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Single-photon cooling in a wedge billiard
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Single-photon cooling (SPC), noted for its potential as a versatile method for cooling a variety of atomic
species, has recently been demonstrated experimentally. In this paper, we study possible ways to improve the
performance of SPC by applying it to atoms trapped inside a wedge billiard. The main feature of the wedge
billiard for atoms, also experimentally realized recently, is that the nature of atomic trajectories within it changes
from stable periodic orbit to random chaotic motion with the change in wedge angle. We find that a high cooling
efficiency is possible in this system with a relatively weak dependence on the wedge angle and that chaotic
dynamics, rather than a regular orbit, is more desirable for enhancing the performance of SPC.
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I. INTRODUCTION

Single-photon cooling (SPC) is a general cooling method
applicable to most of the periodic table as well as molecules
[1]. Based on a one-way wall of light [2—4], it relies on
irreversible optical pumping with one-photon scattering to
trap atoms inside an optical dipole trap. The irreversibility is
achieved by exciting, with a depopulation beam, magnetically
trapped atoms to an intermediate hyperfine level from which
they decay into an optically trappable state with a finite
probability. This process accumulates atoms inside an optical
dipole trap without the need for a cycling transition. The key
mechanism behind SPC is that only those atoms with kinetic
energy less than a threshold energy are captured by the optical
trap; thatis, cooling is achieved by “filtering” and then isolating
colder atoms inside an optical trap. The optical dipole trap is
constructed in the form of a box in SPC experiments and hence
is simply referred to as the “box” [1].

The nature of SPC implies that a high cooling efficiency
can be achieved if as many atoms as possible can be made to
encounter the one-way wall of the box with the right kinetic
energy. However, various practical constraints exist to limit the
cooling efficiency. For instance, it is not productive to move the
box around and stir the atomic cloud with a depopulation beam
as this can result in significant loss of atoms—there is a high
probability that the atoms encountering the box do not have
the right energy to be trapped. The box is therefore assumed
to be stationary throughout the evolution. The finite size of the
box means many of the atoms simply will not pass through
the position where the box is placed. The usual isotropic trap
is not necessarily the best potential for SPC, since the atomic
trajectories within an isotropic trap are evenly spread rather
than localized near a region where the box can be placed for
efficient collection of the atoms. The energy consideration
means that even if the trajectories of the atoms are densely
concentrated near one region it is of no use if the atoms are
moving too energetically to be trapped.

In order to find the best conditions for SPC, we consider
in this paper a special system in which various types of
atomic trajectories can be demonstrated: the wedge billiard
for atoms. The wedge billiard for atoms is a realization of
the symmetric gravitational wedge originally introduced by
Letihet and Miller [5], which, owing to the singularity of
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the vertex, demonstrates amazingly rich physics—the atomic
trajectories can be tuned from stability to chaos with the change
in wedge angle. The wedge billiard for atoms has already
been implemented experimentally [6] where the atomic motion
in different regimes of classical chaos were observed and
compared with numerical simulations. In this paper, we
consider SPC in a wedge billiard and, more specifically, look
for the best position to place the box for all possible wedge
angles. The best box position is defined as the position at which
the most number of atoms is captured.

The overall goal of a cooling scheme is to increase the
phase-space density. Phase-space density in the context of
cooling is defined as the number of atoms in a box with sides
of one thermal de Broglie wavelength [7]. This can be written
as p =(N/ V)ASB, where N is the number of atoms, V is
the volume, and Agp is the thermal de Broglie wavelength
Aig = h//2nmkgT, where h is the Planck constant. This
implies that the factor by which the phase-space density
changes is given by

& _ Nbox Awedge(e) <£)3/2

1
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where Ayedge and Apoy are the areas of the two-dimensional
wedge and the box, and 7; and T, denote, respectively, the
initial and final temperature. The fraction of atoms captured
by the box, Npox/N;, is therefore an important measure,
although it has less impact than the ratio of the final to initial
temperature, which is raised to the power of 3/2. We shall
define in this paper the logarithm of Eq. (1) as the cooling
efficiency

n = log,o(pr/pi)- 2

We are most interested in how the atoms can be made to attain
the right energy and how the cooling efficiency is affected by
the regular and chaotic dynamics; from this, one may gain
understanding of how best to implement the SPC in general.
The paper is organized as follows: In Sec. II we discuss
how the numerical simulation is carried out, including the
parameters used and the three types of boxes we use in our
investigation. In particular, we discuss how the results may
be generalized and identify the core parameter space for this
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system, namely the wedge angle, the initial temperature of
the atoms, and the box threshold energy. In Sec. III, we
present the numerical results for the case that corresponds
to the actual experimental parameters and lay the foundation
for the subsequent section by showing how various quantities
such as the fraction of trapped atoms change for different box
types and wedge angles. In Sec. IV we present the result of
simulations that cover various combination of the three core
parameters to establish the general trend regarding the cooling
efficiency of SPC in a wedge billiard for atoms. We conclude
in Sec. V.

II. SIMULATION METHOD

A. Atomic trajectories in a wedge billiard

First, we assume that an atomic wedge billiard contains
thermal atoms. The initial positions and momenta of the
atoms are assigned according to a Gaussian random distri-
bution as is usually done for thermal atoms in equilibrium.
In particular, the initial momenta of the atoms are deter-
mined from the Maxwell-Boltzmann distribution f(v,,v,) =

2 2
m 3/2 _m(vx-‘rvy)
(Grryr)” expl=—5,7

02 = kT /m, is proportional to the the initial temperature of
the atomic cloud, T. Here kp is the Boltzmann constant and
m is the mass of the atom. Assuming hard walls for the wedge
billiard such that atoms undergo elastic collisions with the
walls and taking the scattering cross section for the interatomic
collision to be zero, we calculate the expected trajectory of
each atom within the wedge billiard using classical kinematic
equations as done in Ref. [6]. The calculated trajectory for each
of the atoms is stored and used later for the analysis involving
the box.

The number of atoms in the sample, N, is typically of the
order ~10° experimentally but in order to simulate a realistic
system using a computationally manageable number of atoms
we take N to be a few h undred and average the final result
over several runs with different initial position and velocity
(but with the same velocity variance, i.e., the same initial
temperature). With 200 atoms in each run, averaging over 50
runs gave results similar to a single run with 10 000 atoms. For
each run, the N trajectories corresponding to that particular
set of initial conditions were used to calculate the fraction
of atoms trapped and lost by each type of the box discussed
in the following. These fractions are later averaged over the
number of runs to give a better estimate for a realistic atomic
sample. The averaging has the effect of smoothing out any large
fluctuations in the result; in fact, since we have a conservative,
closed system, the fraction of atoms captured by the box was
found to be fairly consistent for all N.

It was also found from our simulations that a significant
proportion of atoms bounce off the walls and escape the
wedge billiard, especially in the chaotic regime; such atoms
obviously cannot be trapped by the box and are considered
lost from the system. In an attempt to avoid such loss and to
perhaps improve the performance, we have tried modulating
the wedge angle during the time evolution but found that it did
not lead to any better result. Such a setup is also likely to be
difficult to implement experimentally. We therefore consider

] such that the variance of velocity,
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in our simulations a wedge billiard with the walls fixed at one
wedge angle at a time throughout the entire duration of the
experiment.

B. Modeling the box

Numerically, the box is simply modeled as a region in
space with a certain implicit threshold energy Epox. The
kinetic energy of individual atoms varies greatly throughout
the evolution, with the majority of the atoms taking on kinetic
energies far exceeding Eyox. For a typical ith atom with initial
position (x;, y;), initial velocity (vfc , vi,), and initial total energy
E; = 3m(vi? + vi?) + mgy;, where g denotes gravitational
acceleration, there are times ., k = 1,2,3, ..., during its evo-
lution where the atom reaches a certain height y that overlaps
with the position of the box such that E; — mgy < Epyx. At
these times, the atom may be captured by the box. However,
not all atoms are captured in reality: Based on Ref. [1], the
efficiency of the box is typically ~85%; that is, only 85% of
the atoms that pass through the box “see” the box (converted
to the right hyperfine state). This means 85% of the atoms that
pass through the box are either lost (too high energy) or trapped
(correct energy) and 15% just pass through. We include this
constraint in our simulations. It is noted that since the atoms
that pass through the box with kinetic energy between zero and
Epox are assumed confined by the box, the final equilibrium
temperature of the atoms inside the box can be estimated to
be of the order Epox/2kp. Finding the right position to place
a box given that there are N atoms with different trajectories
is a particularly difficult optimization problem and is the main
goal of this paper. To solve the problem of where to place our
box three types of boxes were considered in our simulation:
the optimum box and two types of fixed box we refer to as
Type I and Type II. We explain these in more detail in the
following.

1. Optimum box

Since we are considering a deterministic system, it is, in
principle, possible to calculate precisely where and when
each atom reaches the required kinetic energy for it to be
trapped. The optimum box is a hypothetical box of vanishing
size that, by methodically moving around the trap, captures
all theoretically trappable atoms in sequence. This then gives
the upper limit to the number of atoms that can be captured
for a given set of parameters. To provide a more useful
theoretical upper limit to the number of trappable atoms, we
additionally impose a couple of practical constraints. One of
these constraints is that the optimum box is assumed not able
to be at more than one position at one given instant—if there
is more than one atom attaining trappable energy at the same
time only one of them is considered captured and the rest
are let evolving. The optimum box subsequently catches the
next available atom that reaches the correct energy, and so on.
The other constraint is, in line with the real experiment, the
assumption that the efficiency of the optimum box is 85%;
that is, only 85% of the atoms passing through the optimum
box are captured (all 85% are captured since, by definition,
all atoms intercept the optimum box with the correct kinetic
energy).
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2. Type I and Type II (fixed) box

In reality, the box is finite in size and cannot be moved
around freely. We consider two possible cases in relation
to where to place the fixed box. One is to use the result
of the optimum box calculation to guide us as to where to
place our box. Based on the optimum box calculation, which
gives a sequence of box positions over the duration of the
experiment, we choose to place a real, finite-sized, stationary
box at the position where the largest number of the calculated
trappable positions fall within the width of box, in both x and
y directions. We call this stationary box a Type I box. On the
other hand, in the absence of an optimum box calculation, the
best one can do is to actually place the finite fixed box at various
different places inside the wedge billiard to find, by trial and
error, the position where the most atoms can be trapped. Given
the symmetry of the wedge billiard system around x = 0, after
collecting results corresponding to all possible heights of the
box on the axis of symmetry, we found the one height y that
traps the most atoms for a given wedge angle. We refer to this
box obtained from “optimization by hand” as a Type II box.

C. Parameters used

Using realistic parameters is obviously crucial for the
correct modeling of the system being simulated. With too big
or too small dimensions, the atomic trajectories and hence the
calculated cooling efficiency are likely to be unrealistic. To
address this issue we base our parameters on the experimental
values [1,6] and choose our parameters to be within reasonable
range of these values. In addition to simulating a realistic
system, one should ideally be able to generalize the result
beyond the existing experiment. However, it is noted that,
especially in the chaotic regime, it is impossible to write down
analytically a general expression of the atomic trajectories
as a function of various parameters. This limits our options
to only those of numerical analysis. Since one cannot cover
every single possible value of various parameters, only a
general trend can be identified from a numerical study. Such a
general trend should, however, provide sufficient information
to understand the fundamental physics of the system and give
us a clue as to the range of realistic cooling efficiencies possible
with this system.

The interdependence of various parameters means the
parameter space boils down to three independent variables:
the wedge angle, the initial temperature, and the box threshold
energy. It is noted first of all that the regular and chaotic
behavior exhibited by the atoms inside the wedge billiard
is dependent only on the wedge angle and is independent
of factors such as the atomic species, initial temperature,
and the qualities of the box. We therefore capture all the
necessary physics in our simulation by scanning through all
possible wedge angles. Also, in our numerical model, different
atomic species are represented only via their different atomic
masses, which show up in the velocity variance o2 and in the
calculation of the kinetic energy E; = %mvz. It is noted that
any difference in physics due to different atomic mass is taken
care of with an appropriate change in the initial temperature 7;
(02 o T;), and the kinetic energy Ej is automatically scaled
accordingly. This can be shown by setting kg =7, =m =1
so that the initial thermal energy E = kg7; = 1 becomes unit
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FIG. 1. (Color online) (a) Poincaré section, v, vs vﬁ, for the wedge
billiard with wedge angle & = 30° (smaller blue dots). The larger red
dots represent the distribution of the thermal atoms after their first
bounce on the wedge walls. (b) and (d) The x and y components of
the optimum box position over time as green squares. The dash-dot
line connects the green squares in sequence to show how the optimum
box position changes over time. The red dashed lines mark the edges
of the Type I box. (c) The wedge in real space with one typical
trajectory for an atom shown as a blue line. The Type I box used in
our simulation is shown in the same panel as a red dashed-line box.
The green boxes mark the (changing) positions of the optimum box
over the duration of the simulation.

energy and o = y/kgT;/m = 1 becomes unit velocity such
that the unit length / can be defined as [ = o7, where t
is unit time. The kinetic energy of an atom traveling with
velocity v is then given in the scaled unit as E; = %(v /o)
that is, the kinetic energy relative to the initial thermal energy
characterized by 7; is what matters. All the major physics
of this system can therefore be covered by studying various
combination of wedge angle, initial temperatures, and the box
threshold energies.

III. RESULTS FOR SEVERAL WEDGE ANGLES

In this section, we illustrate the physics of the system
by presenting the results of numerical simulation for select
wedge angles using the experimentally verified parameters of
Refs. [1] and [6]. The results of our simulation for various
regimes characterized by the three different wedge angles 30°,
50°, and 80° are presented in Figs. 1-3, respectively. In each
of these figures, we present several subfigures. First, as one
of the subfigures, we present the Poincaré section for the
wedge billiard typically presented as a plot of v; versus v,zl,
where v; and v, denote transverse and normal velocity of the
atoms immediately after hitting the walls. As is well known,
visible geometric structures or “islands” within the Poincaré
section represent regions of regular orbit while the regions
containing evenly spread dots correspond to chaotic dynamics.
The fact that there are no islands for wedge angles 50° and 80°
(Figs. 2 and 3) means that all atoms are expected to undergo
chaotic dynamics, while the existence of an island for wedge
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FIG. 2. (Color online) Same as Fig. 1 except the wedge angle is
now 50°.

angle 30° (Fig. 1) means atoms with initial conditions that
lie in the island undergo regular orbits. The initial thermal
velocity distributions in terms of v, and v? after one bounce
off the walls are shown as (thicker) red dots on the Poincaré
section as a guide to the initial condition used. Next, the
typical trajectory of one particular atom in the wedge billiard
is presented as well as all the positions of the optimum box in
small green squares. The outline of the Type I box determined
from the optimum box calculation is also shown superposed on
the same subfigure. In the right-hand column of the figures, the
time-varying positions of the optimum box decomposed into
x and y components are presented along with the boundaries
of the Type I box shown in dashed lines.

In Fig. 4 we present various fractions as a function of
wedge angles—atoms trapped by the box, atoms remaining
in the wedge, and atoms lost for all three box types. As
mentioned previously, there are two mechanisms by which the
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FIG. 3. (Color online) Same as Fig. 1 except the wedge angle is
now 80°.
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FIG. 4. (Color online) (a) The final (after time ¢ = 300 ms)
fraction of trapped atoms (solid line), atoms remaining in the wedge
(dashed line), and atoms lost (dash-dot line) for various wedge angles
0 € [20°,80°] for a Type I box. The additional dotted line represents
the fraction of trapped atoms for the case of an optimum box (i.e., the
theoretical upper limit) for comparison. (b) The Type I box position
for different wedge angles—the squares represent the y component
of the mean position and the crosses mark the x component. (c) and
(d) Same as (a) and (b) but for a Type II box.

atoms are lost—one by encountering the box with the wrong
energy and the other by escaping the wedge billiard after the
collision with one of the walls. We also show the x and y
components of the Type I and Type II boxes as a function of
wedge angle. It is found that the Type II box gives a slightly
better result in terms of the fraction of atoms trapped. It is
seen that, for the parameters used, from 5% to around 15%
of the atoms could be trapped by this scheme. The fraction
of atoms trapped has (discounting fluctuations) an almost
linear dependence on the wedge angle with the largest fraction
of atoms trapped at 8 = 80°. These observations imply that
chaotic dynamics, rather than the regular dynamics, is more
conducive for SPC. This makes sense since, to be trapped by
the box, the atom has to reach the correct height relative to
the initial energy that corresponds to the right kinetic energy.
This is more likely in the regime of chaotic dynamics in
which the atoms take on various different trajectories over
time rather than that of a regular orbit which generally has
higher kinetic energy and a limited range of trajectories. The
wide range of trajectories also means that more atoms are
likely to encounter the stationary box. The higher fraction of
atoms trapped for larger wedge angle can be explained from
the fact that, with wider wedge angles, the normal velocity
component v, dominates the transverse velocity component
v, and hence one has a higher fraction of atoms in parabolic
motion. With parabolic motion it is easier for the atoms to
attain the trappable energy as the kinetic energy goes right
down to zero at the turning points.

Finally, we present here a simple analysis regarding the
height of the best fixed box by assuming that the box is
able to catch the atom after one bounce from the walls.
By taking the cusp of the wedge billiard as the origin of
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position, and considering an atom initially at position x;
and y; with initial velocity components v\ and v/, the x
and y components of the velocity on impact with the wall
at angle 6 from the perpendicular line at the origin are

v? = vl and vy = \/viz —2g[lyi| — |x;| tan(5 — 6)]. Energy

conservation implies
mgh = %m(vfz + v;’ 2) — Epox, 3)

where Eyo is the threshold energy of the box. This gives the
best box height as

Ei — Epoy
h= K—b(’—|yi|+|xi|tan(5—9> o
mg 2
E', — Epox 1 0
= — |y ill=-—=—--- . 5
e Iyl+|x|<6 3 > 5)

This result is valid for larger 6 where the first bounce results
in a parabolic trajectory (e.g., when yg > L, cos 6, where L,,
is the length of the wedge wall). For smaller 6 < 50° a regular
orbit is likely, which means any analysis based on one bounce
does not hold. A plot of & given by Eq. (4) was found to closely
reproduce the large-angle 6 > 50° part of Fig. 4(d).

The cases where v, is large enough (or 6 is small enough)
so that the atom hits the wall due to the horizontal rather than
the vertical component of motion require a modified analysis:
If we assume the time it takes for an atom to hit the wall
is i, the y component of the velocity at the wall is v} =

v;', — g7, while the x component of the velocity at the wall
is vi. The vertical displacement after 7, is y; — %g‘lfxz and
this means the distance traversed horizontally is v)"c T, = [y —

%grf] tan @, that is, g7, = cotf[—vi + /vi2 + 2gy, tan? 0].

Energy conservation then implies

E' — Epox . 1,
h = m—g — U;‘L’x + Egtx
E%Y — E cotd , . .
= DK T (v} + v cotb)
mg 8

x [\/vi? 4 2gy; tan? 6 — v} ]

E;( _Ebox yiU;., gy2 2
Sk T Ebox  Tvg oy 82, 6
mg vi 20i2 ©

&

This reproduces the result for smaller 8 but again, since we are
only considering one bounce and ignoring the possibility of a
regular orbit, the oscillatory behavior is not recovered in this
very approximate result.

IV. COOLING EFFICIENCY OF SPC IN
A WEDGE BILLIARD

In this section, we calculate the cooling efficiency n for
SPC in a wedge billiard. In particular, we identify general
features of this system by considering various combinations
of the three core parameters: wedge angle, initial temperature,
and the box threshold energy. To give a better sense of the
range of parameter values used in this section, we denote the
initial temperature and the box threshold energy of existing
experiments as 7,”" and 7,*", respectively, and refer to all
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the other initial temperatures and threshold energies as some
multiples of 7" and T,"".

A. Changing the initial temperature

In Fig. 5, we present the cooling efficiency for Type I and
Type II boxes. Figure 5 is arranged similarly to Fig. 4, except
that we present the cooling efficiency 7 for the four different
initial temperatures of TieXpl, 10Tl.eXpt, 50TieXPt, and 100Tiexpt for
the box threshold temperature of T;Xpt. We also show, as done
in Fig. 4, the positions of Type I and Type Il boxes as a function
of wedge angle for different initial temperatures. We chose to
look at such widely varying initial temperatures up to 1007,"
since it was found numerically that smaller changes did not
noticeably affect the cooling efficiency (e.g., the difference in
results between say Tieth and even 4Tieth was not noticeable).
Such immunity to temperature changes means the results
shown here for each of these four initial temperatures should
hold for a wide range of atomic species and length scales.
It is seen that there is, in fact, quite a dramatic increase in
phase-space density—the higher the initial temperature the
more significant is the improvement.

It is also seen that due to the interplay of various factors
in the calculation of 5, the curves do not show very strong
dependence on the wedge angle, although one can notice slight
changes in the (shallow) maximum of the curves. The curves
have maxima near 70° for the initial temperature of Tiexpt
and near 50° for the initial temperature of 1007;™™. Given
that the ratio of the area Ayedee(f)/Apox has a maximum at
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FIG. 5. (Color online) (a) The cooling efficiency n =
log,,(ps/pi) for different initial temperatures of 7™ (solid line),
10T (dashed line), 50T (dash-dot line), and 1007 (dotted
line) as a function of wedge angles 6 e [20°,80°] for a Type I
box. The box threshold energy is T, (b) Type I box position for
different wedge angles—the crosses, diamonds, and dots represent the
y component of the mean position for the initial temperatures 107,""
(dashed line), 507" (dash-dot line), and 1007 (dotted line),
respectively (green in the online version). The corresponding symbols
around zero mark the x component (red in the online version).
(c) and (d) Same as (a) and (b) but for a Type II box.
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the wedge angle 6 = 45° this implies that the fraction of
atoms trapped (i.e., instead of 5, which also compares the
temperature difference) does not change much with the change
in the wedge angle for higher initial temperature. Indeed, the
fraction of atoms trapped was found to increase almost linearly
with increasing wedge angle, but the gradient of this linear
variation was highest for the initial temperature of TieXPt and the
smallest for the initial temperature of IOOTieXpt. The fact that
the fraction of atoms trapped was the highest for & = 80° for all
initial temperatures (albeit with a varying degree) reconfirms
the main mechanism by which the atoms get trapped by the
box—with wider wedge angle, one has a higher fraction of
atoms in a parabolic trajectory.

The change in phase-space density corresponding to the
change in initial temperature from 507" to 1007 is
smaller compared to that with the change in initial temperature
from IOTI.CXP[ to 50TieXpl; in other words, there is a saturation
in the amount of increase in phase-space density. This can be
partly explained by examining the fraction of atoms trapped by
the box. It was found that the fraction of atoms trapped did not
change much at all between the initial temperatures of Tiexpt
and IOTieXpt (i.e., the temperature ratio has a major effect).
Over 107", however, the fraction of trapped atoms began to
be noticeably reduced. This is because after the temperature
gets high enough atoms have enough energy to escape the
wedge in significant numbers. With many atoms escaping and
reducing the pool of atoms inside the wedge, the actual fraction
of atoms trapped by the box goes down, offsetting the effect
of the larger temperature ratio.

Finally, we note that the results of Type I and Type II are
very similar. This is for two reasons—one is that the maximum
fraction of atoms trapped using Type II boxes, while greater
than that using Type I box, is not significantly different. The
second reason is that the finite box size implies there is actually
a significant overlap between the two different types of box
positions. The finite box size also means that the slightly
different box positions for different initial temperature (for
both Type I and Type II) is not noticeable—the temperature-
dependent difference in the position of the box center is smaller
than the width of the box itself.

B. Changing the box threshold energy

Similarly to Fig. 5, we show in Fig. 6 the cooling efficiency
n and the corresponding positions for Type I and Type II
boxes. But this time, we fix the initial temperature at 107,""
and show the general trend with respect to four different box
threshold temperatures of Tbe Xpt, 2Tbe Xpt, 3Tbe th, and IOTbe *Pt
The initial temperature of 107" was chosen to make sure
that even with box threshold temperature of 107" the atomic
sample is actually being cooled down. The observed trend with
increasing box threshold energies is the opposite of the trend
observed before with increasing temperature: 1 decreases with
increasing box threshold energy, which is unexpected since
with increasing box threshold energy, the actual fraction of
atoms trapped is increased as the atoms are more likely to
be trapped. This can be understood from the fact that, with
increasing box threshold energy, the ratio of initial to final
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FIG. 6. (Color online) (a) The cooling efficiency n =
log,o(ps/p:) for different box threshold temperatures of 7, (solid
line), 27, (dashed line), 37;*" (dash-dot line), and 107" (dotted
line) as a function of wedge angle 6 € [20°,80°] for a Type I box.
The initial temperature was 107, (b) Type I box position for
different wedge angles—the crosses, diamonds, and dots represent the
y component of the mean position for the box threshold temperatures
2T, (dashed line), 37, (dash-dot line), and 107, (dotted line),
respectively (green in the online version). The corresponding symbols
around zero mark the x component (red in the online version).
(c) and (d) Same as (a) and (b) but for a Type II box.

temperature is decreased and the temperature ratio is the more
significant contributor to 7.

Again, there is a relatively weak dependence of 1 on the
wedge angle. The wedge angle at which the maximum 7
occurs is observed to be slightly shifted from near 70° for
the box threshold energy of T, to near 50° for the box
threshold energy of 107", As before, this can be explained
by considering the ratio of the areas Ayedge(0)/Avox and the
fraction of atoms trapped. In fact, the fraction of the atoms
trapped as a function of wedge angle demonstrates quite a
different behavior from that seen before for different initial
temperatures. Although the fraction of atoms trapped with
box threshold energy of Tbe P has roughly linear dependence
on the wedge angle (with maximum near 80°), with higher box
threshold energies, the fraction of atoms trapped gradually
demonstrates a “triangular” shape as a function of wedge
angle (with a maximum near 50°). Interestingly, with the box
threshold energy of 107,"" ', it matches the triangular shape
seen for the optimum box result [dotted line in Figs. 4(a) and
4(c)]. This shows that with large enough box threshold energy,
all atoms that can be trapped as calculated by the optimum
box are indeed trapped given enough time. This is a significant
result since it shows a potential to “simulate” the complicated
optimum box calculation experimentally.

A saturation is found to occur as the box threshold energy
becomes larger; changes in 7 due to changes in box threshold
energy become smaller as the box threshold energy becomes
close to 107;*™. This is to be expected since, once the box
threshold energy becomes large enough to catch all the atoms
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that are physically feasible to be caught (i.e., ones that do not
escape the wedge billiard), any higher box threshold energy
will not give a different fraction of atoms trapped. As for the
actual box position itself and the use of Type I and Type II
boxes, a similar observation as before is made, that is, the final
cooling efficiency for the two different box positions is quite
similar and that, due to the finite width of the box, differences
in box position do not lead to noticeable changes in 7.

V. CONCLUSION

We have found that SPC can significantly increase the
phase-space density of the atoms originally trapped inside
a wedge billiard. It was found that even in the very tough
scenario of very high initial temperature and very low box
threshold energy, enough atoms are expected to be caught
to give a high cooling efficiency. The cooling efficiency n
showed a relatively weak dependence on the wedge angle.
This is because 1 depends on the interplay of various factors,
not just the number of atoms trapped by the box. For low initial
temperature, and also for low box threshold energy, the best
angle was near 6 = 70°, and for higher initial temperature and
also for higher box threshold energy, the best angle was near
6 = 50°. Various trends could be explained by studying the
fraction of atoms trapped as a function of the wedge angle.
Both Type I and Type II boxes were found to give similar
cooling efficiencies, although the Type II box is one that can
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be obtained experimentally in the absence of any knowledge
about the idealized optimum box calculation.

The regime in which the performance of SPC in a wedge bil-
liard is best was identified to be the regime of chaotic dynamics
with wedge angle & > 45°. In the chaotic regime, atoms take on
various different kinetic energies and trajectories, increasing
the likelihood of meeting the condition for SPC. Although at
first sight atoms in regular orbits look more promising, their
kinetic energy is less likely to be redistributed, resulting in a
smaller cooling efficiency. Within the chaotic regime, it was
found that the wider wedge angle is better in terms of capturing
a higher fraction of atoms. This is because, with a wider wedge
angle, there are more of atoms undergoing parabolic motion
where the kinetic energy becomes zero at the turning point.
These observations indicate that, in general, the best setup
for SPC is the one where the box is able to access the most
number of turning points concentrated within a small region.
Somewhat less ideal, but an experimentally more feasible case,
would be to release the atoms in a rectangular trap [8], that
is, with a flat bottom or on a magnetic mirror [9] so that all
the atoms are bouncing in parabolic trajectories, and scan the
optical box across so as to “skim” all the trappable atoms
from the top, and slowly move down to capture progressively
less energetic atoms. With this arrangement the box is always
at the top, so there is no worry about unnecessarily stirring
atoms using a depopulation beam and losing them. This will
be presented in our future work [10].
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