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Retardation effects on quantum reflection from an evanescent-wave atomic mirror
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We calculate the reflection probability for ultracold sodium atoms incident on an evanescent-wave atomic
mirror. For low enough energies the reflection probability curves exhibit quantum effects that are sensitive to
the long-range part of the potential and can therefore be used to resolve Casimir retardation effects. We also
explore the accuracy of model potentials approximating the exact atom-wall effective potential.
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I. INTRODUCTION

An electromagnetic mirror for neutral atoms was first su
gested by Cook and Hill in 1982@1#. Their idea was to use
the radiation force of an evanescent-electromagnetic w
outside a dielectric surface to repel slow atoms. Such
evanescent wave is formed when light undergoes total in
nal reflection at the dielectric-vacuum interface. The induc
dipole force is repulsive if the light is tuned toward high
frequencies than the corresponding natural dipole freque
of the atom, and attractive if tuned toward lower frequenc
This evanescent-wave atomic mirrorwas realized experi-
mentally by Balykinet al. @2#. Almost perfect reflection was
demonstrated by using laser light of high intensity to cre
the evanescent wave, and Na atoms incident on the mirro
grazing angles so as to minimize their velocity at the dir
tion perpendicular to the dielectric surface. Normal inciden
reflection in the form of an atomic ‘‘trampoline,’’ where a
oms falling onto the mirror surface due to gravity boun
back up because of the evanescent wave, has also been
onstrated@3,4#.

Recent work in atom optics has emphasized, on the
hand, the need to develop elements, like mirrors and len
for the coherent manipulation of atomic matter waves@5#.
On the other hand, the experimental progress brought a
the ability to cool and launch atoms with extremely low a
well-defined velocities@6#. This, combined with the ability to
continuously vary the effective potential of the mirror b
changing the intensity and the frequency of the laser lig
motivates both theoretical and experimental studies of f
damental and practical aspects of the evanescent-wave
ror.

Experimental applications of the evanescent-wave mi
already include a variety of studies. It was recently incorp
rated into an atomic interferometer@7#. The presence of the
reflected atoms near the dielectric-vacuum interface chan
the index of refraction outside the dielectric prism and w

*Present adderess: Department of Chemistry, Ben-Gurion Uni
sity, Beer Sheva 84105, Israel.
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it, the phase of the reflected laser beam. This phase shift
be used to detect the passage of a cloud of atoms with
destroying the coherence of the reflection@8#. Experiments
with a time-dependent mirror, in which the potential chang
rapidly and continuously by controlled modulation of th
intensity of the laser light, were performed@9#. The use of
evanescent-light mirrors to build a surface trap was rece
reported@10#, and the creation of an atomic funnel was al
proposed@11#. The penetration depth and wave vector of t
evanescent-electromagnetic waves were studied using
resonance laser atomic spectroscopy@12#. Finally, atom
guiding using evanescent waves in small hollow optical
bers was demonstrated@13#.

In the simplest theoretical approach, the center-of-m
motion of the atom is treated classically while the ato
mirror interaction is derived from a model of a two-lev
system in the electromagnetic field of the evanescent la
light. Neglecting spontaneous emission, internal transitio
and the attractive van der Waals interaction between
atom and the dielectric surface, the interaction of the at
and the mirror is then described by an exponentially dec
ing optical potential. Although one would like to preserve
simple a physical picture of the reflection as possible,
actual experiments it may be important to give a more co
plete treatment.

We consider here the following questions. Is the cente
mass motion of the atom properly described by classical
chanics or does it exhibit quantum effects? Is the reflect
sensitive to the atom-dielectric attractive interaction, a
how sensitive is it to details of the potential curves? Can it
used to distinguish among different theoretical models,
example, resolving retardation effects?

Aspect and collaborators studied an analytical solution
the Schro¨dinger equation obtained by neglecting the attra
tive atom-wall interaction, and identified both classical a
pure-quantum regimes@14#. The same group later used th
reflection from an evanescent-wave atomic mirror in t
classical regime to measure the van der Waals force betw
the dielectric surface and the atom in its ground state, d
onstrating that the attractive interaction can hardly be
glected@15#, as was also demonstrated by Desbiolleset al.
@16#. The purpose of this paper is to give a quantum tre
r-
3999 ©1998 The American Physical Society
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4000 PRA 58R. CÔTÉ, B. SEGEV, AND M. G. RAIZEN
ment of the reflection, which takes the attractive interact
into account.

In a recent Rapid Communication, we have shown t
the center-of-mass motion of cold atoms incident on
evanescent-wave atomic mirror with sufficiently small v
locities ~e.g., 10.0 cm/s for sodium atoms! will exhibit quan-
tum dynamics@17#. We predicted anS-shaped probability
curve, which is typical of quantum behavior, for the fracti
of reflected atoms as a function of the logarithm of the la
intensity, and suggested a way to measure it by minimiz
the variation of the intensity across the atomic mirror. W
have also referred to the possibility of observing Casim
retardation effects in the reflection process. However, at
time we were not able to make definite predictions as to
magnitude of the retardation effects because an exact po
tial curve including the QED effects for a ground-state s
dium atom and the dielectric prism was not yet calculate

In this paper we review the previous results in more de
and present new ones. In particular, the numerical met
that we have used for the calculations is presented and
flection from the physical potential is compared to the refl
tion from model potentials. Finally, we use recently calc
lated potential curves@18# to obtain precise predictions fo
the size and nature of the QED retardation effects on
quantum reflection probability curves.

The experimental setting considered here and depicte
Fig. 1 relates to an uniform flux of Na atoms with an avera
velocity of a few cm/s and a velocity dispersion of a fe
mm/s that would be created and launched in the direc
normal to a dielectric prism. The repulsive optical potent
of an evanescent wave of blue-detuned laser light wo
combine with the attractive atom-wall interaction to crea
an effective potential barrier for the atoms. The flux of r
flected atoms would be measured.

Such an atomic beam with subrecoil velocity spread c
ditions has been demonstrated experimentally by the gr
of Phillips @19#. In this work, a Bose condensate of 106 so-
dium atoms was formed. The momentum spread was redu
to 0.1 recoil~3 mm/s! by adiabatic expansion of the conde
sate. The atoms were then used in an atomic interferom
This method can be combined with accelerating optical

FIG. 1. Schematic of an atomic mirror. The blue-detuned la
light produces a repulsive force, after total internal reflection.
approaching atom will feel the effective potential formed by t
atom-wall and light induced potentials and be reflected. Classic
the atom is reflected only if its incoming energyE is less than the
barrier heightVmax, contrary to the quantum regime where it can
reflected even ifE.Vmax.
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tices to launch a subrecoil sample with negligible heating
described by Raizen, Salomon, and Niu@6#. Atom-surface
scattering experiments can be performed by launching
atoms in an upward~nearly vertical! parabolic trajectory,
with the surface in the vertical direction.

We show that the long-range~Casimir! interactions due to
retardation have in this case an observable effect on
quantum reflection probabilities and that the classically f
bidden above-barrier reflection is particularly sensitive to
tails of the atom-surface potential. If measured, this wo
constitute a low-energy experimental signature of QED
fects, and would supplement recent different measurem
of the Casimir forces, e.g., in cavity QED@20#.

The theoretical analysis is divided into two steps. First,
Sec. II, we discuss the effective potential, and second, in S
III, we analyze the time evolution of the particle in this p
tential. There are standard physical assumptions and app
mations involved in being able to treat the process in t
way. Note the apparent contradiction between the two st
The internal structure of the atom is essential for the eva
ation of the potential curves in the first step. In general,
effective potential for an atom or a molecule is the result
changes to its internal structure. Optical potentials, for
ample, are determined by the space dependence of the at
energy levels, and therefore of the induced dipole interac
with the laser’s electric field. In the second step, howev
after a potential curve has been determined, one solves
the dynamics, i.e., for the time evolution of the particle in t
given potential, treating the atom as a pointlike structurel
particle. The disregard of the internal structure of the ato
at the second step of the calculation is justified by the
sumption that actual changes to this internal structure ca
neglected, while the space dependence of the effective
tentials is the result of virtual, not actual, transitions. F
optical potentials, for example, this amounts to neglect
spontaneous emission. This approximation renders our tr
ment meaningful only in the large detuning regime. Furth
discussion of this point can be found, for example, in@21#. In
Sec. IV, we give the results of our calculations for the refle
tion probability curves with and without retardation. Finall
discussion and conclusions are presented in Sec. V.

II. ATOMIC MIRROR: THE POTENTIAL CURVE

A. Optical potential

Optical potentials are one example where an effective
tential for cold atoms is induced by space-dependent chan
to the internal energy of the atoms. In the same way as e
tric fields induce Stark shifts and magnetic fields induce Z
man shifts, radiation fields have been shown to induce li
shifts to the atom’s level structure, thereby creating co
trolled and adjustable effective potentials. These potent
are important in the field of atom optics as they enable
coherent manipulation of atoms.

A simple successful model for the interaction of a tw
level atom with the radiation of a single-mode laser and
vacuum fluctuations was given within the dressed atom
proach to light-induced potentials@21#. By solving the opti-
cal Bloch equations in the electric dipole approximation, o
finds that two forces act on the atom in its ground state
radiation pressure force and a dipole force@21#. The dipole
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force can be described by the effective potential

Vdipole5
\d

2
lnF11

V2/2

d21G2/4
G , ~1!

where V is the Rabi frequency, andd[vL2kWL•pW 2v0 is
the detuning from the atomic resonance of frequencyv0 and
natural linewidthG of an atom of momentumpW interacting
with photons of momentumkWL and frequencyvL . For large
detuning the dipole force dominates@21# and the potential
reduces to

Vdipole →
larged \V2

4d
, ~2!

with V2}Id2 where I is the laser intensity andd is the
atomic dipole. The dipole potential is therefore proportion
to the intensity of the laser and inversely proportional
detuning. The dipole force can be attractive or repulsi
according to the sign of the detuning. For red detuningvL
,v0 , d,0, and the atom is attracted by high intensity,
accordance with the classical intuition for a dipole in a fie
However, for blue detuning,vL.v0 , d.0, and the atom is
repelled by high intensity. This repulsion is being used in
evanescent-wave atomic mirror.

B. Atom-dielectric interaction
with and without retardation effects

The simplest model for the interaction of a ground-st
atom and a wall of dielectric constante considers the inter-
action between a dipoledW and its mirror image and gives th
Lennard-Jones potential,

VLJ52S e21

e11D S ^duu
2&12^d'

2 &
64pe0

D z2352
C3

~n!

z3
, ~3!

where ^duu
2& and ^d'

2 & are the expectation values of th
squared dipole parallel and perpendicular to the surface@22#,
e5n2 andn is the index of refraction of the dielectric. Thi
expression for the potential is approximately valid for co
stante and smallz. C3

(n) is related to the constantC3 of a
pure metallic wall byC3

(n)5C3(n221)/(n211). The nu-
merical values for Na atoms used in this paper are give
Table I.

TABLE I. Parameters used in this paper. The values ofC3
metal

and K4
metal are taken from Karchenkoet al. @25#, andK4

(n) is from
@17#. We also give the sodium atom mass in atomic units.

Parameter Value

e 3.258
n 1.805
kL 5.64531024 a.u.
u 45°
k 4.477131024 a.u.

C3
metal 1.889 a.u.

C3
(n) 1.0017342 a.u.

K4
metal 2676.71 a.u.

K4
(n) 1081.03 a.u.

m 41907.782 a.u.
l

,

.

e

e

-

in

If we take into account retardation effects, the Casim
Polder potential is obtained where the finite propagation ti
between the dipole and its image results in a differ
asymptotic power-law behavior@23#,

lim
z→`

VCP~z!}z 24. ~4!

The complete QED treatment gives

VQED~z!52
a3

2pE0

`

djj3d~ i j!E
1

`

dpe22jzpaz~p,e!,

~5!

where

z~p,e![
Ae211p22p

Ae211p21p
1~122p2!

Ae211p22ep

Ae211p21ep
,

~6!

andd( i j) is the dynamic dipole polarizability function@24#.
Using semiempirical results for the dynamic dipole pola

izability, the numerical integration of Eq.~5! was performed
to obtain accurate QED potential curves@25#. We present in
Fig. 2 the result of a recent calculation@18# of VQED(z) for
sodium and a dielectric prism with the index of refractio
considered here, namely,n51.805@26#. The deviation from
the Lennard-Jones potential of Eq.~3! as well as the Casimir-
Polder asymptotic behavior of Eq.~4! are clearly demon-
strated.

C. Effective potential of the evanescent-wave mirror

An evanescent-wave mirror for cold atoms is crea
when a blue-detuned laser beam (d.0) with wave number
kWL undergoes total internal reflection inside a dielect
prism. The optical dipole potentialVoptical for the atom is
proportional to the intensity of the laser beam, which dro

FIG. 2. Atom-wall potentialVatom wall for a conducting and a
dielectric wall ~with n51.805). Also shown are the asymptot
forms K4 /z4 and the Lennard-Jones formsC3 /z3. We plotV(z)z3

as a function ofz so thatC3 /z3 becomes a straight line. Numerica
values ofC3 and K4 are given in Table I. For both metallic an
dielectric walls, retardation effects reduce the strength of the po
tial, and the potentials take their asymptotic form nearz
;5000a0 .
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exponentially with the distancez outside the surface of th
dielectric prism. The optical potential is therefore

Voptical5C0exp~22kz!exp~2r2!, ~7!

with

k5kLAn2sin2u21, ~8!

whereC0}Id2/d, the refractive index of the prism isn, and
the incident angle isu. The exp(2r2) factor accounts for the
Gaussian profile of the focused laser beam. We have sh
in Ref. @17# that this Gaussian profile is of considerable im
portance for analyzing experimental results due to the a
aging over a cloud of incoming atoms and that minimizi
this averaging effect is essential for observing quantum
havior. In the following, we assume a constant intensity a
setr250 for simplicity.

The exponentially decaying optical potential and the
tractive atom-wall interaction add up to generate an effec
potential barrier. It is given by one of the following tw
formulas, which, respectively, neglect retardation effects
take them into account,

Vno ret~z!5C0exp~22kz!2
C3

~n!

z3
, ~9!

Vexact~z!5C0exp~22kz!1VQED~z!, ~10!

where VQED is depicted in Fig. 2. The various numeric
values used here are listed in Table I. The height of
barrier Vmax vary as a function of the intensity of the las
beam, as do its location and shape. This is illustrated in
3. One can see that as the intensity is reduced, the barri
decreasing in height and is moving out to larger distanc
For a barrier withVmax5

1
2 mv top

2 corresponding to sodium
atoms withv top510.0 cm/s, the top of the barrier is locate

FIG. 3. The effective potential with retardationVexact~solid line!
and without retardationVno ret ~dashed line! as a function of the
distancez for various values of the laser intensity and hence ofC0 .
The parameters of these potentials are given in Tables I and II
the value ofC0 decreases from~a! to ~f!, the barrier diminishes and
is pushed out. Notice that, for~e! and~f!, there is no barrier for the
case without retardationVno ret.
n

r-

e-
d

-
e

r

e

g.
is

s.

at a distance of roughly 2000a0 , i.e., far out from the prism
itself. This enables us to treat the system without taking i
account many surface phenomena, e.g., the sticking of
atoms to the surface, the creation of phonons, etc.

Since one is probing distances in the neighborhood
2000a0 and more, one could expect to be in a regime wh
retardation effects could be noticeable. Indeed, when the
tance between the atom and the wall becomes of the orde
the transition wavelengthl/2p, the time of flight of the vir-
tual photons becomes large enough to cause retardatio
fects. For sodium,l/2p51772a0 , and a barrier located a
2000a0 should probe retardation corrections. In fact, one n
tices from Fig. 2 that retardation corrections for the dielect
considered in this paper become important near that dista
To illustrate this, we also plotted the effective potentials w
and without retardation corrections in Fig. 3: the height,
location and the curvature of the potential at the top of
barrier vary strongly when one compares the two sets
effective potentials. For small enough values ofC0 , the bar-
rier disappear@seeVno ret in Figs. 3~e! and 3~f!#, but quantum
reflection still occurs, as we discuss below. The numer
parameters corresponding toVexact and Vno ret of Fig. 3 are
given in Table II.

III. REFLECTION FROM POTENTIAL BARRIERS

A. Numerical calculation of the reflection probability

In this section, we elaborate on the specific numeri
computations involved in the evaluation of the reflecti
probability for an arbitrary potential. As described in Coˆté
et al. @27#, our procedure is based on matching a superp

TABLE II. Parameters for the potential curves of Fig. 3. For
given value of the optical potential intensityC0 , there are two
potential curves,Vexact with retardation andVno ret without retarda-
tion. For each graph we give the height of the potentialVmax as well
as the corresponding velocityv top, (Vmax5

1
2 mv top

2 ), the location of
the maximum of the barrierzmax, and the curvaturea at the top of
the barrier. ForVno ret of Figs. 3~e! and 3~f!, there is no barrier,
hence noVmax, v top, zmax, anda.

Figure C0 Type Vmax v top zmax a
(10210 (10211 ~cm/s! ~units of a0) (10216

a.u.! a.u.! a.u.!

3~a! 9.877 ret. 13.454 17.53 1629.5 23.7754
no ret. 4.378 10.00 2243.4 21.0531

3~b! 7.463 ret. 8.207 13.69 1793.0 22.1277
no ret. 1.576 6.00 2614.9 20.4077

3~c! 6.023 ret. 5.483 11.19 1935.2 21.3649
no ret. 0.394 3.00 3022.2 20.1542

3~d! 5.375 ret. 4.378 10.00 2017.5 21.0541
no ret. 0.013 0.54 3334.6 20.0739

3~e! 3.391 ret. 1.576 6.00 2416.9 20.3447
no ret.

3~f! 2.119 ret. 0.394 3.00 3000.4 20.0828
no ret.

s
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tion of incoming and reflected Wentzel-Kramers-Brillou
~WKB! waves to an exact or accurate approximate solu
of the Schro¨dinger equation bridging the region where t
WKB approximation is inaccurate.

The potential curves of Eqs.~9! and~10! and Figs. 2 and
3 are defined only forz.0. In a complete treatment th
potential should be properly modified atz50 to account for
the presence of the interface with the dielectric layer. W
assume perfect sticking at the dielectric surface and neg
any reflection from the region closer to the interface th
some finite smallz, determined numerically as explained b
low. Under this assumption, the singularity atz50 is of no
physical importance and we solve for the reflection from
potential barriers of Eqs.~9! and ~10! in the same way we
would have solved for the reflection from a bounded fin
range potential.

We apply a numerical calculation in which we propaga
a wave function and an auxiliary function, defined in E
~20! below, fromz→1` inward. Assuming perfect sticking
at the surface, we prove that this auxiliary function co
verges to the reflection probability asz50 is approached. In
the proof, we assume that the potential that vanishes fz
→1`, takes a constant negative value2V0 for z→2`.
We then show that the value ofV0 does not influence Eq
~20!, which is all we need for the calculation itself.

In order to obtain Eq.~20! which converges to the reflec
tion probabilities of a particle of massm and kinetic energy
E5\2k2/2m, incident on the barrier from the right, we fo
mally consider the reciprocal problem of the particles in
dent fromz→2` with kinetic energy\2k82/2m wherek8 is
defined byE1V05k82\2/2m. According to the reciprocity
relation, the reflection probability is the same whether
atom is incident on a barrier from the left or the right.~A
proof is given in Appendix A for the configuration of a ste
function.!

Coming from z→2`, the exact wave function can b
approximated by the WKB ansatz,

cWKB~E,z!5
1

Ap~E,z!
FexpS i

\Ezm

z

p~E,z8!dz8D
1RWKBexpS 2

i

\Ezm

z

p~E,z8!dz8D G ,
~11!

wherezm is an arbitrary matching point, and we are assu
ing that in the entire regionz<zm, the essential condition fo
applicability of the WKB approximation is valid. Namely
that the de Broglie wavelengthl52p\/p, with

p~E,z!5A2m@E2V~z!#, ~12!

varies sufficiently slowly,

dl[
1

2pUdl

dzU5\Um

p3

dV

dzU!1. ~13!

In the remainder of the paper, we refer to the regions wh
the condition~13! is not fulfilled as ‘‘badlands.’’ In Fig. 4,
n

e
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e
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e
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we illustrate these ‘‘badlands’’ for the exact potentials sho
in Fig. 3: a more complete discussion is given in the n
section.

By requiring Eq.~11! to asymptotically (z→2`) match
the exact wave function exp(ik8z)1Rexp(2ik8z) we find

RWKB5Rexp@ ih~zm!#, ~14!

i.e., thatRWKB and the conventionally defined reflection am
plitude R differ by a phaseh(zm) that accounts for the fac
that the matching pointzm is not atz50, and that the local
momentump may differ from its asymptotic value\k8 at
finite values ofz:

h~zm!52 lim
z→2`

S 1

\Ezm

z

p~E,z8!dz82k8zD . ~15!

Knowing a wave functionc(z) ~exact or accurate ap
proximation! corresponding to a purely outgoing wave atz
→1`, we can determine the reflection amplitude by matc
ing atzm the logarithmic derivatives of the WKB wave func
tion andc(z) @Eq. ~11!#,

RWKB52

c8~zm!/c~zm!2
i

\
p~zm!1

p8~zm!

2p~zm!

c8~zm!/c~zm!1
i

\
p~zm!1

p8~zm!

2p~zm!

. ~16!

The usual reflection amplitudeR can be obtained fromRWKB
through the phase correction~14!, and the reflection prob-
ability is simply

R5uRu25uRWKBu2. ~17!

FIG. 4. The dimensionless badlandsdl ~dashed lines! for the
exact potentialsVexact of Fig. 3 ~solid line!, for an incoming atom
with E55.2975310211 a.u.~or v511.0 cm/s!. The potentialVexact

and energyE ~the horizontal dashed line! are on a scale of 10210

a.u., and the badlands on a unit scale.~a!, ~b!, and~c! correspond to
tunneling through the barrier~the classical turning points are ind
cated by the intersection ofE with Vexact) and ~d!, ~e!, and ~f!
represent the above-barrier cases.@The legend shown in~f! applies
for all plots.#
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Equation~16! is used to derive the results and predictio
presented below from an accurate numerical solution of
stationary Schro¨dinger equation obtained by propagating tw
independent solutions from largez inward toward z50:
cC(z) and cS(z). They are, respectively, defined by th
boundary conditions atz→`,

cC~z!→cos~kz!, ~18!

cS~z!→sin~kz!. ~19!

An auxiliary reflection probability function is then define
by

R~E,z!5U ]zlnc~z!1
1

2
]zlnp~z!2

i

\
p~z!

]zlnc~z!1
1

2
]zlnp~z!1

i

\
p~z!
U 2

, ~20!

where

c~z![cC~z!1 icS~z!. ~21!

Note that Eq.~20! does not depend onV0 or k8, and that the
singularity at z→0 is avoided. The auxiliary function
R(E,z) approaches the actual reflection probability asz ap-
proaches zero,

R~E!5 lim
z→0
R~E,z!. ~22!

In Fig. 5, for example, we present the solutionR(E,z) for
an incoming sodium atom with velocityv510.1 cm/s inci-
dent on a potential barrierVexact~calculated with retardation!,
of heightVmax5

1
2 mv top

2 with v top510.0 cm/s, and the corre
sponding ‘‘badlands.’’ As the atom approaches the bar
from 1`, it reaches the border of the outer badland~where

FIG. 5. In ~a!, we showVexact corresponding to Fig. 3~d! ~with
v top510.0 cm/s! and the badlandsdl for a sodium atom incident on
the prism with a velocityv510.1 cm/s. The real (cC) and imagi-
nary (cS) parts of the wave function~in arb. units! are plotted in
~b!, as well as the dimensionless auxiliary functionR(E,z)
5uR(z)u2 as it approaches the reflection probabilityR(E)5uRu2 at
small z. Convergence is reached after the wave functions h
passed through the badlands.
e

r

dl is not negligible! located around 3000a0 : the wave func-
tions cC and cS start to be affected andR(E,z) begins to
grow from its initial zero value@see Fig. 5~b!#. Its behavior
follows the shape of the badlands. One notices that altho
the wave functions oscillate rapidly because of the singu
ity at the origin,R(E,z) is well behaved right after the bad
lands are passed. In Figs. 6~a!–6~c!, we also present the nu
merical calculation ofR(E,z) for energies high above an
way below the same barrier and the corresponding badla
are plotted in Figs. 7~a!–7~c!. ~These figures contain als
results for an hybrid potential discussed in a next sectio!
The behavior ofR(E,z) as it converges toR(E) is general:
we obtain the same pattern for all three cases. Going inw
R(E,z) grows first at the approach of the outer badland@if it
is sizable as in~b! and ~c! but not ~a!# and overshoots its
asymptotic value before decreasing until the inner badl
starts. It then grows again and reaches another maxim
before correcting its value by decreasing too much, to fina
stabilize its value toR(E). In Figs. 6~d!–6~f!, we demon-
strate the convergence more explicitly by enlarging the
gion nearz50: in all three cases, the behavior is similar a
convergence is reached atz;100a0 .

B. Quantum versus classical reflection

A classical particle with massm and velocityv ~momen-
tum \k5mv) incident on a one-dimensional potential ba
rier V(z) can be either transmitted or reflected. The class
reflection probability is a Heavyside functionRclassic(E)

e

FIG. 6. The dimensionless auxiliary functionR(E,z)5uR(z)u2

as it approaches the reflection probabilityR(E)5uRu2 at smallz,
for three incoming velocities: 20.0 cm/s in~a!, 10.1 cm/s in~b!, and
3.0 cm/s in~c!, for the exact potentialVexactof Fig. 3~d! ~solid line!
and the hybrid potentialVhyb of Fig. 8~c! below ~dahsed line!. Both
potentials have a height corresponding tov top510.0 cm/s.~d!, ~e!,
and ~f! show enlargements of the convergence region~at smallz)
for Vexact: in ~d!, uR(z)u2 oscillates between 331025 and
931025, in ~e! between 0.4932 and 0.4992, and in~f! between
0.999 730 and 0.999 742. Finally, the values ofR(E) for the exact
and hybrid potentials, are: in~a! 6.9131025 and 3.9931026, in ~b!
0.4948 and 0.4192, and in~c! 0.999 738 9 and 0.997 813 4, respe
tively.
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[Q(Vmax2E), whereE5 1
2 mv2 is the energy of the atom

and Vmax5max@V(z)# is the height of the potential barrie
In quantum mechanics the reflection probabilityR(E) is a
smooth function of the energy: the classical step function
replaced by a quantumS-shaped curve, with a finite over
barrier reflection probability as well as a finite underbarr
transmission~or tunneling! probability.

Traditionally, one compares the de Broglie wavelength
the particle,ldB52p\/mv, with some scale in the potentia
say, the width of the potential barrier, to determine if su
stantial quantum behavior should be expected. Accordin
our analysis, while the underbarrier transmission is mo
sensitive to the width and height of the barrier, the overb
rier reflection is determined by regions of the potential wh
the semiclassical treatment fails. The concept of the ‘‘b
lands’’ was introduced to quantify these regions@27#. In Fig.
4, we illustratedl for a sodium atom withv511.0 cm/s
going through the exact atom-wall potential, i.e., with ret
dation corrections. Figs. 4~a!–4~c! show the case of tunnel
ing, and as one can expect, the regions where the sy
cannot be described by WKB are located near the class
turning points, i.e., whenV(z)5E or alternativelyp(z)50.
As the height of the barrier is progressively decreased~by
lowering the intensity of the laser!, the turning points are
getting closer to each other: the total region spent by b
lands is diminished, hence a larger tunneling probability. N
tice that the inner badland is steeper than the outer one
cause the slope of the potential is larger near that turn
point; for the same reason, the outer badland is more
tended. When the barrier is lowered further as in Figs. 4~d!–
4~f!, there are no turning points anymore, but the badla
persist with the same ‘‘topography,’’ namely, a steeper in
badland and a more extended outer one. From Figs. 6~d!–
6~f!, one notices thatR(E,z) takes on its value after passin
through the regions where the condition~13! is not satisfied.
For above barrier reflection@see Figs. 6~a! and 6~b! or Figs.

FIG. 7. Comparison of the dimensionless badlandsdl between
the exact~solid line! and the hybrid~dashed line! potentials shown
in Fig. 8~c!, for different incoming velocities~or energies!: ~a! 20.0
cm/s~much higher thanVmax corresponding tov top510.0 cm/s!, ~b!
10.1 cm/s~just abovev top), and ~c! 3.0 cm/s~much lower than
v top).
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4~d!–4~f!#, we observe a larger effect of the inner badla
than the outer one, and conclude that most of the abo
barrier reflection is caused by the inner portion of the eff
tive potential, contrary to normal intuition.

For underbarrier energies the badlands are cente
around the turning point, their height extending to infinit
For above barrier energies there are no turning points,
two badlands can still be recognized. In this respect the c
cept of the badlands includes the concept of turning po
but is more general. Note that close enough to the dielec
vacuum interface there is no badland and WKB appli
which is the reason whyR(E,z) converges toR(E).

C. Model potentials

While numerical calculation is the only way to obta
accurate predictions for a realistic effective potential, it
often helpful to consider simplified models that can
solved exactly. In this section three models are presented
the potential barrier of the evanescent wave mirror, a
closed form formulas for the probabilities are obtained fro
the analytic solutions to the corresponding equations. A
studying different model potentials, we found that a bet
agreement with the exact results was obtained when the
rier’s height and curvature were chosen to fit the exact ph
cal potential. Keeping these parameters fixed, we chose t
potentials with very different asymptotic behaviors:

Vcosh~z!5Vmaxcosh22@~z2zmax!/z#, ~23!

Vosc~z!5Vmax$12@~z2zmax!/z#2%, ~24!

Vhyb~z!5H Vcosh~z!, z.zmax

Vosc~z!, z,zmax.
~25!

All these potentials have the same heightVmax and curvature
a at the top of the barrier as the exact physical potential

a[]2V/]z2uz5zmax
522Vmaxz

22. ~26!

Both parametersVmax anda depend onC0 , i.e., on the in-
tensity of the laser, and are sensitive to retardation effects
depicted in Fig. 3 and given in Table II. Solving forVosc
gives the leading order in a semiclassical approximation
it amounts to replacing the potential by the closest inver
harmonic oscillator@28#.

As proven in Appendix B, the reflection probabilitie
from these potentials are, respectively, given by

Rcosh~E!5
cos2~pu!

cos2~pu!1sinh2~pkz!
, ~27!

Rosc~E!5
1

11exp~22pa!
, ~28!

Rhyb~E!5U l ~12F !2 i ~11F !

l ~12F !1 i ~11F !
U2

, ~29!

where

l 5A11exp~2pa!2exp~pa!, ~30!
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F5~zv0!21/2
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2 D
~31!

with the notation

k[A2mE/\, ~32!

v0[A2mVmax/\, ~33!

u[A1/42~v0z!2, ~34!

a[A m

2a
~Vmax2E!. ~35!

The model potentials are shown in Figs. 8~a!–8~c! for a
barrier heightVmax54.378310211 a.u. ~corresponding to a
sodium atom with velocityv top510.0 cm/s!, with a5
21.05408310216 a.u. From Fig. 8, one expectsVhyb to be
the best approximation to the exact potentialVexact. In order
to analyze the results fromVexact and Vhyb, we compare in
Figs. 7~a!–7~c! their badlands for three different velocities
the incoming sodium atoms: 20.0 cm/s, 10.1 cm/s, and
cm/s. SinceVhyb is a combination of the two symmetric po
tentialsVcoshandVosc, their badlands are given by the sym
metric image of theVhyb badlands aboutz5zmax. The aux-
iliary functionsR(E,z) for VexactandVhyb at the same three
velocities are shown in Figs. 6~a!–6~c!, as they converge to
the reflection probabilities.R(E) for the exact and hybrid
potentials, was found to be: in~a!, R56.9131025 and
3.9931026, in ~b! R50.4948 and 0.4192, and in~c! R
50.999 738 9 and 0.997 813 4, respectively. In the first, a
last, example withv520.0 cm/s, andv53.0 cm/s, the en-

FIG. 8. The three model potentials:~a! Vcosh, ~b! Vosc, and~c!
Vhyb. Each of them is matched toVexact with Vmax54.378310211

a.u. ~or v top510.0 cm/s! located atzmax52017.53 a.u. with a cur-
vature ofa521.054 08310216 a.u. ~see also Table II!.
.0

d

ergy of the atom is much higher, or much lower, than t
barrier height, respectively. In both cases, the badlands o
model and exact potentials are extremely different, and
are the probabilities. In the second example (v510.1 cm/s!,
where E;Vmax near the top of the barrier, the agreeme
between the badlands is better, and a fairly good agreem
for R(E) is obtained.

We computedR(E) for the exact and three model pote
tials of Fig. 8 as a function of the velocity of the incomin
atom. We illustrate the results in Figs. 9~a!–9~d!: in ~a!, we
observe that the four curves are very close to each ot
implying that the model potentials adjusted to the parame
of Vexact give good results. In~b!–~d!, we enlarge three dif-
ferent portions of the same graph, corresponding to sm
velocities where tunneling is present, velocities for which t
atom energy is near the top of the barrier (v top510.0 cm/s!,
and larger velocities where above-barrier reflection is do
nant. The hybrid potential gives an overall better agreem
to the exact curve than the two other model potentials.
smallerv @see~b!#, Vcoshis the best model andVosc the worst
up to v;6.75 cm/s, at which point the three models a
equivalent. In the range of velocities near the top of t
barrier @in ~c!#, we have the reverse, namely thatVosc is the
closest to the exact curve andVcoshthe farthest. This remains
true up tov;12.75 cm/s, at which point theVcosh is once
again the best model andVosc the worst one@see~d!#. For all
values ofv, the model potentials give curves below the exa
one, and theVhyb is always betweenVcoshandVosc. This can
be understood by looking at the potentials themselves~see
Fig. 8! or at the badlands~see Fig. 7!.

Overall, if one is interested at the reflection probability f
a given potential barrier, one can get good approximate
sults by using one of the three models depending on wh
energy regime is considered. The first step to such an
proximation is to fit the two parameters, namely, the hei
of the barrier and the curvature at its top, for each case c
sidered.

FIG. 9. Comparison of the three models and the exact reflec
probabilityR(E)5uRu2 for sodium atoms incident on a barrier o
heightVmax5

1
2 mv top

2 with v top510.0 cm/s.~a! shows the curves as
a function ofv, and~b!, ~c!, and~d! enlarge the low-, medium-, and
high-velocity regimes, respectively. Overall,Vhyb is a better ap-
proximation toVexact, Vosc being the best forv;v top andVcosh at
velocities far fromv top.
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IV. RESOLVING RETARDATION EFFECTS

We now turn our attention to the detection of retardat
effects in above-barrier reflection and quantum tunneli
Retardation affects the reflection probability curves in t
different ways: by shifting their reflection threshold and
changing their shape. Using the technique described ab
we evaluate the reflection probabilityR(E) for sodium at-
oms approaching a dielectric infinite wall withn51.805~or
e53.258). There are two distinct ways in which an actu
experiment can be performed. One can keep the intensit
the laser constant and change the energy of the incom
atoms, or, alternatively, keep a constant energy and vary
intensity of the laser. We show below that in both cas
retardation shifts the threshold for reflection. However,
change in the shape of the curves is mainly observable as
varies the intensity of the laser and scans different region
the attractive potential.

A. Fixed potential

We compute and compare the reflection probabilityR(E)
for two effective potentials,Vexact ~with retardation!, and
Vno ret with the Lennard-Jones atom-wall interaction~without
retardation!. We first compareR(E) for barriers of the same
height (Vmax54.378310211 a.u. or, equivalently, v top
510.0 cm/s! and two different values ofC0 . The potentials
are depicted as the dashed line in Fig. 3~a! ~without retarda-
tion! and solid line in Fig. 3~d! ~with retardation!. C0
59.877310210 a.u. for the case without retardation an
C055.375310210 a.u. for the case with retardation~see
Table II!. The calculated reflection probabilities are given
Fig. 10~a!. BothR(E) curves are basically identical: no sig
nificant retardation effects can be detected. The curve w
retardation lies slightly above the curve without retardat
since the potential with retardation is less attractive:

FIG. 10. Comparison of the reflection probabilityR(E)5uRu2

for the exactVexactand Lennard-JonesVno retpotentials as a function
of the incident velocityv. In ~a!, both have the same heightVmax

~or v top510.0 cm/s!, and in ~b!, both have the sameC0 ~or laser
intensity! which produces different barrier heights (v top517.53
cm/s for Vexact and 10.0 cm/s forVno ret). In figure ~b!, we also
shifted the exact curves by 7.53 cm/s59.877310210 a.u. to super-
pose it with the Lennard-Jones curves: although still small,
shape difference is larger than in~a!.
.
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long-range form ofVexact has a more extended tail tha
Vno ret. We illustrate these observations in Fig. 11~a!, where
Vno ret has been shifted byzmax

no ret2zmax
exact to overlap with

Vexact. Indeed, one observes thatVno ret ~dashed line! is
slightly larger thanVexact ~solid line! at smaller distances
and vice versa at larger distances. On the same graph
show three different kinetic energies corresponding to
locities of 12.0 cm/s~above barrier!, 10.0 cm/s~or v top), and
8.0 cm/s ~below barrier!. The corresponding badlands a
plotted in Figs. 11~b!, 11~c!, and 11~d!, respectively. As in
~a!, the curves forVno rethave been shifted byzmax

no ret2zmax
exact in

order to better visualize the differences indl. In Fig. 11~b!,
we notice thatdl reaches slightly higher values forVexact,
hence the slightly largerR(E) @see Fig. 10~a!#. Similarly, for
v,v top, the total range spent withdl;1 is more extended
for Vexact than for Vno ret @see Fig. 11~c!#, leading to less
tunneling or more reflection, as noted in Fig. 10~a!.

In the second situation illustrated in Fig. 10~b! we con-
sider a case where the intensity of the laser is fixed, the
curves haveC059.877310210 a.u. corresponding to the po
tentials of Fig. 3~a!. We notice that the threshold is differen
for the two curves, reflecting the difference in the height
the barriers~corresponding tov top517.53 cm/s and 10.0
cm/s for Vexact and Vno ret, respectively!. We shifted the
curve with retardation by 7.53 cm/s to overlap with the cur
without retardation, in order to detect any effect in the sha
of R(E). Once again, the difference is small: the curve
Vexact is slightly less steep than forVno ret. By shifting the
curve R(E) for Vexact, we actually compare twoR(E)
curves with different energy scales, because of the nonlin
relationship betweenv andE. This amplifies the differences
observed in the shapes ofR(E).

From the two situations illustrated in Fig. 10, one co
cludes that by varying the velocity of the incoming atom

e

FIG. 11. In~a!, we compareVexact~solid line! andVno ret ~dashed
line! for values ofC0 corresponding to Fig. 10~a!, i.e., a barrier with
v top510.0 cm/s. The potential without retardation is shifted
225.9a0 to the left to overlap withVexact ~see Table II!. Vexacthas a
longer tail and a faster decrease at smaller distances thanVno ret.
We also show the energies corresponding to three veloci
namelyv512.0, 10.0, and 8.0 cm/s. In~b!, ~c!, and~d!, we plot the
badlands for the same three velocities: here again, the curves w
out retardation have been shifted by 225.9a0 to explicitly show any
difference for the case with retardation.
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only a threshold change could be measured, the differenc
the shape ofR(E) being extremely small.

B. Scanning the attractive potential
by varying the laser intensity

A simpler and better experimental setup is to have
source of slow atoms incident on the prism with a giv
velocity, and to change the shape and extent of the barrie
varying the intensity of the laser, or, similarly, the value
C0 . As C0 is decreased, the barrier is lowered and mov
out. By doing so, one probes different regions of the ato
wall potential and at different rates.

We chose incoming atoms at three different velocities
evant to future experiments: 10.0 cm/s, 6.0 cm/s, and
cm/s. For each velocity, we computed the reflection pr
ability curves as a function ofC0 for the potentials with and
without retardation effects. The results are shown in Fig.
For a given energyE ~or velocity v), as one changesC0 ,
one reaches a valueC05C* which is the threshold for clas
sical reflection, for whichVmax5E. We observe a shift in the
thresholdC* : for the curve with retardation, it is located a
smaller values ofC0 than for the curve without retardation
We shiftedR(E) without retardation by the difference inC*
to illustrate the difference in shape between the two curv
As one can see from Figs. 12~a!–12~c!, as we reduceE ~or
v), the location of the curves with retardation is slight
moved to lower values ofC0 , but the curves without retar
dation are more affected. Moreover, the shift between
two sets of curves for a given value ofv decreases slightly a
we lower the velocity. This can be understood from exam

FIG. 12. Comparison of the reflection probabilityR(E)5uRu2

as a function ofC0 for the exact~with retardation! and Lennard-
Jones~no retardation! potentials, for three different incident veloc
ties: 10.0 cm/s in~a!, 6.0 cm/s in~b!, and 3.0 cm/s in~c!. Near the
classical thresholdC05C* , (Vmax5E), the reflection probability
increases from zero to one. These thresholds are shifted by
retardation effects. The shifts are larger for higher velociti
They are 4.502310210 a.u. in ~a!, 4.072310210 a.u. in ~b!, and
3.904310210 a.u. in ~c!. The S shape of the curve results from
quantum effects and is also sensitive to retardation. Asv is de-
creased, thisS shape becomes steeper. To illustrate the variatio
shape, with and without retardation, we shift the curves with
retardation by the differences inC* .
in
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ing the potentials in Fig. 3 and the corresponding number
Table II. For each case, the location of the top of the bar
at C05C* is moving out as thev is decreased. The barrier
at the two threshold cases of Fig. 12~a! are depicted as the
dashed curve of Fig. 3~a! ~no retardation! and the solid curve
of Fig. 3~d! ~with retardation!, for whichzmax52243.4a0 and
2017.5a0 , respectively, and the change inC05C* is 4.502
310210 a.u.~see Table II!. Similarly, Fig. 11~b! corresponds
to the dashed curve of Fig. 3~b! ~no retardation! and the solid
curve of Fig. 3~e! ~with retardation! with zmax52614.9a0 and
2416.9a0 , respectively, andDC* 54.072310210 a.u.; and
Fig. 11~c! corresponds to the dashed curve of Fig. 3~c! ~no
retardation! and the solid curve of Fig. 3~f! ~with retardation!
with zmax53022.2a0 and 3000.4a0 , respectively, andDC*
53.904310210 a.u. So, asv is reduced,zmax is moved out,
but since the retardation effects reduce the strength of
attractive atom-wall potential with respect to the Lenna
Jones case, the evanescent potential has more rel
strength and therefore a smallerC* is required to get the
same barrier height. The farther outzmax is, the weaker
Vatom wall, and the smaller the difference between the thre
olds C* with and without retardation.

It is visible from Fig. 12 that the shape of the reflectio
probability curves for potentials with and without retardati
differs. To quantify this quantum effect, we define, as sho
in Fig. 13, two regions of areaA1 and A2 delimited by the
vertical line atC0[C1/2 intersecting the curve atR50.5.
This almost corresponds to the value ofC05C* giving a
barrier of height corresponding to the atom velocity~here 3.0
cm/s!. In fact, in Fig. 13, lnC1/25222.291 a.u. which is very
close to lnC*5222.275 a.u.~see Table III!. We defineA1
andA2 in respect toC1/2 because the exact determination
C* would be experimentally more difficult. Notice here th
classically, the reflection probability curve would be a st
function located atC* , which is well approximated byC1/2:
the curve forC0,C1/2 represents the effect of above-barri
quantum reflection, and the curve forC0.C1/2 the effect of
quantum tunneling. Equivalently,A1 is a signature of above
barrier quantum reflection andA2 a signature of tunneling.

he
.

n
t

FIG. 13. A reflection probability curve ofR(E)5uRu2 as a
function of the laser intensityC0 . The areasA1 andA2 correspond
to above barrier reflection and quantum tunneling, respectively,
they are defined by the vertical line cutting the curve atuRu250.5
located~by definition! at C05C1/2.
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Looking at the overlapping curves on Fig. 12~c!, we find
that R(E) is larger for Vno ret than for Vexact when C0
,C1/2, and vice versa whenC0.C1/2. In other words, the
curve with retardation is steeper than the curve without,
the difference is increased asv diminishes. In order to un-
derstand the reason for the shape difference inR(E) with
and without retardation illustrated in Fig. 12~beyond the
shift in the value ofC* ), we plot in Fig. 14 the potentia
curves for the three values of incoming velocities (v510.0,
6.0, and 3.0 cm/s!, and for each velocity, we conside
three values ofC0 : C1/22D, C1/2, and C1/21D ~whereD
55.0310211 a.u.!. The energies corresponding to the thr
velocities are also drawn for each graph. The correspond
badlands are shown in Fig. 15. As was already noted in
11, we observe thatVexact is more extended at large dis
tances, and that the variation inVno ret is more pronounced
As v is reduced, the shift inzmax and the difference in both

TABLE III. Quantum reflection and tunneling signatures.C1/2 is
the value ofC0 that givesR50.5 whileC* is the value ofC0 for
which Vmax5E ~or v top5v). A1 andA2 ~in units of 10211 a.u.! are
defined in Fig. 13 and represent above-barrier reflection and q
tum tunneling, respectively, for the curves of Fig. 12. Similarly,B1

andB2 denote above-barrier reflection and quantum tunneling,
spectively, for the curves of Fig. 16.A11A2 andB11B2 are mea-
sures of the total quantum signature. For all quantities, we give
ratio ret./no ret. As the velocityv is reduced, the effect of retarda
tion is more pronounced.

Quantity Type v510.0 cm/s v56.0 cm/s v53.0 cm/s

ln C1/2 ret. 221.352 221.815 222.291
no ret. 220.739 221.019 221.232

ln C* ret. 221.344 221.805 222.275
no ret. 220.736 221.016 221.230

A1 ret. 3.2350 2.6049 2.1485
(10211 a.u.! no ret. 4.0013 3.4540 2.9779

ratio 0.8085 0.7542 0.7215

A2 ret. 3.5009 2.8654 2.4245
(10211 a.u.! no ret. 4.2543 3.6976 3.2683

ratio 0.8229 0.7749 0.7418

A11A2 ret. 6.7359 5.4703 4.5729
(10211 a.u.! no ret. 8.2556 7.1516 6.2462

ratio 0.8159 0.7649 0.7321

B1 ret. 0.067 96 0.090 89 0.1289
~a.u.! no ret. 0.043 77 0.050 64 0.054 19

ratio 1.553 1.795 2.379

B2 ret. 0.059 24 0.075 15 0.098 26
~a.u.! no ret. 0.040 31 0.045 95 0.049 86

ratio 1.470 1.635 1.971

B11B2 ret. 0.1272 0.1660 0.2272
~a.u.! no ret. 0.084 08 0.096 59 0.010 41

ratio 1.513 1.719 2.183
d

g
g.

height and shape betweenVexact and Vno ret is decreasing as
well. This is related to the nonlinear dependence of the
fective potentials onC0 : for a higher value ofC1/2, the
optical potential is more dominant, and a changeD in its
value has a stronger effect than for a smaller value ofC1/2 for

FIG. 15. The badlandsdl for the potentials of Fig. 14. For
above-barrier reflection corresponding to~a!, ~d!, and~g!, the bad-
lands forVno ret are more prononuced than forVexact, hence a larger
reflection probability. For quantum tunneling corresponding to~c!,
~f!, and ~i!, the badlands forVexact are more extended than fo
Vno ret, leading to less tunneling~or a larger reflection probability!.

n-

-

e

FIG. 14. Potential curves with and without retardation (Vexact

and Vno ret) depicted to explain Fig. 12. In~a!, ~b!, and ~c!, E
5

1
2 mv2 with v510.0 cm/s, in~d!, ~e!, and~f!, v56.0 cm/s, and in

~g!, ~h!, and~i!, v53.0 cm/s.C0 ~or the laser intensity! was chosen
in ~b!, ~e!, and~h! to give reflection probabilityR50.5 in all these
cases, namely,C05C1/2. For Vexact C1/2 is 5.333310210 a.u. in
~b!, 3.356310210 a.u. in~e!, and 2.085310210 a.u. in~h!; while for
Vno ret C1/2 is 9.844310210 a.u. in~b!, 7.440310210 a.u. in~e!, and
6.013310210 a.u. in ~h!. Equally spaced points in Fig. 12 on bot
sides of C05C1/2 for these six cases are depicted in the oth
graphs, with a spacing ofD55.0310211 a.u.Vexact is higher than
Vno ret for C05C1/22D, and vice versa forC1/21D, because
Vatom wall is less important forVexact, hence a change inC0 has a
stronger impact.Vexact always has a more extended tail.
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which the nonaffected atom-wall component is relative
more important.

The increasing difference inR(E) for decreasing veloci-
ties despite the fact that the barriers actually look more a
can be understood by examining the badlands of Fig. 15
Figs. 15~a!, 15~b!, and 15~c!, we showdl for three values of
C0 for v510.0 cm/s. ForC0,C1/2, in ~a!, the badlands
without retardation~dashed lines! are higher and more ex
tended, hence the smaller above barrier reflection probab
for Vexact. In ~b! R(E)50.5 by construction, and we do no
observe a significant difference in the size of the region sp
by dl;1. For C0.C1/2 shown in ~c!, we note a more ex-
tendeddl for Vexact, hence a larger value forR(E). As v is
decreased, these differences in the badlands become str
~see Fig. 15!, and so do the differences in the probabili
curves of Fig. 12.

From the above discussion and the curves shown in
12, it is tempting to conclude that retardation effects red
the quantum signature in the reflection probability cur
But, as we mentioned before, retardation effects incre
slightly R(E) for constant effective potentials of the sam
height @see Figs. 10~a! and 11#. Moreover, as was noted i
@17# for a conducting wall, retardation effects enhan
R(E). This apparent contradiction can be resolved by re
izing that, in fact, we are comparing two very different typ
of experimental setups. In Fig. 10~a! and@17#, the potential is
fixed and we compute the reflection probability as a funct
of the energy or velocity of the incoming atoms. This set
really evaluates the effect of retardation on incoming ato
On the other hand, the situation explored in Fig. 12 cor
sponds to a multiple set of experiments: for each value
C0 , the potential is different, and therefore comparingR(E)
for variousC0 is comparing different potentials.

We have computedA1 and A2 for the various cases o
Fig. 12. They are listed in Table III. As described abov
retardation affects the quantum signature more strongl
lower v. The ratio ofA11A2 with and without retardation is
reduced, indicating a weaker quantum signature with re
dation than without. One also notices that above-barrier
flection ~ratio of A1) is slightly more affected than tunnelin
~ratio of A2). For v53.0 cm/s, the effect of retardation is o
nearly 30%.

In Fig. 16 we plot the same results forR(E) that were
presented in Fig. 12, this time as a function of lnC0, because
it allows the comparison with experiments where averag
over the Gaussian profile of the laser beam is relevant@17#.
BecauseC0 takes on smaller values, the curves with retar
tion are more affected than those without: most of the po
of the previous discussion seem to be reversed. The shi
threshold lnC* is larger asv is decreased, and the curve
without retardation~dashed lines! are steeper: the quantum
signature appears to be stronger with retardation. Altho
the logarithmic scale enhances the smaller values ofC0 and
hence amplifies the signature of above-barrier reflec
more than the quantum tunneling, it is still clear from Fig.
that retardation has more influence at lower velocities.
previously, we can quantify the quantum signature by eva
ating similar areas asA1 and A2 , defined this time as an
integral over lnC0: we call themB1 and B2 , respectively.
Their values are also given in Table III. Again, by compari
the ratios ofB11B2 as a function ofv, we notice that retar-
e
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dation has a stronger effect at lowerv. Moreover, from the
ratios ofB1 andB2 , we again find that above-barrier refle
tion is more affected by retardation, although in the reve
order. That difference is also amplified by the logaritm
scale.

V. CONCLUSION AND DISCUSSION

We conclude that retardation effects could be observe
this system and that, in general, quantum effects may be u
for very sensitive measurements. Unlike reflection in t
classical domain, quantum reflection depends on the de
of the potential, both at short and large distances. In
classical regime, i.e., for reflection experiments that could
properly described by classical mechanics, reflection yie
can be used to identify thresholds. In the semiclassical
gime, the yields are also sensitive to the curvature near
top of the barrier. Quantum reflection probabilities are det
mined by the complete potential curve. As we have dem
strated, identifying and using parameters in the quantum
namics regime, i.e., looking for experiments that cannot
described by a semiclassical approximation, is a promis
new way to study long-range and short-range atom-surf
interactions.

Finally, we would like to comment on some relevant i
sues that were not considered in our work. While we ha
used the most accurate available calculations, to our kno
edge, for the atom-wall interaction, and have given a co
plete quantum treatment to the center-of-mass motion of
atoms, we still relied on the following simplifying assump
tions, justified by the experimental conditions that we ha
considered. First, we neglected surface roughness. Studi
surface roughness effects indicate that the mirror allows
specular reflection if the surface is flat at the atomic sc
@29#. Note that, for the mirror to be useful for atom-optic
applications, it is essential that the reflection process be
herent. Second, we neglected the finite response time o
mirror images in the dielectric, which seems reasonable s

FIG. 16. Same as Fig. 12, but as a function of lnC0. Because of
the logarithmic scaling, the smaller values ofC0 are enhanced, and
the curves without retardation are steeper, in contrast to Fig.
The quantum signature is amplified, especially the above-ba
reflection that occurs at smaller values ofC0 .
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the atoms are moving very slowly. The effect of the respo
time for the rearrangement of charges in the bulk forming
mirror was studied for metal@30#, but to our knowledge,
such results are not available for the rearrangement tim
the dipole polarizations in dielectrics. Third, we treated
atom as a two-level system, and assumed that no inte
transitions take place during the reflection. Observed effe
that go beyond the two-level model include state-selec
properties of the reflection@2,31#, cooling during the reflec-
tion through a spontaneous Raman transition between
hyperfine levels@16,32#, and, in general, an interplay be
tween internal state transitions and the center-of-mass
tion @33#. Further, we did not take into account the depe
dence of the dielectric constant on frequency, e.g., in
calculations that gave the potential curves for the ato
dielectric interaction using Eq.~5!. Finally, looking only at
reflection probabilities, we did not study the reflection pr
cess in the time domain and we did not look at wave pack
Clearly, some of these issues should be addressed in fu
research.
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APPENDIX A: RECIPROCITY RELATIONS

In this appendix, we review the reciprocity relations f
the reflection and transmission amplitudes. We conside
one-dimensional potential that goes uphill~left to right! from
a constant valueV1 at z→2` to a constant valueV2 at z
→1` ~with V1,V2). For a particle of massm and kinetic
energyE incoming from2`, one has

z→2` z→1`

eik1z1R↗e2 ik1z ↔ T↗eik2z, ~A1!

where k15A2m(E2V1)/\ and k25A2m(E2V2)/\. R↗
andT↗ represent the uphill reflection and transmission a
plitudes, respectively. The downhill relation going from rig
to left is

T↙e2 ik1x↔e2 ik2x1R↙eik2x, ~A2!

and R↙ and T↙ now represent the downhill reflection an
transmission amplitudes, respectively. Dividing the first re
tion by T↗ and its complex conjugate byT↗* , multiplying
the first relation byR↙ , and adding them together, one ge

S R↙R↗
T↗

1
1

T↗*
D e2 ik1x1S R↙

T↗
1

R↗*

T↗*
D eik1x

↔e2 ik2x1R↙eik2x. ~A3!

By comparing with Eq.~A2!, one must have
e
e
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-

-

R↙R↗
T↗

1
1

T↗*
5T↙ , ~A4!

R↙
T↗

1
R↗*

T↗*
50. ~A5!

The second equation implies thatuRu5uR↙u5uR↗u. Substi-
tuting in the first equation, we obtain

T↙5
1

T↗*
~12uRu2!, ~A6!

which, in turn, implies

~phase ofT↙!5~phase ofT↗!5u. ~A7!

Similarly, from the relation betweenR↙ andR↗ , we find

~phase ofR↙!5p12u1~phase ofR↗!. ~A8!

Finally, from the usual definition of the reflection and tran
mission probabilities@34#, i.e.,

R↗[
v1

v1

R↗R↗*

1
5uR↗u2, ~A9!

R↙[
v2

v2

R↙R↙*

1
5uR↙u2, ~A10!

T↗[
v2

v1

T↗T↗*

1
5

k2

k1
uT↗u2, ~A11!

T↙[
v1

v2

T↙T↙*

1
5

k1

k2
uT↙u2. ~A12!

We get

R5R↗5R↙5uRu2, ~A13!

and since T↗512R↗512uRu2 and T↙512R↙51
2uRu2,

T5T↗5T↙ or
k2

k1
uT↗u25

k1

k2
uT↙u2. ~A14!

APPENDIX B: REFLECTION PROBABILITIES
FOR THE MODEL POTENTIALS

In this appendix we obtain the reflection probabilities f
the model potentials of Eqs.~23!, ~24!, and~25!, by exactly
solving the corresponding stationary Schro¨dinger equations.

A general solution to the stationary Schro¨dinger equation
with the potentialVcosh is given by@35#
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ccosh~z!5A coshu11/2S z

z D
32F1F1

4
1

u

2
1

ikz

2
,
1

4
1

u

2
2

ikz

2
,
1

2
;2sinh2S z

z D G
1B sinhS z

z D coshu11/2S z

z D
32F1F3

4
1

u

2
1

ikz

2
,
3

4
1

u

2
2

ikz

2
,
3

2
;2sinh2S z

z D G ,
~B1!

whereA andB are constants, satisfying

ccosh~z50!5A, ~B2!

]ccosh

]z U
z50

5B/z. ~B3!

A general solution to the stationary Schro¨dinger equation
with the potentialVosc is given by@36#

cosc~z!5nW~a,zA2v0 /z!1mW~a,2zA2v0 /z!,
~B4!

wheren andm are constants, satisfying

cosc~z50!5AuG~1/41 ia/2!u
uG~3/41 ia/2!u

223/4~n1m!, ~B5!

]cosc

]z
uz5052A2v0 /zAuG~3/41 ia/!2u

uG~1/41 ia/2!u
221/4~n2m!.

~B6!

The reflection probabilityRcosh[uRcoshu2 for the potential
Vcosh is obtained by finding a specific solution to the Sch¨-
dinger equation, i.e., a choice ofA5Acosh andB5Bcosh for
Eq. ~B1! that would satisfy

lim
z→2`

ccosh5exp~2 ikz!, ~B7!
-

li-

.

on
taking the limitz→` and identifying the asymptotic coeffi
cients,

lim
z→`

ccosh5
1

Tcosh
exp~2 ikz!1

Rcosh

Tcosh
exp~ ikz!. ~B8!

The reflection probabilityRosc[uRoscu2 for the potential
Vosc is obtained in a similar way by findingnoscandmosc that
would satisfy

lim
z→2`

cosc5A 2

uzu
exp@ if~z!#, ~B9!

f~z![
x2

4
2a ln x1

1

2
arg G~1/21 ia !, ~B10!

taking the limitz→` and identifying the asymptotic coeffi
cients,

lim
z→`

cosc5
1

Tosc
A2

z
exp@2 if~z!#1

Rosc

Tosc
A2

z
exp@ if~z!#.

~B11!

Note that exp(2ikz) and exp(ikz) are left and right moving,
respectively, whileA2/uzuexp@2if(z)# and A2/uzuexp@if(z)#
are inward and outward moving, respectively.

Finally, the reflection probabilityRhyb[uRhybu2 for the
potential Vhyb is obtained by findingnhyb5nosc and mhyb
5mosc that would satisfy

lim
z→2`

chyb5A 2

uzu
exp@ if~z!#, ~B12!

finding thenAhyb and Bhyb from the continuity of the wave
function and its first derivative atz50, taking the limitz
→` and identifying the coefficients,

lim
z→`

chyb5
1

Thyb
exp~2 ikz!1

Rhyb

Thyb
exp~ ikz!. ~B13!

These straightforward derivations give the reflection pro
abilities of Eqs.~27!–~29!.
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