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Retardation effects on quantum reflection from an evanescent-wave atomic mirror
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We calculate the reflection probability for ultracold sodium atoms incident on an evanescent-wave atomic
mirror. For low enough energies the reflection probability curves exhibit quantum effects that are sensitive to
the long-range part of the potential and can therefore be used to resolve Casimir retardation effects. We also
explore the accuracy of model potentials approximating the exact atom-wall effective potential.
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[. INTRODUCTION it, the phase of the reflected laser beam. This phase shift can
be used to detect the passage of a cloud of atoms without
An electromagnetic mirror for neutral atoms was first sug-destroying the coherence of the reflecti@j. Experiments
gested by Cook and Hill in 198pL]. Their idea was to use Wwith a time-dependent mirror, in which the potential changes
the radiation force of an evanescent-electromagnetic waveapidly and continuously by controlled modulation of the
outside a dielectric surface to repel slow atoms. Such aitensity of the laser light, were performé#l]. The use of
evanescent wave is formed when light undergoes total intefevanescent-light mirrors to build a surface trap was recently
nal reflection at the dielectric-vacuum interface. The inducedeported 10], and the creation of an atomic funnel was also
dipole force is repulsive if the light is tuned toward higher PropPosed11]. The penetration depth and wave vector of the
frequencies than the corresponding natural dipole frequenc§anescent-electromagnetic waves were studied using on
of the atom, and attractive if tuned toward lower frequencies.es_o.nance. laser atomic spectroscc{;i;?]. Finally, atc_)m '
This evanescent-wave atomic mirravas realized experi- guiding using evanescent waves in small hollow optical fi-
. . bers was demonstratéd3].
mentally by Balykinet al.[2]. Almost perfect reflection was

demonstrated by using laser light of high intensity to create In the simplest theoretical approach, the center-of-mass
y 9 9 9 Y motion of the atom is treated classically while the atom-

the e_vanescent wave, and_N.a gtoms |.nC|dent- on the MIMOT Whirror interaction is derived from a model of a two-level
grazing angles so as to minimize their velocity at the direCgygiom in the electromagnetic field of the evanescent laser
tion perpendicular to the dielectric surface. Normal incidencgjgn: Neglecting spontaneous emission, internal transitions,
reflection in the form of an atomic “trampoline,” where at- ang the attractive van der Waals interaction between the
oms falling onto the mirror surface due to gravity bounceaiom and the dielectric surface, the interaction of the atom
back up because of the evanescent wave, has also been degfg the mirror is then described by an exponentially decay-
onstrated 3,4]. ing optical potential. Although one would like to preserve as
Recent work in atom optics has emphasized, on the ongimple a physical picture of the reflection as possible, for
hand, the need to develop elements, like mirrors and lensesctual experiments it may be important to give a more com-
for the coherent manipulation of atomic matter waygs plete treatment.
On the other hand, the experimental progress brought about We consider here the following questions. Is the center of
the ability to cool and launch atoms with extremely low andmass motion of the atom properly described by classical me-
well-defined velocitie§6]. This, combined with the ability to chanics or does it exhibit quantum effects? Is the reflection
continuously vary the effective potential of the mirror by sensitive to the atom-dielectric attractive interaction, and
changing the intensity and the frequency of the laser lighthow sensitive is it to details of the potential curves? Can it be
motivates both theoretical and experimental studies of funused to distinguish among different theoretical models, for
damental and practical aspects of the evanescent-wave migxample, resolving retardation effects?
ror. Aspect and collaborators studied an analytical solution of
Experimental applications of the evanescent-wave mirrothe Schrdinger equation obtained by neglecting the attrac-
already include a variety of studies. It was recently incorpo+tive atom-wall interaction, and identified both classical and
rated into an atomic interferometgf]. The presence of the pure-quantum regimgsl4]. The same group later used the
reflected atoms near the dielectric-vacuum interface changeeflection from an evanescent-wave atomic mirror in the
the index of refraction outside the dielectric prism and withclassical regime to measure the van der Waals force between
the dielectric surface and the atom in its ground state, dem-
onstrating that the attractive interaction can hardly be ne-
*Present adderess: Department of Chemistry, Ben-Gurion Univerglected[15], as was also demonstrated by Desbiokésl.
sity, Beer Sheva 84105, Israel. [16]. The purpose of this paper is to give a quantum treat-
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tices to launch a subrecoil sample with negligible heating, as
described by Raizen, Salomon, and N&|. Atom-surface

blue scattering experiments can be performed by launching the

i \ reflcted atoms in an upwardnearly vertical parabolic trajectory,
" with the surface in the vertical direction.
We show that the long-rand€asimip interactions due to
prism z retardation have in this case an observable effect on the
effective potential guantum reflection probabilities and that the classically for-
/ bidden above-barrier reflection is particularly sensitive to de-

tails of the atom-surface potential. If measured, this would
constitute a low-energy experimental signature of QED ef-
fects, and would supplement recent different measurements
) - of the Casimir forces, e.g., in cavity QERQ].
_ FIG. 1. Schematic of an atomic mirror. The blue-detuned laser g theoretical analysis is divided into two steps. First, in
light prog_uces ta repqllls'fve lfct)rr]ce, frftetr. total ;met.mla:( reﬂezt'ﬁn'tﬁ‘”Sec. I, we discuss the effective potential, and second, in Sec.
a{opr:]oac ”mg:]dalpr;?t V:Id eed ? ﬁt.elc Nidpt()) ern fl|a togmg, y l'lslll, we analyze the time evolution of the particle in this po-
atom-wail and ight induced potentias a € refiected. Llassicallyiantial. There are standard physical assumptions and approxi-
the atom is reflected only if its incoming energyis less than the . . . : . .
. . . : mations involved in being able to treat the process in this
barrier heigh,,,,«, contrary to the quantum regime where it can be I
. way. Note the apparent contradiction between the two steps.
reflected even iE>V .. . : .
The internal structure of the atom is essential for the evalu-

ment of the reflection, which takes the attractive interactiorflloN _Of the pot_entlal curves in the first step. In general, an
into account. effective potential for an atom or a molecule is the result of

In a recent Rapid Communication, we have shown tha{:hanges to its intgrnal structure. Optical potentials, for ex-
the center-of-mass motion of cold atoms incident on theample, are determined by the space dependence of the atom’s

evanescent-wave atomic mirror with sufficiently small ve- €nergy levels, and therefore of the induced dipole interaction

locities (e.g., 10.0 cm/s for sodium atoinsill exhibit quan- with the laser’s electric field. In the second step, however,
tum dyna.rﬁi,cs[l.7] We predicted arS-shaped probability after a potential curve has been determined, one solves for
curve, which is typical of quantum behavior, for the fraction the dynamlc_s, €., fo_r the time evolution Of th_e particle in the
of reflected atoms as a function of the logarithm of the lasef!VEN potenualz treating the at(_)m as a pointlike structureless
intensity, and suggested a way to measure it by minimizin article. The disregard of the internal structure of the atom,
the variation of the intensity across the atomic mirror. We i the_second step of the calculat_lorj is justified by the as-
have also referred to the possibility of observing CasimirSumption that _actual changes to this internal structure can be
retardation effects in the reflection process. However, at thzﬂeg!ede_d’ while the space dependence of the e_f_fect|ve po-
time we were not able to make definite predictions as to th(I}enuals is the result of virtual, not actual, transitions. For

magnitude of the retardation effects because an exact poteﬂpt'Cal potent|aI§, fpr exar_nple, th's. amounts to neglecting
tial curve including the QED effects for a ground-state so-SPontaneous emission. This approximation renders our treat-

dium atom and the dielectric prism was not yet calculated. ment meaningful only in the large detuning regime. Further

In this paper we review the previous results in more detaifjISCUSSIon of this point can be found, for example/2f]. In

and present new ones. In particular, the numerical methoﬁec' IV, we give the results of our calculations for the reflec-

that we have used for the calculations is presented and rdion probability curves with and without retardation. Finally,

flection from the physical potential is compared to the reflec—dISCUSSIon and conclusions are presented in Sec. V.
tion from model potentials. Finally, we use recently calcu-

lated potential curvefl8] to obtain precise predictions for Il. ATOMIC MIRROR: THE POTENTIAL CURVE

the size and nature of the QED retardation effects on the
guantum reflection probability curves.

The experimental setting considered here and depicted in Optical potentials are one example where an effective po-
Fig. 1 relates to an uniform flux of Na atoms with an averagetential for cold atoms is induced by space-dependent changes
velocity of a few cm/s and a velocity dispersion of a few to the internal energy of the atoms. In the same way as elec-
mm/s that would be created and launched in the directioftric fields induce Stark shifts and magnetic fields induce Zee-
normal to a dielectric prism. The repulsive optical potentialman shifts, radiation fields have been shown to induce light
of an evanescent wave of blue-detuned laser light woulghifts to the atom’s level structure, thereby creating con-
combine with the attractive atom-wall interaction to createtrolled and adjustable effective potentials. These potentials
an effective potential barrier for the atoms. The flux of re-are important in the field of atom optics as they enable the
flected atoms would be measured. coherent manipulation of atoms.

Such an atomic beam with subrecoil velocity spread con- A simple successful model for the interaction of a two-
ditions has been demonstrated experimentally by the groulevel atom with the radiation of a single-mode laser and the
of Phillips [19]. In this work, a Bose condensate of®1€o-  vacuum fluctuations was given within the dressed atom ap-
dium atoms was formed. The momentum spread was reducgmoach to light-induced potential21]. By solving the opti-
to 0.1 recoil(3 mm/9 by adiabatic expansion of the conden- cal Bloch equations in the electric dipole approximation, one
sate. The atoms were then used in an atomic interferometefinds that two forces act on the atom in its ground state: a
This method can be combined with accelerating optical latradiation pressure force and a dipole foféd]. The dipole

A. Optical potential
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TABLE |. Parameters used in this paper. The value§f*®
andK7® are taken from Karchenket al. [25], andK{" is from
[17]. We also give the sodium atom mass in atomic units.

Parameter Value

€ 3.258

n 1.805

ke 5.645< 10 * a.u.

0 45°

K 4.4771x10 * a.u.
cyes! 1.889 a.u.
c 1.0017342 a.u.
K el 2676.71 a.u.
KM 1081.03 a.u.

m 41907.782 a.u.

force can be described by the effective potential

hé 0?12

Vaipole= 71N 1+52+—F2/4

: D

where () is the Rabi frequency, and= w,_—IZ,_-ﬁ—wo is
the detuning from the atomic resonance of frequengyand
natural linewidthl" of an atom of momentunp interacting

with photons of momenturﬁ,_ and frequencyw, . For large
detuning the dipole force dominat¢21] and the potential
reduces to

larges 4 ()2
~ 5 @

with Q2x1d? where | is the laser intensity and is the

Vdipole

atomic dipole. The dipole potential is therefore proportional
to the intensity of the laser and inversely proportional to

detuning. The dipole force can be attractive or repulsive
according to the sign of the detuning. For red detuning
<wg, 6<0, and the atom is attracted by high intensity, in
accordance with the classical intuition for a dipole in a field.
However, for blue detuningy, > wq, 6>0, and the atom is

repelled by high intensity. This repulsion is being used inthe {(p,e)=

evanescent-wave atomic mirror.

B. Atom-dielectric interaction
with and without retardation effects

RETARDATION EFFECTS ON QUANTUM REFLECTIH . ..
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FIG. 2. Atom-wall potentialV 4m wai fOr @ conducting and a
dielectric wall (with n=1.805). Also shown are the asymptotic
formsK,/z* and the Lennard-Jones forrig /z3. We plotV(z)z®
as a function ofz so thatC,/z® becomes a straight line. Numerical
values ofC; and K, are given in Table I. For both metallic and
dielectric walls, retardation effects reduce the strength of the poten-
tial, and the potentials take their asymptotic form near
~500Q,.

If we take into account retardation effects, the Casimir-
Polder potential is obtained where the finite propagation time
between the dipole and its image results in a different
asymptotic power-law behavi$23],

lim Vep(z)cz ~2. 4
Z— 0
The complete QED treatment gives
Voeo(2)= - “—3fxd§§3d<i§>f°°dpe2§ZP“z<p o
QED 27 )0 L 1€)s
’ )
where
ve—1+ 2—p+(1 ) 2)\/6—1+p2—6p
Je—1+p2+p P e Tt pPtep’
(6)

andd(i ¢) is the dynamic dipole polarizability functidr24].
Using semiempirical results for the dynamic dipole polar-

The simplest model for the interaction of a ground-stateizability, the numerical integration of E¢5) was performed

atom and a wall of dielectric constaatconsiders the inter-

action between a dipol& and its mirror image and gives the
Lennard-Jones potential,
>) -

e—1|((df)+2(d
e+1 64req

where (df) and (df) are the expectation values of the
squared dipole parallel and perpendicular to the surffagp
e=n? andn is the index of refraction of the dielectric. This
expression for the potential is approximately valid for con-
stante and smallz. C{" is related to the constai@; of a
pure metallic wall byC{"=C5(n?~1)/(n®+1). The nu-

2
L

)

VLJ_

to obtain accurate QED potential cur&b]. We present in
Fig. 2 the result of a recent calculatiph8] of Voep(2) for
sodium and a dielectric prism with the index of refraction
considered here, namelyg=1.805[26]. The deviation from
the Lennard-Jones potential of E§) as well as the Casimir-
Polder asymptotic behavior of E¢4) are clearly demon-
strated.

C. Effective potential of the evanescent-wave mirror

An evanescent-wave mirror for cold atoms is created
when a blue-detuned laser bea#>0) with wave number

k. undergoes total internal reflection inside a dielectric

merical values for Na atoms used in this paper are given iprism. The optical dipole potential i, for the atom is

Table I.

proportional to the intensity of the laser beam, which drops
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15.0

— T TABLE Il. Parameters for the potential curves of Fig. 3. For a
| (@ i given value of the optical potential intensity,, there are two
potential curvesy ..t With retardation and/,, o Without retarda-
tion. For each graph we give the height of the potential, as well

/ P as the corresponding velocCityy, (Vmax= %mvfop), the location of
ot the maximum of the barrieg,,,,,, and the curvature: at the top of
[ (o) i the barrier. ForV,, . Of Figs. 3e) and 3f), there is no barrier,
hence NV a5, Viops Zmax, anda.

10.0 ¢

50

0.0

15.0

10.0 |

50

0.0

Energy (107" a.u.)

/ e Figure Co Type  Viax Utop Zmax a
' 2 (10710 (107 (cm/9 (units ofa,) (1076

15.0 t
1® i a.u) a.u) a.u)

10.0 |

50r 3@ 9.877 ret. 13.454 17.53 1629.5 —3.7754

/ / ____________ noret. 4.378 10.00 22434 —1.0531

0.0

5.0 . L L L 2l . L
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
distance z (a.u.) distance z (a.u.) 3(b) 7.463 ret. 8.207 13.69 1793.0 —2.1277

noret. 1576 6.00 2614.9 —0.4077
FIG. 3. The effective potential with retardatidf,,(solid line)
and without retardatiorV,, ; (dashed ling as a function of the 3(c) 6.023 ret. 5483 11.19 19352 —1.3649
distancez for various values of the laser intensity and henc€gf noret. 0394 3.00 30222 —0.1542
The parameters of these potentials are given in Tables | and Il. As
the value ofC, decreases frora) to (f), the barrier diminishes and

is pushed out. Notice that, fge) and(f), there is no barrier for the 3d 5375 ret. 4.378 10.00 2017.5 —1.0541

case without retardatio. ro. noret. 0013 054 33346 —0.0739
exponentially with the distance outside the surface of the 3(¢) 3.391 ret. 1576 6.00 2416.9 —0.3447
dielectric prism. The optical potential is therefore no ret.
Vopiica™= Co€XP( — 2x2)exp( — p?), (7) 3(f) 2119 ret. 0394 3.00 30004 -—0.0828
with no ret.
k=k_yn®sinf6—1, (8)  at a distance of roughly 208, i.e., far out from the prism

) o o itself. This enables us to treat the system without taking into
whereCox1d/4, the refractive index of the prism 1§ and  account many surface phenomena, e.g., the sticking of the
the incident angle ig. The exp¢-p?) factor accounts for the atoms to the surface, the creation of phonons, etc.
Gaussian profile of the focused laser beam. We have shown Since one is probing distances in the neighborhood of
in Ref.[17] that this Gaussian profile is of considerable im- 200, and more, one could expect to be in a regime where
portance for analyzing experimental results due to the averetardation effects could be noticeable. Indeed, when the dis-
aging over a cloud of incoming atoms and that minimizingtance between the atom and the wall becomes of the order of
this averaging effect is essential for observing quantum bethe transition wavelength/27, the time of flight of the vir-
havior. In the following, we assume a constant intensity andual photons becomes large enough to cause retardation ef-
setp?=0 for simplicity. fects. For sodium\/2m=17728,, and a barrier located at
The exponentially decaying optical potential and the at-200Q, should probe retardation corrections. In fact, one no-
tractive atom-wall interaction add up to generate an effectivdices from Fig. 2 that retardation corrections for the dielectric
potential barrier. It is given by one of the following two considered in this paper become important near that distance.

take them into account, and without retardation corrections in Fig. 3: the height, its
location and the curvature of the potential at the top of the
C<3n) barrier vary strongly when one compares the two sets of
Vio ref 2) = CoXH — 2K2) — —, (9 effective potentials. For small enough value<Cyf, the bar-
z

rier disappeafseeV,, «:in Figs. 3e) and 3f)], but quantum
reflection still occurs, as we discuss below. The numerical
VexactZ) = CoeXP( —2k2) +Vep(2), (100 parameters corresponding Yy, and Vi, vt OF Fig. 3 are

. . L . . given in Table Il
where Vqep is depicted in Fig. 2. The various numerical

values used here are listed in Table I. The height of the ||. REFLECTION FROM POTENTIAL BARRIERS

barrier V. Vary as a function of the intensity of the laser _ ) _ -

beam, as do its location and shape. This is illustrated in Fig. A Numerical calculation of the reflection probability

3. One can see that as the intensity is reduced, the barrier is In this section, we elaborate on the specific numerical
decreasing in height and is moving out to larger distancessomputations involved in the evaluation of the reflection
For a barrier Witthax=%mvt20p corresponding to sodium probability for an arbitrary potential. As described int€o
atoms withv,,=10.0 cm/s, the top of the barrier is located et al. [27], our procedure is based on matching a superposi-
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tion of incoming and reflected Wentzel-Kramers-Brillouin
(WKB) waves to an exact or accurate approximate solution
of the Schrdinger equation bridging the region where the
WKB approximation is inaccurate.

The potential curves of Eq$9) and(10) and Figs. 2 and
3 are defined only foz>0. In a complete treatment the
potential should be properly modified z¢ 0 to account for
the presence of the interface with the dielectric layer. We
assume perfect sticking at the dielectric surface and neglect
any reflection from the region closer to the interface than
some finite smalk, determined numerically as explained be-
low. Under this assumption, the singularityzat 0 is of no
physical importance and we solve for the reflection from the
potential barriers of Eq99) and (10) in the same way we -
would have solved for the reflection from a bounded finite 02 A

a.u.)

10

Energy (10

/
- "0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
range potential.

. . . . distance z (a.u.) distance z (a.u.)
We apply a numerical calculation in which we propagate

a wave function and an auxiliary function, defined in Eq. FIG. 4. The dimensionless badlands (dashed linesfor the
(20) below, fromz— + <« inward. Assuming perfect sticking exact potentiald/q,,; 0f Fig. 3 (solid line), for an incoming atom
at the surface, we prove that this auxiliary function con-with E=5.2975<10 ™ a.u.(or v =11.0 cm/$. The potentiaV ey,
verges to the reflection probability as- 0 is approached. In and energyE (the horizontal dashed lipere on a scale of 10°
the proof, we assume that the potential that vanisheg for a.U., and the badlands on a unit scé, (b), and(c) correspond to

— -+, takes a constant negative valueV, for z— — . tunneling through the barridthe classical turning points are indi-
We then show that the value &f, does not influence Eq. Ccated by the intersection @& with Vexe) and (d), (€), and (f)
(20), which is all we need for the calculation itself. represent the above-barrier cag@he legend shown iff) applies

In order to obtain Eq(20) which converges to the reflec- " all plots]

tion probabilities of a particle of masa and kinetic energy _ . Y :
E=#2k2/2m, incident on the barrier from the right, we for- we illustrate these “badlands” for the exact potentials shown

mally consider the reciprocal problem of the particles inci-" Fig. 3: a more complete discussion is given in the next
dent fromz— — % with kinetic energyfi 2k’ 2/2m wherek’ is ~ Section. _

defined byE+ Vo=k’'242/2m. According to the reciprocity By requiring Eq.(11) to asymptotically Z,H_w)_ maich
relation, the reflection probability is the same whether thethe exact wave function exja(2)+Rexp(-ik'2) we find

atom is incident on a barrier from the left or the righh

proof is given in Appendix A for the configuration of a step Rwke =Rexd i 7(zm) ], (14)
function,

Comi%g fromz— — . the exact wave function can be I-€- thatRwg and the conventionally defined reflection am-
approximated by the Wi(B ansatz plitude R differ by a phasen(z,) that accounts for the fact

that the matching poirtt,, is not atz=0, and that the local
momentump may differ from its asymptotic valuék’ at

1 T i [z
E,z2)= ———|exp — E,z')dZ finite values ofz:
lpWKB( ) m_ I{ﬁ Zmp( ) )

. (15

1z
7(zy)=2 lim (%f p(E,z")dz' —k’'z
Z— — 0 Zy

i (z
+RWKBex;:< - = p(E,z’)dz’)
hls,

(11 Knowing a wave functiony(z) (exact or accurate ap-

_ ) ) ) proximatior) corresponding to a purely outgoing wavezat
wherezy, is an arbitrary matching point, and we are assum-_, 1 . \e can determine the reflection amplitude by match-
ing that in the entire region=zx,, the essential condition for jng gtz the logarithmic derivatives of the WKB wave func-
applicability of the WKB approximation is valid. Namely, tion andy(2) [Eq. (1D)],
that the de Broglie wavelength=27#/p, with

) [ p'(Zm)
p(E,2)=\2mE-V(2)], (12) 1 (Zm)/lﬁ(Zm)—gP(Zm)JF—Zp(Zm)

S R =~ i 'm0
varies sufficiently slowly, o' (zp) (2 + %p(zm) + 20(z20)
m

Sh= L =4 2 av <1. (13  The usual reflection amplitud@ can be obtained frorRyg

27| dz p> dz through the phase correctidii4), and the reflection prob-
ability is simply

In the remainder of the paper, we refer to the regions where
the condition(13) is not fulfilled as “badlands.” In Fig. 4, R=|R|?=|Rukal? (17
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FIG. 5. In(a), we showV . corresponding to Fig.(8) (with
vop=10.0 cm/$ and the badlandé\ for a sodium atom incident on
the prism with a velocity =10.1 cm/s. The realc) and imagi-
nary (¢s) parts of the wave functiofin arb. unit3 are plotted in
(b), as well as the dimensionless auxiliary functigd(E,z)  for three incoming velocities: 20.0 cm/s (&), 10.1 cm/s in(b), and
=|R(2)|? as it approaches the reflection probabilR{E)=|R|2at 3.0 cm/s in(c), for the exact potentiaV g, Of Fig. 3(d) (solid line)
small z. Convergence is reached after the wave functions havé@nd the hybrid potentia¥y,;, of Fig. 8(c) below (dahsed ling Both
passed through the badlands. potentials have a height correspondingtg,= 10.0 cm/s.(d), (e),

and (f) show enlargements of the convergence redetnsmallz)

Equation(16) is used to derive the results and predictionsfor Veac: in (d), |R(2)|* oscillates between 810™° and
presented below from an accurate numerical solution of th8>10°, in (¢) between 0.4932 and 0.4992, and (i between
stationary Schirdinger equation obtained by propagating two 0-999 730 and 0.999 742. Finally, the values{fE) for the exact
independent solutions from large inward towardz=0:  &nd hybrid potentials, are: i@ 6.91x10 > and 3.9% 10", in (b)
¥e(z) and ¥(z). They are, respectively, defined by the Q.4948 and 0.4192, and {ie) 0.999 7389 and 0.997 813 4, respec-
boundary conditions at— o, tively.

Yc(z)—cogk2),
¥s(z)—sin(kz).

An auxiliary reflection probability function is then defined
by

Distance z (a.u.) Distance z (a.u.)

FIG. 6. The dimensionless auxiliary functigd(E,z) =|R(z)|?
as it approaches the reflection probabilR(E)=|R|? at smallz,

(18) &\ is not negligible located around 30@(Q: the wave func-
tions ¢ and g start to be affected an®(E,z) begins to
grow from its initial zero valudsee Fig. )]. Its behavior
follows the shape of the badlands. One notices that although
the wave functions oscillate rapidly because of the singular-
ity at the origin,R(E,z) is well behaved right after the bad-
lands are passed. In Figs.ap-6(c), we also present the nu-
merical calculation ofR(E,z) for energies high above and
way below the same barrier and the corresponding badlands
are plotted in Figs. (8)—7(c). (These figures contain also
results for an hybrid potential discussed in a next segtion.
The behavior ofR(E,z) as it converges t&(E) is general:

we obtain the same pattern for all three cases. Going inward,
R(E,z) grows first at the approach of the outer badl§ifid

is sizable as in(b) and (c) but not (a)] and overshoots its
asymptotic value before decreasing until the inner badland
starts. It then grows again and reaches another maximum
before correcting its value by decreasing too much, to finally
stabilize its value toR(E). In Figs. &d)—6(f), we demon-
strate the convergence more explicitly by enlarging the re-
gion nearz=0: in all three cases, the behavior is similar and
convergence is reached &t 1008, .

19

1 i 2
@mwa+§@mma—gma

R(E,z)= , (20

1 i
5Z|nl//(2) + —azlnp(z) +—P(Z)
2 fi
where

W(2)=ic(2) +igs(2).

Note that Eq(20) does not depend ovi, or k’, and that the
singularity at z—0 is avoided. The auxiliary function
R(E,z) approaches the actual reflection probabilityzasp-
proaches zero,

(21)

R(E)=ImR(E,z).

z—0

(22

In Fig. 5, for example, we present the solutiBqE, z) for
an incoming sodium atom with velocity=10.1 cm/s inci-
dent on a potential barridf,,,.(calculated with retardation A classical particle with mass and velocityv (momen-
of heightV .= %mutzOp with v,,=10.0 cm/s, and the corre- tum Ak=mv) incident on a one-dimensional potential bar-
sponding “badlands.” As the atom approaches the barrierier V(z) can be either transmitted or reflected. The classical
from + o, it reaches the border of the outer badlgndhere  reflection probability is a Heavyside functioRgassid E)

B. Quantum versus classical reflection
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4(d)-4(f)], we observe a larger effect of the inner badland
than the outer one, and conclude that most of the above-

(a) v=20.0cm/s
0.20

exact

3 __ Voo barrier reflection is caused by the inner portion of the effec-
ot/ 1 tive potential, contrary to normal intuition.
0.00 For underbarrier energies the badlands are centered
' : around the turning point, their height extending to infinity.
4or R (b) v=10.1om’s For above barrier energies there are no turning points, but
ATA Voraa . . .
2 20l ] ] two badlands can still be recognized. In this respect the con-

cept of the badlands includes the concept of turning points
but is more general. Note that close enough to the dielectric-
vacuum interface there is no badland and WKB applies,
which is the reason whR(E,z) converges tdR(E).

{c) v=3.0cm/s
—_,

@xact
hyb

C. Model potentials

While numerical calculation is the only way to obtain
accurate predictions for a realistic effective potential, it is
often helpful to consider simplified models that can be

FIG. 7. Comparison of the dimensionless badlaisbetween solved exa.ctly. In t_his section three models are prgsented for
the exact(solid line) and the hybriddashed lingpotentials shown the potential barrier of the evanescent wave mirror, and
in Fig. 8(c), for different incoming velocitiegor energies (a) 20.0  closed form formulas for the probabilities are obtained from
cm/s(much higher thaiV,,, corresponding t@ o,=10.0 cm/3, (b) the analytu_: solutions to the cor_respondlng equations. After
10.1 cm/s(just abovev,,y), and (c) 3.0 cm/s(much lower than ~ Studying different model potentials, we found that a better
Viop)- agreement with the exact results was obtained when the bar-
rier's height and curvature were chosen to fit the exact physi-
cal potential. Keeping these parameters fixed, we chose three
potentials with very different asymptotic behaviors:

0 2000 4000 6000 8000
Distance z (a.u.)

=0 (Vmax— E), WhereE=3mu? is the energy of the atom
and V.= maxX V(z)] is the height of the potential barrier.

In quantum mechanics the reflection probabilR(E) is a Veost 2) = Vma0Sh [ (2— Zma/ {1, (23
smooth function of the energy: the classical step function is
replaced by a quantur8-shaped curve, with a finite over- Vosd2) =Vmad1-[(z— zmax)lg]z}, (24

barrier reflection probability as well as a finite underbarrier
transmission(or tunneling probability.

Traditionally, one compares the de Broglie wavelength of
the particle\ yg=27A/muv, with some scale in the potential,

say, the width of the pOtentia| barrier, to determine if Sub'A” these potentia's have the same heimx and curvature

stantial quantum behavior should be expected. According tg, at the top of the barrier as the exact physical potential,
our analysis, while the underbarrier transmission is mostly

sensitive to the width and height of the barrier, the overbar-
rier reflection is determined by regions of the potential where
the semiclassical treatment fails. The concept of the “badBoth parameter¥,,,, and a depend orC,, i.e., on the in-
lands” was introduced to quantify these regig@3]. In Fig.  tensity of the laser, and are sensitive to retardation effects, as
4, we illustrate s\ for a sodium atom withv =11.0 cm/s  depicted in Fig. 3 and given in Table II. Solving fdfye,
going through the exact atom-wall potential, i.e., with retar-gives the leading order in a semiclassical approximation, as

dation corrections. Figs.(4—4(c) show the case of tunnel- it amounts to replacing the potential by the closest inverted
ing, and as one can expect, the regions where the systeRarmonic oscillatof28].

cannot be described by WKB are located near the classical As proven in Appendix B, the reflection probab"ities

turning points, i.e., wheW(z) =E or alternativelyp(z) =0.  from these potentials are, respectively, given by
As the height of the barrier is progressively decreagsd

Vcost{ 7), z> Zmax

YD\ Vf2), 2% 2 29

=002 1oy == 2Vl % (26)

lowering the intensity of the lasgrthe turning points are co(mu)

getting closer to each other: the total region spent by bad- Reos E) = , \ (27
lands is diminished, hence a larger tunneling probability. No- cos(u) + sinkf(mk{)

tice that the inner badland is steeper than the outer one be-

cause the slope of the potential is larger near that turning Rool E)= (28)
point; for the same reason, the outer badland is more ex- s l+exp—27a)’

tended. When the barrier is lowered further as in Figd)-4

4(f), there are no turning points anymore, but the badlands I(1-F)—i(1+ F)|2

persist with the same “topography,” namely, a steeper inner Riyo(E)= [(1—-F)+i(1+F)| (29)
badland and a more extended outer one. From Figh—6

6(f), one notices thak (E,z) takes on its value after passing where

through the regions where the condititi8) is not satisfied.

For above barrier reflectiojsee Figs. @) and &b) or Figs. | =V1+exp2ma)—exp wa), (30



4006 R. COTE, B. SEGEV, AND M. G. RAIZEN PRA 58
5.0 1.0 0.7 F—
SN
30} exact . - exact
o @ Semhybrid T g NSO -—-- hybrid |
1.0 ——- cosh A
10 H o 0.6 I —-— 0sC. 1
—1. ! ——— Vo el o 05
-3.0 } H 04 F 1
1
—_ 50 : 0o b ] o4} ©
S
1 3_0 L
& 0.0, ' 1(;5 T
> 101 1.0 p : T
= o0t
>
S 30} 0.9 exact
a:> -==-- hybrid
w -5.0 o N ——- cosh
a0l o 08 exact 2 —-— osc.
. -=-==- hybrid .
| ——- cosh
1.0 0.7 —-— osC.
-10 |
a0l 0.6 ) ) ) 0.0 . Lo
- 4.5 5.5 6.5 7.5 85 105 115 125 135 14
-5.0 - L 1 ) Velocity (cm/s) Velocity (cm/s)
0 1000 2000 3000 4000 5000

Distance z (a.u.)

FIG. 8. The three model potential@) V osp, (b) Vose, and(c)
Vi Each of them is matched #gyqcWith Vpa=4.378< 1071

a.u. (or vye=10.0 cm/$ located atznq,=2017.53 a.u. with a cur-

vature ofa=—1.054 08<10 ¢ a.u.(see also Table I

F=({vo) 2
1 ia (3 u |§k) (3 u |§k)
Nat3z)|Natz 2 )Ma 272
“T73 ia (1 U |§k) (1 U igk)
Na*t3z)|Natz-2)Ma 272
(31
with the notation
k=\2mE/%, (32)
Vo=\2MmVolt, (33)
u=\1/4—(vod)?, (34
m
a=\/ —(Vimax— E). (39
-

The model potentials are shown in Fig$a)8-8(c) for a

barrier heightV .= 4.378< 10" ! a.u. (corresponding to a

sodium atom with velocityv,,=10.0 cm/$, with a=
—1.05408< 10 '€ a.u. From Fig. 8, one expects,, to be
the best approximation to the exact potentig},.. In order

to analyze the results froe,,e;and Vy,y,, we compare in

FIG. 9. Comparison of the three models and the exact reflection
probability R(E) =|R|? for sodium atoms incident on a barrier of
heightV .= %mvfop with v,,=10.0 cm/s(a) shows the curves as
a function ofv, and(b), (c), and(d) enlarge the low-, medium-, and
high-velocity regimes, respectively. Overall,,,, is a better ap-
proximation toVeyac, Vosc b€ing the best fov ~v,, and Vg, at
velocities far fromo .

ergy of the atom is much higher, or much lower, than the
barrier height, respectively. In both cases, the badlands of the
model and exact potentials are extremely different, and so
are the probabilities. In the second example=(10.1 cm/$,
where E~V .« Near the top of the barrier, the agreement
between the badlands is better, and a fairly good agreement
for R(E) is obtained.

We computedR(E) for the exact and three model poten-
tials of Fig. 8 as a function of the velocity of the incoming
atom. We illustrate the results in Figga®-9(d): in (a), we
observe that the four curves are very close to each other,
implying that the model potentials adjusted to the parameters
of Vgyact give good results. Iib)—(d), we enlarge three dif-
ferent portions of the same graph, corresponding to small
velocities where tunneling is present, velocities for which the
atom energy is near the top of the barrieg,f=10.0 cm/3,
and larger velocities where above-barrier reflection is domi-
nant. The hybrid potential gives an overall better agreement
to the exact curve than the two other model potentials. At
smallerv [see(b)], V¢osniS the best model and,.the worst
up to v~6.75 cm/s, at which point the three models are
equivalent. In the range of velocities near the top of the
barrier[in (c)], we have the reverse, namely th4j. is the
closest to the exact curve aNd,¢,the farthest. This remains
true up tov~12.75 cm/s, at which point th¥ ., is once

Figs. 71a)—7(c) their badlands for three different velocities of again the best model and,..the worst ondsee(d)]. For all
the incoming sodium atoms: 20.0 cm/s, 10.1 cm/s, and 3.Qalues ofv, the model potentials give curves below the exact
cm/s. SinceVy,;, is a combination of the two symmetric po- one, and th&/yp is always betweel qosnandVos.. This can
tentialsVosnandVs, their badlands are given by the sym- be understood by looking at the potentials themselses

metric image of theV,,,, badlands about=z,,,,. The aux-

iliary functionsR(E,z) for Veyxacrand Vi, at the same three
velocities are shown in Figs(®—6(c), as they converge to
the reflection probabilitiesR(E) for the exact and hybrid

potentials, was found to be: ifa), R=6.91x10"° and
3.99x10 %, in (b) R=0.4948 and 0.4192, and ift) R

Fig. 8 or at the badlandésee Fig. 7.

Overall, if one is interested at the reflection probability for
a given potential barrier, one can get good approximate re-
sults by using one of the three models depending on which
energy regime is considered. The first step to such an ap-
proximation is to fit the two parameters, namely, the height

=0.999 7389 and 0.997 813 4, respectively. In the first, anaf the barrier and the curvature at its top, for each case con-

last, example withv =20.0 cm/s, and)=3.0 cm/s, the en-

sidered.
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FIG. 10. Comparison of the reflection probabili(E)=|R|? FIG. 11. In(a), we compareé/q,,.(solid line) andV,, «;(dashed

for the exacWVq,,iand Lennard-Joneg,, ;potentials as a function line) for values ofC, corresponding to Fig. 18), i.e., a barrier with

of the incident velocityv. In (a), both have the same heigWit,ax viop=10.0 cm/s. The potential without retardation is shifted by
(or vip=10.0 cm/$, and in(b), both have the sam€, (or laser  225.9% to the left to overlap withVe,,ci(See Table ). Veyqhas a
intensity which produces different barrier heights{;=17.53 longer tail and a faster decrease at smaller distances\hap.

cm/s for Veyap @nd 10.0 cm/s oV, o). In figure (b), we also  We also show the energies corresponding to three velocities,
shifted the exact curves by 7.53 cm/9.877<10 % a.u. to super- namelyv =12.0, 10.0, and 8.0 cm/s. Ih), (c), and(d), we plot the
pose it with the Lennard-Jones curves: although still small, thebadlands for the same three velocities: here again, the curves with-
shape difference is larger than (a). out retardation have been shifted by 225.80 explicitly show any

difference for the case with retardation.
IV. RESOLVING RETARDATION EFFECTS

long-range form ofV., has a more extended tail than

ﬁWte now ttl:m ogr a_ttentu;ln t?. the de(:jtectmntof re;tarda;qonvno et~ We illustrate these observations in Fig.(d]1 where
effects in above-barrier reflection and quantum unnemgvno . has been shifted b)znoret_zexact to overlap with

Retardation affects the reflection probability curves in two max =~ °max S
different ways: by shifting their reflection threshold and byVeXﬁCt' Indeed, one observes. that, ; (dashed ling is

changing their shape. Using the technique described abov%"ghtly larger thanVexac, (splid line) at smaller distances,
we evaluate the reflection probabilifg(E) for sodium at- ahd vice versa at larger distances. On the same graph, we

oms approaching a dielectric infinite wall with=1.805 (or show three different kinetic energies corresponding to ve-

_ - . . locities of 12.0 cm/gabove barrigy; 10.0 cm/s(or vy,p), and
6_3'2.58)' There are two distinct ways in which an ac;ual%o cm/s (below barriey. The corresponding badlands are
experiment can be performed. One can keep the intensity g lotted in Figs. 11b), 11(c), and 11d), respectively. As in

the laser constant and change the energy of the incomin . oret  exact:
atoms, or, alternatively, keep a constant energy and vary th ), the curves fol/y, have been shifted bgfr,™ zqa'in

intensity of the laser. We show below that in both casedrder to better visualize the differencesdn. In Fig. 11(b),

retardation shifts the threshold for reflection. However, theVe notice thatox reaches slightly higher values e,

change in the shape of the curves is mainly observable as ofgnce the slightly largeR(E) [see Fig. 1(8)]. Similarly, for

varies the intensity of the laser and scans different regions df <Utop: the total range spent withh ~1 is more extended
the attractive potential. Or Vexact than for Vi, o [SEE Fig. lﬂc)], Igadmg to less
tunneling or more reflection, as noted in Fig.(d0

In the second situation illustrated in Fig. (bD we con-
sider a case where the intensity of the laser is fixed, the two
We compute and compare the reflection probabfiiE) curves haveC,=9.877x 10~ 1° a.u. corresponding to the po-

for two effective potentialsVe,ct (With retardation, and  tentials of Fig. 8a). We notice that the threshold is different
Vo retWith the Lennard-Jones atom-wall interactiovithout  for the two curves, reflecting the difference in the height of
retardation. We first comparéR(E) for barriers of the same the barriers(corresponding tov,,=17.53 cm/s and 10.0
height Vma=4.378<10° ' au. or, equivalently,v,, CcM/S for Ve and Vo e respectively. We shifted the
=10.0 cm/$ and two different values of,. The potentials curve with retardation by 7.53 cm/s to overlap with the curve
are depicted as the dashed line in Fige)3without retarda-  without retardation, in order to detect any effect in the shape
tion) and solid line in Fig. &) (with retardation. Cg of R(E). Once again, the difference is small: the curve for
=9.877x10 10 a.u. for the case without retardation and Ve is slightly less steep than fo¥,, . By shifting the
Co=5.375x10 1% a.u. for the case with retardatiofsee curve R(E) for Ve, We actually compare twdR(E)
Table Il). The calculated reflection probabilities are given in curves with different energy scales, because of the nonlinear
Fig. 10a). Both R(E) curves are basically identical: no sig- relationship between andE. This amplifies the differences
nificant retardation effects can be detected. The curve witlobserved in the shapes &(E).

retardation lies slightly above the curve without retardation From the two situations illustrated in Fig. 10, one con-
since the potential with retardation is less attractive: thecludes that by varying the velocity of the incoming atoms,

A. Fixed potential
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function of the laser intensit¢,. The area®\; andA, correspond

FIG. 12. Comparison of the reflection probabili§(E) = |R|? to above bar_rier reflection an_d qu_antum t_unneling, respeéziively, and
as a function ofC, for the exact(with retardation and Lennard- they are def'n_ed_ _by the ve_rtlcal line cutting the curvgRjt=0.5
Jones(no retardationpotentials, for three different incident veloci- 0cated(by definition at Co=Cy,.
ties: 10.0 cm/s in@), 6.0 cm/s in(b), and 3.0 cm/s ir(c). Near the
classical threshol@,=C*, (Vma=E), the reflection probability  ing the potentials in Fig. 3 and the corresponding numbers in
increases from zero to one. These thresholds are shifted by theaple I1. For each case, the location of the top of the barrier
retardation effects. The shifts are larger for higher velocities.at C,=C* is moving out as the is decreased. The barriers

— 10 H — 10 H )

They are 4.50210 *" a.u. in (@), 4.072<10" " a.u. in (b), and o4 4o 1o threshold cases of Fig.(aRare depicted as the

3.904<10°1° a.u. in(c). The S shape of the curve results from : ) )
quantum effects and is also sensitive to retardationvAs de- dashed curve of Fig.(8) (no retardationand the solid curve

creased, thi$ shape becomes steeper. To illustrate the variation inOf Fig. 3(d) (with r?tardat'o')" for which zpa,= 2243_'430 and
shape, with and without retardation, we shift the curves without2017-Bo, respectively, and the change @=C* is 4.502
retardation by the differences @*. x 10 10 a.u.(see Table u Slmllarly, Flg 1Ib) Corresponds
to the dashed curve of Fig(l® (no retardatiopand the solid
only a threshold change could be measured, the difference icurve of Fig. 3e) (with retardation with z,,,=2614.%, and

the shape ofR(E) being extremely small. 2416.9,, respectively, and\C* =4.072<x 10 1° a.u.; and
Fig. 11(c) corresponds to the dashed curve of Fifc)3no

B. Scanning the attractive potential retardation and the solid curve of Fig.(8 (with retardation

by varying the laser intensity with z,,,,=3022.2, and 3000.4,, respectively, andAC*

A simpler and better experimental setup is to have a- 3:904X 107*%a.u. So, aw is reducedzyay is moved out,
source of slow atoms incident on the prism with a givenbUt since the retardation effects reduce the strength of the
velocity, and to change the shape and extent of the barrier bittractive atom-wall potential with respect to the Lennard-
varying the intensity of the laser, or, similarly, the value of Jones case, the evanescent potential has more relative
Co. As C, is decreased, the barrier is lowered and movedstrength and therefore a small€¥ is required to get the
out. By doing so, one probes different regions of the atomsame barrier height. The farther omt,, is, the weaker
wall potential and at different rates. Vaomwan, @nd the smaller the difference between the thresh-

We chose incoming atoms at three different velocities rel-olds C* with and without retardation.
evant to future experiments: 10.0 cm/s, 6.0 cm/s, and 3.0 It is visible from Fig. 12 that the shape of the reflection
cm/s. For each velocity, we computed the reflection probprobability curves for potentials with and without retardation
ability curves as a function o, for the potentials with and differs. To quantify this quantum effect, we define, as shown
without retardation effects. The results are shown in Fig. 12in Fig. 13, two regions of areA; and A, delimited by the
For a given energy (or velocity v), as one change§,, vertical line atC,=C,, intersecting the curve @&k =0.5.
one reaches a valug,=C* which is the threshold for clas- This almost corresponds to the value ©f=C* giving a
sical reflection, for which/,,,,= E. We observe a shift in the barrier of height corresponding to the atom velogfigre 3.0
thresholdC*: for the curve with retardation, it is located at cm/9. In fact, in Fig. 13, Ii€,,,= —22.291 a.u. which is very
smaller values o, than for the curve without retardation. close to I'€*=—22.275 a.u(see Table IlJ. We defineA;

We shiftedR(E) without retardation by the difference & andA, in respect taC,,, because the exact determination of
to illustrate the difference in shape between the two curvesC* would be experimentally more difficult. Notice here that
As one can see from Figs. (#-12c), as we reducé& (or  classically, the reflection probability curve would be a step
v), the location of the curves with retardation is slightly function located aC*, which is well approximated bZ,,:
moved to lower values o€, but the curves without retar- the curve forC,<C;,, represents the effect of above-barrier
dation are more affected. Moreover, the shift between theuantum reflection, and the curve fGy>C,, the effect of
two sets of curves for a given value widecreases slightly as quantum tunneling. Equivalently, is a signature of above
we lower the velocity. This can be understood from examin-barrier quantum reflection amtl, a signature of tunneling.
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TABLE Ill. Quantum reflection and tunneling signatur€s,, is T I

the value ofC, that givesR=0.5 while C* is the value ofC, for ?i:g L (@Gt V;e I @Cw V\=/3 1
which Ve, =E (0 viop=0). Ay andA, (in units of 10 a.u) are @ 5, ¥ T v
defined in Fig. 13 and represent above-barrier reflection and quan's 2o b T E T —E
tum tunneling, respectively, for the curves of Fig. 12. SimilaBy, I e S A S | TS
andB, denote above-barrier reflection and quantum tunneling, re- ¢ —— W A e e
spectively, for the curves of Fig. 18, +A, andB,+B, are mea- 50 (€ Cyp 1t mc, ]
sures of the total quantum signature. For all quantities, we give the g 4.0 L 1t ]
ratio ret./no ret. As the velocity is reduced, the effect of retarda- :.o Zg H 1t .
tion is more pronounced. Tl N 1[T7 AN r ]
Quantity Type v=10.0cm/s v=6.0 cm/s v=3.0 cm/s 50 E () Cypra 1F (o ]
In Cyp, ret.  -21.352  —21.815 22291 3.0 . it ]
noret. —20.739 —21.019 —21.232 79 2.0 S I ) ]
> 50 s /"4\\___‘ e
In C* ret. —21.344 —21.805 —22.275 0 2|0I00 40I00 60‘00 8000 210"00 40‘00 GOIOO 8000 ZOI(IJO 40.00 60.00 8000
no ret. —20.736 —21.016 —21.230 Distance z (a.u.) Distance z (a.u.) Distance z (a.u.)
FIG. 14. Potential curves with and without retardatiof.,e;
A ret. 3.2350 2.6049 2.1485 and V,, ) depicted to explain Fig. 12. Ifa), (b), and (c), E
(10 % a.u) no ret. 4.0013 3.4540 2.9779 =2mv? with v=10.0 cm/s, in(d), (), and(f), v=6.0 cm/s, and in
ratio 0.8085 0.7542 0.7215 (9), (h), and(i), v=3.0 cm/s.C, (or the laser intensitywas chosen
in (b), (e), and(h) to give reflection probability =0.5 in all these
A, ret. 3.5009 2.8654 2.4245 cases, namely%):Cl_,z. For Vgyact C1p2 i5105.333i< 10710 a.u. in
(1071au) noret. 42543 36076 32683  (D)3356¢10  au i) and o 7 200 fdf"lo'”(h);.w(h')'e or
: noret C12i8 9. a.u.in(b), 7. a.u.in(e), an
ratio 0.8229 0.7749 0.7418 6.013x 10 *° a.u. in(h). Equally spaced points in Fig. 12 on both
sides of C;=C,, for these six cases are depicted in the other
At A ret. 6.7359 54703 4.5729 graphs, with a spacing af=5.0x 10" ! a.u. V. is higher than
(10*au) no ret. 8.2556 7.1516 6.2462 ' for Co=Cyp—A, and vice versa forC,,+A, because

ratio 0.8159 0.7649 0.7321 Vaiomwa iS less important foNe,.o. hence a change i€, has a
stronger impactV, . always has a more extended tail.

B, ret. 0.067 96 0.090 89 0.1289
(a.u) no ret. 0.043 77 0.050 64 0.05419 height and shape betwe&fy,,;and VIS decreasing as
ratio 1.553 1.795 2.379 well. This is related to the nonlinear dependence of the ef-
fective potentials onCgy: for a higher value ofC,,,, the
B, ret. 0.059 24 0.07515 0.09826  optical potential is more dominant, and a changen its
(a.u) no ret. 0.04031 0.04595 0.04986 Vvalue has a stronger effect than for a smaller valu€ gf for
ratio 1.470 1.635 1.971 .
B,+B, ret. 0.1272 0.1660 0.2272 5
(a.u) no ret. 0.084 08 0.096 59 0.01041 g 10
ratio 1.513 1.719 2.183 05
0.0
2.0
Looking at the overlapping curves on Fig.(&2 we find 15
that R(E) is larger for Vg e than for Vgt when Cy 3 10
<Cy2, and vice versa whe@,>C,,. In other words, the 05
curve with retardation is steeper than the curve without, and
the difference is increased asdiminishes. In order to un- 2.0
derstand the reason for the shape differenc&{f) with 15
and without retardation illustrated in Fig. 1®eyond the _ 1,
shift in the value ofC*), we plot in Fig. 14 the potential © 05
curves for the three values of incoming velocities<10.0, o
6.0, and 3.0 cmjs and for each velocity, we consider ) 1 . !

0 2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
three values ofCy: Cyp— A, Cypp, andCypt+ A (WhereA Distance z (a.u.) Distance z (a.u.) Distance z (a.u.)

=5.0<10"* a.u). The energies corresponding to the three £y, 15, The badlands for the potentials of Fig. 14. For
velocities are also drawn for each graph. The correspondingpoye-barrier reflection corresponding(®, (d), and(g), the bad-
badlands are shown in Fig. 15. As was already noted in Flgands forV,,, erare more prononuced than fag, .., hence a larger
11, we observe thaV,,. is more extended at large dis- reflection probability. For quantum tunneling correspondingcio
tances, and that the variation \f},, ¢ iS more pronounced. (f), and (i), the badlands folVg. are more extended than for
As v is reduced, the shift iz, and the difference in both V,, ., leading to less tunnelinpr a larger reflection probability
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which the nonaffected atom-wall component is relatively 10 [ ) vet000me

more important. 08 _ Lihret
The increasing difference iR(E) for decreasing veloci- %z 08 ----noret.

ties despite the fact that the barriers actually look more alike o4 =™~ 7 ’;‘ésg:*ed

can be understood by examining the badlands of Fig. 15. In 02 e

Figs. 18a), 15(b), and 1%c), we shows\ for three values of 08T o S

Cy for v=10.0 cm/s. ForCy<Cy, in (a), the badlands o8| _Wm'q ot

without retardation(dashed lingsare higher and more ex- " 06 | ----noret

tended, hence the smaller above barrier reflection probability = o.a | === noret shifted

for Veyaer. I (b) R(E)=0.5 by construction, and we do not oz | by 07885

observe a significant difference in the size of the region spent 00 r : -

by A ~1. For Co>C,,, shown in(c), we note a more ex- op | @ V0oms

tendeds\ for V.o, hence a larger value fa(E). Asv is o o [ oo Wi et /

decreased, these differences in the badlands become stronger™ [ —-— noret.shified i

(see Fig. 15 and so do the differences in the probability 02} by 1.0445 g

curves of Fig. 12. 0.0 . A . 7 . \
From thegabove discussion and the curves shown in Fig. O e O ey T e e e

12, it is tempting to conclude that retardation effects reduce

the quantum signature in the reflection probability curve. FIG. 16. Same as Fig. 12, but as a function o€} Because of
But, as we mentioned before, retardation effects increas@e logarithmic scaling, the smaller values@ are enhanced, and
slightly R(E) for constant effective potentials of the same the curves Withgut retardation are steeper, _in contrast to Fig. 1_2.
height[see Figs. 1&) and 11. Moreover, as was noted in The qgantum signature is amplified, especially the above-barrier
[17] for a conducting wall, retardation effects enhancereflection that occurs at smaller values@y.

R(E). This apparent contradiction can be resolved by realyaiion has a stronger effect at lower Moreover, from the
izing that, in fact, we are comparing two very different types atios ofB, andB,, we again find that above-barrier reflec-
of experimental setups. In Fig. @ and[17], the potential is  tion is more affected by retardation, although in the reverse

fixed and we compute the reflection probability as a functiorprder. That difference is also amplified by the logaritmic
of the energy or velocity of the incoming atoms. This setupscale.

really evaluates the effect of retardation on incoming atoms.
On the other hand, the situation EXp|OI'Ed in Flg 12 corre- V. CONCLUSION AND DISCUSSION
sponds to a multiple set of experiments: for each value of

Co, the potential is different, and therefore comparii¢E) We conclude that retardation effects could be observed in
for variousC, is comparing different potentials. this system and that, in general, quantum effects may be used
We have computed\; and A; for the various cases of for very sensitive measurements. Unlike reflection in the
Fig. 12. They are listed in Table Ill. As described above,c|assical domain, quantum reflection depends on the details
retardation affects the quantum signature more strongly af the potential, both at short and large distances. In the
lowerv. The ratio ofA; + A, with and without retardation is  classical regime, i.e., for reflection experiments that could be
reduced, indicating a weaker quantum signature with retarproperly described by classical mechanics, reflection yields
dation than without. One also notices that above-barrier recan be used to identify thresholds. In the semiclassical re-
flection (ratio of A;) is slightly more affected than tunneling gime, the yields are also sensitive to the curvature near the
(ratio of A;). Forv=3.0 cm/s, the effect of retardation is of top of the barrier. Quantum reflection probabilities are deter-
nearly 30%. mined by the complete potential curve. As we have demon-
In Fig. 16 we plot the same results f&(E) that were  strated, identifying and using parameters in the quantum dy-
presented in Fig. 12, this time as a function dfdnbecause namics regime, i.e., looking for experiments that cannot be
it allows the comparison with experiments where averagingiescribed by a semiclassical approximation, is a promising
over the Gaussian profile of the laser beam is relef/aft  new way to study long-range and short-range atom-surface
BecauseC, takes on smaller values, the curves with retardainteractions.
tion are more affected than those without: most of the points  Finally, we would like to comment on some relevant is-
of the previous discussion seem to be reversed. The shift isues that were not considered in our work. While we have
threshold I'€* is larger asv is decreased, and the curves used the most accurate available calculations, to our knowl-
without retardation(dashed linesare steeper: the quantum edge, for the atom-wall interaction, and have given a com-
signature appears to be stronger with retardation. Althougplete quantum treatment to the center-of-mass motion of the
the logarithmic scale enhances the smaller valueSpand  atoms, we still relied on the following simplifying assump-
hence amplifies the signature of above-barrier reflectionions, justified by the experimental conditions that we have
more than the quantum tunneling, it is still clear from Fig. 16considered. First, we neglected surface roughness. Studies of
that retardation has more influence at lower velocities. Assurface roughness effects indicate that the mirror allows for
previously, we can quantify the quantum signature by evaluspecular reflection if the surface is flat at the atomic scale
ating similar areas as,; andA,, defined this time as an [29]. Note that, for the mirror to be useful for atom-optics
integral over II€,: we call themB; and B,, respectively. applications, it is essential that the reflection process be co-
Their values are also given in Table Ill. Again, by comparingherent. Second, we neglected the finite response time of the
the ratios ofB; + B, as a function ob, we notice that retar- mirror images in the dielectric, which seems reasonable since
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the atoms are moving very slowly. The effect of the response R R 1
time for the rearrangement of charges in the bulk forming the 4 “ =T, (A4)
mirror was studied for metdl30], but to our knowledge, / T

such results are not available for the rearrangement time of

the dipole polarizations in dielectrics. Third, we treated the *
atom as a two-level system, and assumed that no internal < 4 2 Q. (A5)
transitions take place during the reflection. Observed effects T, T*/

that go beyond the two-level model include state-selective

properties of the reflectiof,31], cooling during the reflec- The second equation implies tH£{|=|R/|=|R/|. Substi-
tion through a spontaneous Raman transition between twgting in the first equation, we obtain

hyperfine levels[16,32, and, in general, an interplay be-

tween internal state transitions and the center-of-mass mo-

tion [33]. Further, we did not take into account the depen- T/zi(1—|R|2), (AB)
dence of the dielectric constant on frequency, e.g., in the T*/

calculations that gave the potential curves for the atom-

dielectric interaction using Ed5). Finally, looking only at  which, in turn, implies

reflection probabilities, we did not study the reflection pro-

cess in the time domain and we did not look at wave packets. (phase off )= (phase off )= 6. (A7)

Clearly, some of these issues should be addressed in future
research. - . '
Similarly, from the relation betweeR , andR -, we find
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APPENDIX A: RECIPROCITY RELATIONS R/E U_z T=|R/| , (A10)

In this appendix, we review the reciprocity relations for
the reflection and transmission amplitudes. We consider a
one-dimensional potential that goes upliift to right) from T,=—-—"A= —|T/|2, (A11)

a constant valu&/, at z— — to a constant valu®, at z v 1 k
—+oo (with V,<V,). For a particle of masm and kinetic
energyE incoming from—o, one has v T T k
T,="-LL=4T 2 (A12)
Z— —® Z— + vy 1 ka
gikizy R/efiklz - T/eik22, (A1) We get
where k1=\2m(E—V1)/ﬁ and k2:\2m(E_V2)/h R/ R:R/:R/:|R|2, (A13)

andT - represent the uphill reflection and transmission am-

f)cl)ltllé(fjteiss, respectively. The downhill relation going from right and since 7= 1—R/:1—|R|2 and T.=1-R =1
—IR[%,

T/e_ileHe_ikzx‘l‘ R/eikZX, (AZ)

andR_, andT_, now represent the downhill reflection and 7=7,=7, or %|T/|2=%|T/|2. (A14)
transmission amplitudes, respectively. Dividing the first rela- 1 2

tion by T ~ and its complex conjugate b1]*/, multiplying

the first relation byR ,, and adding them together, one gets APPENDIX B: REELECTION PROBABILITIES

FOR THE MODEL POTENTIALS
RR, 1
T, +T_* e In this appendix we obtain the reflection probabilities for
7 the model potentials of Eq$23), (24), and(25), by exactly
e kxR elkeX, (A3) solving the corresponding stationary Satirger equations.
A general solution to the stationary Schneger equation
By comparing with Eq(A2), one must have with the potentialV e is given by[35]

—ikgx g
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ol 2 taking the limitz—c and identifying the asymptotic coeffi-
Yeost{ 2)=A cosh™ 7 cients,
1 u kil u ki1 (2 lim l//coshziexp(—ikzw R°°S"e><p(i|<z). (B9)
XFiztot g gt TS g 2 T Teosn
z 1l Z The reflection probabilityR.=|R,sd? for the potential
+B sml'( Z) cosh'* Z) VIS Obtained in a similar way by finding,s. and x5 that
would satisfy
u ikZ3 u ikZ 3 (z)
X,F|l=+ =+ —,~+=-——,=;—sint?| = ||, ) 2 )
“ha2 242 22 ¢ im ose=\ Trexili (2], (89)
(B1) o
o x? 1 .
whereA andB are constants, satisfying H(2)= 7@ In x+ 5arg r(1/2+ia), (B10)
z=0)=A, B2
Yeost ) (B2 taking the limitz— and identifying the asymptotic coeffi-
IYeosh cients,
—| =B/ (B3)
Iz |, 1 /2 Rosc [2
z=0 . . 0SC .
. lim wosc:-l—_ EGXF[—I(/)(Z)]-FT EeXliHﬁ(Z)]-
A general solution to the stationary Schnoger equation z— os¢ osc
with the potentiaV. is given by[36] (B11)

Note that exp{ikz) and expikz) are left and right moving,
(B4) respectively, While\/2/|z|exp{—'i¢(z)] and \'/2/|z|exp:i¢(z)]
are inward and outward moving, respectively.
wherev and u are constants, satisfying Finally, the reflection probabilityRy,=|Rn? for the
potential Vi, is obtained by findingv,y,=vosc and wpyp

[IT(L/A+ial2) ., = Wosc that would satisfy
lﬂos((Z—O)— mz (v+ ,bL), (B5)

2
lim - gny= \&exr{iqﬁ(Z)], (B12
V4 — ). o=
(B6) fmdm_g thenAhyb gnd Bhyn fro_m the continuity of the_ wave
function and its first derivative at=0, taking the limitz
The reflection probabilityR ;osi= |Reost]? fOr the potential — and identifying the coefficients,
Vosnis obtained by finding a specific solution to the Sehro
dinger equation, i.e., a choice &f= Ay, and B= B, for

thosd 2) = vW(a,2\2v0/ ) + pW(a, =2\ 2v,/7),

IT(3/4+ial)2)]
IT(1/4+ial2)|

Jd
¢Osc|z=0= —V2vo/¢

0z

; 1 . Rhyb .
im pyp=——exp(—ikz) + —bexp(|kz). (B13)
* !

I
Eq. (B1) that would satisfy 2 Thyb Th
lim eos=exp—ikz), (B7) These straightforward derivations give the reflection prob-
z——o abilities of Egs.(27)—(29).
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