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Superdiffusive trajectories in Brownian motion
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The Brownian motion of a microscopic particle in a fluid is one of the cornerstones of statistical physics and
the paradigm of a random process. One of the most powerful tools to quantify it was provided by Langevin, who
explicitly accounted for a short-time correlated “thermal” force. The Langevin picture predicts ballistic motion,
(x%) ~ 12 at short-time scales, and diffusive motion (x?) ~ ¢ at long-time scales, where x is the displacement
of the particle during time ¢, and the average is taken over the thermal distribution of initial conditions. The
Langevin equation also predicts a superdiffusive regime, where (x2) ~ t3, under the condition that the initial
velocity is fixed rather than distributed thermally. We analyze the motion of an optically trapped particle in air
and indeed find #3 dispersion. This observation is a direct proof of the existence of the random, rapidly varying

force imagined by Langevin.

DOI: 10.1103/PhysRevE.87.020105

Our modern understanding of Brownian motion dates back
to the turn of the 20th Century, when Einstein [1] and
Smoluchowski [2] synthesized equilibrium thermodynamics,
viscous fluid mechanics, and the macroscopic diffusion laws
established by Fourier [3]. An alternative vision was shortly
after developed by Langevin [4], who introduced a stochastic
differential equation for the motion of a particle in a thermal
bath, with an explicit rapidly varying force f(¢) constantly
exerted on the particle by the fluid molecules of the bath.

The Langevin equation governs the velocity v = x of a free
particle in a viscous fluid, in the absence of hydrodynamic
memory effects:

V= —v/t+ f/m
(f@) f(t)) = mPes(t — 1),

where m is the particle mass, and t = m /67 na is the viscous
relaxation time of the spherical particle of radius « in a fluid
with viscosity n. The force f is “delta-correlated,” meaning
that its fluctuations are present down to arbitrarily short-time
scales. This is equivalent to having a flat spectrum up to
arbitrarily high frequencies; hence, it is referred to as white
noise. The variance of the particle velocity is (vz)eq =€T
at equilibrium, and thanks to the equipartition theorem is
such that (1)2)eq = kgT /m, thus, relating temperature 7" and
damping rate 1/t with the magnitude of the random force, a
manifestation of the fluctuation-dissipation theorem.

Langevin did not exhaust all the riches of his model but
used it to compute the ensemble average squared position
of the particle in the long-time limit (# > 7) and found, for
particles all starting at xo = 0, that

(x%|xo = 0) = 2e7t, ()
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hence bridging Brownian motion, random walks, and diffu-
sion, a view soon quantified experimentally by Perrin [5].

In a different context, Taylor [6] (and Firth [7]) devised
a similar model and reached the same conclusion regarding
the existence of a diffusive régime [Eq. (2)] but also noted
the existence of ballistic behavior, (x?) = ett?, in the short-
time limit ¢+ < t. This result, however, still depends on an
average being performed on an initial condition of particles
with distributed velocities. We come back below to that crucial
point, not singled-out as such by either Taylor or Langevin.

Consider a particle released at t =0 in a thermalized
medium (i.e., a bath of uniform temperature 7'), with con-
strained initial velocity vy (whether it is equal to zero or not)
and position xy = 0. Solving the Langevin model [Eq. (1)] for
the displacement x(¢) gives a mean

(x]xo = 0,v9) = voT(1 —e™"/"), 3)

where (-|xg,vp) denotes an average over many realizations of
the thermal force, with fixed initial conditions (as opposed to
an average over the thermal distribution of initial conditions).
The mean trajectory is the same as it would be in the absence
of the random force. However, solving Eq. (1) for the variance
of the position gives

—2t/t )
4)

The second term describes the broadening of the distribution
of the particle’s position py, .,(x,t) caused by the random

force [8],
(x — {x|x0,v0)) i|/ T
20-2 X0,V0

X0,V

(x|x0,v0)?, ®)

(x2|x0) = (x|xo,v0)> + €122t — 3T +4re /T — 1€

pXo,vo(xvt) = eXp {

2 2
Oroo = (X7 |X0,00) —
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and the transition between short-time diffusion determined
by the initial conditions and long-time diffusion, which is
independent of the initial conditions.

Equation (4) has been known since Ornstein and Uhlenbeck
[9-12], but it is typically averaged over the thermal distribution
of the velocity since, until recently, it has not been possible
to measure the instantaneous initial velocity of a Brownian
trajectory. The short-time behavior (f < t) of (x|vg) is vot.
An average over the thermal distribution of initial velocity (or
equivalently setting (vg) = e1) gives Taylor’s ballistic regime
02 = ett?. If, however vy is not distributed, the first term in
Eq. (4) vanishes. Expanding the second term in powers of ¢
reveals that the lowest nonvanishing term is

(x*|xo = 0,09 =0) = 2 €13, (6)

which is very different from Eq. (2), exhibiting a super-
diffusive (and even super-ballistic) regime, shown here as a
special property of the Langevin model. This regime can also
be observed despite a nonzero initial dispersion of the velocity.
The effect of the random force is to make the velocity variance
grow like (v?) = (vé) + €t when ¢ < 7, until it reaches the
thermalized asymptotic value et. Thus, provided (v}) < €7,
superdiffusion exists.

The source of the > dependence in Eq. (6) is not
immediately obvious: for zero, or small particle velocity, the
damping term v/t in Eq. (1) is negligible in front of the random
force. The particle dispersion acceleration is thus such that
X = f/m to leading order. Integrating twice, squaring, then
averaging provide the squared displacement

4 t n 1% 13
szo.vo = —2/ dtl/ dtz/ dts/ dug(f () f(ta)), (7)
m= Jo 0 0 0

which, due to the § correlation of f, gives Eq. (6).

The Langevin dynamics in Eq. (1) correctly predicts the
diffusive motion of Brownian particles immersed in a thermal
bath at all time scales. In the case of a thermal distribution
of initial conditions, the long- and short-time predictions have
been confirmed experimentally [5,13—15]. In order to observe
super-diffusion in standard Brownian motion, it is necessary
to perform conditional statistics on Brownian trajectories
with fixed (or narrowly distributed) initial velocity, so that
dispersion statistics can be calculated for sets of trajectories
with zero (or very small) relative initial velocity. The precise
measurement of the instantaneous velocity of a Brownian
particle is notoriously difficult due to its small magnitude and
rapid fluctuation.

We have analyzed the trajectory of a microsphere trapped
by an optical tweezer in air at two different pressures. In
the experiments by Li et al. [13], a 3-um-diameter silica
bead is trapped by a dual beam counter-propagating optical
trap about some equilibrium position (x = 0). The frequency
of the trap, wg = 20 x 10° rad/s, is such that 7 = 2.92/wy
at low pressure (1/36 of atmosphere) and v = 0.92/wq at
atmospheric pressure. Since wgt is of order unity, the fully
diffusive regime obscured by oscillation within the trap;
however, the acquisition frequency of the particle position is 2
MHEz so that the short-time behavior is well resolved.

The equation of motion of the bead requires modification
of Eq. (1) due to the presence of the trapping potential and
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FIG. 1. (Color online) Top: average position of subsets of
particles having a given initial velocity vy. Bottom: distribution of
the position of particles at wt = 0.97 for subsets of particles having a
given initial position xo = 0 and its decomposition in subset of fixed
initial velocity vy (with vo/(/(v?)eq = =3, — 2, — 1,0,1,2,3). Data
from the high pressure experiment of Ref. [13].

may be written as [11]

X =0
V= —wéx —v/t+ f/m
(fOfE)) =mPest —1') ®)

where wy is the resonant frequency of the harmonic trap. For
simplicity, we restrict ourselves to the case where xo = 0. The
latter has little influence on the dispersion properties for times
shorter than 1/wy, and the super-dispersion regime can clearly
be observed at short-time scales. On the contrary, at very
large times, the particle becomes thermally equilibrated and
the particle position is, accordingly with Eq. (5), Gaussianly
distributed in the trap (Fig. 1), with a variance (x?)eq = €7/2w}
determined by equipartition [8].

For intermediate times, the equation of motion of in-
dividual particles can be integrated, and the dispersion
evolution is obtained. Introducing the corrected frequency
w; = «/w(z) —1 /4r2 of the damped oscillator, one has, for
particles all starting at xo = 0

5 . 2
Tn g exp (—%) |:Cos(w1t) + M} G

(x2>eq 2(1)11'
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SUPERDIFFUSIVE TRAJECTORIES IN BROWNIAN MOTION

The total dispersion of the position x is due to the contribution
of two independent effects, namely the distribution of the
random force and of the initial velocity (as discussed above).
One has

O = Ty T T s (10)
where subscripts refer to quantities maintained fixed: the first
term denotes the dispersion due to random force (i.e., for a
fixed initial velocity vy), and the second denotes the effect of
initial velocity dispersion (i.e., for a given realization f(¢) of
the random force). The dispersion due to random force is

o2 t\ [sin®(wit)  sinQwit)
ATRTRN R 1.
<x2)eq xp ( T) |: 260%'[2 + 2(,()1‘[ + :|

(11)

The data were originally used to observe the ballistic motion
of the particle, averaged blindly over all initial velocities [13].
Here, however, we separate trajectories into subsets with
narrow relative velocity distributions and consider only the
case where the initial position is close to zero. We calculate
the dispersion axzo , for each subset separately. In this way,
the distribution of initial conditions for each subset is much
smaller than the thermal distribution, and the dispersion of
trajectories in each subset is caused only by the contribution
from the random force. We find, as predicted, the characteristic
13 super diffusive regime, as shown in Fig. 2. The magnitude
of the relative dispersion corresponds to very small absolute
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FIG. 2. (Color online) Experimentally measured particle disper-
sion as a function of time conditioned to the initial conditions x( and v,
att = 0. Dispersion curves are calculated for 2500 sets of trajectories
with unique initial conditions and then averaged to create the curve
shown in the figure. The time is normalized by the trap frequency, wy,
while the dispersion is normalized by the long-time thermal particle
distribution, (xz)eq. The power law at short time (black line) is £, as
anticipated from Eq. (6). The solid lines are the exact prediction of
the Langevin model in a harmonic potential [Eq. (11)]. The red is for
the low-pressure case and the blue is for the high-pressure case in the
original data [13].
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displacements, smaller than the bead diameter itself, but is
well within the resolution of the experiment, representing
the first observation of superdiffusive paths in Brownian
motion.

The initial velocity vy determines the average trajectory,
but the dispersion crxzo , describes the spreading of trajec-
tories about that average. The comparison with Langevin
prediction Eq. (11) is shown in Fig. 2, exhibiting the 7
regime. For each subset the deterministic trajectory (i.e. for
the special case where f(#) =0) of the particle is given
by (x|vg). The dispersion due to initial velocity is obtained
and compared successfully to the Langevin model, as seen
in Fig. 3,

2 2
oy 1) L
= e [_?} sin’(@i1), (12)
eq 1

exhibiting a 2 behavior at short times, characteristic of the
“traditional” ballistic regime discussed in Ref. [13].

The discussion can be made more general by considering
the case of particles starting from distributed initial positions
Xxo # 0 in the trap. The average trajectory (x|xo) is identical
to the deterministic trajectory with initial conditions x, and
vo = (v|xp). Considering now the displacement 6x = x — xo,
one may define also the total dispersion o2. For initial positions
thermally distributed, we have

o2 _ t sin(w; t)
m =2 {1 — exp (—E> |:COS(0)1I) + Wj” ,

(13)
which is now the sum of three contributions
o? :szo,vn —}—Ufn,f—}—afo’f. (14)

The two first have already been discussed above. For a fixed
initial velocity vy, and a given noise realization f (), the initial
position affects the average force on the particle. The induced
dispersion o2 . is obtained (and is nearly independent of vg)

vo, f
and is accounted for by the Langevin model as well (Fig. 3)

O—Uzo,f _ - _[ ; +sin(w1t) 2
= {1 ew (g [eosem 502 ]}

15)

exhibiting a * behavior at short times, characteristic of the
existence of a constant distributed force, determined by the
distributed initial position xo, that of the trap, directing
the particle’s motion before it is thermalized.

The present observation of the super-diffusive regime in
Brownian motion thus offers the first direct evidence of the
random short-time correlated force Langevin had imagined,
that force solely directing the motion of a particle initially
at rest in a thermal bath. The interpretation of this new
observation relies solely on the original formulation of the
Langevin model with a §-correlated force, irrespective of any
other effect causing possibly a correlation of the random force
itself, such as hydrodynamic memory effects [15,16]. The
presence of these effects is well-documented in the case where
the fluid density is comparable to the particle density, such as
in water, but is negligible in the present case of a rarefied gas.
Inversely, these effects could be investigated using our method,
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FIG. 3. (Color online) Left: Particle dispersion uniquely due to the distribution of its initial velocity vy: trajectories are conditioned to
initial position x, at# = 0 and averaged over multiple realizations of noise f(¢) and the thermal distribution of initial velocities. Right: Particle
dispersion uniquely due to the distribution of its initial position xy: trajectories are conditioned to initial velocity vy at # = 0, and averaged over
all realization of noise f(¢). Dispersion curves are calculated for 50 unique initial conditions and then averaged to create the curve shown in
the figure. The time is normalized by the trap frequency, wy, while the dispersion is normalized by the long-time thermal particle distribution,
(x?)eq- The black line is the expected short-time power law behavior in both cases. The solid lines are the exact prediction of the Langevin model
in a harmonic potential. The red curves and points correspond to the low-pressure case and the blue curves correspond to the high-pressure

case [13].

which precisely singles out the force only. The study of the
nature of the force acting on a particle, and of its correlation,
can thus be extended to any random environment, other than
Brownian motion.

In particular, we finally note the formal analogy with
another ¢ super-diffusive behavior known as Richardson dis-
persion in high Reynolds number turbulent flows, describing
the relative separation of material particles [17-20], or the

coarsening of suitably prepared foams [21], an appealing
analogy which may hold beyond the formal level.
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