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We propose a quantum tweezer for extracting a desired number of neutral atoms from a reservoir. A
trapped Bose-Einstein condensate is used as the reservoir, taking advantage of its coherent nature, which
can guarantee a constant outcome. The tweezer is an attractive quantum dot, which may be generated by
red-detuned laser light. By moving at certain speeds, the dot can extract a desired number of atoms from
the condensate through Landau-Zener tunneling. The feasibility of our quantum tweezer is demonstrated

through realistic and extensive model calculations.
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The manipulation and control of isolated single neutral
atoms has been a long term goal with important applica-
tions in quantum computing [1,2] and fundamental
physics. Trapping and cooling of single neutral atoms
was first achieved in magneto-optical traps and more re-
cently in a dipole trap [3-6]. Despite these impressive
successes, all existing methods share a common weakness:
The trapping process itself is random and not deterministic.
In this Letter, we propose a quantum tweezer that can
extract a definite number of atoms from a reservoir at
will, with the atoms in the ground state of the tweezer. A
trapped Bose-Einstein condensate (BEC) is used as a res-
ervoir, and its coherent nature makes the constancy of the
output possible. An attractive quantum dot, created by a
focused beam of red-detuned laser light, serves as a quan-
tum tweezer to extract a desired number of atoms from the
BEC reservoir.

In a typical operation of the quantum tweezer, a quantum
dot is turned on adiabatically inside the bulk of the BEC
and moves out of the BEC at a certain speed so that a
desired number of atoms is extracted (see Fig. 1). In the
initial stage of this operation, it is important that the system
remains in the ground state of the trap + dot potential. The
superfluidity of the BEC helps to suppress the excitations
which might otherwise be induced by the turning on and
movement of the quantum dot. The speed of the dot just
needs to be slower than the speed of sound, and the rate of
turning on of the dot potential should be smaller than the
frequency of phonons whose wavelength is comparable to
the size of the dot.

The crucial part of the tweezer operation is when the dot
moves out of the BEC. Inside the BEC, when the coupling
between the trap and the dot is still stronger than the atom
self-interaction within the dot, the system is in a coherent
state in which the number of atoms in the dot strongly
fluctuates. Outside the BEC, the coupling drops exponen-
tially with distance and eventually becomes negligible
compared to the self-interaction; the eigenstates of the sys-
tem are then Fock states in which the dot contains a definite
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number of atoms. In the general case, the dot exits the
condensate in a superposition of eigenstates. However,
under certain circumstances, we can steer the state into a
prescribed final state, with a definite number of particles in
the dot.

Starting from the ground state of the system with the dot
at a certain position inside the BEC, we start moving the
dot outwards. At an infinitesimally slow speed, the system
always stays in the lowest energy state and no atoms are
extracted, simply because moving out of the BEC costs
potential energy of the atoms. At some finite speed, the
system may get stuck in a nonzero number state of the dot,
and become decoupled from the BEC before the atoms in
the dot have a chance to leak back. In the following, we
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FIG. 1. A quantum dot (tweezer) moves out of a trapped

BEC (reservoir) with the speed of v. The inset illustrates that
a resonance occurs as the dot moves further away from the
trap center such that the energy of the atoms matches the
chemical potential u of the condensate. If one of the atoms is
tunneled into the BEC, the energy level of the dot is lowered,
due to the absence of repulsion from the lost atom. Thus, no
other atom has a chance of leaking back to the condensate at
this position.
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will give a detailed account of this phenomenon through a
realistic model calculation. In Fig. 2, we show a result for
the probability of extracting a single atom as a function
of the speed of the dot. The plateau extends several orders
of magnitude of the speed, demonstrating the robustness of
our quantum tweezer.

Our focus is on the crucial stage of the quantum tweezer
operation—when the dot is leaving the BEC cloud. In this
case, the density is low and the interaction between atoms
in the dot and atoms in the condensate is weak. The state of
the system can then be expressed as a combination of
atoms in the dot (with wave function ¢,) and atoms in
the BEC trap (with wave function ¢, properly orthogon-
alized to ¢, [7]). These two wave functions are chosen as
the adiabatic ground state of the system when the dot is
motionless and the coupling between these two sets of
atoms is negligible. .

The Hamiltonian of the system is IEI =/ dx Pi(x) x
[ EV2 4+ V,(x) + V(o 1) + 4T 0P (0] (). We
can write ¥ (x) = ¢g(x)¢ + @,(x)a in the weak coupling
limit, where ¢ annihilates an atom in the trap and a
annihilates an atom in the dot. We shall denote the state
with n atoms in the dot (and N — n atoms in the BEC) by
|n); an atom jumping from the dot to the BEC corresponds
to the transition |n) — |n — 1). Given that ¢ ,(x) is much
more localized than ¢ 5(x), the repulsion felt by the atoms
in the dot is stronger than the one felt by the ones in the
BEC. This asymmetry between the two potentials yields n
much smaller than N, in general, and sets our system apart
from two-state condensates discussed elsewhere [8].
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FIG. 2. The probability of extracting a single atom as a

function of the speed of the dot. The calculation was per-
formed for a one-dimensional BEC with N = 10000 atoms
in a harmonic trap with frequency w = 0.005. The dot is a
square well with depth Uy = 8 and width a = 1, and the
effective coupling constant is g = 8. The units for all these
parameters are defined in the text. For sodium, speed is
measured in units of 2.75 mm/s, so that for many speeds
shown it takes a fraction of a second to extract one atom. The
plateau exhibited extends several orders of magnitude.
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The nonvanishing matrix elements of the Hamiltonian
are (for n < N)

nin—1)
2 O

(nlHln+ 1) =@+ 1Hn) = Vn + 1[A + nG], )
mlH|n +2)=(n+2|HIn) =(n + Dn +2)A. (3)

The parameters depend on the position x; of the dot and
can be explicitly calculated. E; = €; + V,(x;) — u + 4A
accounts for the energy difference between the ground
state in the dot and the chemical potential u, while v =
8Jo 4 represents the repulsion an atom in the dot feels from
another atom there. We have defined the generalized over-
lap integrals as J,,, = [dx(¢p)"(¢,)". Notice that E|
increases as the dot moves away from the center of the
BEC. The off-diagonal terms are the couplings that allow
an atom to tunnel from the dot to the BEC (or vice versa)
either by itself or in pairs. The two terms in A =
VN[ p3slV,Ip,) + gNJ3, ] correspond to quantum tunnel-
ing over a barrier and the interaction of a particle in the dot
with three atoms in the BEC trap, respectively: this last
term dominates when the dot is inside the BEC cloud.
Equivalently, G = g\/YV_Jm is due to the interaction of
three atoms in the dot with one atom in the trap. Finally,
A = gNJ,,/2 is due to the interaction of two atoms in the
trap with two in the dot. Outside of the BEC, the off-
diagonal terms vanish exponentially, since the overlap
integrals do so.

Although our scheme works in any dimensionality, we
concentrate in what follows on a dilute, one-dimensional
condensate [9] as an example. Such a system can be
obtained by tightly confining the cloud in the transverse
directions, in which the atomic dynamics are frozen out.
The coupling constant is g = 47a i/ (M .,L?), where a;
is the s-wave scattering length and L is the length of the
perpendicular confinement. We shall express our results in
the following units: length in units of Ly = 1 um, time in
units of M, L3/h, and energy in units of i2 /(M yom L3)-

We plot in the bottom panel of Fig. 3 our calculation of
the energy levels as a function of the position for a har-
monic trap with frequency @ = 0.005 and N = 10000
atoms. The dot used is a square potential with depth U, =
8 and width a = 1; the coupling constant is g = 8.
The edge of the condensate cloud is marked by the dotted
line [10]. For comparison, the top panel shows the curves
E,(x), corresponding to the energies of states with n atoms
in the dot in the absence of the tunneling terms. The wave
function for the BEC was calculated by numerical solution
of the Schrodinger equation in imaginary time [11].

Let us consider the evolution of the number of atoms in
the dot as the dot moves out of the BEC, with the help of
Fig. 3. It is possible for an atom to tunnel out of the dot
when there is no extra energy required to do so, i.e., when
the energy for n atoms in the dot is equal to the energy of
n — 1 atoms in the dot. This is shown in the top panel of
Fig. 3 as the locations where the curves for £, and E,
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FIG. 3. Energy levels as a function of position for different

numbers of atoms in the dot (bottom panel). In the top panel,
the energy levels E, (ignoring the off-diagonal terms) are
plotted for comparison. The dotted line represents the edge of
the condensate. The parameters used are the ones of Fig. 2.

cross. These crossings also correspond to the resonance
condition that we see in Fig. 1, the extra energy due to the
nth atom being equal to the chemical potential u of the
condensate [12]. The possibility of tunneling out is realized
by the off-diagonal terms, which open up energy gaps in
the crossings as seen in the bottom panel of Fig. 3. As
demanded by the quantum adiabatic theorem, starting in
the ground state (the lowest curve) at some position x, if the
dot moves infinitesimally slow the system remains in its
ground state by losing one atom at each avoided crossing.
When the dot is finally outside the condensate, no more
atoms are left in it. Note that only one atom is allowed to
leak out of the dot at each crossing with the ground state,
due to the diminishing repulsion between atoms in the dot
as there are less atoms in it (see Fig. 1). The next atom
would have a chance of leaking to the condensate as the dot
moves further away from the center of the BEC trap and
lifts up its potential energy.

On the other hand, if the dot is moving at a finite speed
there is a probability for the system to tunnel through the
gap into an excited state, which corresponds to an atom not
leaking back to the condensate when it is energetically
allowed to do so. In the extreme (sudden) case in which
the dot moves at infinite speed, the system remains in its
initial state, the atoms in the dot having no time to leak. For
an atom moving at speed v, the probability for Landau-
Zener (LZ) tunneling [13] depends on the width & of the
gap as P, = exp(—8%/2av), where « is the difference in
the slopes of the two intersecting curves, which is approxi-
mately equal to dE; /dx. For a dot moving at fixed speed v,
the evolution is adiabatic (Py; < 0.01)if 8 > (9.21 av)'/?
and sudden (P, > 0.99) if § < (0.02 av)'/2.

We can rewrite the resonance condition as E; = —(n —
1)v. Using the definition of E; and the fact that outside the
BEC the off-diagonal terms are exponentially small, we
can see that transitions take place outside the BEC [i.e.,
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FIG. 4. Probability of finding no atoms (dashed), one atom

(dotted), and two atoms (solid line) inside the dot as a
function of position for three different speeds. The top
panel is the adiabatic result (v — 0), the middle panel is for
v = 1, and the bottom panel for v = 50.

V(x;) — m > 0] when
€, + (n— v <0. 4)

Notice, in particular, that the |1) — |0) transition always
takes place outside the BEC. Such transitions are typically
sudden in the sense of the LZ tunneling, due to the small-
ness of & there. We can design a situation in which all
transitions with n = n, take place inside the condensate
while those with n < ny occur outside the cloud. A dot
moving at a speed slow enough for all transitions inside the
cloud to be adiabatic extracts then exactly n, atoms.

This is demonstrated in Fig. 2, where we show the
probability of extracting one atom as a function of the
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FIG. 5. Energy levels as a function of position (bottom

panel) for a one-dimensional condensate with w = 0.005,
N = 10000 atoms, potential depth U, = 13.5, and width
a =1, and the effective coupling constant is g = 10. The
dotted line represents the edge of the condensate. The average
energy E, of states |n) are plotted in the top panel for
comparison.
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FIG. 6. The probability of extracting one (black) and two
atoms (gray) as a function of speed for the case described in
Fig. 5. In this case, we can see two different plateaus, showing
that the quantized output depends strongly on the speed of
the dot.

velocity of the dot. The calculation was performed assum-
ing the system to be initially in the ground state some
distance inside the BEC and integrating the equations of
motion with the Hamiltonian matrix (1-3).

In Fig. 4, we show the calculated evolution of the
probability of finding no atoms (dashed), one atom (dot-
ted), and two atoms (solid lines) in the dot as a function of
position for three different speeds of the dot. The top panel
shows the adiabatic result, obtained for v, that is several
orders of magnitude smaller than the smallest speed in
Fig. 2. As expected, after the |2) — |1) transition has
taken place there is one atom in the dot, while after the
|1) — |0) transition there are none left. The middle panel
corresponds to a slow speed, for which the evolution is
adiabatic everywhere except at the |1) — |0) transition,
whose LZ tunneling is sudden. Under these circumstances,
the dot ends up with exactly one atom once it is outside the
condensate. The last panel shows the evolution for an even
larger speed. In this case, the LZ tunneling takes place only
partially and the outcome corresponds to a superposition of
number states. One important point illustrated clearly in
this figure is that there is no definite number of atoms in the
dot during most of the evolution.

We can also find a situation in which for a certain range
of speeds the output is two particles, while for a different
range (and for all other parameters fixed) the output is one
particle, both with high certainty. This is achieved by
choosing the |2) — |1) transition next to the edge of the
cloud, so that both it and the |3) — |2) transitions have
appreciable gaps opened at the crossing. In Fig. 5, we show
the energy levels for this case, while in Fig. 6 we see the
probability of extracting one and two atoms as a function
of the speed of the dot. We can clearly see that there are
two separate plateaus at different ranges of speed.
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Finally, we make some remarks about the generality of
our method. The parameters defining the Hamiltonian
matrix elements depend on the density of the trapped
BEC at the location of the dot. We expect the general
behavior found in our one-dimensional calculations to
remain true in any number of dimensions, since the motion
of the dot singles out a direction and the other dimensions
get effectively integrated out. Moreover, since the density
of the BEC at the location of the dot is unchanged by the
location of other dots elsewhere, we can consider a train
of dots extracting atoms from the BEC independently of
each other.

This work has been supported by the NSF and the Welch
Foundation.
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