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We observe quantum tunneling in the center of mass motion of ultra-

cold atoms in an accelerating one-dimensional optical potential. This potential

is formed by two counter-propagating laser beams where the frequency of one

is offset from the other and ramped in time. We study the tunneling of atoms

from the trapped state to the continuum, and observe an exponential decay

in the number of atoms that remain trapped as a function of the interaction

time, for sufficiently large values of acceleration. Decay rates are compared

with Landau-Zener tunneling theory and with numerical simulations. We find

that the measured tunneling rates agree well with the quantum numerical sim-

ulations given the uncertainty in determination of the well depth. Both the

experimental measurement and the quantum simulations are found to oscil-

late around the Landau-Zener predictions, and these oscillations are due to

quantum interference. The results presented here are the first observations of

tunneling in atom optics.
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Chapter 1

Introduction

Tunneling in center of mass motion of particles is a fundamental process in

quantum mechanics and has been investigated both theoretically and exper-

imentally in many contexts. In order for the probability of tunneling to be

significant, potential barrier heights and length scales must be small. This

condition restricts the classes of systems that may exhibit significant tunnel-

ing. Solid state systems are quite often good candidates for tunneling processes

because of small length scales and electron mass, and many observations have

been made in this area. However, these systems are too complicated to make

an absolute comparison with theory and many calculations are highly depen-

dent upon the particular models used. In particular, solid state systems have

lattice vibrations, multiparticle interactions, and impurities that can obscure

the quantum mechanical tunneling process and make absolute measurements

of rates very difficult.

In the past two decades research in laser cooling and trapping of atoms

has advanced a new area of physics called atom optics. Since atom optics sys-

tems can involve low atomic kinetic energies and short length scales, one might

expect that tunneling would be an important process under these conditions.

Until now, however, there has not been an observation of tunneling in atom

1
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optics. Tunneling could appear, for example, in a system of atoms confined in a

stationary near-detuned optical lattice. The confinement of atoms in the lattice

will ultimately be limited by tunneling, and there have been efforts to observe

this [1]. Direct observation of tunneling in this system is difficult since loss

can also result from spontaneous emission recoil out of the lattice. Addition-

ally, observation of atoms tunneling in these systems requires them to tunnel

through many wells to leave the lattice, so the effective tunneling probability

is small.

We have been able to observe tunneling in an atom optics system which

does not have these complications. Our approach is to launch laser-cooled

atoms in a far-detuned, accelerating optical lattice and observe atomic tunneling

from trapped states to the continuum. This study arose from our efforts to

develop a cold atomic beam for interferometry. Our system does not have

significant spontaneous emission and only requires atoms to tunnel through a

single barrier. Additionally, the high degree of experimental control has enabled

a quantitative comparison with theory. The results presented here are the first

observations of tunneling in atom optics.

Recently, there have been several experiments involving the interaction

of ultra-cold atoms with a standing wave of light (see for example [2, 3, 4, 5, 6,

7]). In these cases, the sources of ultra-cold atoms are typically from magneto-

optic traps (MOTs) which can be used to trap and cool relatively large numbers

of atoms to very slow velocities [8]. In the current experiment we accelerate

the standing wave and measure the transfer of momentum from the light to

the atoms. This launching process results in a portion of the atoms accelerated

with the standing wave to higher velocities. The number of atoms that are
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launched depends on the well depth of the potential, the initial energies of

the atoms, and the acceleration. Classically, we can consider the accelerated

atoms as point-like particles that are trapped in the wells and move with them.

Classical, in this case, means that the well depth is relatively large compared

to the atoms’ energy. There is a maximum classical acceleration above which

the atoms will not be trapped in the wells but will simply ride over them. At

accelerations below this classical acceleration it is possible for atoms that were

initially trapped in the wells to remain trapped. These atoms will be launched.

Quantum mechanically, though, the atoms can tunnel from the trapped

state to the continuum. We find that the acceleration where the atoms begin

to tunnel from the wells is much lower than the maximum classical accelera-

tion. This effect will limit the number of atoms that can be launched at high

accelerations much more than predicted classically. The number of atoms that

can be accelerated is important if the atomic accelerator is to be used as the

source for an atomic interferometer. For the experiment described in this work,

we measure the loss rate of the atoms from the accelerating wells. We find that

the number of atoms in the wells decays exponentially in time and this allows

a characterization in terms of a decay constant. This constant depends on the

acceleration and the well depth. Qualitatively from theory, we understand that

the loss rate from tunneling should increase with lower well depth and higher

accelerations. Classically, the loss rate is only dependent on acceleration above

the classical value where all the atoms are lost.

The current experiment measures decay rates at low well depths where

quantum mechanical tunneling is significant. In this case the quantum dy-

namics are described best by the band picture used previously in solid state
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physics problems. We made careful and detailed measurements of decay con-

stants and compared them with Landau-Zener theory and also with quantum

simulations. We found good agreement between the simulations and the exper-

iment. Landau-Zener theory is approximately correct but lacks some important

features present in this system.

Future extensions of these measurements are to study the short-time

tunneling behavior that has been predicted to deviate from an exponential

decay [9, 10, 11], and to use the accelerator for interferometry.



Chapter 2

Theoretical Framework

The tunneling experiments described here rely on an interaction of an electro-

magnetic field with an atom. In this particular experiment, the atoms interact

with an optical standing wave light field created by two counter-propagating

traveling waves. This interaction can be analyzed using the dipole force. This

analysis involves an approximation which leads to an effective Hamiltonian that

has the internal degrees of freedom of the atom integrated out. The dipole force

is the standard technique of analysis for many atom optic problems and here

we restrict our attention to the case of the accelerated standing wave. The

effective Hamiltonian that results describes only the center of mass motion of

the atom and has two limiting regimes, deep wells and shallow wells.

2.1 Dipole Force Interaction

The electric field created by two counter-propagating traveling waves with one

offset in frequency relative to the other is given by (in one dimension)

~E(x, t) = ŷE0 cos(ωLt + kLx) + ŷE1 cos((ωL −∆ω)t− kLx)

= ŷ
1

2
[E0e

i(ωLt+kLx) + E1e
i((ωL−∆ω)t−kLx) + c.c.]. (2.1)

5
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The standing wave is along the x-axis and is linearly polarized along the y-

axis. kL and −kL are the wave vectors of the beams and ∆ω is the frequency

offset between the two beams. We consider a two-level atom interacting with

an external electric field [13, 14, 15].

Ĥ(x, t) = Hcm + Hinternal + Hinteraction (2.2)

Where

Hcm =
p̂2

2M
(2.3)

is the center of mass kinetic energy, p is the center-of-mass momentum of the

atom of mass M ,

Hinternal = h̄ω0|e〉〈e| (2.4)

is the internal energy Hamiltonian of a two-level atom, and the interaction

potential between the atom’s dipole ~d and the field in the dipole approximation

is

Hinteraction = ~d · ~E

= −deg(|e〉〈g|eiω0t + |g〉〈e|e−iω0t)|E|

= −deg
2

[E0σ
+e−ikLxei(ω0−ωL)t + E1σ

+e+ikLxei(ω0−ωL+∆ω)t

+E0σ
−eikLxei(ωL−ω0)t + E1σ

−e−ikLxei(ωL−ω0−∆ω)] (2.5)

after discarding terms with e±i(ωL+ω0)t in the rotating wave approximation.

Here σ± are Pauli spin-raising and spin-lowering operators. deg is the resulting

dipole constant from the ground to the excited state. These parts yield the

Hamiltonian
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Ĥ(x, t) =
p̂2

2M
+ h̄ω0|e〉〈e|

− deg
2

[E0σ
+e−ikLxei(ω0−ωL)t + E1σ

+eikLxei(ω0−ωL+∆ω)t

+ E0σ
−eikLxei(ωL−ω0)t + E1σ

−e−ikLxei(ωL−ω0−∆ω)]. (2.6)

The center of mass wave function is separable so we consider only its motion

along the x-axis. We can represent the atomic state as

Ψ(x, t) = Ψg(x, t)|g〉+ Ψe(x, t)e−iωLt|e〉. (2.7)

Applying Schrödinger’s equation

ih̄
∂

∂t
Ψ = ĤΨ (2.8)

yields the following equation of motion

ih̄(
∂Ψg

∂t
|g〉 +

∂Ψe

∂t
e−iωLt|e〉 − iωLΨee

−iωLt|e〉) =

− h̄2

2M

∂2Ψg

∂x2
|g〉 − h̄2

2M

∂2Ψe

∂x2
e−iωLt|e〉

+ h̄ω0Ψee
−iωLt|e〉

− deg
2

[E0e
−ikLxei(ω0−ωL)t + E1e

ikLxei(ω0−ωL+∆ω)t]|e〉Ψg

− deg
2

[E0e
ikLxe−iω0t + E1e

−ikLxe−i(ω0−∆ω)]|g〉Ψe. (2.9)

We define the detuning from resonance as δL = ω0 − ωL. Operating on Equa-

tion 2.9 with 〈g| from the left results in

ih̄
∂Ψg

∂t
= − h̄2

2M

∂2Ψg

∂x2
− deg

2
[E0e

i(kLx−ω0t) + E1e
−i(kLx+ω0t+∆ωt)]Ψe. (2.10)

Similarly we operate on Equation 2.9 with 〈e| from the left and get

ih̄
∂Ψe

∂t
= − h̄2

2M

∂2Ψe

∂x2
−deg

2
[E0e

i(ω0t−kLx)+E1e
i(kLx+ω0t+∆ωt)]Ψg+h̄δLΨe. (2.11)
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Sufficiently large detuning δL allows us to neglect spontaneous emission and to

simplify these equations by adiabatic elimination of the excited state amplitude.

By setting ∂Ψe
∂t

= 0 and ∂2Ψe
∂x2 = 0, Equation 2.11 becomes

Ψe =
deg
2h̄δ

[E0e
i(ω0t−kLx) + E1e

i(kLx+ω0t+∆ωt)]Ψg. (2.12)

If we substitute Equation 2.12 into Equation 2.10 we obtain

ih̄
∂Ψg

∂t
= − h̄2

2M

∂2Ψg

∂x2
−

d2
eg

4h̄δ
[E2

0 + E2
1 + 2E0E1 cos(2kLx−∆ωt)] (2.13)

resulting in the Hamiltonian

Ĥ =
p̂2

2M
−

d2
eg

4h̄δ
[E2

0 + E2
1 + 2E0E1 cos(2kLx−∆ωt)]. (2.14)

Or equivalently, ignoring a constant potential offset we obtain

Ĥ =
p̂2

2M
−

d2
eg

2h̄δ
[E0E1 cos(2kLx−∆ωt)]. (2.15)

The end result is that the effective interaction Hamiltonian is a sinusoidal

potential moving at a velocity v = ∆ω/2kL and we identify the well depth V0

as

V0 =
E0E1d

2
eg

2h̄δ
. (2.16)

We have derived in detail the interaction of an atom with the light field using

the dipole force approximation to remove the internal degrees of freedom of

the atom. Qualitatively we may note that the main result of the dipole force

approximation is that the center of mass of the atom experiences a potential

proportional to the gradient in the intensity of the light [13]. From this we can

complete a simple analysis of the interaction as follows.
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Consider again two counter-propagating traveling electromagnetic waves

added together each with wave vector kL = 2π/λ where λ is the laser wave-

length and offset in frequency ∆ω.

~E = ~E0e
i(ωt− ~kL·~x) + ~E1e

i((ω−∆ω)t− ~kL·~x) (2.17)

This leads to the intensity of

|I | = ~E∗ ~E

= E2
0 + E2

1 + 2E0E1 cos(∆ωt− 2kLx). (2.18)

The velocity of the resulting standing wave is given according to v =

∆ω/(2kL). In the frame moving at v compared to the laboratory, the nodes of

this standing wave appear stationary. The force that the center of mass of the

atom experiences is proportional to the spatial gradient of the intensity of the

light field given by

F ∝ dI

dx
∝ cos[2kL(vt− x)]. (2.19)

This is a sinusoidal potential where the nodes are traveling at a velocity v. If

the velocity of this standing wave is changed in time, the nodes experience an

acceleration proportional to the time derivative of the velocity. The simplest

example is a linear ramp in frequency giving a constant acceleration of the wells.

Under this accelerating potential, a trapped point-like atom will be accelerated

along with the wells. For sodium (λ=589 nm) a frequency offset of 100 kHz

gives a velocity of 3 cm/s which is one photon recoil. If we apply a linear ramp

on the frequency of 10 kHz/µsec for example we obtain an acceleration of 3000

m/s2. The maximum acceleration applied to the atoms is not limited by the

equipment switching time but is limited by the physics of the interaction. In
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general, the physics can be categorized into two limiting regimes, deep wells

and shallow wells. The deep well limit has negligible loss due to quantum

mechanical tunneling. However, loss can occur from classical mechanics at

high accelerations even in deep wells. Weaker wells involve loss due to quantum

mechanical tunneling that becomes significant at much lower accelerations than

the deep well case.

2.2 Deep Well Limit

As was shown in Section 2.1 using the dipole force approximation we have an

effective Hamiltonian in the form of a standing wave with nodes moving at a

velocity given by ∆ω/2kL. We now impose a linear ramp on the frequency

difference to give a constant acceleration to the nodes of the standing wave.

Ĥ =
p̂2

2M
− V0 cos(2kL(x− a

2
t2)). (2.20)

Where a = 1
2kL

d(∆ω)
dt

. We first transform Equation 2.20 to a new form. We

can rewrite the potential in the frame of reference of the atom using generating

functions. We rewrite

H(x, p, t) =
p2

2M
+ V (x− v(t), t) (2.21)

in new coordinates

H̄(x̄, p̄, t) = H(x, p, t) +
∂F2(x, p̄, t)

∂t
(2.22)

where

x̄ =
∂F2(x, p̄, t)

∂p̄

p =
∂F2(x, p̄, t)

∂x
(2.23)
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Figure 2.1: In the limit of deep wells, some of the atoms are trapped in the
wells and are accelerated with the standing wave. Initially, the atoms in the
MOT are spatially spread over many nodes and spread with a Gaussian velocity
distribution. Some atoms have total energy less than the well depth and can
be trapped and accelerated.
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defining the transformations as

x̄ = x− f(t) (2.24)

p̄ = M ˙̄x (2.25)

giving

p̄ = p−Mf ′(t)

∂F2

∂p̄
= x− f(t)

∂F2

∂x
= p̄ + Mf ′(t)

F2 = p̄x− p̄f(t) + Mxf ′(t)

(2.26)

H̄(x̄, p̄, t) =
p2

2M
+ V (x̄, t) + M(x̄)f ′′(t) + Mf(t)f ′′(t) +

M

2
[f ′(t)]2. (2.27)

Now we set f(t)=1
2
at2 and V = V0 cos(2kL(x− f(t)))

H̄(x̄, p̄, t) =
p̄2

2M
+ V0 cos(2kLx̄) + Ma2t2 + Max̄ (2.28)

So in the frame of reference of the atom, the potential can be rewritten by

subtracting the term Ma2t2, which does not effect the dynamics. The resulting

potential is given by

V0 cos(2kLx) + Max. (2.29)

Although the Schrödinger equation could be solved for all cases, in the

limit of deep wells, one can understand the interaction of the atoms with the

light more simply. This limit pertains to a situation where the atoms can be

pictured as structureless particles interacting with an impenetrable sinusoidal

potential that is accelerating, with no quantum mechanical tunneling between



13

wells or resonant effects (see Figure 2.1). When the interaction beam is turned

on, some of the atoms in the cold MOT find themselves trapped in the nodes of

the standing wave. Classically, if the initial total energy of an atom is less than

the classical barrier depth Vbc, it can be trapped in the well. To calculate the

barrier depth we consider the potential in the tilted form in Figure 2.2. The

maximum classical acceleration is calculated by finding when the force from

acceleration is greater than the force from the periodic trapping potential.

Fatom = Ma− V02kL sin(2kLx) (2.30)

From this, we see that when a is greater than acl = V02kL
M

there are no longer

any minima of the potential. Figure 2.2 shows the tilted potential with the

barrier height. The extrema of this potential are given by

sin(2kLx) =
Ma

V02kL

=
a

acl
(2.31)

The minima occur twice in one period and satisfy the criteria

sin(
π

2
± α) =

a

acl
. (2.32)

The potential difference between the minimum and maximum gives the barrier

height.

Vcb = Vmax − Vmin

= V0[cos(
π

2
− α)− cos(

π

2
+ α)] + Ma[

π

2
− α− (

π

2
+ α)] (2.33)

Replacing α = π
2

+ sin−1( a
acl

) = cos−1( a
acl

) we obtain

Vcb = 2V0[[1− (
a

acl
)2]

1
2 − a

acl
cos−1(

a

acl
)]. (2.34)
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Figure 2.2: Frame (a) shows potential where the acceleration is less than acl
and the classical barrier well depth Vcb. Frame (b) shows the case where the
acceleration is beyond acl and there are no wells remaining.
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The maximum classical acceleration where the atoms can remain trapped is

also the condition that the barrier depth in the tilted frame becomes zero. In

the laboratory frame, the atom simply rides over the wells as they pass by. We

will now see that quantum mechanical tunneling leads to a loss from the wells

at a much lower acceleration.

2.3 Shallow Well Limit

As the well depth is lowered, quantum mechanical effects must be included in

the description of the physics. As is well known from solid state physics, in a

perfectly periodic lattice, one can use Bloch’s theorem to solve Schrödinger’s

equation [16]. Band gaps in dispersion relations exist for non-zero periodic

potentials, whether it be from a delta-function potential (Kronig-Penny model)

or from a sinusoidal potential as in our experiments. The Bloch states are a

complete set of states and are completely spatially delocalized. However, when

the acceleration is added, the Bloch states are not exact eigenfunctions so the

spatial spread of the solutions becomes localized in a superposition of Bloch

states. It is physically reasonable that the initial spatial spread of the atoms

is only over a distance comparable to a few periods of the standing wave. This

means that the initial atomic wave packet will be projected into a superposition

of several Bloch states upon application of the periodic potential.

2.3.1 Bloch states

We first review the properties of Bloch states and band structure. In the

quantum system, we wish to solve the Schrödinger equation. A free particle
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Hamiltonian’s eigenstates are given by.

ĤΨ = − h̄2

2m

d2Ψ

dx2
= EΨ (2.35)

and has an energy dispersion relation given by

E(k) =
h̄2k2

2m
. (2.36)

When plotted, this relation gives a parabola (see Figure 2.3), but in this case

we can also plot it in the so-called reduced zone picture. This is shown in

Figure 2.4. In this picture we fold back the curve to the first zone when the

wave vector magnitude exceeds ±kB/2 where kB = π/ax and ax is the lattice

spacing. In the optical system the reciprocal lattice vector kB = 2kL since

ax = λ/2. Consequently from the reduced zone, rather than state the particle

having an absolute value of k-vector and energy, we describe it with a k-vector

confined to the first Brillouin zone (less than kL) and a band number.

The application of a potential U(x) with the same periodicity as the

lattice spacing ax results in a Hamiltonian

ĤΨ = − h̄2

2m

d2Ψ

dx2
+ U(x)Ψ = EΨ (2.37)

and will be solved by the Bloch states given by

Ψk(x) = µk(x)exp(ikx) (2.38)

where µk(x) is some function that has the same periodicity of the lattice. In

terms of the dispersion relationship, the non-zero periodic potential opens up

band gaps at the edges of the Brillouin zone. For the particular case of a

sinusoidal potential from the standing wave, the Schrödinger equation is solved

by Mathieu functions [17].
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The band structure for this sinusoidal potential with V0/h of 68 kHz

and an acceleration of zero is shown in Figure 2.6. The first three bands are

shown in this particular figure. The band gaps represent regions of energy and

wavenumber where the atom’s wave function cannot exist. The x-space picture

of the bands is also informative and is shown in Figure 2.5. In this figure the

potential from the standing wave is also shown for comparison to the energy

of the bands and the gaps. For this well depth, there is only one band within

the wells so only atoms in this band would be considered as trapped in the

wells. As the well depth is increased, the gaps get larger and the bands get

smaller. This reflects the fact that inter-band tunneling decreases as the wells

get deeper. In the case of very deep wells, the bound states should be identical

to that for a single well since the wells are very weakly coupled.

We now include a time dependent velocity term to the sinusoidal part

of the potential. Here we consider only a linear acceleration a which gives

V0 cos(2kL(x− a

2
t2)). (2.39)

Although the Bloch functions are not strictly solutions to this Hamiltonian

when a is not zero, they still provide a useful basis in which to describe the

physics.

2.3.2 Bloch oscillations

Consider an atom that is initially prepared in the lowest band near the center

of the Brillouin zone, e.g. an atom with near-zero wavenumber (k). When the

acceleration is imposed on the lattice, the wavenumber k changes in time. As

k approaches the edge of the Brillouin zone (kL), the atom can do one of two
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Figure 2.3: The dispersion relations for a free sodium atom in units of kL.
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Figure 2.4: The dispersion relations for a free sodium atom shown in the re-
duced band picture. Values of energy for momentum above kL are folded back
from higher zones to the first zone.



20

Figure 2.5: Band structure of an optical lattice, with V0/h=68 kHz. The curved
line is the periodic potential plotted as a function of position, x. the allowed
energy bands are the shaded regions, identified as 1,2,3 while the energy gaps
are blank.
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Figure 2.6: The dispersion relations for the sinusoidal potential with V0/h =
68 kHz. The three lowest bands are identified.
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things. The atom can either Bragg reflect to the other edge of the Brillouin

zone and remain in the first band or it can undergo a Landau-Zener transition

to the second band. These processes are shown schematically in Figure 2.7. If

the atom stays in the lower band, the velocity of the atom will spontaneously

change directions when it Bragg reflects. The atom will continue to accelerate

in the positive k direction until it reaches the edge of the Brillouin zone again.

This process of acceleration and Bragg reflection is known as a Bloch oscillation

and causes an oscillation in momentum. The rate of change of momentum is

given by

dk

dt
= Ma. (2.40)

The amount of time it takes to cross 2h̄kL in momentum gives a Bloch period

of

TB =
2h̄kL
Ma

. (2.41)

These oscillations in momentum have been observed recently in an atom optics

system with cesium [7]. They are also related to the Wannier Stark Ladders

that have been observed in solid state superlattices [18] and very recently in

our atom optics system using sodium [2]. Figure 2.8 shows that the Bloch

oscillations are also observed in the theoretical autocorrelation function, which

is calculated by evaluating the overlap integral of the evolved state with the

initial state of a wave function confined to the lowest band in the wells at zero

acceleration. The acceleration in this case is 4500 m/s2 and the well depth is 55

kHz. This gives a Bloch oscillation of 13.3 µs which agrees with the simulation.

These Bloch oscillations should also be seen in x-space as the particle

undulates back and forth at the Bloch period. Although the particle moves
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Figure 2.7: Figure shows reciprocal space where an atom is prepared with
momentum of zero and is accelerated to the edge of the Brillouin zone (c). At
this point the atom can either stay in the lowest band (d) or make a transition
to the upper band (e).
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back and forth locally, its overall global motion will continue to drift in the

direction of the acceleration.

2.3.3 Tunneling

The process we are most interested in is when the atom makes a Landau-Zener

tunneling transition from the trapped state to the continuum. The probability

of making the transition to the upper band can be described by Landau-Zener

theory for an avoided crossing [19]. The transition probability will obviously

increase as the acceleration is increased. This can be described in simple terms

relating to the Heisenberg uncertainty principle. This process is similar in many

avoided-crossing problems. The transition probability between levels becomes

significant when the time that the atom spends near the band gap becomes

comparable to the the inverse energy gap,i.e.

∆E ∼= h̄

∆t
(2.42)

In the theoretical calculation we can see tunneling from the lowest band by the

reduction in the magnitude of the autocorrelation function (see Figure 2.8). We

fit an exponential to the maximums of the peaks to determine the decay rate,

starting from the third peak to avoid any possible short-time non-exponential

effects. The experiments as well as the simulations show that the survival

probability follows an exponential in time.

Landau-Zener theory can estimate the tunneling rate with the following

functional form in laboratory units [17]

ΓLZ =
a

2vr
exp(−ac

a
). (2.43)
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Figure 2.8: Theoretical autocorrelation function starting the lowest state in
a well for the case a=4500 m/s2 and V0/h = 55 kHz. The solid line is an
exponential fit to the peaks of the oscillations, starting from the third peak to
avoid short-time, non-exponential effects.
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The critical acceleration ac (not to be confused with the classical acceleration

acl) is related to the band gap of the system by ac = 2π(Egap/2)
2/2h̄2kL where

Egap is the energy between the gap. vr is the recoil velocity of 3 cm/s. This

functional form will be compared to experimental measurements in Section 4.4.

A complementary model of the tunneling process uses the x-space pic-

ture with the tilted potential. In this picture, loss from the wells occurs from

the atoms tunneling from bound states in the wells to the continuum. This is

shown schematically in Figure 2.9

2.4 Discussion

Many properties of tunneling can be deduced by considering a single-barrier

potential [12]. To obtain the classical limit of no tunneling or reflection, the

wells essentially must be decoupled from each other and this requires either

of two conditions. The first condition is that the well depth must not be

comparable to the energy of the atom. The potential will not support tunneling

or reflection behavior if the atom’s energy is either much larger than the well

depth or much smaller than the well depth. The second condition is that the

width of the barrier must not be comparable to the spatial spread of the wave

packet for the particle. For an atom in a bound state, these two conditions

are equivalent to stating that the wave function must not be able to penetrate

the barriers. We can extend these arguments to the case of multiple wells as

in the standing wave but care must be taken since coherent effects from the

periodicity can radically change the behavior (e.g. Bragg reflections). Since

the standing wave’s periodicity is fixed at 295 nm, the tunneling probability

for this experiment is determined primarily by the well depth, although it is
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Figure 2.9: Schematic diagram of atom tunneling from bound state in well to
the continuum.
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possible to increase the periodicity of the standing wave by changing the angle

between the two traveling beams.

If the well depth is comparable to the the center of mass energy of the

atom, quantum mechanical effects such as reflection and tunneling occur. In

this limit, the atom’s wave function can be delocalized over many periods of

the standing wave. In this case, the band picture used in many condensed

matter problems is useful. This is the most interesting regime because here we

can study many interesting effects of quantum transport in optical lattices such

as Bloch oscillations and Landau-Zener tunneling. These are the experimental

conditions where we study tunneling rates.

Many of the phenomena that we have discussed in the optical lattice

context are also closely related to solid state physics problems. This is because

the optical potential (Equation 2.29) is the same form as potentials arising in

solid state systems. For example, consider an electron in a one-dimensional

sinusoidal potential created perhaps from a lattice of ionic sites or a superlat-

tice created by alternating layers of material with different band gaps. This

potential is

V = V0 sin(
2πx

ax
) (2.44)

where ax is either the lattice spacing or the superlattice layer width. V0 is an

effective well depth. When an additional static electric field is applied in the

x-direction, the potential for the electron becomes

V = V0 sin(
2πx

ax
) + eE0x. (2.45)

Here we see that Equation 2.45 has the same form as Equation 2.29 if we replace

eE0 with Ma and ax by λ/2. Examples of solid state devices that utilize tun-
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neling are the tunnel diode which has been produced and used in applications

for many years and, more recently, the resonant tunnel diode and the resonant

tunnel transistor which are used in ultra-high frequency applications [20]. In

the tunnel diode the tunneling is inter-band as the electron goes from the va-

lence band on the p-side of the junction to the conduction band on the n-side.

In the resonant tunnel diode the tunneling occurs inter-band as the electron

tunnels across a barrier created by stacked materials with different band gaps.

Our experiment is also a measurement of intra-band tunneling rates of atoms

that tunnel from the lowest trapped band to the continuum of higher bands.

In our analysis of periodic potentials, we considered the potential as

having perfect periodicity, however, we need to determine the conditions that

will make this assumption valid. In solid state systems at non-zero temperature

lattice vibrations (phonons) cause the ions to move and temporally break the

periodicity. Other issues with a solid state system include impurities in the

crystal that can also break the periodicity, collisions, and other multiparticle

interactions between electrons that can become significant because the carrier

density is high. The complications arising from phonons diminish at lower

temperatures and consequently many solid state experiments are performed at

cryogenic conditions, but the other complications are still significant even at

low temperatures. In the atomic system, however, these problems with the

lattice are negligible over the time scale of the experiment. The optical lattice

potential has no vibrations if there are no spontaneous emission events and

the phase of the laser light does not randomly shift over the duration of the

experiment. Furthermore, the sample of sodium atoms is dilute enough to

neglect multiparticle interactions. Consequently, we can consider the potential
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as perfectly periodic.

There are two other differences between the atom system and the elec-

tron system. First, the electron is an indivisible particle with no internal struc-

ture, while the atom is comprised of several electrons orbiting a nucleus in

many different shells resulting in a very complicated internal structure. We

saw earlier that the internal structure of the atom can be neglected if the in-

teraction with the laser is far-detuned from resonance using the dipole force

approximation. Thus, we consider only center of mass motion in the interac-

tion. Second, the atom that we will consider is sodium which is a boson, while

the electron is a fermion. In the atomic sample from the MOT, the density is

not large enough for Bose statistics to be important, however in the electron

system Fermi statistics are usually very important. In the future it might be

interesting to study the atomic system at higher densities for bosonic atoms

and to compare it with a system of fermionic atoms such as 6Li, but this would

require starting with samples much colder and denser than the MOT.



Chapter 3

Experimental Setup

3.1 Overview

The study of the interaction of atoms with a one-dimensional accelerating opti-

cal lattice requires the measurement of momentum transfer from light to atoms.

This is accomplished by preparing the atoms in a suitable initial condition with

known momentum and position distribution, applying the interaction poten-

tial, and measuring the resulting final momentum distribution of atoms. The

experiment is a four step process carried out by a system of computer con-

trolled acousto-optic modulators, electro-optic modulators, and magnetic field

coils. The measurement flow chart is shown schematically in Figure 3.1.

The initial conditions are ultra-cold sodium atoms trapped in a stan-

dard magneto optic trap (MOT) [8]. The MOT is created by three pairs of

counter-propagating circularly polarized laser beams and a magnetic field gra-

dient provided by a pair of anti-Helmholtz coils. The magnetic field from the

anti-Helmholtz coils is approximately zero at the center of the trap and has a

gradient that is cylindrically symmetric and an additional gradient in the axial

direction. The magnetic field gradients (with the lasers) provide a restoring

force to the center of the trap. This restoring force arises because the laser

beams are detuned to the red of resonance so that as the atoms move from the

31
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center of the trap the magnetic field increases and consequently Zeeman shifts

the atoms closer into resonance with one of the beams. This creates an im-

balance in the radiation pressure that pushes the atoms to the point of lowest

magnetic field.

Next, all the trapping potentials are turned off and the interaction po-

tential is applied for some period of time, usually less than 1.5 ms. During this

period the standing wave accelerates and the momentum distribution changes.

The next step is to turn off the interaction and allow the atoms to free drift in

the dark, usually less than 3 ms.

The final step occurs when the trapping laser beams are turned back

on in the absence of the magnetic fields. In this configuration, the laser beams

provide a viscous force (optical molasses) on the atoms, and for the duration

of the exposure freezes them in place. The fluorescence from the atoms is then

imaged on a CCD camera. Since we know the drift time, the initial position and

momentum distribution of the atoms, and the final position distribution, we can

calculate the final momentum distribution of the atoms. The CCD image is a

representation of the final velocity distribution of the atoms if the time in which

the atoms are interacting with the optical potential is short enough. If this time

is too long, the atoms will move so that the final spatial distribution can not

be deconvolved to an exact final velocity distribution. Using this technique

in the tunneling experiment we can accurately determine which atoms tracked

the velocity of the standing wave.

The laser table overview is shown in Figure 3.2. The ‘workhorse’ of the

system is the Coherent Innova 200 Argon Ion laser that pumps two single mode

dye lasers, one a commercial Coherent 899 ring laser and the other a home built
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Figure 3.1: The time sequence for a momentum transfer measurement from
a time-dependent interaction. The four steps include: MOT load (6 seconds)
during which a CCD exposure can be taken, interaction with the standing wave
(1.5 ms), free drift (3 ms), and freezing molasses and CCD exposure (10 ms).
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dye laser [21]. The frequency of the light from the Coherent dye laser is locked

about 80 MHz to the red side of the saturated absorption line obtained from

a separate sodium cell. The error signal for locking is obtained from a double

lock-in using FM spectroscopy [22]. The Coherent laser’s light is used for the

MOT and molasses laser beams to cool and trap the sodium atoms and also

for the final detection. AOM1 (Acousto-optic modulator at 80 MHz) is used

to stabilize the MOT/molasses laser power and to turn off the light during the

interaction process. The frequency of the light in the MOT/Molasses beams is

20 MHz to the red of the sodium resonance. EOM1 (Electro-optic modulator)

is used to put sidebands on the cooling/trapping beams for the repumping out

of the F=1 state (see Figure 3.4). The light from the home built laser is used

for the interaction/acceleration beams described later.

The timing in these experiments was controlled by a 486-33 MHz PC

with three National Instruments I/O boards: an AT-MIO-16F-5 board with

A/D and D/A converters and TTL ports, a PC-DIO-24 board with TTL I/O,

and a GPIB-PCIIA board for higher level control, especially useful for pro-

gramming arbitrary waveform generators. In general, the timing accuracy of

the computer is limited to 20 µs, and the jitter is about 10 µs. This makes it

impossible for important timing to be controlled by the PC; therefore it was

necessary to use triggered Fluke-Phillips PM 5712/5715 pulse generators for all

the crucial timing. The computer served two purposes: to program the arbi-

trary waveform generators and to trigger the pulse generators which controlled

all the important timing. The programming of the computer was accomplished

from National Instruments Lab Windows-DOS using Microsoft C 6.0 for the

stand-alone executable files. The timing electronics diagram for the tunnel-
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Figure 3.2: The block diagram of the laser table. Related figures are the block
diagram for timing electronics (Figure 3.3) and the interaction beam/double
pass diagram (Figure 3.6).
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Figure 3.3: The block diagram of the electronics. The timing is controlled by
pulse generators and arbitrary waveform generators with trigger provided by
the 486 PC.
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ing experiments is shown in Figure 3.3 and the timing diagram is shown in

Figure 3.5.

The experiment is started by a trigger from the PC-DIO-24 panel which

does two things: It triggers pulse generator 1 which controls the MOT/molasses

light level and it triggers the arbitrary waveform generators 1 and 2 which trig-

ger the AOMs for the interaction beam. Pulse generator 1 subsequently sends

a trigger for the EOM to switch on the 1.7 GHz sidebands and also sends

a trigger to pulse generator 2. For the tunneling experiment, the sidebands

were left on continuously. Pulse generator 2 then triggers the AOM to turn off

the MOT/Molasses beams, sends a delayed trigger to pulse generator 3 which

turns off the trap’s magnetic field, and sends a delayed trigger to the camera

controller to take an image after the allotted drift time. The trigger to the am-

plitude port of the AOM1 driver is also sent to the frequency modulation port.

The light from an acousto-optic modulator has an angle dependency which is

proportional to the frequency of the acoustic wave. Since this light from AOM1

goes into an optical fiber, the fiber is misaligned when the frequency changes.

It was originally noticed that even though the signal to the amplitude port was

zero, a small amount of RF was present sending some resonant light through.

This current configuration of shifting the beam off the fiber ensured that no

resonant MOT/molasses light was present during the interaction portion of

the experiment. Arbitrary waveform generator 1 (Tektronix AWG5105) is pro-

grammed via GPIB to provide square pulses of arbitrary length. AOM2 and

AOM3 are used for the interaction beam described in Section 3.3. Channel

1 of this waveform generator is sent to the amplitude modulation port of the

frequency-shifted Intra-Action ME-40T AOM driver (double-passed) to control
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the light level in AOM3. Channel 2 is sent to pulse generator 4 operating in T/2

mode so that the output pulse follows the input signal. Pulse generator 4 con-

trols an RF switch (Mini-Circuits 2FSWHA-1-20) which lets an 80 MHz source

from a Marconi model 2022D digital frequency synthesizer (stable to 1 Hz)

connect to the amplifier portion of an Intra-Action ME-80T and finally drive

AOM2. The VCO portion of the Intra-Action ME-80T was bypassed since it

does not have the frequency stability of the Marconi synthesizer. We did use a

VCO for the double-passed AOM but using the Marconi for the 80 MHz beam

insured a higher stability than if we used VCOs for both drivers. The PC-

DIO-24 also provides the trigger for arbitrary waveform generator 2 (Stanford

Research Systems DS345). This arbitrary waveform generator provides the sig-

nal to the FM port of the AOM3 driver giving the frequency sweep and is also

programmed by GPIB. Finally, the GPIB interface also communicates with the

digital scope (Tektronix 524A) which obtains waveforms from two photodiodes

(Thorlabs PDA150) to characterize the power in the two interaction beams.

3.2 Initial Conditions: Trapped and
Laser Cooled Sodium Atoms

The initial condition for the experiments is approximately 105 sodium atoms

trapped in a standard magneto-optic cell trap with six σ+σ− laser beams.

The atoms are confined in an approximately Gaussian distribution in space (σ

=.15 mm) and momentum (σ = 6h̄kL centered at p=0). The trap envelope

is a quartz sphere with nine 1-inch fused silica windows fritted onto the main

sphere. The chamber is connected to a vacuum-distilled sodium ampule that

was opened after the bakeout and a Varian Star-Cell 20 l/s ion pump. The
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final background pressure of the system is 5× 10−10 Torr with a approximate

sodium vapor pressure of 5× 10−11 Torr. The windows are not anti-reflection

coated for the experiments presented here, but a new trap envelope consisting

of a stainless steel manifold with 16 anti-reflection coated windows is being

constructed for future experiments.

The light for the MOT and optical molasses comes from a Coherent

899-21 single-mode dye laser tuned to the sodium D2 line at 589 nm. This

dye laser is pumped by approximately 9 Watts (33%) of multi-line power from

the Coherent Innova 200 argon-ion laser (see Figure 3.2). About 92% of the

Coherent dye laser power goes through an electro-optic modulator to produce

sidebands at 1.7 GHz. The sidebands are used as the repumper from the F=1

dark state (see Figure 3.4). The electro-optic modulator is a LiTaO3 crystal

surrounded by an RF resonating structure and generates sideband amplitudes

that are typically 15% of the carrier power. The other 8% of the power is split

and used for two things. A small fraction (about 1-2 mW) is sent through

an optical fiber (OZ Optics) to another table that has a scanning Michelson

interferometer wavemeter (NIST LM-11) that has an accuracy of 1 part in

107. The rest of this power is used for saturation absorption spectroscopy

of a sodium cell which is used to lock the laser frequency to about 20 MHz

below resonance on the sodium D2 line (see Figure 3.4). Of the 92% which

went through the electro optic modulator, a small fraction (1-2 mW) of this is

used in a scanning Fabry-Perot cavity used for laser diagnostics and sideband

characterization. The rest goes through an acousto-optic modulator (AOM1)

which is used to lock the power level of the beam to within 1% and finally

through an optical fiber to be split six ways to form the MOT beams. The
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Figure 3.4: Term Diagram for the Sodium D2 line. For the 3S1/2 state I = 3/2
and J = 1/2, and since F = J + I, F = 1,2. For the 3P3/2 state J = 3/2 so F =
0, 1, 2, 3. The magnetic sublevels are −F ≤ mF ≤ F . Representative examples
of (a) the cooling and trapping beams, (b) the optical pumping sideband, (c)
spontaneous decay, and (d) the interaction Hamiltonian are shown.

power lock circuit driving AOM1 is also fast enough (switching time 40 µs)

to be used to switch on and off the MOT resonant beams. AOM1’s switching

time by itself is much faster than this however. Also, as described earlier,

the frequency offset on AOM1 was shifted to intentionally misalign the fiber

to ensure that no resonant light was on during the interaction portion of the

experiment (see Figure 3.5).

The magnetic field coils are constructed from roughly 100 turns each

of 24 gauge wire with a radius of 4 cm. The coils are configured in the anti-

Helmholtz configuration, where the separation is equal to the radius and the

current in each coil runs in the opposite direction of the other one. This config-

uration creates zero magnetic field at the center with a gradient of 10 G/cm at

the center with an approximate current of 1 Ampere. Because the coils must be
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switched off quickly, a feedback loop consisting of a Burr Brown OPA541BM

high current operational amplifier was used to lock the current to a level which

could be switched quickly (< 150µs). The details of this feedback circuit are

in [22]. In addition to these coils there are three sets of Helmholtz coils which

were used to null residual magnetic fields. They are adjusted to optimize the

spread in the atomic cloud (see Section 4.1).

3.3 Interaction Potential

3.3.1 Experimental Realization of Accelerated Standing Wave

In the previous chapter we described the dipole force potential using a two-

level model for the atom. In sodium, the 3S1/2 ground state manifold has

two hyperfine levels (F=1,2) and the 3P3/2 excited state manifold has four

hyperfine levels (F=0,1,2,3). Each of these states has 2F+1 magnetic sublevels

(see Figure 3.4). It can be shown that for linearly polarized light that is detuned

far from resonance and large compared to the 3P3/2 splitting, the ac Stark shift

(the potential) is independent of magnetic sublevel [22, 23]. Furthermore, we

have shown experimentally that the laser cooling process leaves the atomic

population in the F=2 ground state when the trapping optical fields are turned

off. Thus at the beginning of the interaction time, the atoms are in one of

magnetic sublevels of the F=2 ground state. If there is negligible probability

of spontaneous emission, the atom will remain in the same state that it started

in. Therefore, the resulting force on each atom will be the same.

In the tunneling experiments, the accelerated standing wave was created

from the homebuilt single mode dye laser far-detuned to the blue of the sodium

resonance. We also performed the experiment with the laser far-detuned to the
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Figure 3.5: The pulse timing shows how the four step measurement process is
controlled electronically.
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red of resonance and found the results to be independent. The only differ-

ence would be that potential nodes in the red detuned case appear as anti-

nodes in the blue detuned case. The full laser power (1.1 W) was split into

two beams which were shifted in frequency from each other and aligned over

the atomic sample in a counter-propagating configuration. The realization of

the accelerated standing wave is centered on the frequency offset between two

counter-propagating laser beams. In the experiment, this was accomplished by

shifting both laser beams in frequency using AOMs and changing the offset of

one of them in time. It is necessary to use the time-varying AOM in the dou-

ble pass configuration because in single pass, the angle of the deflected beam

from the AOM changes with acoustic driving frequency. If properly aligned,

after retro-reflection in double pass the second deflected beam will be aligned

with the original input beam (see Figure 3.6). The quarter wave plate and

polarizing beamsplitting cube combination allow the separation of the input

beam and the double passed beam. A lens is placed in the retro-reflected beam

to re-collimate the light for good deflection efficiency in the double pass. The

fixed AOM (AOM2) is set at 80 MHz and the double pass AOM (AOM3) is

shifted a few MHz around a center frequency of 40 MHz. Thus, both beams

are shifted up approximately 80 MHz but one varies over a few MHz. The

double pass AOM was aligned by maximizing the deflected beam intensity first

in single pass (usually about 90%) and then adjusting the reflecting mirror to

maximize the double passed spot (final power about 170 mW). The spot is

finally passed through a spatial filter consisting of two fast lenses and a 50 µm

pinhole, and then re-collimated. Since standard stainless pinholes are easily

destroyed, diamond aperture wire dies from Indiana Wire Die were used in-
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stead. After the pinhole, a variable iris blocks all but the center lobe. When

the double pass AOM is correctly aligned, the spot should not move spatially

when the frequency is sweeped. This is one criteria for a good alignment of

the double pass. The spot from the fixed AOM is also spatially filtered in a

similar manner. The frequency sweep is accomplished by input to the ST-335

controller input. The input sequence is a three step process accomplished by

GPIB programming of the arbitrary waveform generator as described in Sec-

tion 4.1. To monitor the power of the beams in situ, anti-reflective coated 3/8”

thick windows were inserted into each of the interaction beams to split off a

very small amount of power to two fast photodiodes with amplifiers (Thor-

labs PDA150) which have a frequency response of 50 MHz. The voltage from

both photodiodes was monitored on a digitizing scope (Tektronix 524A). The

voltages from the photodiodes were calibrated to the laser power in CW mode

(see Section 3.3.2). Because of the spatial filter, any spot movement from the

AOM will manifest itself in power reduction. By capturing the power waveform

in the photodiode, a final optimization of the double pass AOM was done to

eliminate beam walk with the sweep. Power fluctuations through the pinhole

spatial filter were reduced to ±1% through the tunneling portion of the fre-

quency sweep and ±7% over the entire sweep of almost 10 MHz (5 MHz before

the double-pass).

3.3.2 Characterization of the Accelerated Standing Wave

The important parameters of the standing wave are those which determine the

well depth (Equation 2.16) and the velocity of the nodes. The well depth can

be determined from the power in the laser beams, spot size, and detuning. The



45

Figure 3.6: Figure shows the setup for the accelerated standing wave inter-
action beam. The signals from the photodiodes are recorded on a digitizing
oscilloscope and stored on computer for later analysis.
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beam power was measured on a Coherent Fieldmaster power meter which was

calibrated with respect to a NIST traceable Newport model 1825-C power meter

with model 818-UV head that has an absolute accuracy of ±5%. The width of

the beam was measured by moving a knife-edge across the profile in front of

a detector. From this, the distance between the 70% and 30% power points is

measured. If the focus at the spatial filter is small compared to the aperture,

then the output is Gaussian. A normalized Gaussian intensity distribution,

characterized by a spot size wo (1/e2 intensity radius) is:

I(x, y) =
2

πw2
o

e
− 2(x2+y2)

w2
o . (3.1)

Integrating from the x70% − x30% = d power points with an knife edge

0.70− 0.30 =
∫ d/2

−d/2
dx
∫ ∞
−∞

dyI(x, y) (3.2)

results in

2

5
= erf(

d√
2wo

), (3.3)

where erf is the error function. By solving numerically, the measured value d

is related to the spot size wo by wo = 1.91 d. A Gaussian profile was assumed

for the tunneling experiments reported here. Since the field strength E0 must

be determined to connect to Equation 2.16 a better way in the future may be

to use a commercial beam profiler. For now E0 is experimentally characterized

by the total power (〈P 〉) and the x70% − x30% = d power points. Using this

technique we determined the spot size of the beam from the 80 MHz fixed AOM

to be 1.91 mm and the spot size from the 40 MHz shifted AOM to be 1.95 mm.

A ‘flat,’ linearly polarized traveling Gaussian beam has the form

~EGauss = ŷE0e
−(

√
x2+y2

w0
)2

cos(ωLt + kLx). (3.4)
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The time-averaged intensity has the form

〈I〉 =
1

2
cεoE

2
o . (3.5)

The integrated power can then be calculated

〈P 〉 =
∫
〈I〉dA = πwocεoE

2
o

∫ ∞
0

dre
−2 r

w2
0 =

πcεow
2
oE

2
o

4
, (3.6)

where r =
√

x2 + y2, which gives

Eo =

√√√√ 4〈P 〉
cεoπw2

o

. (3.7)

This gives the expression for field strength used in Equation 2.16 in terms

of experimentally measured quantities. As was stated earlier, the power of

the beams can be monitored by capturing the voltage waveform from two fast

photodiodes (Thorlabs PDA150) onto the digitizing oscilloscope (Tektronix

524A). The photodiodes were calibrated by measuring the power before the

chamber on the Coherent Fieldmaster and comparing with the voltage from

the photodiodes. This measurement was repeated for many different powers.

To obtain the power at the atoms, the measured power was corrected by the

reflection from the two surfaces on the front window (4% each). The power was

then plotted versus voltage and curved fit with a line, which showed excellent

linearity for the power range used. During the short time during the experiment

when the interaction beam was on, the digitizing scope collected the waveforms

from the photodiodes and transferred them through GPIB interface to the 486

PC where the minimum, maximum, and average of each laser power was stored

on disk for later evaluation and discrimination. The laser power level could

be then well known except that there are other uncertainties in the standing

wave field strength at the atoms including most significantly interference fringes
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caused by the windows, wave vector mismatch and misalignment between the

two counter-propagating beams. It is also possible that these fringes could move

shot to shot, causing a time-varying change in the well depth. Another problem

with the Gaussian beam is that since the cloud of atoms is spread partially over

a portion of the interaction beam, not all the atoms experience the same well

depth. The interaction beam spot size is 2 mm and the radius of the MOT is

.075 mm. The resulting well depth for atoms at the edge of the MOT is 99.7%

of the well depth for atoms at the center of the MOT, so it is a small effect.

In the Wannier-Stark work [2], this was also an issue and was addressed by

binning up a small area on the CCD chip for final analysis (see Section 3.4).

Ideally one should have an in situ measurement of the power on the atoms by

analyzing the effect on the atoms, such as the Mollow triplet. However, this

measurement is difficult to implement. Absolute power calibration is therefore

the largest experimental uncertainty.

The procedure for alignment of the interaction beams was to first to

tune the laser near the sodium resonance and align one beam onto the atoms

in the trap. When the beam frequency is near resonance, it will push the

atoms along its direction. It was aligned for maximum pushing effect on the

atoms. The second beam was then aligned onto the first beam until they were

collinear, and the laser was detuned from resonance for the experiment. Finally,

the simple single acceleration experiment was run several times between which

small alignments could be made to optimize the number of atoms accelerated.

To obtain the detuning of the standing wave beams, a small portion

of the interaction beam was sent through a single mode OZ fiber optic to a

scanning Michelson interferometer (NIST LM-11). The wavemeter is a scanning
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interferometer formed by corner cube reflectors that are translated via an air-

bearing cart-track arrangement. The light of unknown frequency traverses

essentially the same path as that of a laser of known frequency. As the corner

cubes move, the interference pattern is scanned through successive fringes and

the ratio of the fringes counted simultaneously for each laser yields the ratio of

the laser wavelengths in air. The ratio of the wavelengths in vacuum can be

determined if the small correction for the dispersion in air between the reference

wavelength and that of the unknown laser is taken into account. Specifically,

the frequency of the known laser comes from a stabilized HeNe:

νHeNe = 473 612 192 MHz (±30MHz) (3.8)

Since the wavelength of the sodium D2 line in air is

λairNaD2
= 588.9950 nm, (3.9)

the wavelength ratio in air is

λairHeNe
λairNaD2

= 1.0743992 (3.10)

In practice, the detuning was chosen after the electric fields were mea-

sured to give the desired well depth V0. Since spontaneous emission becomes

less of an issue for further detuning, it is favorable to obtain a particular well

depth with the highest power possible and furthest detuning. Consequently,

the beam powers were optimized to their maximum and the detuning was cho-

sen to provide the desired well depth. To set the detuning, the laser was tuned

until the wavelength meter ratio read

ratio = 1.0743992 ± δ(GHz)

.0474
(3.11)
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where the second term gives the calibration for the detuning δ which could be

either detuned blue or red. The detuning was continuously monitored through-

out the experiments to ensure that the interaction laser did not drift or hop

modes since it was not actively locked to any error signal.

All these measurements described here could determine the well depth.

A typical set of parameters is 1.9 mm for spot size, a detuning of 20 GHz, and

beam powers between 30 and 45 mW, which gives well depths between V0/h=

66 kHz to 100 kHz.

The velocity of the standing wave was characterized by heterodyne of

the two interaction beams. A 50% beamsplitter was inserted into the path

of the two beams and one path was retro-reflected back to the beamsplitter

(see Figure 3.7). The other path was attenuated and focused onto another

Thorlabs photodiode which was also captured onto the Tektronix TDS 524A

digitizing scope. The waveform was stored on PC disk through the GPIB in-

terface and evaluated with a C+ program on a UNIX machine. Since the beat

frequency on the photodiode is exactly the frequency separation between the

two beams, a measurement of this frequency gives the velocity of the standing

wave (v = ∆ω/2kL). Since the offset (∆ω) is changing in time, one way to de-

termine the instantaneous frequency is to measure the time between subsequent

zero crossings. The C+ program which calculated the heterodyne frequency

in this way is shown in Appendix A. Figure 3.8 shows a sample measured het-

erodyne frequency versus time plot where the target values of accelerations

and velocities are confirmed. By curve fitting each section of the plot, we de-

termined the slope (acceleration) of the each section and its uncertainty. In

this figure the acceleration was determined to be 6041 ± 10 m/s2 and the tar-
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get value was 6000 m/s2. Other heterodynes produced similar results so we

determined that the error bar on acceleration is ± 50 m/s2. The frequency

jitter on the heterodyne was confirmed to give a bandwidth less than 10 kHz

by measuring the photodiode signal on a spectrum analyzer over a period of a

minute. Consequently, on the time scale of the experiment (less than 1.5 ms),

the bandwidth should be less than this.

3.4 Final Distribution and Detection

After the interaction time, the measurement of the atoms’ momentum is ac-

complished by a time of flight measurement. This process consists of two parts:

a free drift in the dark and a detection of the final position distribution. The

free drift time occurs usually for about 3 ms during which all the light and

magnetic fields are switched off (see Figure 3.5). After the drift, the resonant

lasers are switched on again without the magnetic fields. This provides the op-

tical molasses which stops the atoms and also scatters light from them which

is imaged on the CCD camera. To detect the atoms’ positions accurately after

the free drift requires the atoms to be practically at rest while the camera takes

an image. The viscous force from the optical molasses causes the velocities of

the atoms to damp out in roughly 10 µs. This technique can produce very

accurate measurements of momentum if the interaction time is not too long. If

the freeze-in time is less than 10 ms the atoms do not move during the image

and we obtain an accurate determination of position [22]. The detection sys-

tem consists of a Princeton instruments Charge Coupled Device (CCD) camera

system and controller. The controller is connected to a Macintosh IIsi com-

puter via a GPIB NuBus interface. The CCD camera with a Sigma f/2.8 lens
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Figure 3.7: A 50/50 beamsplitter is inserted into the path of the interaction
beams. One reflection is sent to a mirror and the other one is sent to a photo-
diode. The signal on the scope oscillates at the difference frequency of the two
laser beams.
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Figure 3.8: Measured heterodyne beat frequency as measured on the photodi-
ode. The three step acceleration process is shown. For this particular run, the
target values aslow=1500 m/s2 and afast=6000 m/s2. The dotted lines are to
represent that the signal continues to earlier and later times for an actual run.
By curve fitting each section of the curve it is determined aslow1=1521 ± 20
m/s2, afast=6041 ± 10 m/s2, aslow2=1522 ± 15 m/s2. The error bar from the
target range is the ± 50 m/s2
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was suspended about 15 inches from the vacuum chamber and could focus on

the atoms which were trapped and accelerated. One problem with the acceler-

ated system which was not a problem with the quantum chaos work involved

the spatial extent of the freezing beams. The large final velocities which the

atoms can be accelerated to become large spatial profiles after the time of flight

measurement, in some cases comparable to the spatial extent of the freezing

beams. The Gaussian profile of the freezing beams causes the fluorescence rate

to decrease when the final distance was more than about 7 mm (1/e2 point).

This for example corresponds to a velocity of 80 recoils with a free drift time

of 3 ms. Consequently, the final distribution was kept below this limit. The

binning window was chosen to be 10 pixels wide by 240 pixels long (16 pixels

represent 1 mm at the atoms), which limits the measurements to a set of atoms

that are colder than the initial conditions for the one transverse direction which

is integrated out (10 pixels). This essentially limits the detection of transverse

atoms to those which see the same effective well depth V0 within ±5%, and

excludes those atoms which moved down the Gaussian beam profile of the

interaction beams during the duration of the experiment. The CCD camera

detection software is KestrelSpec which integrated the two-dimensional images

onto one-dimensional curves for analysis. The power in the molasses beams is

controlled by feedback to an AOM (AOM1) from a photodiode and is stabi-

lized to 1% [22]. This allowed good background subtraction since it eliminated

power fluctuations in the molasses beams from shot to shot. Figure 3.9 shows a

CCD picture after a typical acceleration experiment with deep wells. The peak

on the left are from atoms which have been accelerated to a velocity near 80

photon recoils (2.4 m/s) and the large central peak on the right is from atoms
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which were not trapped in the wells and remained at their initial velocities.

The upper frame shows an integration of the two dimensional picture binned

appropriately. Although the well depth for this run was significantly deeper

than in subsequent work, the results also exhibit quantum mechanical tunnel-

ing, which can be seen in the region between the two peaks. This quantum

tunneling is identified to be from higher bands as described later in section 4.6.
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Figure 3.9: Upper frame shows a sample CCD picture of the spatial distri-
bution of the fluorescence from atoms after acceleration. The well depth is
deep compared to the initial energies of the atoms. The lower frame shows the
conversion of the spatial information into a momentum distribution.



Chapter 4

Tunneling Experiment

4.1 Introduction

The ultimate goal of the experiment is to measure the tunneling rate from

bound states to the continuum. For all of the data presented here, the well

depth was chosen such that only one energy band was within the wells (see

Figure 2.5). We will be considering only tunneling between this lowest band

to the second band during an acceleration. In this case, it is possible to tell

whether an atom has made the transition out of the lowest band. Since the

band gaps between the higher bands above the second one are small, the atoms

are practically free particles as tunneling can readily occur between these bands.

Consequently, only atoms which remain in the lowest band will be accelerated

with the standing wave and atoms in the higher band are considered to be

in the continuum. This makes it simple to tell whether an atom has made

the transition from the lowest band by monitoring whether the atomic velocity

tracks with accelerating wells.

During the interaction process, atoms initially trapped in the MOT can

be (1) trapped and accelerated by the standing wave for the full duration of

the experiment, (2) trapped for some time before tunneling out of the wells,

or (3) not trapped at all by the standing wave. To distinguish atoms which

57



58

have tunneled from the wells from atoms which remain trapped in the wells,

a three step acceleration process was implemented. The three step process is

designed to (1) prepare an initial state where the atoms are in the lowest band,

(2) interact with a potential in which tunneling can occur, (3) measure the final

percentage of atoms which survive after the tunneling potential.

As shown in Figure 3.8 the three step process involves two accelerations

slow enough not to induce loss from tunneling and a faster acceleration in which

tunneling rates are to be measured. This plot is an experimental heterodyne

beat frequency (as described in Section 3.3.2) which can be calibrated to a

velocity curve. After initial trapping and cooling of atoms in the MOT, the

interaction standing wave is turned on for 20 µs with no acceleration (see

Figure 3.5). During this time, a portion of the cold atomic sample is trapped

in the lowest band. These atoms are the ones with initial wave functions that

significantly overlap with the eigenstates of the lowest band of the standing

wave. The first slow acceleration separates in momentum those atoms which

are trapped in the wells from the rest of the distribution. Typically, the slow

acceleration rate (aslow) is 1500 m/s2 and we confirmed that negligible tunneling

occurs from it (see Figure 4.1 panel a) by doing a single step acceleration.

Typically the velocity reaches 1.05 m/s when the acceleration is then switched

to a higher value in the range 4500-10000 m/s2, changing the tilt of the wells

and increasing the probability of tunneling between the bound state and the

continuum. This point of middle velocity must be such that atoms in the lowest

band which were trapped and accelerated are far enough out in velocity so as

not to be confused with atoms which are in higher bands. The reason this is

important is because we want to measure only tunneling rates from the lowest
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band to the higher band, but if there are atoms in higher bands decelerating

and moving down in band index, there is an equal probability that these atoms

will finally tunnel to the lower band. If we spatially separate the two classes,

there will be no ambiguities from atoms which might have tunneled into the

lowest band from higher bands.

After a controlled period of time, Tloss, the acceleration is switched

back to aslow and continues until the standing wave reaches a final velocity

vf typically 2.4 m/s. Like the first slow acceleration, this again separates in

momentum the atoms still in the wells from those which have tunneled. Now

the ratio of the number of atoms tunneled to atoms to atoms still trapped can

be measured.

4.2 Determination of Survival Probabilities and Tunnel-

ing Rates

A typical final distribution of atoms is shown in Figure 4.1 (b). The large peak

centered around x=0 mm corresponds to atoms that were not trapped by the

standing wave. The small peak centered at x=7 mm corresponds to atoms

that remained trapped and were accelerated to vf and the area under the peak

is proportional to the number of these atoms. The asymmetric peak between

the large and small peak represents atoms that tunneled out to the continuum

during the fast acceleration. Intuitively, the number of tunneled atoms should

be peaked at lower velocities since the tunneling rate is assumed constant in

time, more atoms are available to tunnel out at earlier times (lower standing

wave velocities). In fact, the shape has an exponential tail on the right side

from which we could in principle extract the decay constant, but this would
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be very difficult. An easier way is to consider only the ratio of the number

of atoms that have survived to the number of atoms were initially launched.

We can obtain this by merely comparing the areas under the two peaks. This

means we do not need to extract the actual numbers of atoms which each peak

represents.

To measure the tunneling rate, the experiment is repeated many times

with varying Tloss. Figure 4.2 through 4.15 show integrated curves as the fast

acceleration time or loss time (time which tunneling can occur) is adjusted

alternating with plots of the survival probability versus decay time. Note that

all the curves on each figure have the same acceleration, and only the loss time

is adjusted. To get a survival percentage we integrate to get the area under

the small peak and divide it by the area under both the small curve and the

middle curve. By normalizing this way we eliminate sensitivity to variations in

the number of atoms which were initially accelerated. Initially, we normalized

the number of atoms surviving to the total area under all three curves, but

the present method gave better results, especially at low accelerations where

the number of tunneled atoms was small. These variations in number of atoms

initially accelerated could be due to dynamics of the MOT, fluctuating MOT

temperature, or fringes moving from shot to shot. The program which was

used to calculate the survival probability is presented in Appendix B.

The data in these figures conclude that the decay trends are exponential

with the time constant dependent upon well depth and acceleration. Figure 4.2

shows an example of a large number of points which we took to completely

confirm the decay was exponential. In these figures we see that the decay

rate follows approximately the trends predicted by Landau-Zener theory (see
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Figure 4.1: Distribution of atoms after exposure to an accelerating standing
wave. The displacement is the distance from the atoms’ initial location in the
magneto-optic trap. The fluorescence is proportional to the number of atoms
at a given displacement. In (a) a fraction of the atoms was trapped by the
standing wave and accelerated for 1500 µs to a final velocity of 2.2 m/s. The
atoms then drifted ballistically for 3 ms, allowing them to separate spatially
from the main distribution. Here V0/h = 86 kHz. In (b) A fast acceleration
of 10,000 m/s2 was turned on for a duration of 47 µs leading to substantial
tunneling.
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Equation 2.43). Namely, the decay rate increases with higher accelerations and

lower well depths. Originally, our first results with different accelerations gave

almost the same decay rate. This was confusing initially until we compared the

results to the quantum simulations and understood that the points were on a

resonance (see Section 4.4) which is not predicted by Landau-Zener theory.

Once the curves were collected, we analyzed the data from the photo-

diode signals. If the average power over the time of the experiment spiked

more than ±3% outside the target power, the curve was eliminated from the

analysis. All the previous plots contain many data points to map out the ex-

ponential, but once we established that the trends were definitely exponential,

we took data only at four different times for each acceleration. A sample plot

with the curve fit for the four points is shown in Figure 4.19. Typically these

points were at Tloss=0%, 20%, 40%, 60% of (Vfinal−Voffset)/afast where Vfinal

is the final velocity and Voffset is the velocity at which the fast acceleration

portion begins as shown in the figure. This figure also shows the points for the

discriminated and undiscriminated points. Notice that there is a small change

in the determined slope for the decay depending whether we discriminated or

not. In general, the curve fits for the discriminated data provided better fits to

an exponential. This is also shown in this figure by noting that the R for the

fit is higher for the discriminated set. Because of this we finally discriminated

all the data to get the best results. These plots were created on KaleidaGraph

for the Power MacIntosh which includes curve fitting routines. The curves are

fitted with an exponential without any offset (y=exp(-ax)) giving a slope equal

to Γ (the inverse of the lifetime). The error bar in slope gives the sigma for

the Γ. In all cases this error bar is less than ±4% (typically ±2%). This error
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Figure 4.2: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 96 ± 25% kHz, afast=6000
m/s2, aslow=1500 m/s2.
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Figure 4.3: The survival probability for the previous page (V0/h = 96 ± 25%
kHz, afast=6000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 74 µs.
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Figure 4.4: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 96 ± 25% kHz, afast=7000
m/s2, aslow=1500 m/s2.
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Figure 4.5: The survival probability for the previous page (V0/h = 96 ± 25%
kHz, afast=7000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 83.5 µs.
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Figure 4.6: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 96 ± 25% kHz, afast=8000
m/s2, aslow=1500 m/s2.
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Figure 4.7: The survival probability for the previous page (V0/h = 96 ± 25%
kHz, afast=8000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 52.3 µs.
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Figure 4.8: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 96 ± 25% kHz, afast=9000
m/s2, aslow=1500 m/s2.
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Figure 4.9: The survival probability for the previous page (V0/h = 96 ± 25%
kHz, afast=9000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 36.5 µs.
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Figure 4.10: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 58 ± 25% kHz, afast=3000
m/s2, aslow=1500 m/s2.
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Figure 4.11: The survival probability for the previous page (V0/h = 58± 25%
kHz, afast=3000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 184 µs.
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Figure 4.12: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 58 ± 25% kHz, afast=5000
m/s2, aslow=1500 m/s2.
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Figure 4.13: The survival probability for the previous page (V0/h = 58± 25%
kHz, afast=5000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 30.7 µs.
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Figure 4.14: The panel shows the evolution of the curves as the loss time is
varied. The parameters for this case are V0/h = 58 ± 25% kHz, afast=7000
m/s2, aslow=1500 m/s2.
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Figure 4.15: The survival probability for the previous page (V0/h = 58± 25%
kHz, afast=7000 m/s2, aslow=1500 m/s2). The solid line is fit to an exponential
and for this case gives 17.7 µs.
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Figure 4.16: Example of experimentally measured survival probability for
aslow=1200 m/s2, afast=4500 m/s2, and V0/h=50.8 kHz as a function of the
duration of the fast acceleration. The solid line is an exponential fit to the
data.
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bar is small compared to the error bars which would result from our measure-

ment of power. However, it is not possible to include error bars due to power

uncertainty in the measured value of Γ unless we include some theoretical anal-

ysis with tunneling rates. The only experimental error bar we can put on the

measurement is the uncertainty in the tunnel rates determined by the curve

fit, and the error bar on acceleration. Therefore, it is more useful to compare

our results with Landau-Zener tunneling theory and quantum mechanical sim-

ulations and either use the well depth as a fit parameter or bracket the results

with theory curves at well depths determined by the experimental uncertainty

in well depth.

4.3 Tunneling Experiment Procedure

To collect good tunneling data, it is essential to characterize the standing wave

(Section 3.3.2) as accurately as possible and second, to obtain a high num-

ber of atoms in a simple acceleration. To accomplish this, we first obtained

as symmetric and cold of atomic sample in the MOT as possible. The sam-

ple’s temperature is minimized by a combination of adjusting sideband levels,

proper alignment of trapping/cooling laser beams to minimize fringing effects,

and correct detuning from resonance. All three of these parameters must be

adjusted at the beginning of each day of running to produce the most uni-

form and coldest sample. The symmetry of the MOT sample is adjusted by

making momentum measurements. As the atoms expand out spatially during

the free drift potion of the experiment, if there is any non-uniformity in the

magnetic fields or slight misalignment of the cooling beams, the pattern will

not be spherically symmetric. Figure 4.17 shows a two dimensional CCD im-
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age where both the launched atom peak and the initial atomic peak expand

symmetrically. The fast acceleration time for this case is zero so there are only

two peaks since there is no tunneling. In general, the quality of the accelerated

peak was sensitive to the quality of the free expansion.

After the MOT sample was optimized, we next would align the inter-

action beam onto the atoms. This was described earlier in Section 3.3.2. The

interaction beam was usually coarse adjusted at high well depth to optimize

the number of atoms accelerated. Later, we reduced the well depth close to the

experimental parameters for the run and adjusted the beams to produce the

largest and most symmetric drag peak determined from the two dimensional

images. When everything was optimized, we could easily accelerate almost 10%

of the atoms in the MOT. Figure 4.18 is a two dimensional image of the results

following a run which included tunneling with Tloss of 95 µs, V0= 70 kHz, and

a fast acceleration of 5000 m/s2. The atoms which have tunneled are lined up

with the ones which have survived. When not properly aligned, these atoms

would sometimes spray out in various directions. For good tunneling results,

it was necessary to obtain pictures like this one.

Once the interaction beams were aligned properly, we measured all of

its parameters including beam waist, power, wavelength, and acceleration from

heterodyne measurements. Since most of the experiment was automated, the

rest of the time involved monitoring the power, detuning and making sure the

MOT beams did not unlock from the absorption line as the computers acquired

the data.
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Figure 4.17: A typical two dimensional CCD image of the fluorescence from
atoms taken after the free drift portion of the experiment where the loss time
was zero. The fluorescence is proportional to the number of atoms. The large
peak on the left represents atoms which were not accelerated and the small peak
on the right represents atoms which were accelerated. With optimal alignment
and acceleration we could accelerate almost 10% of the atoms. It was important
to obtain symmetric pictures like this one for good tunneling data.
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Figure 4.18: A typical two dimensional CCD image of the fluorescence from
atoms taken after the free drift portion of the experiment where the loss time
was non-zero. The fluorescence is proportional to the number of atoms. The
large peak on the left represents atoms which were not accelerated. The small
peak on the far right represents atoms that were accelerated and did not tunnel
to the continuum and the small middle peak are the atoms which tunneled from
the wells.
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Figure 4.19: Plot shows the effect of power discrimination on the tunnel rates.
Once we established that the curves were exponentials, we took data with just
four points. Plot also shows the curve fits for discriminated and undiscrimi-
nated data. The determined decay rate is slightly different for each case.
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4.4 Comparison with Theory

We compared our results of tunneling rates with the Landau-Zener tunneling

theory as well as with quantum simulations. Figures 4.20, 4.21 and 4.22 show

the experimental results for the tunneling rate versus acceleration with the

quantum simulation results and the Landau-Zener curves. In Figure 4.20 the

well depth is V0/h= 92 kHz but has an absolute uncertainty of ± 25%. The

well depth for Figure 4.21 is V0/h=72 kHz but has a much better uncertainty

of ± 10%. The reason for the improvement in uncertainty is due to a much

more careful calibration of laser power and spot size for the second run. For

Figure 4.20 we used the well depth as a fit parameter for the quantum sim-

ulations and for Figure 4.21 we bracketed the experimental results between

two quantum simulations. Figure 4.22 is a run for slightly lower well depth.

Here, the quantum simulations are for V0/h= 54 kHz, V0/h= 60 kHz and the

experimentally determined well depth is V0/h= 66 kHz with an error bar of

±25%. This curve also shows the small error bars resulting from the fitting to

the exponential but does not include an error bar derived from power measure-

ment. These figures certainly show a quantitative agreement of tunnel rates

with theoretical predictions varying both the well depth and the acceleration.

From Equation 2.43 it is seen that the tunneling rate is exponentially

dependent on the band gap. The band gap is monotonically related to the well

depth in this regime so that the end result is a particularly high sensitivity

of tunneling rate to well depth. Given the high sensitivity of tunneling rate

to the well depth, the agreement with an ideal simulation over the range of

accelerations is quite good, and further confirms the observation of tunneling.

This is the primary evidence that the observed loss is due to quantum tunneling.
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All these plots of loss rate versus acceleration (Figures 4.20, 4.21, 4.22)

show clearly an experimental deviation from Landau-Zener theory at interme-

diate values of acceleration. The deviations are in the form of oscillations as

a function of the acceleration. These oscillations also occur in the quantum

simulations. This deviation is due to a fundamental difference between the

experimental system and the Landau-Zener model. The Landau-Zener model

assumes that the inter-band transition occurs only at the band gap (point of

closest approach between the bands), however, in the present system the band

curvature is not large, and transitions are no longer limited to the gap but

can occur at different points along the band. A theoretical analysis of this

problem shows that in a single Bloch period there are contributions to the tun-

neling probability at points of both nearest and farthest approach between the

bands, where their curvature is zero [25, 26]. Contributions from other points

along the band cancel out. This leads to interference effects in the tunneling

probability which depend on the Bloch period. The period of the oscillation is

proportional to acceleration while the amplitude of the oscillation is inversely

proportional to acceleration. At smaller values of the acceleration, deviations

about the Landau-Zener prediction are considerably larger. This is physically

reasonable because coherent effects become dominant when tunneling is sup-

pressed. The extreme case is the coherent regime of Bloch oscillations and

Wannier-Stark ladders where tunneling from the trapped state plays no role.

The interplay between coherent and irreversible effects has been studied the-

oretically and observed, for example, in atomic physics experiments [27, 28].

The present experiment, however, allowed a detailed study of these effects in a

much simpler setting, and with no adjustable parameters for comparison.
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Figure 4.20: Tunneling rate as a function of acceleration. The experimental
data are marked by sold dots. The uncertainty in the exponential fits to deter-
mine Γ are typically ±2%, and the uncertainty in the acceleration for the the
range shown is ±50 m/s2. The dashed lines are predictions of Landau-Zener
theory. The well depth used in the quantum simulation (empty diamonds) and
in the Landau-Zener theory was V0/h= 72 kHz as a fit parameter to the data.
The experimentally determined well depth for this run was V0/h= 92 kHz but
had an absolute uncertainty of ±25%.
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Figure 4.21: Tunneling rate as a function of acceleration. The experimental
data are marked by sold dots. The uncertainty in the exponential fits to deter-
mine Γ are typically ±2%, and the uncertainty in the acceleration for the the
range shown is ± 50 m/s2. The dashed lines are predictions of Landau-Zener
theory. The experimental well depth was V0/h= 72 kHz with an uncertainty of
±10%. The data are bracketed between quantum simulations for well depths
V0/h= 60 kHz (empty triangles) and V0/h= 72 kHz (empty diamonds).
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Figure 4.22: Tunneling rate as a function of acceleration. The experimental
data are marked by sold dots. The uncertainty in the exponential fits to deter-
mine Γ are typically ±2%, and the uncertainty in the acceleration for the the
range shown is ± 50 m/s2. The well depths used in the quantum simulations
was V0/h= 54 kHz (empty diamonds) and V0/h= 60 kHz (empty triangles). The
Landau-Zener curve is also for V0/h= 54 kHz. The experimentally determined
well depth for this run was V0/h= 66 kHz but had an absolute uncertainty of
±25%.
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4.5 Other Factors Leading to Loss Rate from Wells

There are several other mechanisms which could conceivably contribute to a loss

in atoms. Several possibilities include amplitude and phase noise of the optical

potential, switching effects occurring during the time when the acceleration

changes abruptly, and spontaneous scattering. All of these turned out to be

negligible in this experiment.

We studied the amplitude and phase noise through the photodiode sig-

nals and optical heterodyne measurements respectively. The jitter in phase was

far below that required to observe any loss of atoms as in the previous study of

Wannier-Stark ladders [2]. In the Wannier-Stark case, depletion of the trapped

atoms could only be induced by adding a much larger level of phase noise.

The amplitude noise was eliminated by monitoring laser powers on the digital

storage scope and rejecting traces with amplitudes ±3% outside a target value

(usually the average power for the entire set of curves).

Fast switching between different accelerations has high frequency com-

ponents that could possibly drive atoms out of the wells. We checked this by

varying the switching times and did not observe any effect. The switching times

were varied by programming the arbitrary waveform generator with different

waveforms. An experimentally measured heterodyne with a non-zero switching

time is shown in Figure 4.23. In this case the three accelerations are pieced

together with portions of a(t) ∝ sin2(t/Tswitch) giving a v(t′) ∝ cos(πt′/Tswitch)

where t′ is referenced to the start of the switching portions of the curve. Specif-

ically, the first acceleration is a slow one from t=0 to T1 where v(t) = ast. The

next piece is from t=T1 to T1 + Ts where v(t′) = V1 +
af+as

2
t′− Ts

π

af−as
2

sin(πt
′

Ts
)

where t′ is referenced from T1 and represents the variable switch portion.
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The next section is the fast acceleration for a duration Tloss where v(t′) =

Voffset + af t
′ where t′ is referenced from T1 + Ts. Another variable switching

section follows with v(t′) = V2 +
af+as

2
t′ − Ts

π

as−af
2

sin(πt
′

Ts
). The final section

is another slow acceleration with v(t′) = V3 + ast
′ where t′ is referenced from

T1+2Ts+Ttun. The PC calculated these values from input parameters Ts, Tloss,

afast, aslow, Vfinal, Voffset and programmed the arbitrary waveform generator

with the resulting curve.

As the value of Tswitch is raised, the switching time is increased such that

the change in acceleration can approach an adiabatic limit when compared to

the Bloch frequency. One would expect that a non-adiabatic (fast) change in

acceleration would result in a mapping of the wave function in the basis set of

the slow acceleration’s Hamiltonian to the basis set of the fast acceleration’s

Hamiltonian. This kind of interaction can drive atoms between the two bands.

However, experimentally the results of a tunneling experiment with a Tswitch of

40 µs and a Tswitch of 0 µs provided the same decay rate if all other parameters

(Tloss, afast, aslow, Vfinal, Voffset) were consistent in both runs. More theoretical

work needs to be completed on switching, especially related to the predicted

short-time behavior (see Section 4.7.3). If the switching time becomes larger

than 60µs we did see an effect which could be explained. At this point, the

change in acceleration is so slow that the atom effectively is swept through

different accelerations, each one with its own tunneling rate. This would then

mimic a loss time which was effectively longer than the targeted value with a

higher loss rate from the wells.

Spontaneous emission is another process which could drive atoms out of

the wells and could have several elements. The first is that a spontaneous event
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Figure 4.23: Figure shows experimentally measured heterodyne of waveform
created with non-zero Tswitch pieced between the constant acceleration parts.
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can change the atoms velocity in the standing wave’s direction by as much as

two recoils or an energy change of 100 kHz. Since the well depth is only about

70 kHz it is quite easy for an atom’s energy to be raised above the well depth

and be transferred to higher bands. One other problem with the recoil aspect

of spontaneous emission is that it now turns a one-dimensional problem into

a three-dimensional one. The atom can get a momentum kick in any of the

other two dimensions perpendicular to the standing wave and be launched out

of the interaction region of the standing wave and even out of the binning view.

Another effect arising from spontaneous emission is that during the process,

the atom must be transferred to the excited state for a period of time on the

order of the atomic lifetime. From the dipole approximation it can be shown

that at this point, the nodes of the standing wave become anti-nodes. This

is a similar process as in Sisyphus cooling [13], but in the case of accelerating

nodes, when the atom returns to the ground state, it could have acquired a

velocity with respect to the accelerating nodes such that it is no longer in the

lowest band.

Since the standing wave is far detuned, the probability of spontaneous

emission can be minimized. This probability is given by [14]

N =
ΩeffδLγ∆Tint

4 [(2δL)2 + γ2]
(4.1)

where

Ωeff =
8V0

h̄
(4.2)

For large detuning this gives

N =
h̄Ωeff

8

∆Tintγ

2h̄δL

=
V o

h

[ γ
2π
δL
2π

]
π∆Tint (4.3)
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If we use the parameters for the run with V0/h=70 kHz and δL/2π=23 GHz

we obtain a spontaneous emission rate of 10%/ms. Over the time scale which

tunneling occurs (10-100s of µs) the probability of a spontaneous emission event

is negligible.

4.6 Tunneling from Higher Bands

When the well depth gets large, other bands can be within the energy of the

wells (See Figure 4.24). This condition opens up the possibility of atoms in a

second band being trapped and accelerated along with the atoms in the lowest

band. Starting from very low well depths, we observed a decline in the loss

rate with increasing well depth until above a certain point where the loss rate

became significant again. An example of this is shown in Figure 3.9 as noted

before. The parameters for this curve are for conditions where the tunneling

rate from the lowest band should be negligible, however, we still observed

loss. This loss is is tunneling from the second band to the continuum and

not tunneling from the lowest band to the second band. Adding to this effect

is that atoms in the lowest band may make transitions to the second band and

subsequently tunnel to the continuum from this band. This tunneling process

now becomes very complicated.

4.7 Conclusion and Future Work

4.7.1 Conclusion

We have measured the tunneling rates for inter-band atomic center of mass

transitions in an optical lattice with ultra-cold sodium atoms. This represents

the first measurement of tunneling in the center of mass motion for atoms. The
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Figure 4.24: Figure shows band structure where tunneling between higher
bands can occur when the well depth is larger. The well depth here is V0/h =
120 kHz.
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experimentally measured decay rates results agree well with Landau-Zener pre-

dictions and quantum simulations. Both the quantum simulations and experi-

mental results show deviations from Landau-Zener adiabatic transition theory

for an avoided crossing. This deviation is due to interference effects. Future

extensions to this work include possibly the study of resonant tunneling, short-

time non-exponential effects, and application of the accelerator for an atomic

interferometer.

4.7.2 Enhanced Resonant Tunneling

Although we discuss the accelerating wells in terms of band structure, Bloch

states are not exact eigenstates when a potential is applied which breaks the

symmetry of the problem. In the case of an acceleration, the bands will break

up into localized states in individual wells. When the tilt of the potential is

such that the lowest level in one well is in resonance with the second level

(or any other level) in an adjacent well (see Figure 4.25), the tunneling rate

should have a resonant enhancement. The phenomena of enhanced tunneling

is well known and observed in resonant tunneling diodes and transistors (See

for example [20]). In the case of these devices, the wells are created by a dou-

ble quantum well structure and tunneling of electrons occurs through the two

barriers. When the energy level of the bound state in the well aligns with the

energy of the incident electrons, an enhancement in current through the two

barriers occurs. In the case of the standing wave of light, the enhancement of

tunneling would manifest itself in an increased spatial spread over the standing

wave as the atoms tunnel through the wells. After the interaction, the spatial

extent of the atoms would be measured with different potential tilts (acceler-
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ations) and at the resonant points the atomic spread should increase as the

atoms tunnel through many wells.

4.7.3 Non-exponential Decay

An interesting aspect of decay processes is that for short times, there must

be some deviation from an exponential [9, 10]. Consider an unstable system

prepared in an initial state at time zero and we plot the probability of being in

the excited state versus time. We also assume that the Hamiltonian is bounded

by states from below. We wish to calculate

P (t) = |A(t)|2 (4.4)

using

A(t) = 〈Ψ|e−iHt/h̄|Ψ〉 (4.5)

which is the probability of being in the excited state Ψ. When we expand out

the exponential for small t we get

P (t) = 1− t2

h̄2 〈|Ψ(H − Ē)2|Ψ〉 + O(t4) (4.6)

where Ē is given by〈Ψ|H|Ψ〉 Thus, one can see that for short times the decay

time constant is not constant as in pure exponential decay, but varies as t.

There may be other short-time effects such as oscillations as well. If we look at

Figure 2.8 for the theoretical autocorrelation function we may see an indication

of these short time effects.

Non-exponential short-time decay has been predicted for a long time but

not experimentally verified. The reason for this is because the time in which

short time effects occur is given by the inverse of the energy spacing between
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Figure 4.25: Figure shows schematically the potential where the possibility of
resonant tunneling could occur.
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the unstable state and the ground state. In many nuclear or optical transitions

this time could be a short as 10−15 to 10−18 sec! To make this time longer, it

is important to consider unstable systems which have smaller energy spacings.

Unfortunately, in most systems the decay rate and the time which short time

effects occur both decrease with increasing energy between states. This usually

means that systems with measurable short time effects will have a decay rate

which is too long to measure. In our tunneling system however these two rates

are partially decoupled. The decay rate is dependent upon the energy spacing

between bands (given mostly by the well depth) and on the acceleration. The

short-time effects are determined only by the energy spacing. Therefore, we

should be able to find a regime to maximize the short time behavior while

keeping the decay time reasonable short. This is an area of future theoretical

and experimental investigation.

4.7.4 Atomic Interferometer

One application for the accelerator described here is for a cold atomic beam

used in an atom interferometer. The atom interferometer is a device similar to

an optical interferometer except the interfering waves are atomic wave functions

instead of electromagnetic fields. Like optical interferometers, the fringe visi-

bility in atomic interferometers is limited by the coherence of the source. The

important parameters for the source beam are δv/v (velocity spread), bright-

ness, and beam divergence. We have shown experimentally that the atomic

accelerator described in this work can accelerate atoms without heating (in-

creasing δv/v) the sample if the well depth is not large compared to the initial

energies of the atoms. In our experiments here we accelerated some of the
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atoms in a MOT, but it is also possible to use sub-recoil cooled atoms instead.

Sub-recoil velocities can be obtained by stimulated Raman cooling and recently

the realization of a Bose condensate offers another possibility [24]. To match

the acceleration to a sub-recoil source we must lengthen the period of the stand-

ing wave and lower the well depth further. These changes will lower the zero

point energy of each well. For minimal heating, the spread in momentum of

the lowest state in each well must be lower than the spread in momentum for

the initial state of the particle. Thus, lowering the zero point energy will de-

crease the heating. Lengthening the distance between wells will also decrease

the tunneling probability, increasing the number of atoms that will accelerate.

These modifications to the present system would allow the possibility of using

sub-recoil samples for interferometry. An atomic interferometer using these

techniques is our next major research project.
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Appendix A

Program to Calculate Heterodyne Frequency

#include <stdio.h>

#include "/u2/cyrus/C/curveHandling.h"

/*************************************************************************/

/***** Finds the number of curves in a KestrelSpec file **************/

/*************************************************************************/

int findNumCurves(char *fName, int *Nc)

/***** Count the number of tabs on a line to determine the *****/

/***** number of curves in the data file. *****/

{

int nTabs;

char ch = 0;

int fileError = 0;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );

if (fileError)

/* file error! */;

else {

rewind(fp);

for (nTabs=0; ((ch!=EOF) && (ch!=’\n’)); nTabs+=(ch==’\t’) ) {

ch=getc(fp);

/*printf("%c", (ch==’\n’) ? ’N’ : ch); */

}

*Nc = nTabs+1;

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Reads a 1D array from a file with several columns. *****/

/*************************************************************************/

int readOneRealArrayFrom2DFile(char *fName, real f[],

100
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int c, int NumColumns, int N)

/***** Read real f[1..N] from the c’th column of fName, *****/

/***** padding at the end with zeroes. *****/

{

int count, x=1;

real ff;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );

if (fileError)

/*fclose(fp)*/;

else {

rewind(fp);

count= 0;

while ( ( EOF != fscanf(fp, "%f", &ff) ) && x<=N ) {

count++;

if (count==c ) {

f[x]=ff;

/*printf("%d\t%f\n", x, f[x]);*/

x++;

}

if (count==NumColumns) count=0;

}

while ( x<=N ) {

f[x] = 0.0;

/*printf("%d*\t%f\n", x, f[x]);*/

x++;

}

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Reads a 2D array from a 2D file. ********************/

/*************************************************************************/

int read2DRealArrayFromFile (char *fName, real distribution[][ARRAY_SIZE+1],

int Nc, int Np)

/***** *****/

/***** *****/

{

int c=1, p=1;

int fileError = 0;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );
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if (fileError)

/* file error! */;

else {

rewind(fp);

while ( ( EOF != fscanf(fp, "%f", &distribution[c][p]) )

&& (p<=Np) ) {

/*printf("%d\t%d\t%f\n", c, p, distribution[c][p]);*/

c++;

if (c > Nc) {

c=1;

p++;

}

}

while ( p<=Np ) {

distribution[c][p] = 0.0;

/*printf("*%d\t%d\t%f\n", c, p, distribution[c][p]);*/

c++;

if (c > Nc) {

c=1;

p++;

}

}

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Writes a 2D array to a 2D file **************************/

/*************************************************************************/

int write2DRealArrayToIntegerFile (char *fName,

real distribution[][ARRAY_SIZE+1],

int Nc, int Np)

/***** Write real distribution[1..N] as int to fName. *****/

{

char *separator = ",";

int c,p;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (fileError)

/* file error! */;

else {

for (p=1; p<=Np; p++){

for (c=1; c<=(Nc-1); c++)

fprintf(fp, "%d%s", (int) distribution[c ][p ], separator);

fprintf (fp, "%d%s", (int) distribution[Nc][p ], "\n" );

}

fileError = (fclose(fp));
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}

return fileError;

}

#include <stdio.h>

#include "curveHandling.h"

/*************************************************************************/

/***** Reads an array from a file **************************/

/*************************************************************************/

int readFloatArrayFromFile(char *fName, float distribution[], int N)

/***** Read float distribution[1..N] from fName, padding at *****/

/***** the end with zeroes. *****/

{

int x=1;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );

if (fileError)

/*fclose(fp)*/;

else {

rewind(fp);

while ( ( EOF != fscanf(fp, "%f", &distribution[x]) ) && x<=N ) {

/*printf("%d\t%f\n", x, distribution[x]);*/

x++;

}

while ( x<=N ) {

distribution[x] = 0.0;

/*printf("%d*\t%f\n", x, distribution[x]);*/

x++;

}

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Writes an array to a file ********************************/

/*************************************************************************/

int writeFloatArrayToIntegerFile(char *fName, float distribution[], int N)

/***** Write float distribution[1..N] as int to fName. *****/

{

int x;



104

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (!fileError) {

for (x=1; x<=N; x++)

fprintf(fp, "%d\n", (int) distribution[x]);

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Writes an array to a file *************************************/

/*************************************************************************/

int writeFloatArrayToFloatFile(char *fName, float distribution[], int N)

/***** Write float distribution[1..N] as float to fName. *****/

{

int x;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (!fileError) {

for (x=1; x<=N; x++)

fprintf(fp, "%f\n", distribution[x]);

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Writes two arrays to a file **************************/

/*************************************************************************/

int writeFloatTwoArraysToIntegerFile(char *fName, float distributionA[],

float distributionB[], int N)

/***** Write float distribution[1..N] as int to fName. *****/

{

int x;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (!fileError) {

for (x=1; x<=N; x++)

fprintf(fp, "%d\t%d\n", (int) distributionA[x], (int) distributionB[x]);

fileError = (fclose(fp) == EOF);
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}

return fileError;

}

/*************************************************************************/

/*************************************************************************/

/***** Writes two arrays to a file **************************/

/*************************************************************************/

int writeFloatTwoArraysToFloatFile(char *fName, float distributionA[],

float distributionB[], int N)

/***** Write float distribution[1..N] as int to fName. *****/

{

int x;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (!fileError) {

for (x=1; x<=N; x++)

fprintf(fp, "%f\t%f\n", distributionA[x], distributionB[x]);

fileError = (fclose(fp) == EOF);

}

return fileError;

}

#define ARRAY_SIZE 32002

#define PI acos(-1.)

#define real float

int findNumCurves(char *fName, int *Nc);

int readOneRealArrayFrom2DFile (char *fName, real f[], int c, int Nc, int N);

int writeRealArrayToIntegerFile (char *fName, real f[], int N);

int writeRealArrayToRealFile (char *fName, real f[], int N);

int writeRealTwoArraysToIntegerFile (char *fName, real f[],real g[], int N);

int writeRealTwoArraysToRealFile (char *fName, real f[],real g[], int N);

void getMoments (real distribution[], int N,

real *normPtr, real *meanPtr, real *stdDevPtr);

void findMinRegion(real f[], int startIndex, int endIndex, int regionSize,

real *minimum, int *minimumIndex);

void findMaxRegion(real f[], int startIndex, int endIndex, int regionSize,

real *maximum, int *maximumIndex);

int analyzeSquarePulse (real y[], int numPts,

real *yBaseline, real *yMax, real *yMin,

int *fwhmIndex1, int *fwhmIndex2);

void subtractBaseline(real distribution[], int N, real baseline);

int getWfmInfo (real y[], int numPts, real xStep, int ptOffset,

real *yBaseline, real *yMax, real *yMin, real *xFWHM);

void twofft (real data1[], real data2[], real fft1[], real fft2[], long int N);
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void four1 (real data[], long int N, int isign);

void realft (real data[], long int N, int isign);

#include <stdio.h>

#include <math.h>

#include "/u2/cyrus/C/curveHandling.h"

/*************************************************************************/

void getMoments(real distribution[], int N,

real *norm, real *mean, real *stdDev)

/*** Find the norm, mean, and standard deviation of ***/

/*** the distribution function distribution[1..N] ***/

{

int i;

real x;

real total0, total1, total2;

total0 = total1 = total2 = 0.;

for (i=1;i<=N;i++) {

x= (real) i;

total0 += distribution[i];

total1 += x * distribution[i];

total2 += x * x * distribution[i];

}

*norm = total0;

*mean = total1/(*norm);

*stdDev = sqrt(total2/(*norm) - (*mean)*(*mean));

}

/*************************************************************************/

void findBaseline(real distribution[], int N, real *baseline)

{

int group_beginning, j;

real avg, min_avg;

int groupSize=10; /* number of neighboring */

/* points to consider in a group */

group_beginning =1;

for (j=group_beginning, min_avg=0.; j<=group_beginning+groupSize-1; j++)

min_avg += distribution[j];

min_avg /= groupSize;

for (group_beginning =1; group_beginning <= (N+1-groupSize); group_beginning++) {

for (j=group_beginning, avg=0.; j<=group_beginning+groupSize-1; j++)

avg += distribution[j];

avg /= groupSize;

if (min_avg > avg) min_avg=avg;

}

*baseline = min_avg;

}
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/*************************************************************************/

void subtractBaseline(real distribution[], int N, real baseline)

{

int j;

for (j=1; j<=N; j++)

distribution[j] -=baseline;

}

/*************************************************************************/

/* THIS ROUTINE NEEDS DEBUGGING

void findBaselinePoint(real distribution[], int N, real *baseline, int *Px)

{

int group_beginning, j, x;

real avg, min_avg;

int groupSize=10; /* number of neighboring * /

/* points to consider in a group * /

group_beginning =1;

for (j=group_beginning, min_avg=0.; j<=group_beginning+groupSize-1; j++)

min_avg += distribution[j];

min_avg /= groupSize;

for (group_beginning =1; group_beginning <= (N+1-groupSize); group_beginning++) {

for (j=group_beginning, avg=0.; j<=group_beginning+groupSize-1; j++)

avg += distribution[j];

avg /= groupSize;

if (min_avg > avg) {

min_avg=avg;

x = group_beginning + groupSize/2;

}

}

*Px = x;

*baseline = min_avg;

}

void findPeakPoint(real distribution[], int N, real *peak, int *Px)

{

int i,x ;

real baseline;

for (i=1; i<= N; i++) distribution[i] *= (-1);

findBaselinePoint(distribution, N, baseline, x)

*Px = x;

*peak = -1*baseline;

}

/*************************************************************************/
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/*************************************************************************/

#include <stdio.h>

#include <math.h>

#include "curveHandling.h"

/**************************************************************************/

int homodyneCount (real y[], int numPts, real tStep,

real *yBottom, real *yTop, FILE *fp);

/**************************************************************************/

void main(int argc, char *argv[])

{

real y[ARRAY_SIZE]; /* Inputs */

int numPts=ARRAY_SIZE;

real tStep = .4/50.; /*us*/

real yBottom, yTop; /* Outputs */

int err;

char inFileName[100], outFileName[100], *fileRoot;

FILE *inFile, *outFile;

int i;

if (argc != 2) {

printf("\nYou need to indicate a root filename!\n");

exit (1);

}

fileRoot = argv[1];

sprintf(inFileName, "data/%s.dat", fileRoot);

sprintf(outFileName,"data/%s.frq", fileRoot);

printf ("\n\nReading \"%s\" .....\n",inFileName);

inFile = fopen (inFileName, "r");

outFile= fopen (outFileName, "w");

err=readOneRealArrayFrom2DFile(inFileName, y,

2, 2, 32000);

if (err) {

printf("\nError reading \"%s\". \n", inFileName);

exit (1);

}

printf ("Writing \"%s\" .....\n",outFileName);

err= homodyneCount (&y[1], numPts, tStep,

&yBottom, &yTop, outFile);

if (err) {

printf("\nError writing \"%s\". \n", outFileName);

exit (1);
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}

printf ("Closing files .....\n");

fclose(outFile);

fclose(inFile);

printf("\n\nDone.\n");

printf(" top= %f \n bot= %f \n",

yTop, yBottom);

printf("\n err= %d\n", err);

}

/***************************************************************************/

int homodyneCount (real y[], int numPts, real tStep,

real *yBottom, real *yTop, FILE *fp)

/* Assumes y[0..numPts-1] is a square pulse with a small sinusoid */

/* added onto the flattop. tStep is the temporal spacing between */

/* elements. This routine returns the bottom and top values of */

/* the sinusoid, and writes information on the sinusoid periods */

/* to the file fp. */

{

#define RegionSize 11 /* number of points to */

/* average when looking for */

/* the max and min vals */

int err=0;

int i;

real t, f, newCross, oldCross, yMid;

int iDummy1, iDummy2;

/*

real rDummy;

err=analyzeSquarePulse (y, numPts,

yBottom, yTop, &rDummy, &iDummy1, &iDummy2);

*/

findMinRegion(y, 0, numPts-1, RegionSize, yBottom, &iDummy1);

findMaxRegion(y, 0, numPts-1, RegionSize, yTop, &iDummy1);

yMid = (*yBottom + *yTop )/2.;

i=0; oldCross= i * tStep;

for (i=0+1; i<numPts; i++) {

if ( (y[i-1] <yMid) && (y[i]>=yMid) ) {

newCross= i*tStep - tStep*(y[i] - yMid )/ (y[i]-y[i-1]);

t=(newCross+oldCross)/2.;

f= 1./(newCross-oldCross);

fprintf(fp,"%f \t %f \n", t, f);

oldCross=newCross;

}

}

return err;
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}

/***************************************************************************/



Appendix B

Program to Calculate Drag Ratio

#include <stdio.h>

#include "/u2/cyrus/C/curveHandling.h"

/*************************************************************************/

/***** Finds the number of curves in a KestrelSpec file **************/

/*************************************************************************/

int findNumCurves(char *fName, int *Nc)

/***** Count the number of tabs on a line to determine the *****/

/***** number of curves in the data file. *****/

{

int nTabs;

char ch = 0;

int fileError = 0;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );

if (fileError)

/* file error! */;

else {

rewind(fp);

for (nTabs=0; ((ch!=EOF) && (ch!=’\n’)); nTabs+=(ch==’\t’) ) {

ch=getc(fp);

/*printf("%c", (ch==’\n’) ? ’N’ : ch); */

}

*Nc = nTabs+1;

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Reads a 1D array from a file with several columns. *****/

/*************************************************************************/

int readOneRealArrayFrom2DFile(char *fName, real f[],
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int c, int NumColumns, int N)

/***** Read real f[1..N] from the c’th column of fName, *****/

/***** padding at the end with zeroes. *****/

{

int count, x=1;

real ff;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );

if (fileError)

/*fclose(fp)*/;

else {

rewind(fp);

count= 0;

while ( ( EOF != fscanf(fp, "%f", &ff) ) && x<=N ) {

count++;

if (count==c ) {

f[x]=ff;

/*printf("%d\t%f\n", x, f[x]);*/

x++;

}

if (count==NumColumns) count=0;

}

while ( x<=N ) {

f[x] = 0.0;

/*printf("%d*\t%f\n", x, f[x]);*/

x++;

}

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Reads a 2D array from a 2D file. ********************/

/*************************************************************************/

int read2DRealArrayFromFile (char *fName, real distribution[][ARRAY_SIZE+1],

int Nc, int Np)

/***** *****/

/***** *****/

{

int c=1, p=1;

int fileError = 0;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"r")) == NULL );
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if (fileError)

/* file error! */;

else {

rewind(fp);

while ( ( EOF != fscanf(fp, "%f", &distribution[c][p]) )

&& (p<=Np) ) {

/*printf("%d\t%d\t%f\n", c, p, distribution[c][p]);*/

c++;

if (c > Nc) {

c=1;

p++;

}

}

while ( p<=Np ) {

distribution[c][p] = 0.0;

/*printf("*%d\t%d\t%f\n", c, p, distribution[c][p]);*/

c++;

if (c > Nc) {

c=1;

p++;

}

}

fileError = (fclose(fp) == EOF);

}

return fileError;

}

/*************************************************************************/

/***** Writes a 2D array to a 2D file **************************/

/*************************************************************************/

int write2DRealArrayToIntegerFile (char *fName,

real distribution[][ARRAY_SIZE+1],

int Nc, int Np)

/***** Write real distribution[1..N] as int to fName. *****/

{

char *separator = ",";

int c,p;

int fileError;

FILE *fp, *fopen();

fileError = ( (fp=fopen(fName,"w")) == NULL );

if (fileError)

/* file error! */;

else {

for (p=1; p<=Np; p++){

for (c=1; c<=(Nc-1); c++)

fprintf(fp, "%d%s", (int) distribution[c ][p ], separator);

fprintf (fp, "%d%s", (int) distribution[Nc][p ], "\n" );

}

fileError = (fclose(fp));
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}

return fileError;

}

#include <stdio.h>

#include <math.h>

#include "/u2/cyrus/C/curveHandling.h"

/*************************************************************************/

void getMoments(real distribution[], int N,

real *norm, real *mean, real *stdDev)

/*** Find the norm, mean, and standard deviation of ***/

/*** the distribution function distribution[1..N] ***/

{

int i;

real x;

real total0, total1, total2;

total0 = total1 = total2 = 0.;

for (i=1;i<=N;i++) {

x= (real) i;

total0 += distribution[i];

total1 += x * distribution[i];

total2 += x * x * distribution[i];

}

*norm = total0;

*mean = total1/(*norm);

*stdDev = sqrt(total2/(*norm) - (*mean)*(*mean));

}

/*************************************************************************/

void findBaseline(real distribution[], int N, real *baseline)

{

int group_beginning, j;

real avg, min_avg;

int groupSize=10; /* number of neighboring */

/* points to consider in a group */

group_beginning =1;

for (j=group_beginning, min_avg=0.; j<=group_beginning+groupSize-1; j++)

min_avg += distribution[j];

min_avg /= groupSize;

for (group_beginning =1; group_beginning <= (N+1-groupSize); group_beginning++) {

for (j=group_beginning, avg=0.; j<=group_beginning+groupSize-1; j++)

avg += distribution[j];

avg /= groupSize;

if (min_avg > avg) min_avg=avg;

}
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*baseline = min_avg;

}

/*************************************************************************/

void subtractBaseline(real distribution[], int N, real baseline)

{

int j;

for (j=1; j<=N; j++)

distribution[j] -=baseline;

}

/*************************************************************************/

/* THIS ROUTINE NEEDS DEBUGGING

void findBaselinePoint(real distribution[], int N, real *baseline, int *Px)

{

int group_beginning, j, x;

real avg, min_avg;

int groupSize=10; /* number of neighboring * /

/* points to consider in a group * /

group_beginning =1;

for (j=group_beginning, min_avg=0.; j<=group_beginning+groupSize-1; j++)

min_avg += distribution[j];

min_avg /= groupSize;

for (group_beginning =1; group_beginning <= (N+1-groupSize); group_beginning++) {

for (j=group_beginning, avg=0.; j<=group_beginning+groupSize-1; j++)

avg += distribution[j];

avg /= groupSize;

if (min_avg > avg) {

min_avg=avg;

x = group_beginning + groupSize/2;

}

}

*Px = x;

*baseline = min_avg;

}

void findPeakPoint(real distribution[], int N, real *peak, int *Px)

{

int i,x ;

real baseline;

for (i=1; i<= N; i++) distribution[i] *= (-1);

findBaselinePoint(distribution, N, baseline, x)

*Px = x;

*peak = -1*baseline;



116

}

/*************************************************************************/

/*************************************************************************/

#include <stdio.h>

#include <math.h>

#include "/u2/cyrus/C/curveHandling.h"

#define fnIn "lz.f.dat"

#define fnOut "not used"

#define T_Max 60

#define T_Step 1

#define Repeats 6

#define NumSets (T_Max/T_Step)

#define NumPts (NumSets*Repeats)

/*

int readOneRealArrayFrom2DFile (char *fName, real f[], int c, int Nc, int N);

int findNumCurves(char *fName, int *Nc);

*/

void main()

{

int numColumns; /* Better be 2! */

int ptNum, setNum;

int err;

real x[NumPts+1], y[NumPts+1]; /* inputs */

real x1[NumSets+1], y0[NumSets+1], y1[NumSets+1], y2[NumSets+1]; /*outputs */

/* IO */

findNumCurves(fnIn, &numColumns);

printf("Number of columns in \"%s\": %d\n", fnIn, numColumns);

printf("error=%d\n", numColumns-2);

err=readOneRealArrayFrom2DFile (fnIn, x, 1, 2, NumPts);

printf("error=%d\n", err);

err=readOneRealArrayFrom2DFile (fnIn, y, 2, 2, NumPts);

printf("error=%d\n", err);

/* calc stats */

for (setNum=1; setNum<=NumSets; setNum++) {

x1[setNum]=y0[setNum]=y1[setNum]=y2[setNum]=0.;

for (ptNum= (setNum-1)*Repeats+1; ptNum<=setNum*Repeats; ptNum++) {

printf("%d \t %f \t %f \n",ptNum, x[ptNum], y[ptNum]);

x1[setNum]=x[ptNum];

if (y[ptNum]>=0) {

y0[setNum]+=1;

y1[setNum]+=y[ptNum];

y2[setNum]+=y[ptNum]*y[ptNum];

}
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}

y1[setNum] /= y0[setNum];

y2[setNum] /= y0[setNum];

}

for (setNum=1; setNum<=NumSets; setNum++) {

/*printf("%f \t %f \t %f \t %f \n",

x1[setNum], y0[setNum], y1[setNum],

sqrt(y2[setNum]-y1[setNum]*y1[setNum]) );

*/

printf("%f \t %f \t %f \n",

x1[setNum], y1[setNum],

sqrt(y2[setNum]-y1[setNum]*y1[setNum]) );

}

}

#include <stdio.h>

#include <math.h>

#define fnRoot "st2"

#define recoil .02946 /* m/s^2 */

#define screenLeft 100

#define screenRight 360

#define numCurves 241

#define aFastStart 4500.

#define aFastStep 3000.

#define vOffset 35.

#define vFinal 75.

#define ttFracStart 0.

#define ttFracStep 0.20

#define numTTs 24

#define numShortTTs 21

#define shortStep (1.e-6) /*sec*/

#define numReps 5

#define screenOffset (screenLeft-1)

#define numPts (screenRight-screenLeft-1)

/**********************************************************************/

void getRegions (int c, float *oL, float *oR,

float *a1L, float *a1R,

float *a2L, float *a2R )

{

int cCount;

*oL=115-screenOffset;

*oR=135-screenOffset;

*a1L=148-screenOffset;

*a2R=330-screenOffset;

if (c<=105) {*a1R=277-screenOffset; *a2L=*a1R+1;}

else if (c<=110) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=115) {*a1R=282-screenOffset; *a2L=*a1R+1;}

else if (c<=120) {*a1R=283-screenOffset; *a2L=*a1R+1;}
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else if (c<=225) {*a1R=277-screenOffset; *a2L=*a1R+1;}

else if (c<=230) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=235) {*a1R=282-screenOffset; *a2L=*a1R+1;}

else if (c<=241) {*a1R=283-screenOffset; *a2L=*a1R+1;}

/* FOR st1

if (c<=105) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=110) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=115) {*a1R=287-screenOffset; *a2L=*a1R+1;}

else if (c<=120) {*a1R=292-screenOffset; *a2L=*a1R+1;}

else if (c<=225) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=230) {*a1R=281-screenOffset; *a2L=*a1R+1;}

else if (c<=235) {*a1R=287-screenOffset; *a2L=*a1R+1;}

else if (c<=241) {*a1R=292-screenOffset; *a2L=*a1R+1;}

*/

}

/**********************************************************************/

void main()

{

int c;

int repCount, ttCount, accCount, numAccs;

float aFast, ttFrac, tunTime;

/* float sum1, sum2, mean, sd; */

float z[numCurves+1][numPts+1];

float ratios[numCurves+1];

float offset,offset1,offset2, area1, area2, max1, max2;

float offsetL, offsetR, area1L, area1R, area2L, area2R;

void getRegions (int c, float *oL, float *oR,

float *a1L, float *a1R,

float *a2L, float *a2R );

void readz(float z[][numPts+1], char *fn);

float findBaseline (float curve[], int start, int stop);

float findArea (float curve[], int start, int stop);

float findMax (float curve[], int start, int stop);

void subtract (float curve[], float offset);

char *fnIn[50], *fnOut[50];

sprintf(fnIn, "%s.txt", fnRoot);

sprintf(fnOut, "%s.kg", fnRoot);

readz(z, fnIn);

aFast=aFastStart;

ttCount =1; ttFrac=ttFracStart;

repCount=1;

accCount=1; aFast =aFastStart;

for (c=1; c<=numCurves; c++) {

getRegions (c, &offsetL, &offsetR, &area1L, &area1R, &area2L, &area2R);

offset = findBaseline(z[c], offsetL, offsetR);

subtract(z[c], offset);

area1 = findArea(z[c], area1L, area1R);

area2 = findArea(z[c], area2L, area2R);

max1 = findMax (z[c], area1L, area1R);
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max2 = findMax (z[c], area2L, area2R);

ratios[c] = area2/(area1+area2);

tunTime=(vFinal-vOffset)*recoil/aFast * ttFrac;

/*

printf("%f \t %f \t %f \t %i\n", aFast, tunTime*1.e6, ratios[c], c);

*/

repCount++;

if (repCount>numReps) {

repCount=1;

ttCount++; ttFrac+=ttFracStep;

if (ttCount>numTTs) {

ttCount=1; ttFrac=ttFracStart;

accCount++; aFast+=aFastStep;

}

}

numAccs=accCount;

}

writeRatios(fnOut, ratios, numAccs);

} /*main*/

/**********************************************************************/

writeRatios(char *fnOut[], float ratios[], int numAccs)

{

FILE *fp;

int c;

int repCount, ttCount, accCount;

float aFast, ttFrac, tunTime;

float sum1, sum2, mean, sd;

fp = fopen(fnOut, "w");

for (accCount=1, aFast=aFastStart;

accCount<=numAccs;

accCount++, aFast +=aFastStep) {

fprintf(fp,"tunnel time (us) [%7.0f m/s^2]\tdrag ratio [%7.0f m/s^2]\t",

aFast, aFast);

} /* accCount */

fprintf(fp, "\n");

ttFrac=ttFracStart;

for (ttCount = 1;

ttCount<=numTTs;

ttCount++) {

for (repCount=1 ; repCount <= numReps; repCount ++) {

for (accCount=1, aFast=aFastStart;

accCount<=numAccs;

accCount++, aFast +=aFastStep) {

if (ttCount>numShortTTs){

ttFrac = ttFracStart + ttFracStep*(ttCount-numShortTTs);

tunTime=(vFinal-vOffset)*recoil/aFast * ttFrac;

}

else
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tunTime= (ttCount-1)*shortStep;

c=repCount

+ numReps * ((ttCount-1)

+ numTTs * (accCount-1));

if (c<=numCurves)

fprintf(fp, "%f \t %f \t", tunTime*1.e6, ratios[c]);

} /* accCount */

fprintf(fp, "\n");

} /* repCount */

} /* ttCount */

/* for (c=numReps; c<=numCurves; c+=numReps) {

sum1=sum2=0;

for (cc=0; cc<numReps; cc++){

sum1+=ratios[c-cc];

sum2+=ratios[c-cc]*ratios[c-cc];

}

mean=sum1/numReps;

sd =sqrt(sum2/numReps-sum1*sum1/repeats/numReps);

printf("%f \t %f \t %f \n", freqStep*( (c-1)/numReps)+freqStart,

mean, sd);

}

*/

fclose(fp);

}

/**********************************************************************/

float findBaseline (float curve[], int start, int stop)

{

int j;

float base=0.0;

for (j=start; j<=stop; j++)

base+=curve[j];

base /=(stop-start+1);

return base;

}

/**********************************************************************/

float findArea (float curve[], int start, int stop)

{

int j;

float area=0.0;

for (j=start; j<=stop; j++)

area+=curve[j];

return area;

}
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/**********************************************************************/

float findMax (float curve[], int start, int stop)

{

int j;

float max=0.0;

for (j=start; j<=stop; j++)

max+=curve[j];

return max;

}

/**********************************************************************/

void subtract(float zz[], float offset)

{

int j;

for (j=1; j<numPts; j++)

zz[j] -= offset;

}

/**********************************************************************/

void readz(float z[][numPts+1], char *fn)

{

int ix, iy;

FILE *fp;

fp =fopen(fn,"r");

for (iy=1; iy<=numPts; iy++)

for (ix=1; ix<=numCurves; ix++)

fscanf (fp,"%f", &z[ix][iy]);

fclose(fp);

}

/**********************************************************************/

. .
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