Chapter 8
Experiments on Quantum Transport of
Ultra-Cold Atoms in Optical Potentials

Martin C. Fischer and Mark G. Raizen

8.1 Introduction

In this chapter, we describe our experiments with ultra-cold atoms in optical poten-
tials and show how we can address fundamental issues of time in quantum mechan-
ics. The high degree of experimental control and the conceptual simplicity are the
main advantages of our system. We start with an overview of the basic interaction
of atoms and light and make the connection between atoms in optical lattices and
solid state physics. While this latter connection has evolved into a major theme in
physics over the past decade, at the time of this work it was still new and unexplored.
After introduction of the theoretical model and the basic equations, we introduce the
experimental apparatus. We then review our experiments to observe the Wannier—
Stark ladder in an accelerating lattice. This system was used to study quantum tun-
neling where short-time non-exponential decay was first observed for an unstable
quantum system. We then describe our experiments to observe the quantum Zeno
and anti-Zeno effects for an unstable system that is repeatedly interrogated. We
conclude this chapter with a brief outlook into the future.

8.1.1 The Interaction of Atoms and Light

The manipulation of the motional state of individual atoms with light fields was
observed as early as 1930, when Frisch measured the deflection of an atomic beam
with resonant light from a sodium lamp [15]. The measured deflection was caused
by the recoil momentum that an atom acquires when absorbing or emitting a single
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photon of light. When an atom absorbs a photon from a beam of light, it acquires
momentum in the direction of the light beam. Since scattered photons are emitted
without preferred direction, the momentum acquired during the emission averages
to zero over many cycles. This leads to a net force on the atom which is called
the spontaneous force, or radiation pressure. The spontaneous force scales with the
scattering rate and for large detunings falls off quadratically with the detuning Ap
of the light from the atomic resonance [9]:

Fapont (8.1)

2
where [ is the laser intensity.

Another type of force is based on the coherent scattering of photons. The oscil-
lating electric field of light can induce a dipole moment in the atom. If the induced
dipole moment is in phase with the electric field, the interaction potential is lower in
regions of high field and the atom will experience a force toward those regions. If it
is out of phase, a force pointing away from regions of high field results. This force is
called the dipole force. As opposed to the spontaneous force, the dipole force only
falls off linearly with the detuning from the atomic resonance in the limit of large
detuning [9]

\Z4
Fdipole X A_L (82)

From the scaling laws for the two types of forces it is clear that with sufficient
laser intensity, the spontaneous force can be made negligibly small while still gen-
erating an appreciable dipole force. As early as 1970, Ashkin succeeded in trapping
small particles with a pair of opposing, focused laser beams, making use of both
types of forces. However, only the relatively recent development of laser cooling
and trapping techniques have created the conditions for controlled manipulation of
atoms with the dipole force alone [7]. While the laser cooling and trapping required
to prepare our atomic sample utilized near-resonant light and thus both types of
light forces, the optical lattices were composed of far-detuned light, so that only the
dipole interaction was important.

8.1.2 Optical Lattices and the Connection to Solid State Physics

In our experiments we created a periodic optical potential by spatially overlapping
two laser light beams. The periodicity of the resulting standing wave was determined
by the interference pattern in the region of overlap. In the nodes of a standing wave,
the electric field of the light interferes destructively and atoms at those positions are
unaffected by the light. Away from the nodes, the dipole interaction causes a light-
induced shift of the atomic energy levels, which is maximal at the anti-nodes. This
shift of the energy levels — which is another way of describing the aforementioned
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dipole force — is periodic in space. The system of a particle in a periodic potential
is the textbook model of an electron in a crystal lattice and has been studied in
great detail. In the 1920s Bloch arrived at the conclusion that due to the periodicity
of the lattice, the eigenstates are plane waves modulated by periodic functions of
position [4]. The implications of these findings on the description of transport in
periodic potentials under the influence of externally applied fields are profound.
Some of the resulting effects, such as Bloch oscillations and Wannier—Stark states,
are treated in more detail in Sect. 8.4. Experimental verification of those predicted
effects in crystal lattices, however, has been hindered by extremely short relaxation
times. Electrons in a crystal lattice can scatter on impurities, dislocations, phonons,
and even on other electrons. If the scattering occurs on a timescale faster than
the timescale for coherent evolution of the system, coherent transport effects are
destroyed. Advances in the production of very high purity superlattice structures in
the 1970s allowed the experimental investigation of some of those coherent effects
for the first time [31]. However, the ratio of the relaxation time to the characteristic
timescale for coherent evolution in those systems was still only on the order of
unity. In our system we can achieve a ratio on the order of 10°. The relaxation
time is mainly limited by spontaneous emission during the interaction, which can
be made very small by detuning far from resonance. This high ratio and the ability
to dynamically control the interaction potential in real time during the experiment
allowed us to observe many of the coherent effects which are inaccessible in solid
state systems. A more detailed comparison of the solid state and atom optics system
is given in a recent overview article [38].

8.1.3 Interaction Hamiltonian

In this section, we derive the effective Hamiltonian for a two-level atom in a standing
wave of far-detuned light, closely following Graham et al. [16]. The atom is assumed
to have a ground state |g) and an excited state |e), separated in energy by hwy. For a
single atom of such type in a classical light field E(r, t), the Hamiltonian is the sum
of three contributions: the kinetic energy of the center of mass, the internal energy,
and the interaction energy [25]

H = Hcwm + Hinternal + Hinteraction s (83)
where
2
Hey = — 8.4
™M= o0 (8.4)
1
Hinernal = Ehwo o;, and (8.5)

Hinteraction = —d- E(I’, t) = - (<e|d ' E|g> OﬂL + <g|d : E|C> 07) . (86)
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The symbols o* and o, denote the Pauli spin matrices. For a linear polarization
vector £ of the light, we can define the resonant Rabi frequency as

o_ _(cld-Elg) _ (eld-Ele) _(gld-2le)

h h h ’ @D

where we have assumed a slow variation of the field amplitude E(r, t).
We create an optical lattice by overlapping two laser beams with identical linear
polarization vectors &. The electric field is then of the form

1 4 .
E(r, 1) = Eé (E] gir—ot) 4 g, pitkor—on ’)) +c.c. (8.8)
Using this light field, we find that the interaction term is

2 . )
_ — ,—i(k, r— K, r—w,
Hinteraction = E h 2" (G e ik, r—wyt) 4 O-+el( 0 T—0, l)) , (89)
n=1,2

where we have used the rotating wave approximation to drop the counter-rotating
terms o Te™®" and o ~e ! [25]. To separate the center-of-mass motion of the atoms
from their internal state, we write the atomic state as

[P (r, 1)) = co(r, 1)|g) + ce(x, 1)le) . (8.10)

We insert |¥) into the time-dependent Schrodinger equation with the Hamiltonian in
Eq. (8.3) to obtain propagation equations for ¢, and c.. Following Graham et al. [16]
for a sufficiently large detuning from resonance, we can adiabatically eliminate the
excited state amplitude and remain with an equation for the (phase transformed)
ground state amplitude &,

2 212, , :
ihatﬁ"g = |:2p_M + hﬁl‘z (el(q.r—ét) + et(q.rat))] Eg , (8.11)

where q = ky — k|, § = wy — w; (the frequency difference between the two beams),
and A = % — wy (their average detuning from resonance). This leads to an
effective Hamiltonian for an atom in the ground state

2

_ r—
H= i + Vocos(q-r— ¢(1)) , (8.12)

where for generality we have introduced an arbitrary time-dependent phase ¢(t) (the
instantaneous frequency difference is §(t) = i—?). The amplitude of the potential
term is

2,0
Vo = holo2
2AL

(8.13)
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Fig. 8.1 Term diagram for the sodium D, line. The nuclear spin of sodium is / = 3/2, and
so the ground state of sodium 38/, has two hyperfine levels F = 1, 2. For the 3P3), excited
state, we have J = 3/2 so that F = 0, 1, 2, 3. The 2F + 1 magnetic sublevels are also shown.
Representative examples of (a) the cooling and trapping light, (b) the optical pumping sideband,
and (c) the far-detuned optical lattice light are shown as arrows.

The expression for the well depth Vj contains the resonant Rabi frequencies £2,
and £2,. The calculation of these frequencies is complicated by the fact that sodium
is by no means a system with a two-level structure, as can be seen in the term dia-
gram for the levels contributing to the sodium D, line in Fig. 8.1. However, several
factors make a determination of the well depth possible. Our initial condition (before
the atoms interact with the light) is such that almost all atoms populate the hyperfine
F = 2 level in the lower manifold. For linearly polarized light, all of the (nearly)
degenerate mp levels experience the same level shift in the far-detuned regime.
Therefore the entire sample experiences the same effective potential [9, 32]. The
actual dipole coupling for a particular ground state sublevel | F' m ) is obtained by
summing over its couplings to all of the available excited states. When the detuning
is large compared to the excited state frequency splittings, all of the excited states
participate, and the detuning for each excited state is approximately the same. In
addition, the dipole coupling summed over all excited states and all polarizations
is independent of the m sublevel considered [32, 40]. Because of the spherical
symmetry of the dipole operator, the three Cartesian components in this sum are
equal and therefore the effective dipole coupling for the case of linearly polarized
light and large detuning, regardless of the ground state population, is one-third the
square of the dipole matrix element for the full D, (J = 1/2 <> J' = 3/2) transition

¢’|Dpy|?

|deffective|2 = T . (8.14)
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The dipole matrix element ¢?| D,|? can be obtained from the Einstein A coefficient,

1 2e?|Dpp|* 27 + 1
A21=F=—=woe| 12| + ’
T 3reghed 2J' 41

(8.15)

which is related to the radiative lifetime [25]. Here, J = 1/2 is the ground state
and J' = 3/2 is the excited state. The radiative lifetime, T = 16.2 ns, is known
empirically. Using Eqs. (8.14) and (8.15), the effective dipole moment is then

SQfL)»i
4727

deffective = =171 x 10729 cm . (816)

The time-averaged intensity (defined as the absolute value of the Poynting vector)
of a beam of light is related to the amplitude of the electric field by I = %csoEz.
Using this relation together with Egs. (8.7) and (8.13) yields an expression for the
well depth in terms of measurable quantities

2rc? VI T
Vo= 512 (8.17)
Twy; AL

where /| and I, are the intensities of the traveling wave components.

8.1.4 Spontaneous Emission Rate

In deriving the Hamiltonian for our system, we made the assumption that sponta-
neous emission can be neglected. Since spontaneous emission is the largest source
of decoherence, this statement needs to be quantitatively verified. The total sponta-
neous photon scattering rate is given by the product of the lifetime and the (steady
state) excited state population. Ignoring collisional relaxation we have for the scat-
tering rate [25, 40]

r S
Ry = | = ) (818)
2)14+S+4AL/T)?
where the saturation parameter is given by
I 2\
S=—=2|{—) . (8.19)
Lsat r
Using Eq. (8.7) the saturation intensity /g, can be expressed as
C80F2h2
sat — 4d2— (820)

effective
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For a linearly polarized far-detuned light beam, we can use the effective dipole
matrix element defined in Eq. (8.16) and obtain Iy = 9.39 mW/cmz. For a large
detuning we can also approximate the scattering rate as

IV
Ro~ o 20

~ L0 8.21
AT (8.21)

where we have used the definition of the well depth for equal beam intensities as in
Eq. (8.13). For typical experimental parameters of V,/h = 80 kHz and Ap, = 27 X
40 GHz, we get R,. = 60 s~ or roughly one event every 20 ms. For the tunneling
experiments of Sect. 8.5, where the requirements on the spontaneous emission were
the most stringent, the relevant interaction duration (the time of large acceleration)
was at most 100 pws. In this time, less than 1% of the atoms scattered a spontaneous
photon.

8.2 Experimental Apparatus

Three important steps were necessary to perform our experiments: the preparation
of the initial condition, the generation and application of the interaction potential,
and the measurement of the final state of the atoms. To outline the experimental
sequence, a simplified schematic is shown in Fig. 8.2. We will give only a brief

\ Load MOT
(1-205)

Interaction with

ey > <Jmmmmm Optical lattice

(1 ms)

> Ballistic expansion
(3ms)

\ Freezing molasses

and CCD exposure
(10ms)

Fig. 8.2 Schematic of the experimental sequence. First the atoms are collected and cooled in a
magneto-optic trap. The trapping fields are extinguished and the optical interaction potential is
introduced. After interacting with the optical lattice, the atoms are allowed to expand freely in the
dark. Finally, the cooling beams are turned on, freezing the atoms in place, and the fluorescence is
imaged onto a charge-coupled device (CCD) camera
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description of these steps; more details can be found in [11]. The starting point for
the interaction was an atomic cloud that was trapped and cooled in a magneto-optic
trap (MOT) in the standard o — o~ configuration [6, 37]. Loading sodium atoms
from the thermal background into the MOT typically resulted in a cloud of 3 x 10°
atoms with a final Gaussian distribution with a width of o, = 0.3 mm in position
and 0, = 6 hkL in momentum, where hky is the momentum of a single photon
of resonant light. The trapping and cooling fields were then switched off and the
interaction beams were turned on. The details of the generation of the interaction
potential is given below. After a typical interaction duration of not more than a
few milliseconds, the light beams were turned off and the atoms were allowed to
expand freely. During this period of ballistic expansion, each atom moved a distance
proportional to its velocity. This allowed us to determine the velocity distribution by
recording the spatial distribution of the atomic cloud. For this purpose the resonant
light was turned on after the free drift period to produce a viscous optical molasses
that halted the ballistic motion of the atoms and provided spontaneously scattered
resonant light for detection. This light was imaged onto a charge-coupled device
camera (CCD) to obtain the desired spatial information. Nonuniform detection effi-
ciencies within the optical molasses were measured and compensated for during
data analysis.

8.3 Details of the Interaction

The optical potential was formed by overlapping two linearly polarized traveling
waves with parallel polarization vectors. Both beams were derived from the same
laser in order to reduce sensitivity to frequency fluctuations originating in the laser.
A schematic of the setup is shown in Fig. 8.3. The overall power of the beams
was adjusted by an acousto-optic modulator (AOM1). The frequencies of the two
beams were controlled independently by two acousto-optic modulators (AOM?2
and AOM3). During the tunneling experiments described in Sect. 8.5 the atoms
needed to be accelerated to a velocity of up to 3 m/s. This corresponds to 100 v;,
where v, is the single photon recoil velocity of the atom. To reach this velocity, the
counterpropagating beams need to differ in frequency by 10 MHz. During the exper-
iment the frequency difference needed to be adjusted from zero to this maximum
value without misalignment. For this reason a double-pass AOM setup was cho-
sen. The frequency of the double-passed beam was scanned, whereas the frequency
of the counter-propagating beam was held constant. The beam in the variable fre-
quency arm of the arrangement was focused by a lens through the acousto-optic
modulator (AOM3) operating at 40 MHz +Av. An identical lens was placed after
the AOM in the first-order diffracted beam. The undeflected portion of the beam
was discarded. After being reflected by a mirror the diffracted beam retraced its
path through AOM3 and was diffracted again in the same manner. The beam was
deflected twice on its path through the AOM, and the frequency was therefore down-
shifted by twice the drive frequency. Any change in the drive frequency of AOM3
led to an angle change of the first-order diffracted beam, but the beam completing
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Fig. 8.3 Schematic of the interaction beam setup. AOM1 (40 MHz) provides the global control
of the intensity. AOM3 is a double-passed, 40 MHz AOM shifting the beam frequency down by
twice its drive frequency without leading to an appreciable angular deflection. AOM2 is in the
single-passed configuration shifting down the beam frequency by 80 MHz

both passes through the AOM was still overlapped with the incoming beam regard-
less of the deflection angle. To separate the backreflected from the incoming beam
the polarization was rotated along the path with a quarter-wave plate (A/4) so that
a polarization beam splitter cube could be used for separation. To compensate for
the frequency offset of 80 MHz introduced by AOM3, the frequency in the sec-
ond arm was down-shifted by AOM?2, also by 80 MHz. The frequency difference
between both beams was therefore 2Av. After passing through the acousto-optic
modulators each beam was spatially filtered. The resulting transverse beam intensity
profiles were approximately Gaussian with a beam radius of about 2 mm. The size
and divergence of the beams were matched to avoid transverse spatial interference
fringes, which could have created local variations of the well depth. A small part
of each beam was diverted onto a photodiode to measure the optical power (the
calibration accuracy was about 10%).

8.4 Quantum Transport

The system of ultra-cold atoms in a periodic optical potential offers a unique means
of studying solid state effects with quantum optics tools. In order to gain insight
into the possibilities for experiments, some of the basic properties of this system
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will be reviewed. A thorough treatment of the fundamental properties can be found
in many solid state textbooks, such as Ashcroft and Mermin [2] or Marder [30]. The
specifics of our system are described more thoroughly by Fischer [11].

8.4.1 Stationary Lattice

We created the optical potential by spatially overlapping two counterpropagating
light beams (kp, = k, = —Kk;), which yields q = k, — k; = 2ky,. Choosing the
same frequency for both beams simplifies the effective Hamiltonian in Eq. (8.12) to

2

H= ;—M + Vpcos 2kx) (8.22)

assuming that beam propagation is along the x-axis. This form of the Hamiltonian is
a textbook example for a particle placed in a spatially periodic potential, and many
general properties of this system can be derived by symmetry arguments alone. The
most fundamental properties are expressed in Bloch’s theorem. It states that the
eigenstates ¥ (x) of this Hamiltonian take on the form of a plane wave multiplied by

a function u(x) of periodicity d = ]f—L = % (the periodicity of the potential):

Yk () = € u, 1 (x) (8.23)

where k is the quasi-momentum of the particle. The index n is called the band
index and appears in Bloch’s theorem because for a given k there are many solu-
tions to the Schrodinger equation. An important consequence of Bloch’s theorem
is that the wave functions and the energy dispersion of the particle are periodic in
quasi-momentum (reciprocal) space with a periodicity of K = 27” = 2kg, in recip-
rocal space. Another property of paramount importance concerns the mean velocity
of a particle in a particular Bloch state 1, . It can be shown that the velocity is

determined by the energy dispersion relation as

by = LIER)

24
h 0k 824

in analogy to the free particle case [2].

The problem of finding the energy eigenstates of H, that is solving H|y) =
E|y), is equivalent to solving Mathieu’s equation [1]. Sample dispersion curves
(energy versus the quasi-momentum k) were calculated and plotted in Fig. 8.4. For
a vanishing well depth V; the dispersion curve is the free particle energy parabola
Ek) = % For a finite well depth Vj, the lowest crossing points of the free energy
parabolas at k = =£k; develop a level repulsion due to the coupling of the levels by

the potential term. The amount of repulsion in this avoided level crossing can easily
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Fig. 8.4 Dispersion curves of a particle in a sinusoidal potential. Plotted here are the energy (in
units of Ey = 8 hw;,, hw, being the recoil energy) versus the quasi-momentum k (in units of k)
in the repeated-zone scheme (left panels) and in the reduced-zone scheme (right panels). The well
depth Vy/ h of the potential is (a) 0, (b) 40 kHz, and (c¢) 200 kHz

be estimated by first-order degenerate perturbation theory. The eigenenergies of the
coupled system are

Ei,= +-V,. (8.25)

The energy splitting for the first crossing and therefore the width of the first band gap
is, to first order in Vj, equal to Vj itself. The coupling term cos(2k; x) connects only
states with a difference in momentum of 2 ik . For the calculation of the splitting
at higher crossing points, we therefore need to resort to perturbation expansions of
higher order.

The energy values evaluated at the band edges as a function of the well depth Vj
have been determined numerically and are displayed in Fig. 8.5. From this figure
one can see that the energy bands evolve from a continuum of allowed energies, for
a vanishing well depth, into the linearly spaced discrete energy levels of a harmonic
oscillator, in the limit of large well depth.



216 M.C. Fischer and M.G. Raizen

800
600
&
jan)
=2 400
=
[S§)

200 -

0 —

0 100 200 300 400 500

Vi/h [kHz]

Fig. 8.5 Regions of allowed (gray) and restricted (white) energy in the periodic potential as a
function of the well depth. The energy is measured relative to the bottom of the well. Indicated as
a dashed line is the top edge of the potential (2V})

8.4.2 Accelerating Lattice

For the system of electrons in a crystal lattice, the most commonly encountered
perturbation is an applied static electric field. This seemingly simple perturbation
leads to a very rich system, whose properties were controversial for quite some time.
Experimental tests in the field of solid state physics were hindered by decohering
processes such as scattering of the electrons on impurities in the crystal lattice or
scattering among themselves. These effects are negligible in our atom optics sys-
tem and we were able to contribute to this field by studying some of the effects
previously inaccessible to experiment.

8.4.2.1 Semiclassical Equations of Motion

A static electric field, which exerts a strong force on the electrons in a crystal, does
not have the desired effect on a neutral atom in an optical potential. However, we can
simulate the corresponding force by introducing an appropriate time dependence of
the optical lattice. Let us consider an optical lattice composed of two counterpropa-
gating light beams of unequal frequencies. A constant acceleration of the “standing”
wave pattern is generated by linearly chirping the frequency difference of these
counterpropagating beams. This is described by ¢(t) = ki at* in Eq. (8.12), where
a is the acceleration. Inserting this into the Hamiltonian yields

2 1
H = Zp_M + Vo cos |:2kL ()C — Eatz):| . (8.26)
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To make the connection to the solid state system, one can transform Eq. (8.26) to
the frame of reference accelerated with the potential by applying a unitary transfor-
mation, following Peik et al. [36], resulting in

2
i = ;—M + Vi cos(2k x) + Max . (8.27)

The last term containing the mass M of the atom is an inertial term, resulting from
the transformation to an accelerating frame of reference. It mimics the role of the
interaction potential U,; = Eex between an electric field £ and the electron of
charge e. Having established this connection, we can directly apply the results for
the solid state system to an atom in the accelerated optical potential. A derivation
of the semiclassical equations of motion for small electric fields can be found in
standard textbooks [2, 30] and are simply stated here without proof. They express
the relationship of the state’s quasi-momentum k, band index n, energy E,(k), and
mean velocity v, (k). By replacing the force F = e £ with F = Ma, we obtain the
following statements:

1. The band index n is a constant of motion.
2. The expression for the velocity in Eq. (8.24) remains unchanged and the evolu-
tion of the quasi-momentum is described by

k(1) = —%Ma ) (8.28)

3. The form of the band structure E, (k) is unchanged.

The restriction of small fields deserves special attention. The statement that the
band index is a constant of motion indicates that inter-band transitions are being
neglected. However, for larger fields electrons can tunnel across the band gap. An

estimate for a “small” field strength is given by Ashcroft and Mermin as £ < hv ,
with vg being the typical electron velocity in the originating band and E, being the
minimum energy separation of the perturbed levels [2]. In our system this transforms
to a condition for the acceleration

EZ
—£ 8.29
a K ke (8.29)

where v, = hkr/M serves as the typical velocity at the edge of the Brillouin zone.
Since for higher band indices the gaps get smaller and the velocity gets higher, a
dramatic increase in the tunneling probability is to be expected. A more detailed
study of tunneling across band gaps will be provided in Sect. 8.5.
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8.4.2.2 Bloch Oscillations and Wannier—Stark States

One remarkable consequence of the equations of motion stated above is that parti-
cles exposed to a static field are predicted to oscillate in space rather than increase
their velocity steadily. As can be seen by integrating Eq. (8.28), the quasi-momentum
increases linearly with time as

Mat

ki =k - —

(8.30)

The velocity of the particle with a given quasi-momentum k is given by Eq. (8.24)
as the derivative of the dispersion curve at the point k. Since E, (k) is oscillatory in
reciprocal space and k varies linearly with time, the velocity v,(¢) is oscillatory in
time. The period of oscillation 7y is the time it takes for a particle to traverse the
Brillouin zone of width K = 2k and calculates to

2hky, 2v;
= =1 8.31
= P (8.31)

A sketch of these Bloch oscillations is graphically depicted in Fig. 8.6(a). An atom
starting in the lowest band of the potential will increase its quasi-momentum k due to
the applied force, as given by Eq. (8.30). As it approaches the edge of the Brillouin
zone at a constant rate d;k, the velocity decreases as the slope of the dispersion curve
decreases. At k = ki the derivative 0y E¢(k) is zero and according to Eq. (8.24) the
particle is at rest. It will then reverse its velocity and continue its motion, until the
velocity is reversed again at the next minimum of the dispersion curve. The reversal
of its velocity at k = ki can be viewed as a first-order Bragg reflection of the
particle wave by the periodic potential. The arguments above also hold for atoms
in higher bands. They oscillate at the same Bloch frequency. However, the velocity
reversal in higher bands corresponds to a higher order Bragg scattering process. It
is important to note that this reversal of the atomic velocity occurs relative to the
accelerated frame. In the laboratory frame the constant acceleration of the potential
is superimposed on the oscillation of the atom.

For a higher field strength (or acceleration, in the atom optics system) the particle
might not be able to follow the dispersion curve adiabatically as it approaches the
edge of the Brillouin zone. It can cross the band gap and continue its motion in
a higher band, as indicated in Fig. 8.6(b). This corresponds to a tunneling process
through the band gap, in which case the semiclassical equations stated above no
longer hold. For a particle undergoing tunneling, the transformation back to the
laboratory frame reveals no change of velocity at all. The particle is simply lost out
of the potential and can no longer track the acceleration.

The Bloch bands of an atom in a stationary potential are, by definition, con-
tinuous regions in the energy spectrum. Bloch oscillations in an accelerated lattice
reveal themselves in the energy spectrum as discrete peaks with an energy separation
of hvg, where vg = 1/tg. This is a consequence of the Bloch bands splitting up
into discrete Wannier—Stark states. A physical interpretation of these states can be
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Fig. 8.6 Sketch of a particle trajectory in reciprocal space. In the upper panel (a) the rate of change
of the quasi-momentum is slow enough for the particle to follow the dispersion curve adiabatically
across the Brillouin zone boundary. This is equivalent to discontinuing the motion at one edge
of the Brillouin zone and emerging from the other side in the same band. The lower panel (b)
illustrates a case for a larger force, where the particle cannot follow the curve and tunnels through
the band gap

obtained by regarding the transition between bands as a temporal interference effect.
Quantum mechanically, atoms can tunnel between bands at all positions within the
Brillouin zone. Since Bloch oscillations lead to multiple passes through the Brillouin
zone, transition amplitudes can interfere constructively or destructively, depending
on the rate at which the particle traverses the Brillouin zone. This is in analogy to the
optical interference pattern generated by a plane wave of light illuminating an array
of slits or a grating. The temporal interference produces sharp resonances spaced
at the (temporal) grating period tg. The more traversals of the Brillouin zone the
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particle completes, the sharper the resonance becomes. If the particle tunnels out
of the band quickly, the resonances are broad, indicating a short lifetime of the
associated state. The tunneling out of a bound state is enhanced by the presence of a
Wannier—Stark state of the same energy, but in a higher band and displaced by one
or more lattice sites. This situation is depicted in Fig. 8.7(a).

(a)

———

(b)

——n

——

Fig. 8.7 Schematic of the Wannier—Stark ladder within the bands. In (a) the tunneling process is
indicated. The presence of a Wannier—Stark state in the continuum of the higher band enhances
the tunneling probability across the gap. In (b) a weak spectroscopic drive couples the states and
introduces transitions. In either case, once an atom is in the second band, it can easily tunnel across
successive band gaps into higher bands

Krieger and Iafrate [23] also consider the possibility of driving transitions between
bands with an external alternating probe field. Assuming that the transition due to
the probe drive is the dominant loss process from the first band (neglecting tunnel-
ing), they obtain a resonance condition for the drive frequency v,

[o5]]

g

v = +nvg , (8.32)

=
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where E|, is the average band separation. Here, the driving field provides a direct
spectroscopic tool to probe the lattice structure of the Wannier—Stark states by allow-
ing transitions between the states, as indicated in Fig. 8.7(b).

8.4.3 Band Spectroscopy and Wannier—Stark Ladders

In our experiments the initial atomic distribution was approximately Gaussian with
a width of o, = 0.3 mm in position and o, = 6 hk, in momentum. However, to
be able to study tunneling and transitions between single bands, an initial condition
with only one populated band, preferably the lowest, was desired. If we suddenly
turn on the optical potential within the atomic distribution, only a fraction of the
atoms are transferred into the lowest band [35]. Most atoms will be projected into
higher index bands. The location of the bands relative to the potential is indicated in
Fig. 8.5. For a typical well depth of V,/h = 70 kHz, we can see that atoms in the
lowest band are trapped within the potential wells, whereas atoms in the second band
are only partially trapped. Atoms in even higher bands have energies well above the
potential and hence are effectively free. The location of the bands with respect to the
potential well can be regarded as an indicator for the tunneling rates between bands
when an acceleration is applied. Bands that lie entirely within the wells have a much
smaller tunneling rate than bands outside the range of the potential. To empty all
but the lowest band, we took advantage of this difference in tunneling rates across
successive band gaps. After turning on the standing wave, it was accelerated to a
velocity of vy = 40 v, as indicated in Fig. 8.8. During this acceleration the atoms
in the first band performed a sequence of Bloch oscillations within the potential
and were accelerated in the laboratory frame. Atoms in higher bands could tunnel
through the successively smaller band gaps and were lost out of the potential. The
transport acceleration a,,s was chosen to maximize tunneling out of the second
band while minimizing losses from the first trapped band. For typical experimental
parameters of Vy/h = 70 kHz and ay,,s = 2000 m/ s2, the Landau—Zener expres-
sion derived in Sect. 8.5 for the lifetime of the first and second band yields 24 ms
and 40 ps, respectively. This ensured that after 600 s of acceleration only the first
band still contained a significant number of atoms.

For band spectroscopy experiments the frequency chirp was stopped after reach-
ing the velocity vy and the frequency difference was held constant. At that point,
a phase modulation at the frequency of v, was added to one of the two counter-
propagating beams forming the standing wave, as indicated in Fig. 8.8. This phase
modulation could drive transitions between bands, if the band separation for some
value of k was close to E = hv,. The modulation typically lasted for 500 s and
was switched on and off smoothly over 16 s to avoid any discontinuous phase
changes in the potential that could induce transition to higher bands. The amplitude
of the modulation was chosen to be small enough to not perturb the band structure.

In order to study Wannier—Stark states experimentally a constant acceleration of
the optical potential was necessary. Therefore the frequency chirp was not stopped
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Fig. 8.8 Interaction beam timing diagram for the band spectroscopy experiments. After the
molasses stage the resonant light is turned off and the optical lattice was turned on. A subset
of atoms is projected into the fundamental band and separated in velocity by an acceleration dzaps-
After this preparation stage, the optical lattice position and amplitude are varied to realize the
potential under study. This step is followed by separating the atoms in the lowest band from those
in higher bands by the same acceleration a,,s. The atoms are then allowed to expand freely in the
dark and the spatial distribution is illuminated with the resonant molasses light

during the modulation time but was adjusted to yield the desired value of the accel-
eration a. To spectroscopically investigate the states, we superimposed the phase
modulation at frequency v, onto this frequency chirp.

After a fixed time interval the modulation was turned off and the frequency chirp-
ing resumed at a rate corresponding to ayans. This separated in momentum space the
remaining trapped atoms in the lowest band from those having made the transition
into higher bands. After reaching a final velocity vgn, = 80 vy, the interaction beams
were switched off suddenly.

In the detection phase we needed to distinguish three classes of atoms: (1) atoms
that were not initially trapped in the lowest band and immediately tunneled out of
the well during the initial acceleration, (2) atoms which were trapped in the first
band at the beginning of the interaction but were driven out by the modulation,
and (3) atoms that remained in the first band during the entire sequence. Since
the atoms in different classes had left the trapping potential at different stages of
the experimental sequence, they were accelerated to different velocities. Therefore,
after drifting in the dark for 3 ms, these classes separated in space and could be
distinguished by recording their position. For this purpose the atoms were imaged
in the “freezing molasses” as described in Sect. 8.2. A typical fluorescence image of
the atoms is shown in Fig. 8.9(a). The two-dimensional image was then integrated
in the direction perpendicular to the axis of the interaction beams to obtain a one-
dimensional distribution along the beam direction, containing all three classes of
atoms. The corresponding integrated distribution is shown in Fig. 8.9(b). In order to
reduce sensitivity to fluctuations of the number of atoms in the MOT, the number of
survivors (atoms in class (3)) was normalized by the total number of atoms initially
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Fig. 8.9 Part (a) shows a fluorescence image from an atomic distribution acquired after a time of
ballistic expansion. Part (b) shows the distribution integrated in the vertical direction. The large
peak on the right is the part of the atomic cloud that was not trapped during the initial acceleration.
The center peak indicates the atoms that were initially trapped in the first band but were driven
out by the modulation. The /eft peak corresponds to atoms that remained trapped during the entire
sequence. The survival probability is the area under the /eft peak normalized by the sum of the
areas under the left and center peak

trapped in the first band, which was obtained by summing the contributions of class
(2) and class (3).

To observe the temporal evolution of the fundamental band population, we
repeated the sequence in Fig. 8.8 for various modulation durations, holding the
probe frequency v, and amplitude m fixed. These studies resulted in the observa-
tion of Rabi oscillations between Bloch bands [13]. For large amplitudes of the
modulation, we observed a dynamical suppression of the band structure, effectively
turning off Bloch tunneling [28].

To obtain a spectrum of the Wannier-Stark states, we applied the modulation
during a period of constant acceleration and repeated the sequence for various probe
modulation frequencies, holding the modulation amplitude 7 and the duration fixed.
Figure 8.10 shows three measured spectra for the accelerations of 947, 1260, and
1680 m/s2, which correspond to the Bloch frequencies wg /27 = 16.0, 21.4, and
28.5 kHz, respectively. The spectra were obtained at a fixed well depth of Vy/h =
91.6 kHz and a fixed probe modulation amplitude of m = 0.05. For a well depth
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Fig. 8.10 Wannier—Stark ladder resonances for a well depth of Vy/h = 91.6 kHz and accelera-
tions of (a) 947 m/s?, (b) 1260 m/s?, and (c) 1680 m/s, which correspond to the Bloch frequencies
wp/2m = 16.0, 21.4, and 28.5 kHz, respectively. For the chosen well depth, the average band
spacing is E ¢/ h = 104 kHz which is in good agreement with the location of the central resonance.
The points are connected by thin solid lines for clarity. The thick solid lines show the results of
numerical simulations using the experimental parameters. Figure from [29]; Copyright 1999 by the
American Physical Society

of Vo/h = 91.6 kHz, the average band spacing is E;/h = 104 kHz, which is in
good agreement with the location of the central resonance in the three spectra of
Fig. 8.10.

Also shown in Fig. 8.10 is the result of a numerical integration of the time-
dependent Schrodinger equation using the experimental parameters. We believe
that phase noise in the interaction beams prevented the survival probability from
reaching unity, when the probe was far from resonance, and reduced the depth
of the spectral features by a constant factor. For this reason, the y-values of the
theory curves were shifted and scaled to match the baseline and amplitude of the
central resonance. In addition, the value for the probe modulation amplitude m was
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adjusted in the numerical simulations from 0.05 to 0.035 to reproduce the relative
peak heights.

The spectral width of the resonances is fundamentally determined by the finite
lifetime of the Wannier—Stark states due to tunneling. However, a number of exper-
imental mechanisms (e.g., phase noise in the standing wave beams, variations in the
well depth, or the finite transverse extent of the optical potential) contributed to the
measured width being substantially broader than that predicted by the simulations.

8.5 Quantum Tunneling

In the previous section we studied the spectral features of Bloch states and Wannier—
Stark states by driving transitions between those states. These inter-band transitions
were imposed externally by a modulation of the potential. Without modulation the
band index was conserved. The accelerations that transported the atoms through
reciprocal space were small enough to preserve the validity of the semiclassical
equations of motion. In this section we investigate the effect of a large accelera-
tion of the optical potential. In this case the semiclassical equations no longer hold
and inter-band tunneling can occur. The atoms can leave the trapping potential via
tunneling into the continuum of free states. The system is therefore unstable and
the number of trapped atoms decays with time. By adjusting the acceleration the
stability of the system can be altered dynamically and the decay rates vary over
a wide range. In this system, short-time deviations from the universal exponential
decay law are observed [42]. In addition, we study the fundamental effects of mea-
surements on the decay rate and report on the first observation of the quantum Zeno
and anti-Zeno effects in an unstable system [12].

8.5.1 Classical Limit

As derived in Sect. 8.4, atoms in an accelerated standing wave are subject to a
potential

V(x) = VycosRkrx) + Max . (8.33)

This potential is stated in the reference frame accelerated with the potential as given
in Eq. (8.27). For a small enough acceleration a particle can be classically trapped
within the wells of this “washboard” potential. In this case the particle will accel-
erate along with the potential. For a larger acceleration the potential wells become
increasingly asymmetric up to a point where the particle is no longer confined by
the potential. The critical acceleration a. cjass, for which the potential loses its abil-
ity to confine the particle, can be found by solving for extrema of the potential in
Eq. (8.33), which only exists for

2k Vo
lal < acclass = # . (8.34)
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For accelerations smaller than a. c.ss the particle gets accelerated along with the
potential whereas for larger accelerations there are no local potential minima.

8.5.2 Landau-Zener Tunneling

8.5.2.1 Tunneling Rates

In this section we provide a short description of the Landau—Zener tunneling process
based on diabatic transitions in momentum space [35, 44]. An alternative description
can be derived in the position representation [26, 45]. As a starting point we consider
the semiclassical equations of motion describing the time evolution of the quasi-
momentum in reciprocal space. In order to allow for inter-band transitions, we must
now abandon the condition that the band index be a constant of motion. The shape
of the Bloch bands and the time evolution equation for the quasi-momentum are still
assumed to be valid. The stationary periodic potential causes the free particle energy
levels to undergo a level repulsion. This shift is most pronounced at the edges of the
Brillouin zone. A particle approaching the avoided level crossing might not be able
to follow the dispersion curve adiabatically, in which case it continues its motion
and diabatically changes levels across the energy gap. In 1932 Zener derived an
expression for the probability P of diabatic transfer between two repelled levels [44]

P=c T B (8.35)
= X —_ N .
P\"2n %(51 — &)

where E, is the minimum energy separation of the perturbed levels and ¢, are
the unperturbed energy eigenvalues of level 1 and 2, respectively. In our case the
unperturbed energy curve is simply the free particle kinetic energy dispersion £, =
p?/2M. Using the semiclassical equation of motion for the quasi-momentum, we
obtain for the probability of transfer

P=e ", (8.36)
where the critical acceleration a. is given by

2
r K

= 4wk

(8.37)

We let N denote the number of particles populating the lowest band within the first
Brillouin zone. The rate of atoms crossing the band gap is equal to the rate of atoms
approaching the transition region times the probability of tunneling if we assume the
band to be uniformly populated. We obtain an exponential decay of the population
N in the band under consideration as

N = Nye izt (8.38)
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with the Landau—Zener (LZ) decay rate /77 given by

Ny =—e %/, (8.39)
20,

Experimental studies of the tunneling rates out of the lowest band were performed
in our group and the decay rates were compared to the Landau—Zener prediction [3,
27].

8.5.2.2 Deviations from Landau-Zener Tunneling

The expression for the LZ tunneling rate derived above is based on a single transit
of the atom through the region of an avoided crossing. However, for small tunneling
probability the atom can undergo Bloch oscillations within a given band, leading to
multiple passes through the Brillouin zone. The tunneling amplitudes can interfere
constructively or destructively depending on the rate at which the atom traverses
the Brillouin zone. This mechanism is responsible for the formation of tunneling
resonances. For small accelerations the tunneling rate is small and the atoms can
perform many Bloch oscillations before leaving the band. Therefore large deviations
from the Landau—Zener prediction for the tunneling rate are to be expected. For a
larger acceleration the atom leaves the band quickly and the interference effects are
less pronounced. For those cases the LZ prediction is a good approximation for the
actual tunneling rate. These statements are in agreement with the observed tunneling
rates [3, 27].

8.5.3 Non-exponential Decay

8.5.3.1 Theoretical Description

An exponential decay law is the universal hallmark of unstable systems and is
observed in all fields of science. This law is not, however, fully consistent with
quantum mechanics and deviations from exponential decay have been predicted for
short as well as long times [20, 43, 14]. In 1957 Khalfin showed that if H has a
spectrum bounded from below, the survival probability is not a pure exponential but
rather of the form

llim P(t) ~ exp(—ct?) g<1lc>0. (8.40)
—00

Later Winter examined the time evolution in a simple barrier-penetration prob-
lem [43]. He showed that the survival probability begins with a non-exponential,
oscillatory behavior. Only after this initial time does the system start to evolve
according to the usual exponential decay of an unstable system. Finally, at very long
times, it decays like an inverse power of the time. The initial non-exponential decay
behavior is related to the fact that the coupling between the decaying system and the
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reservoir is reversible for short enough times. Moreover, for these short times, the
decayed and undecayed states are not yet resolvable, even in principle.

A simple argument will illustrate this point. We assume that the system is initially
in the undecayed state |¥) at t = 0, and that the state evolves under the action of
the Hamiltonian H,

(1)) = e M) = A0 W) + |2(1)) (8.41)

where A(t) is the probability amplitude for remaining in the undecayed state and
the state |@(7)) denotes the decayed state with (¥|@(¢)) = 0. The probability of
survival P in the undecayed state is therefore P(t) = |A(¢)|*>. Acting with the time
evolution operator e *#+)/% on the state |¥) yields

At +1) = AOAT) + (Wole M@ (1)) . (8.42)

If it were not for the last term, the equation above would generate the characteristic
exponential decay law of an unstable system. However, the term under consideration
describes the possibility for the decayed state |@(#)) to re-form the initial state |¥)
under the time evolution operator for time #’.

For very short times we can make a general prediction about the time evolution of
the survival probability P. Given that the mean energy of the decaying state is finite
and that H has a spectrum that is bounded from below, one can show following the
arguments of Fonda et al. [14] that

dP(1)
dr

—0. (8.43)

t—0

As outlined by Grotz and Klapdor [18] we can expand A(¢) in a power series

2

> (ol H* [ W) + O(2) . (8.44)

Ay =1- i%(‘lfo|H|%) -

Using this expansion results in an expression for the survival probability

2
P(t) =AW =1~ %(%I(H — EY|¥p) + 0@thy (8.45)

where E = (Wy| H|W,). This form indicates a population transfer beginning with a
flat slope and suggests an initial quadratic time dependence.

The results stated here are general properties independent of the details of the
interaction. However, the timescale over which the deviation from exponential
behavior is apparent depends on the particular timescales of the decaying system.
Greenland and Lane point out a number of timescales which are relevant [17]. The
first timescale 7. is given by the time that it takes the decay products to leave the
bound state region. This time can be estimated as
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h
= — 8.46
Te Eo ( )

where Ej is the energy released during the decay. It determines the amount of time
required to pass before the decayed and undecayed states can be resolved. The sec-
ond timescale 1, is related to the bandwidth A E of the continuum to which the state
is coupled

h

=5 (8.47)

Tw

The phases of all states in the continuum evolve at a rate corresponding to their
energy. Thus after the time t,, the phases of these states have spread over such a
wide range as to prevent the reformation of the initial undecayed state. After this
dephasing time, the coupling is essentially irreversible.

Although these predictions are of general nature and applicable in every unstable
system, deviations from exponential decay have not been observed experimentally
in any other system than the one described here [42]. The primary reason is that
these characteristic timescales in most naturally occurring systems are extremely
short. For the decay of a spontaneous photon, the time t. it takes a photon to tra-
verse the bound state size is approximately an optical period, 10~ s. For a nuclear
decay this timescale is orders of magnitude shorter, about 107! s. By contrast, the
dynamical timescale for an atom bound in an optical lattice is just the inverse band
gap energy, which in our experiments is on the order of several microseconds.

Niu and Raizen [34] performed a more detailed investigation of a two-band
model of our system. They find an initial non-exponential regime that starts with
a quadratic time dependence, then becomes a damped oscillation, and finally settles
into an exponential decay. The timescale for which the coherent oscillations damp
out and the exponential decay behavior sets in is identified as the crossover time
equal to

o= fe ] (8.48)

" a 2hk ‘
For a typical value for the acceleration of @ = 10,000 m/s> and a band gap of
E,/h = 80 kHz, the crossover time calculates to 7. = 2 us.

8.5.3.2 Experimental Realization

The preparation of the initial state was done as described previously. After turning
on the interaction beams, a small acceleration of dyas = 2000 m/s> was imposed to
separate those atoms projected into the lowest band from the rest of the distribution.
After reaching the velocity vy = 35 v;, the acceleration was suddenly increased to
a value aynne Where appreciable tunneling out of the first band occurred. Unlike
in the band spectroscopy experiments no phase modulation was added to induce
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transitions between the bands. The large acceleration aynne; Was maintained for a
period of time #ynnel, after which time the frequency chirping continued again at the
decreased rate corresponding to dy.ns. This separated in momentum space the atoms
that were still trapped in the lowest band from those in higher bands. After reaching
a final velocity of vgn, = 80 vy, the interaction beams were switched off suddenly.
A diagram of the velocity profile versus time is shown in Fig. 8.11(a).

A\
final
@) (b
z
=}
=]
s
z 8,
15}
3 g
[
> 3
wn
O
B
)
=
— =
t
tunnel
0 : ; : : ;
-6 -4 -2 0 2
time

position [mm]

Fig. 8.11 Part (a) shows a diagram of the acceleration sequence to study tunneling out of the
lowest band. Part (b) shows a typical integrated spatial distribution of atoms after ballistic expan-
sion. The large peak on the right is the part of the atomic cloud that was not trapped during the
initial acceleration. The center peak indicates the atoms that tunneled out of the potential during
the fast acceleration period. The leftmost peak corresponds to atoms that remained trapped during
the entire sequence. Figure from [12]; Copyright 2001 by the American Physical Society

In the detection phase we determined the number of atoms that were initially
trapped and what fraction remained in the first band after the tunneling sequence.
After an atom tunneled out of the potential during the sequence, it would maintain
the velocity that it had at the moment of tunneling. During the period of free bal-
listic expansion the difference in final velocity between trapped and tunneled atoms
led to their spatial separation (Fig. 8.11(b)). To observe the temporal evolution of
the fundamental band population, we repeated a sequence such as in Fig. 8.11(a)
for various tunneling durations #ynne1, holding the other parameters of the sequence
fixed.

Figure 8.12 shows the probability of survival in the accelerated potential as a
function of the duration of tunneling for various values of the tunneling acceleration
Grnnel between 6000 and 20,000 m/s2. The value for the well depth for all curves
was Vp/h = 92 kHz. Initially, the survival probability shows a flat region, owing
to the reversibility of the decay process for short times. At intermediate times the
decay shows a damped oscillation that for long times evolves into the characteris-
tic exponential decay law. By this time the coupling is essentially irreversible and
reformation of the undecayed state is prohibited. As a comparison we also show the
results of quantum mechanical simulations of the entire experimental sequence as
solid lines in the same graph. The tunneling rates depend strongly on the well depth
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Fig. 8.12 Probability of survival in the accelerated potential as a function of duration of the tun-
neling acceleration. Data points for different values of the large acceleration agnner are shown. Each
point represents the average of five experimental runs, and the error bar denotes the error of the
mean. These data were recorded for a well depth of V/h = 92 kHz and have been normalized to
unity at fyne = 0 to compare to the quantum mechanical simulations (shown in solid lines with
no adjustable parameters)

of the potential. Considering the uncertainty of 10% in the calibration of the power
in the interaction beams, the simulations match the observed data quite well.

8.5.4 Quantum Zeno and Anti-Zeno Effects

The universal phenomenon of non-exponential decay of unstable systems led Misra
and Sudarshan in 1977 to the prediction that frequent measurements during this
non-exponential period could inhibit decay entirely [33, 5, 41]. They named this
effect the quantum Zeno effect after the Greek philosopher, famed for his paradoxes
and puzzles. In his most famous paradox, Zeno considers an arrow flying through the
air. The time of flight can be subdivided into infinitesimally small intervals during
which the arrow moves only by infinitesimal amounts. Assuming the summation of
infinitesimal terms amounts to nothing led Zeno to believe that motion is impossi-
ble and is merely an illusion. The version put forth by Misra and Sudarshan is the
quantum mechanical version of the paradox.

To illustrate their main point, we consider the time evolution of a system in
the non-exponential regime, where the probability of remaining in the undecayed
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state is given by Eq. (8.45). We now subdivide the time ¢ into n time intervals of
length 7 and perform a measurement of the system after each interval. Each mea-
surement redefines a new initial condition and effectively resets the time evolution.
The system must therefore start the evolution again with the same non-exponential
decay features. The probability of remaining in the undecayed state at time ¢
(after n measurements at intervals 7) is therefore P(r) = [P(t)]", which we can
approximate as

HZ
P = exp(—n 12%> =, (8.49)
where the decay rate y is given by
(H?)
=10 (8.50)

The time evolution of the system that is repeatedly measured is therefore an expo-
nential decay. The remarkable fact is that the decay rate depends on the measure-
ment interval T and tends to zero as T goes to zero. Reviews of the quantum Zeno
effect can be found in modern textbooks of quantum mechanics [39]. Even though
measurement-induced suppression of the dynamics of a two-state driven system has
been observed [19, 24], no such effect was ever measured on an unstable system.

Whereas in the previous section we established the non-exponential time depen-
dence, the focus of this section is the effect of measurements on the system decay
rate. The quantity to be measured was the number of atoms remaining trapped in
the potential during the tunneling segment. This measurement could be realized by
suddenly interrupting the tunneling duration by a period of reduced acceleration
Qinterr» as indicated in Fig. 8.13(a). During this interruption tunneling was negligible
and the atoms were therefore transported to a higher velocity without being lost out
of the well. This separation in velocity space enabled us to distinguish the remaining
atoms from the ones having tunneled out up to the point of interruption, as can be
seen in Fig. 8.13(b). By switching the acceleration back to awnnel, the system was
then returned to its unstable state. The measurement of the number of atoms that
remained trapped defined a new initial state with the remaining number of atoms as
the initial condition. The requirements for this interruption section were very similar
to those during the transport section, namely the largest possible acceleration while
maintaining negligible losses for atoms in the first band. Hence djyer Was chosen to
be the same as dans-

Figure 8.14 shows the dramatic effect of frequent measurements on the decay
behavior. The hollow squares indicate the decay curve without interruption. The
solid circles in Fig. 8.14 depict the measurement of the survival probability in which
after each tunneling segment of 1 s an interruption of 50 s duration was inserted.
Only the short tunneling segments contribute to the total tunneling time. The sur-
vival probability clearly shows a much slower decay than the corresponding system
measured without interruption. Care was taken to include the limited time response
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Fig. 8.13 Part (a) shows a diagram of the interrupted acceleration sequence. The total tunneling
time is the sum of all the tunneling segments. Part (b) shows a typical integrated spatial distribution
of atoms after ballistic expansion. The peaks can be identified as in Fig. 8.11. However, the area
containing the tunneled fraction of the atoms is now composed of two peaks. Atoms that left the
well during the first tunneling segment are offset in velocity from the ones having left during the
second period of tunneling. The amount of separation is equal to the velocity increase of the well
during the interruption. Figure from [12]; Copyright 2001 by the American Physical Society
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Fig. 8.14 Probability of survival in the accelerated potential as a function of duration of the tun-
neling acceleration. The hollow squares show the non-interrupted sequence, the solid circles show
the sequence with interruptions of 50 ps duration every 1 ws. The error bars denote the error of
the mean. The data have been normalized to unity at #,,,; = O in order to compare to the quantum
mechanical simulations (solid lines; no adjustable parameters). For these data the parameters were
Quannet = 15, 000 m/s?, dinerr = 2000 m/s2, tinerr = 50 s, and V/h = 91 kHz. Figure from [12];
Copyright 2001 by the American Physical Society
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of the experimental setup into the analysis of the data. Also indicated as solid
lines are quantum mechanical simulations of the decay by numerically integrating
Schrodinger’s equation for the experimental sequence and determining the survival
probability numerically. The simulations contained no adjustable parameters and
are in good agreement with the experimental data. We attribute the seemingly larger
decay rate for the Zeno experiment as compared to the simulation to the under-
estimate of the actual tunneling time.

Recently it was predicted that an enhancement of decay can be observed for
slightly longer time delays between successive measurements during the non-
exponential region. In contrast to the suppressed decay for the Zeno effect this
prediction was named the anti-Zeno effect [21, 22, 10]. The shape of the unin-
terrupted decay curve in Fig. 8.14 makes this suggestion fairly obvious. After an
initial period of slow decay the curve shows a steep drop as part of an oscillatory
feature, which for longer time damps away to show the well-known exponential
decay. If the system was interrupted right after the steep drop, one would expect
an overall decay that is faster than the uninterrupted decay [22]. The solid circles
in Fig. 8.15 show such a decay sequence, where after every 5 us of tunneling the
decay was interrupted by a slow acceleration segment. As in the Zeno case, these
interruption segments force the system to repeat the initial non-exponential decay
behavior after every measurement. Here, however, the tunneling segments between
the measurements are chosen longer in order to include the periods exhibiting fast

Survival probability

Tunneling time [ps]

Fig. 8.15 Survival probability as a function of duration of the tunneling acceleration. The hollow
squares show the non-interrupted sequence, the solid circles show the sequence with interruptions
of 40 ws duration every 5 ws. The error bars denote the error of the mean. The experimental
data points have been connected by solid lines for clarity. For these data the parameters were
el = 15, 000 m/sz, Ainerr = 2800 m/s2, tinterr = 40 ws, and Vy/ h = 116 kHz. Figure from [12];
Copyright 2001 by the American Physical Society
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decay. The overall decay is much faster than for the uninterrupted case, indicated by
the hollow squares in the same figure.

The key to observing the Zeno and anti-Zeno effects is the ability to measure
the state of the system in order to repeatedly redefine a new initial state. In our
case the measurement is done by separating in momentum space the atoms still
left in the unstable state from the ones that decayed into the reservoir. In order to
distinguish the two classes of atoms, they must have a separation of at least the
size of the momentum distribution of the unstable state, which in our case is the
width of the first Brillouin zone of Ap = 2hky. The time it takes for an atom
to be accelerated in velocity by this amount is the Bloch period t3 = 2v;/dinterr,
assuming an acceleration of @jperr. An interruption shorter than this time will not
resolve the tunneled atoms from those still trapped in the potential and therefore
results in an incomplete measurement of the atom number. To investigate the effect
of the interruption duration, we repeated a sequence to measure the anti-Zeno
effect for varying interruption durations while holding all other parameters constant.
Figure 8.16 displays the results of this measurement, interrupting the decay every
5 ws with an acceleration of dinerr of 2000 m/s”. The hollow squares show the unin-
terrupted decay sequence as a reference. For an interruption duration smaller than
the Bloch period of 30 s, the measurement of the atom number is incomplete and
has little or no effect. For a duration longer than the Bloch period, the effect saturates

—o— no interruption

T en= 10 1S

T en™ 20 s

T fer= 301
Ten= S0 18

—a—1¢ =60 us
interr

Survival probability

Tunneling time [us]

Fig. 8.16 Survival probability as a function of duration of the tunneling acceleration. The hol-
low squares show the non-interrupted sequence, other symbols indicate the sequence with a finite
interruption duration after every 5 ps of tunneling. The error bars denote the error of the mean. A
further increase of the interruption duration than as indicated does not result in a further change of
the decay behavior. The experimental data points have been connected by solid lines for clarity. For
these data the parameters were Gl = 15, 000 m/s?, diperr = 2000 m/s?, and Vy/h = 91 kHz,
leading to a Bloch period of tg = 30 ws. Figure from [12]; Copyright 2001 by the American
Physical Society
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and results in a complete restart of the decay behavior after every interruption. Even
though this method of interruption is not an instantaneous measurement of the state
of the unstable system, we can still accomplish the task of redefining the initial state
by first switching the system from an unstable to a stable one, then in a finite time
perform the measurement, and finally switching the system back to being unstable
again.

8.6 Conclusions

In conclusion, we have completed a detailed study of the onset of irreversibility in
an unstable quantum system and its control by repeated interrogation. We end this
chapter by making some comments about possible future directions. The develop-
ment of new tools to control many-body systems is a promising direction to follow.
In particular, our group has been working toward the experimental realization of
few-body number states [8]. These states of a definite number of atoms in the ground
state of a well are an ideal starting point for the study of few-body tunneling and
the onset of irreversibility. Future work in our group will focus on this problem.
Finally, it is a great pleasure to acknowledge and thank the many people who have
collaborated with us on this work over the years. The experiments were carried out
together with Kirk Madison, Steven Wilkinson, Cyrus Bharucha, Patrick Morrow,
and Braulio Gutiérrez-Medina. Theoretical work was conducted in parallel to our
experiments together with Qian Niu, Roberto Diener, and Bala Sundaram. This work
was supported by the R. A. Welch Foundation, the National Science Foundation, and
the Sid. W. Richardson Foundation.
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