the interference pattern may be written as

I(x) = (G+6- + 3.3) + (6435 + Hecosh,
2)

where 6 = 27xs/AR; R > s is the distance from the
atoms to the detector, and x is a coordinate which locates
the detector along a line perpendicular to the propagation
direction of the scattered light. The visibility calculated
from Eq. (2) is

V=(6:35_ + He)/ (o 6- +32.3). (3

In free space the atoms radiate independently and the
average (0 +2_) in the numerator of Eq. (3) may be
factorized. The steady-state solution to standard optical
Bloch equations then gives

V=(6:)CE)/ps =[1+8C/yT" &

where p. is the excited state probability for each atom.
The visibility is unity for weak excitation and decreases
monotonically with increasing excitation strength.

When coupled through the cavity mode the atoms do
not radiate independently and the factorization leading to
Eq. (4) does not hold. The visibility (3) then provides
a measure of the atom-atom correlations. We have
calculated the visibility in steady state by solving the
master equation (1) numerically using the states |£, 2, n)
as a basis, where ¢ = + or — (E = + or —) denotes the
state of the first (second) atom, and » is the number of
photons in the cavity mode. All results were obtained for
steady-state photon numbers less than unity, permitting a
truncation of the basis at n = 2.

The results are plotted in Fig. 2 (open circles and
squares). Figure 2(a) shows the visibility as a func-
tion of £/, for direct comparison with Eq. (4) (dashed
curve). In Fig. 2(b) the visibility is plotted as a func-
tion of £'/y;, where y; = y; + 2g%/k and £ = £'{1 +
Bl1 + 8" /v1)*1™'}; B = 2g%/yix. This rescaling of
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FIG. 2. Fringe visibility as a function of driving field am-
plitude for y;/«x = 0.2. Circles (squares) mark results for
g/k = 0.283 (0.4); open (filled) markers show results obtained
without (with) the phase selection of Eq. (7). The dashed
curves are plotted from Eq. (4) (see text).
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the driving-field axis is appropriate in the bad-cavity limit
(2k/7y; — ). It accounts for two cavity effects which
are not related to atom-atom correlations: cavity enhance-
ment of the spontaneous emission rate (y; — y}), and re-
duction of the mean field amplitude driving each atom
due to radiation from the neighboring atom (£ — £’). In
the absence of atom-atom correlations these effects lead
to Eq. (4) with £/y replaced by £'/vy; [upper dashed
curve in Fig. 2(b)]. Departures from this behavior pro-
vide a measure of the atom-atom correlations. It may
be shown (for 2« /y; — ) that with the correlations in-
cluded, Eq. (4) holds with £/ replaced by £/y;. Putting
B = 1 in this expression sets an upper bound on the cor-
relation effects [lower dashed curve in Fig. 2(b)].
Consider now a quantum trajectory analysis of the
scattering process in free space. In quantum trajectory
theory [4], the intensity 7(x) is calculated as the time
average of the instantaneous, conditioned intensity

I(x,1) = p+(t) + Po(t) + 2z(t)Z(t) cosb,  (5)

where pi (1) = (Y(t)|6+6-|.(2)) is the conditioned
probability for the first atom to be in the excited state and
z(t) = (Y (1)|6-|p.(2)) is the (real) conditioned dipole
expectation of the first atom [P (¢) and Z(z) are similarly
defined]; |¢.(7)) is the conditioned state—a pure state,
conditioned on the photoelectric counting records of two
imaginary detectors, one monitoring the imaged radiation
from each of the atoms. [Since detector A collects
a negligible fraction of the scattered light, it may be
neglected when conditioning the state.]

The decrease in visibility with increasing excitation
strength is explained by the evolution of the conditioned
dipole expectations z(¢) and Z(z). As illustrated in Fig. 3,
each grows and collapses back to zero in repeated cycles
as the scattering process proceeds. Because the collapse
times are statistical (and independent) the cycles are not
in phase. For weak excitation, however, z(¢) and Z(r)
are both negative, since the conditioned Bloch vectors
never reach the north pole before suffering a collapse.
For sufficiently strong excitation, on the other hand, Rabi
oscillations carry the Bloch vectors over the north pole.
It is then possible to find one in the eastern hemisphere
and the other in the west. In this configuration, z(z) and
Z(t) have opposite signs and the conditioned interference
pattern [Eq. (5)] is phase shifted by «. Through this
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FIG. 3. Quantum trajectory evolution of the first atom in
free-space resonance fluorescence: £/y = 0.2 (heavy line) and
£/y = 1.0 (light line). The photon emission times are marked
by dots. The Bloch sphere illustration shows the first four
collapses along the trajectory for £/y = 1.0.
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mechanism the visibility of the time average of I.(x, 1) is
reduced. (The magnitude of the conditioned interference
pattern fluctuates along with the phase. Both fluctuations
reduce the time-averaged visibility.)

This explanation provides more than a pleasing picture.
It directs us to a measurement scheme in a cavity which
partially restores the visibility. The intuitive logic is
as follows: The field inside the cavity will be larger
(smaller) when z(¢) and Z(¢) are in phase (out of phase).
Let us therefore record a count at detector A, only if it is
preceded by a count at detector B. In this way we select
against times when the conditioned interference pattern is
phase shifted by 7 —the visibility should increase.

We have calculated visibilities numerically from the
phase-selected interference pattern

T T
Is(x)=[0 dtlc(x,t)S(t)/[O dtS@), (©6)

where S(r) accomplishes the selection; it is unity if a cav-
ity emission occurred in the interval (r — 2«1, ¢] and
zero otherwise. I.(x,t) is given by Eq. (2) with the quan-
tum expectations taken with respect to the conditioned
state |i.(t)) rather than the density operator p. The filled
circles and squares in Fig. 2 show the phase-selected visi-
bilities; they are larger by as much as a factor of 4.

To show how our intuitive logic is realized by the quan-
tum trajectory, the evolution of z(#) and Z(z) is illustrated
in Fig. 4, with the cavity emission times marked above
the figure and the times of the atomic scattering events
beneath. Note that, contrary to the intuitive logic, the
logic of the quantum trajectory is argued in an a posteriori
fashion: Conditioned on a cavity emission, the quantum
trajectory evolution works to bring the conditioned dipole
expectations into phase and establish the correlation we
expect; the dipole expectations are not in phase before the
cavity emission.

Our final topic is the role of which-path information,
where we begin once again by considering the free-space
case: Is the loss of visibility predicted by Eq. (4) re-
quired, quantum mechanically, because which-path in-
formation is available, or do the quantum trajectories of
Fig. 3 merely describe a prosaic dephasing process? The
answer to this question is surprisingly involved. It is
complicated by the fact that strong-field resonance fluo-
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FIG. 4. Typical evolution of the conditioned dipole expecta-
tion values for £/y; = 1.0, y;/xk = 0.2, and g/x = 0.4.

rescence is not a one-photon scattering process, with a
known initial state for the photon and scatterers. Most
importantly, the state of the atoms prior to each scattering
event is not known. For weak excitation the following is
known: to a good approximation it is the atomic ground
state—the state to which the atoms return after a scatter-
ing event. For strong excitation, however, the state of the
atoms depends on the history of a multiphoton scattering
process in a way we now hope to make clear.

The possibility of acquiring which-path information lies
with the fact that detector A collects only a very few of
the scattered photons. Perhaps which-path information
can be obtained from the photons that are not collected
by detector A. The clearest picture is obtained in the
strongly saturated regime where the visibility given by
Eq. (4) is essentially zero. It is convenient to introduce
the dressed states |«) (|U)) and |I) (|L)), eigenstates of the
Hamiltonian i i€(6—6+) [iRE(2- — 24)] with energies
+# and —AL. Writing

6. =—ia—1+d, —d)/2,
S.=—i(U-L+ Dy -Dy2, (7
with &t = u)(ul, T= 1D, d- = |1)ul, d+ = |lw)(l,

and similar definitions for U, L, D_, and D, we may
then express the conditioned intensity (5) in the form

4l (x,t) = Ku, Ul[&t + dv + e (U + D))
+ KLLIT + d- + e %L + D)y ()N

+ Ku, LI[a + dy — e "L + D)y ()

+ KLUIT +d- — e (U + D))l ).

(8)

This result is written as a transition probability summed
over the final states |u, U), |I,L), |u, L), and |/, U). The
initial state |.(¢)) is a superposition of the same four
states, three of which contribute nonzero amplitudes in
each term of Eq. (8). Thus, there are 12 transitions to
consider when a photon is recorded by detector A.

The situation is complicated by the fact that the transi-
tion amplitudes can interfere. The difficulty is overcome
by making the secular approximation. For strong exci-
tation, the |u, U) and |l, L) components of |i.(2)) oscil-
late rapidly at the frequencies +2¢& and —2&. Dropping
these terms removes all interferences except the one be-
tween |u, L) and |I, U). This, also, is negligible because
independent-atom scattering dominates—because coher-
ence between |u,L) and |l,U) is only created when a
count is recorded at detector A. Thus we obtain

4I.(x,t) =[O, y(®) + O,.(H]2 + |1 + P
+[0,.() + O,010]2 + 1 — ™),
©

where the subscripts refer to the initial state of the
atoms, now a definite dressed state—®;5 2 (r) = 1 when
|g.(r)) = |8, A) and zero otherwise.
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The 12 possible transitions in the internal state of
the atoms, given that a photon is recorded at detector
A, are identified in Eq. (9) as follows: At each instant,
one of the four functions @sa(r) is unity and the
others are all zero. For each of the four possibilities
three different transitions can occur; for example, when
®,y(t) = 1 the transitions |u,U) — |u,U), |u,U) —
[1,U), and |u,U) — |u,L) can occur. The terms 2 +
[1 + e 2 and 2 + |1 — e~ %], which multiply the
®;.a(2) in Eq. (9), are proportional to the counting rates
at detector A due to the three transitions. They are
derived by working forward from Eq. (8) to Eq. (9). The
derivation unambiguously assigns a rate to each individual
transition—|1 + e~?|? to the transitions |u, UY — |u, U)
and |[,L) — |I,L); |1 — e |2 to the transitions |u, L) —
lu,L) and |I,U) — |I,U); 1/2 to each of the remaining
transitions. This association between counting rates and
transitions is of central importance. From it we see that
detector A actually records three fringes, one on top of
the other, each correlated with a particular change in
the internal state of the atoms: (I) a 100% visibility
fringe with maximum at § = 0 correlated with |u, U) —
lu,U) or |1, Ly — |I,L); (II) a 100% visibility fringe with
maximum at @ = 7 correlated with |u,L) — |u,L) or
|I,Uy — |l,U); (ll) a zero visibility fringe correlated
with the remaining transitions, all of which change the
internal state of the atoms. There are then two reasons
why the net visibility is zero: (i) the 100% visibility
fringes . of classes I and II cancel, and (ii) the fringe of
class III must have zero visibility because which-path
information is available by monitoring the change in the
internal (dressed) state of the atoms.

To conclude we show how the internal state of the
atoms might be monitored, allowing the counting record
at detector A to be sorted and the separate fringes to be
recovered. Our scheme uses the cavity mode as a QND
detector of the collective dressed-state inversion

M) = el — 1+ T = Dlye(0)/2;  (10)

M(t) = +1, 0, and —1 when |¢.(¢)) is |u, U), |u,L) or
|l,U), and |I, L), respectively. Equation (7) shows that
M(z) is equal to the conditioned Y-quadrature amplitude
of the collective atomic dipole. It is therefore correlated
with the amplitude of the field radiated into the cav-
ity and can be measured by homodyne detection of the
field amplitude Y (r) = i{y.(0)|(@a — at)|y.(1)) at detec-
tor B. Under strong-coupling conditions (g > « > vy)
the scheme works as an analog of a spin-1 Stern-Gerlach
apparatus, where spin flips occur each time a class III
scattering event takes place. [Note that the results of
Fig. 2 do not require the strong-coupling limit. The phase
selection of Eq. (6) may, however, be applied in this
limit, where it rejects all scattering events with initial state
|u, L) or'|{, U) and hence recovers a 50% visibility in the
strongly saturated regime.]
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FIG. 5. A quantum trajectory illustrating the QND detection
of the collective inversion for £/y; = 100, y;/xk = 0.2, and
g/k = 4. The detection bandwidth is T'/x = 5.0.

The quantum trajectory analysis of the Stern-Gerlach
analog is described elsewhere [5]. Its application to
the present situation is illustrated by Fig. 5. The figure
shows Y(r), and the corresponding photocurrent i(z)
recorded by a finite bandwidth homodyne detector. The
switching between dressed states appears in both. Each
switch identifies a class III scattering event. Scattering
events of classes I and II do not initiate a switch and
cannot be identified in i(z); although they are evident in
Y(r) as spikes marking the brief periods of decoherence
which “decide” the class of each scattering event. (Note
that Fig. 5 was produced without making the secular
approximation. The realization of a distinct type for each
scattering event is therefore a dynamical consequence of
the measurement model; it is not inserted by hand.)

By correlating the counts at detector A with the
record i(z), the fringes of classes I, II, and III can be
separately displayed. With regard to the class III fringe,
in this scheme i(¢) does not, in fact, provide which-path
information; it merely identifies the scattering events for
which this information is, in principle, available.. To
actually obtain the which-path information one might
use two cavities, one coupled to each of the atoms.
The analog is then with two spin-1/2 Stern-Gerlach
apparatuses. Each spin flip is recorded by one apparatus
and not the other, and hence is assigned to a particular
atom.
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