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The potential impact of quantum computing has stimulated a world-

wide effort to develop the necessary experimental and theoretical resources. In

the race for the quantum computer, several candidate systems have emerged,

but the ultimate system is still unclear. We study theoretically how to re-

alize atomic Fock states both for fermionic and bosonic atoms, mainly in

one-dimensional optical traps. We demonstrate a new approach of quantum

computing based on ultracold fermionic atomic Fock states in optical traps.

With the Pauli exclusion principle, producing fermionic atomic Fock

states in optical traps is straightforward. We find that laser culling of fermionic

atoms in optical traps can produce a scalable number of ultra-high fidelity

qubits. We show how each qubit can be independently prepared, and how

to perform the required entanglement operations and detect the qubit states
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with spatially resolved, single-atom detection with adiabatic trap-splitting and

fluorescence imaging.

On the other hand, bosonic atoms have a strong tendency to stay to-

gether. One must rely on strong repulsive interactions to produce bosonic

atomic Fock states. To simulate the physical conditions of producing Fock

states with ultracold bosonic atoms, we study a many-boson system with ar-

bitrary interaction strength using the Bethe ansatz method. This approach

provides a general framework, enabling the study of Fock state production

over a wide range of realistic experimental parameters.

x



Table of Contents

Acknowledgments v

Abstract ix

List of Tables xiv

List of Figures xv

Chapter 1. Introduction to Ultracold Atomic Physics and Atomic
Fock States 1

1.1 Cooling of atoms . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sisyphus cooling and optical molasses . . . . . . . . . . 3

1.2 Trapping and storing of atoms . . . . . . . . . . . . . . . . . . 10

1.2.1 Magnetic traps . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Optical dipole trap . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Magneto-optical traps . . . . . . . . . . . . . . . . . . . 16

1.3 Bose-Einstein condensates . . . . . . . . . . . . . . . . . . . . 17

1.4 Atomic Fock states and quantum computing . . . . . . . . . . 18

1.5 The DiVincenzo criteria for quantum computing . . . . . . . . 18

1.6 Interacting many-boson systems and the Bethe ansatz method 19

1.7 Organization of the dissertation . . . . . . . . . . . . . . . . . 21

Chapter 2. Quantum Computing with Ultracold Fermionic Atoms
in Optical Traps 23

2.1 Preparation of fermionic Fock states . . . . . . . . . . . . . . 24

2.2 Simulation models . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Laser-culling . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Adiabatic trap-splitting . . . . . . . . . . . . . . . . . . 34

2.3 Fidelity of preparing fermionic atoms in ground Fock states . 36

xi



2.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Entanglement generation and implementation of universal gates 44

2.6 Qubit State Detection . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Sources of decoherence . . . . . . . . . . . . . . . . . . . . . . 50

2.8 The DiVincenzo criteria . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3. Calculations of Atomic Fock States Using Bethe
Ansatz 55

3.1 Strongly interacting atoms . . . . . . . . . . . . . . . . . . . . 55

3.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . 57

3.3 The perturbation and variational solutions . . . . . . . . . . . 60

3.4 Bethe Ansatz solutions . . . . . . . . . . . . . . . . . . . . . . 63

3.5 More about the single-particle energies . . . . . . . . . . . . . 70

3.6 Atomic Fock states . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 4. Conclusion 81

Appendices 83

Appendix A. Controlling laser power, laser frequency, and tem-
perature 84

A.1 Basics of PID control . . . . . . . . . . . . . . . . . . . . . . . 85

A.1.1 Feed forwards . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Lock-in amplification . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Saturated absorption spectroscopy . . . . . . . . . . . . . . . 92

A.4 Frequency controls in a semiconductor diode laser . . . . . . . 96

A.5 Temperature Control . . . . . . . . . . . . . . . . . . . . . . . 98

A.6 Laser power control . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix B. Issues Related to Bethe Ansatz 102

B.1 Truncations on the boundary conditions in Bethe ansatz method 102

B.2 Valid Bethe ansatz solutions . . . . . . . . . . . . . . . . . . . 107

B.3 Energy-level ordering of Bethe ansatz states . . . . . . . . . . 109

Appendix C. The Wentzel-Kramers-Brillouin (WKB) method 111

xii



Bibliography 117

Index 129

Vita 131

xiii



List of Tables

1.1 The Mid-Level Quantum Computation Roadmap: Promise Cri-
teria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A.1 Ziegler-Nichols tuning method . . . . . . . . . . . . . . . . . . 87

xiv



List of Figures

1.1 Examples of magnetic sublevels and transition matrix elements.
Due to the selection rule of electric dipole transition, a tran-
sition between substates with equal mF must absorb or emit
a photon with linear polarization and that between substates
with mF ’s differing by ±1 must absorb or emit a photon with
σ± polarization, respectively. The numbers by the lines con-
necting a ground and an excited state are the Clebsch-Gordan
coefficients for the corresponding transition. a Level diagram
for a bosonic atom whose ground states have quantum numbers
F = 1, mF = ±1, 0 and excited states have quantum num-
bers F = 2, mF = ±2,±1, 0. b Level diagram for a fermionic
atom whose ground states have quantum numbers F = 1/2,
mF = ±1/2 and excited states have quantum numbers F = 3/2,
mF = ±3/2,±1/2. . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Polarization gradients in one-dimensional optical field. The sur-
faces (red) represent the trace of the end of the electric field
vectors at various positions z over a period of the wave oscil-
lation. The lines (black) highlight a few positions z1, z2, · · · .
a. σ+-σ− configuration. The laser field is formed by two cir-
cularly polarized, counter-propagating beams with opposite he-
licity. This configuration induces a static magnetic field in the
frame of a moving atom whose hyperfine splitting causes a fre-
quency shift in addition to the Doppler shift. b. lin⊥lin con-
figuration. The laser field is formed by two linearly polarized,
counter-propagating beams with orthogonal polarization planes. 7

1.3 a. Magnetic coils for a Ioffe-Pritchard-type trap. b. Magnetic
trapping potential of a Ioffe-Pritchard trap in the x-z plane. . 12

1.4 Rabi oscillations as these occur in 2-level atom driven by coher-
ent laser field with detunings 0 (blue), 3γ (purple), 6γ (yellow),
and 9γ (green), where γ is the absorption peak width. The av-
erage population in the excited state is proportional to δ−2, as
δ →∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xv



1.5 a. Schematic drawing of a magneto-optical trap. Three orthog-
onal pairs of counter-propagating laser beams converge to the
trap center(shown as red directed lines). All laser beams are
red-detuned with respect to the resonance frequency. A pair
of anti-Helmholtz coils (shown in gray, the arrows denotes the
direction of current) generate magnetic fields (shown as black
lines). The laser beams converge onto the point with minimum
magnetic field, where atoms are collected and trapped (shown
in blue). The laser beams are also used for optical molasses with
sub-Doppler cooling mechanism. The six circular lines denote
the helicities of the circular polarizations. b. The difference of
the Zeeman shifts as function of position in a 1D MOT. δ is the
laser detuning. Atoms are confined approximately to [−x0, x0]
(the gray area). . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Steps used in producing ultra-high-fidelity qubits. I. A degen-
erate Fermi gas, produced by evaporative cooling, whose in-
teraction strength is tuned to zero (B ≈ 0). II. Adiabatic
laser-culling removes all of the atoms except a pair of atoms in
the ground state of the trap which have opposite spins, follow-
ing the Pauli exclusion principle. Due to the applied magnetic
field gradient, the two spin states experience different potentials.
Only the potential for the |↑〉 state is shown. III. An adiabatic
trap-splitting separates the pair into two adjacent micro-traps.
Potentials for both spin states are shown (solid and dashed). . 25

2.2 The trapping potentials used in the simulations. a. Truncated
harmonic trap. The truncation energy Et and truncated trap
size (or simply trap size) zt are shown. b. Truncated harmonic
trap with a positive magnetic gradient. The trap size, z, is de-
fined as the length of the parabolic part in the potential profile.
Dashed lines denote the level of the ground and first-excited state. 27

2.3 Exact numerical calculation for truncated harmonic trap with
trap size z = 4.14. Dashed lines denote the eigen-energy level
of the ground and first-excited state. The trapping potential
of the truncated harmonic trap is depicted (dot-dashed). The
unit of energy is ~ω and energy reference is set at the bottom
of the trap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xvi



2.4 Comparison between exact numerical calculations and WKB
approximation. a. Ground-state wavefunction comparison at
fixed trap size z = 4.14. The left vertical axis is the probabil-
ity density; the right axis depicts the trapping potential (dot-
dashed) and energy level. The ground state wavefunctions of
the direct numerical calculation (solid) is compared with that
obtained with the WKB method (dashed). b. Ground-state
eigen-energy as a function of the truncation size z. The ver-
tical lines show the ionization thresholds for atoms in the first
(solid thick), second (solid thin), third (dot-dashed), and fourth
(dashed) excited states. . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Laser-culling simulation model. Parameters used in the simu-
lation: the trap size is 4.4x0, the magnetic force is 0.5~ω/x0. a
Density of states (DOS). The vertical dotdashed line denotes the
barrier height of the trap. Inset: Lorentzian (solid) and Gaus-
sian (dashed) regressions of the resonance peak at E ≈ 0.365
and the unit of the horizontal axis is this peak’s FWHM. b Sta-
tionary wavefunction at E ≈ 0.365. Inset shows the panorama
of the wavefunction. c Stationary wavefunction at E ≈ 1.29. . 31

2.6 Peak width (FWHM) ratio of the excited state to the ground
state (in base-10 logarithmic scale) as function of the trap size
and magnetic gradient, in the laser-culling process. The white
color represents out-of-range color, i.e., should be colored more
than its surrounding. . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Simulation model of separating a pair of atoms in opposite spin
states. The parameters shown in this figure are d, the distance
between the energy minima (in unit of x0), and g, the force pro-
duced by the applied magnetic field gradient (in unit of ~ω/x0).
Dashed lines show the energy levels of the ground and first ex-
cited state, obtained numerically. The excitation gap is defined
as the energy difference between the two levels. . . . . . . . . 35

2.8 Excitation gap (in unit of ~ω) during adiabatic trap-splitting
for separating a pair of ultracold 6Li atoms. Red (blue) color
represents large (small) excitation gap. The horizontal axis is
the magnetic force g and the vertical axis is the distance d. . 37

2.9 Holding time (in unit of 1/ω) during the laser-culling process.
The scale of the contour plot is in base-10 logarithmic scale.
Redder color represents longer holding time. . . . . . . . . . . 39

2.10 Fidelity of laser-culling. Shown is the base-10 logarithm of the
ground state fidelity loss. Red (blue) color represents high (low)
fidelity. The white areas are out-of-range clippings: near the
left-hand side, the white areas should be redder than its sur-
rounding color; near center-top, the white area should be bluer
than its surrounding color. . . . . . . . . . . . . . . . . . . . . 40

xvii



2.11 Loss of fidelity during trap-splitting. Shown in base-10 loga-
rithmic scale. Red (blue) color represents high (low) fidelity.
We assume complete suppression of excitation by maintaining
a sufficient energy gap and keeping the process adiabatic. The
horizontal axis is the magnetic force g and the vertical axis is
the distance d. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Array of 2N optical traps. With the scalability of our system,
we can prepare a fiducial antiferromagnetic state with 2N qubits. 44

2.13 Artist’s concept of a 4×4 matrix of fermionic, Fock-state qubits,
initialized to fiducial antiferromagnetic state with 16 qubits.
Red (blue) color in the trapping potential means higher (lower)
energy. Atoms are shown as little balls, with blue color meaning
spin-up, red-color spin-down. All atoms are in the ground-state
of the micro-traps. By moving the containing micro-trap, each
atom can be made to engage in a two-qubit gate operation with
each other atom by the qubit transport technique [10]. . . . . 45

3.1 Configuration space for a 3-atom system. The space is divided
by the δ-interaction into wedged open spaces. The red, blue,
and green surfaces denotes the positions where the atom-atom
interactions take place. Together with the square-well potential,
the spaces where atoms can move freely are the so-called Weyl
Chambers [60]. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Eigenenergies of Equation (3.5) for weakly interacting atoms
with perturbation and variational methods. The zero energy
reference is the bottom of the square well. a. The average
energy per atom for a system of 2 through 17 atoms. b. The
single-particle energies of 17 interacting atoms. . . . . . . . . . 62

3.3 Bethe ansatz states for sodium atoms. The total energy of 4-
particle bound states are plotted against trap depth (a) and
interaction strength (b). The numbers at the beginning of each
energy level are the quantum numbers of the bound state. We
used the bottom of the trap as the energy zero. Trap size L =
5 µm. Transverse trapping frequency ω⊥ = 2π × 150 kHz. . . 69

3.4 Bethe ansatz single-particle energies for sodium atoms. The
energy zero is set to the bottom of the trap. The horizontal
axis is the interaction c (in unit of ~2/2mL2) and the vertical is
the single-particle energy (circle, square, diamond, and triangle
in that order). Trap size L = 5 µm. Transverse trapping fre-
quency ω⊥ = 2π × 150 kHz. Panel from a-h shows the ground
state and the lowest 7 excited states of Bethe ansatz solutions
as shown in Figure 3.3. . . . . . . . . . . . . . . . . . . . . . 71

xviii



3.5 a. Single-particle energies of 2 sodium atoms in a square well
of width 100 µm. b. Zoomed-in view of the dip in the lowest
single-particle energy. . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Gedanken experiment designed to probe the ‘single-particle’
(quasi-particle) energy. The experimental setup consists of an
ultracold atom source (S), a controlling gate (G) and a drain
(D). We assume S is full of particles while D is empty. The 1D
many-atom system (System) is embedded between the source
and the gate. The source, system, gate, and drain are sepa-
rated by δ-barriers, which may be generated by tightly focused
blue-detuned laser beams. The source and drain may be consid-
ered as reservoirs whose chemical potentials can be controlled.
The experiment is designed to detect the atomic ‘current’, which
is throttled by the gate energy offset and/or size through the
resonant tunnelling. The energy levels are drawn schematically. 73

3.7 Single-particle energies of 4 sodium atoms in Bethe ansatz ground
states. Trap size L = 5µm. a. Dependence on interaction
strengths (c). Trap depth V0 = kB × 25nK, where kB is Boltz-
mann’s constant. The dotdashed vertical line denotes the max-
imum interaction strength above which no Bethe ansatz state
of 4-atom system exists. The other two vertical lines denote
the interaction strengths of sodium (dotted) and 87Rb (dashed)
atoms at ω⊥ = 2π × 150 kHz and zero magnetic field. Inset,
the trap depth is lifted to kB × 40nK, the condition at which
all 4 atoms remain trapped to the Tonks limit. b. Dependence
of the single-particle energies of a 4-atom system on the trap
depth (V0). Transverse trapping frequency ω⊥ = 2π× 150 kHz.
Magnetic field is zero. The vertical line (dotdashed) denotes the
minimum trap depth below which no bound state of the 4-atom
system exists. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Ionization thresholds of sodium atoms with all parameters fixed
except trap depth. Only highest single particle energies of the
Bethe ansatz N -atom states are shown for N = 2 (circle), 3
(square), 4 (diamond), 5 (upright triangle), and 6 (invert tri-
angle). Trap size L = 5 µm; Transverse trapping frequency
ω⊥ = 2π × 150 kHz. The ionization thresholds (with the cur-
rent numeric calculation step size) are also ticked along the
horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xix



3.9 Map of Fock states and the calculated ionization thresholds for
sodium atoms in a 1D optical trap in the adiabatic limit. Trans-
verse trapping frequency ω⊥ = 2π×150 kHz and zero magnetic
field are assumed. The interaction strength is implicit in the
unit we adopted, since c−1 and ~2c2/m are used to make the
axes dimensionless. a. Contour plot of Fock states as func-
tion of trap depth and size; b. and c. views of cross-sectional
cuts along the lines indicated in a, respectively. The ticks on
horizontal axes give the corresponding ionization thresholds. . 77

3.10 Excitation energy gaps between ground and first-excited states
as function of trap depth for 2 (circle), 3 (square), 4 (diamond),
5 (upright triangle), and 6 (invert triangle) sodium atoms. Trap
size is 5 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 a The PID control flowchart. Arrow denotes direction of control
flow. The detector senses fluctuations in the process (red) and
sends error signal to the PID controller (labelled as P, I, and
D, respectively). The outputs of the PID controller is summed
and applied to the process to reduce the fluctuation. b. The
Bode plots of the transfer functions of the P, I, D control units
(black), and the process (red). The latter is assumed to be a
two-stage amplifier which starts to roll off at 12dB/octave at
frequency fc [46]. . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.2 The Bode plot of the response frequencies of the weighed sum
of the P, I, and D control units (black) after the PID tuning.
The transfer function of the system is characterized by a two-
stage RC-filter (red). Their product gives the overall loop gain,
whose Bode plot is shown (green). . . . . . . . . . . . . . . . . 88

A.3 a. Absorption peak as measured by the voltage output of a pho-
todiode. Without using lock-in amplification, the best locking
reference level are as shown in the dashed line and the resulted
laser frequency is one of the side points (red) of the absorption
peak. b. The decoded lock-in signal for the absorption peak.
With the lock-in amplification, an absolute reference signal at
0 volt can lock laser frequency on the center of the absorption
peak. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.4 Experimental set-up for saturated absorption spectroscopy. . . 93

A.5 a. Population distribution of the ground state (blue) and the ex-
cited state (purple) for a blue-detuned laser frequency. The ab-
sorptions distribution of the probe beam is also shown (dashed).
b. The saturated absorption spectroscopy for an isolated tran-
sition. When the peak in the dashed line and the burnt hole
aligns at v = 0, a peak appears. . . . . . . . . . . . . . . . . . 94

xx



A.6 a. Two transitions sharing one ground state. b. Two transi-
tions sharing one excited state. . . . . . . . . . . . . . . . . . 95

A.7 a. Population distribution of the ground state (blue) and the
excited state (purple) The absorption distribution of the probe
beam has two peaks corresponding to the two transitions ω1

and ω2 (dashed). b. The saturated absorption spectroscopy for
an isolated transition. . . . . . . . . . . . . . . . . . . . . . . . 96

A.8 Diffraction grating used in Littrow configuration for use in a
semiconductor diode laser. . . . . . . . . . . . . . . . . . . . . 97

A.9 PID temperature control servo circuit. Starting from upper left
are 1) a bridge with a thermistor on one of the 4 arms, er-
ror signal generation unit, 2) differential amplifier, error signal
filtering and amplifying unit, 3) integral, derivative, and pro-
portional feedbacks, 3) heater, actuator, respectively. . . . . . 98

A.10 A laser power stabilization system a The schematic drawing for
the feedback loop. The laser power in the chamber is the control
object. The laser power exiting the vacuum chamber is detected
by a photodiode. The difference between the output voltage and
a preset voltage is taken as the error signal. This error signal
is amplified and conditioned in the feedback control circuit. Fi-
nally, the circuit outputs a voltage to adjust the laser power
dissevered to the chamber. b The feedback control circuit. The
reference voltage is generated by a temperature-stabilized zener
diode. A simple integral control is used. All electronic compo-
nents in the feedback loop are of high bandwidth so that the
overall signal has a bandwidth ≥ 1 MHz. . . . . . . . . . . . . 101

B.1 Configuration space and boundary conditions for a 2-boson sys-
tem. The perpendicular dotted lines, x1 and x2, are the coordi-
nate axes. The solid lines at x1,2 = ±x0

2
denotes the square well

enclosed by potential barrier. The solid diagonal line x1+x2 = 0
denotes where δ-interaction takes place; the anti-diagonal line
x1 − x2 = 0 (dashed) denotes the additional space-reflection
symmetry. The other dashed lines are boundaries for the prob-
lem. The numbers 1-8 denote the regions that have distinct
forms of wavefunctions where regions 1 & 2, 1 & 3, 5 & 6, and
7 & 8 are related by space-reflection symmetry, respectively. . 104

xxi



B.2 Verification of the Bethe ansatz solutions using solutions at
c = 0. The title of each panel denotes the quantum numbers
that are used for the calculation; the horizontal axis denotes
the interaction strengths; the vertical axis denotes the wave
numbers of the Bethe ansatz solutions. The red bold numbers
together with the dotdashed lines in each panel denotes the
wave numbers of the solutions at c = 0. The quantum numbers
{0, 1, 2, 3} and {1, 2, 2, 3} denote states that have no valid limit
as c → 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.1 The trapping potential used for the WKB calculation. For
|x| ≤ zt/2, the trap is parabolic; for |x| > zt/2, the trap is
assumed to be flat. The truncation energy Et, truncated trap
size zt, atom energy E and classical turning point z/2 are as
shown. A patching region (gray rectangle)is constructed around
the turning point. . . . . . . . . . . . . . . . . . . . . . . . . . 112

xxii



Chapter 1

Introduction to Ultracold Atomic Physics and

Atomic Fock States

In this chapter, we give an introduction to some of the most relevant

physics and technology. We review the rudiments of cooling and trapping of

neutral atoms using laser and magnetic fields 1, on which the main topics are

based upon. We give the motivation for simulating the production of atomic

Fock states and why we choose fermionic atoms confined in arrays of optical

traps as the basic building block for quantum computing.

1.1 Cooling of atoms

Temperature is one of the most basic concepts in physics. To get an

insight on what temperature is, we need to consider a macroscopic system

consisting of a large number of atoms confined in a fixed spatial volume, for

example, atoms in an optical trap (which will be explained in later sections).

The number of accessible states of such a system is myriad, because of the

enormous degrees of freedom. The entropy of such a system is defined as the

1Some of the work presented in this chapter is done under the supervision of Professor
Daniel J. Heinzen
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logarithm of the total number of accessible states for a given particle number,

energy, etc. With its statistical definition, the temperature of this system is

the inverse of the derivative of entropy to the internal energy, with particle

numbers held constant. As is known in quantum mechanics, such a system has

at least one (sometimes more) ground state with a minimum total energy (the

ground level). For most systems, the number of accessible states at or near

the ground level is limited and scarce. The merit of physics lies in studying a

relatively simple system. Even a complex system becomes simple when cooled

to sufficiently low temperature—you get the unwanted complexities frozen out

and the target of study conspicuous.

There are different ways to interpret the cooling process under different

contexts. From the perspective of information theory, the entropy of a system

describes how chaotic the states of its constituents are. To cool a system is

to fix the irregularities. By virtue of the thermodynamic second law, entropy

never decreases in a large, isolated system. Thus to cool a system is to extract

its entropy and dump it to the environment [16, 17, 85, 87].

In statistical physics, the set of accessible states form a distribution in

phase space and each state in the set is equally likely to be occupied. In this

case, entropy is defined as logarithm of the total volume of the phase space

subtended by the set of accessible states. From this point of view, a cooling

process contracts the phase-space volume occupied by the accessible states

[70]. From the aspect of quantum statistical mechanics, an ensemble of dilute
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gas is described by a density matrix

N∑
i=1

|ai|2 |φi〉 〈φi|, (1.1)

where |φi〉 represents the eigenstate with the ith lowest eigen-energy and
∑

i |ai|2 = 1. The colder a system is, the smaller the upper limit N becomes.

Therefore in this sense, to cool a system is to press the non-zero elements in

the density matrix toward the ground level end.

Laser cooling relies on the interaction between atoms and photons,

where photons act as the entropy carriers. We examine the mechanism and

condition for laser cooling in the following subsection.

1.1.1 Sisyphus cooling and optical molasses

In a thick media, a freely moving ball eventually gets stuck in the me-

dia. This is because of the viscous force between the media and the ball which

tends to unify the motion of ball and the media. This is exactly analogous

to the classical picture of laser cooling. Let us start our analysis with the

simplest atomic model: a fiducial 2-level atom, which has one absorption res-

onance peak with center frequency ω0 and full-width-half-maximum (FWHM)

γ. The interaction between such an atom and a laser beam is described by

a series of alternating absorptions and emissions. Since each photon carries a

momentum, ~ω/c, where ~ = h/2π and h is Planck’s constant, c is speed of

light, absorbing a photon causes the atomic momentum to change. The ab-

sorptions are dominated by stimulated absorptions from the laser beam, while
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both spontaneous and stimulated emissions are significant. If a stimulated ab-

sorption is followed by a stimulated emission, it leaves no change in the atom’s

momentum. If a stimulated absorption is followed by a spontaneous emission

in random direction, the average effect is that the atom acquires momentum

in the direction of the laser beam. This acquired momentum could cause in-

creased or decreased kinetic energy with equal probability. So there is no net

cooling of the atom.

However, an additional ingredient to the above picture is the relativistic

Doppler effect, by which the actual angular frequency of the incident light

‘seen’ by the atoms is

ω∗ =
1− β cos θ√

1− β2
ω, (1.2)

where β = |~v| /c, ~v is the velocity of the atoms, c is the speed of light, θ is the

angle of the incident light relative to the direction of ~v. From Equation (1.2),

if an atom’s motion is toward (θ = 180 ◦) or away from (θ = 0 ◦) the source of

light, it ‘sees’ bluer or redder than normal. Now suppose we tune the frequency

of the laser beam to the redder side by |δ| > γ (red-detuned). Frequency

compensation from the Doppler effect happens to be that if atoms move toward

(away from) the laser source, the laser frequency is closer to (further from) the

atomic absorption resonance frequency. Therefore the overall effect is atoms

moving toward the laser source with certain speed get slowed down, while all

other atoms experience no effect. With more laser beams incident from other

directions, more atoms will be slowed down. The laser cooling experiment

based on this classical picture would be set up with 3 counter-propagating
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pairs of laser beams and each pair is orthogonal to the others [20, 41]. All

laser beams are red-detuned by the same amount. Within a certain velocity

range, wherever it is moving, an atom will be slowed down. The overall effect

is that atoms are ‘jammed’ in the laser light. The minimum temperature

reachable by the above cooling mechanism, limited by the Doppler effect, is

~γ/2kB, where kB is Boltzmann’s constant. This is because of the finite width

in the absorption resonance peak which transforms to a finite speed range in

the slowed atoms by the Doppler effect. A finite speed range means non-zero

kinetic energy range.

However, it is observed in experiment that much lower temperatures

can be reached with a slightly modified optical molasses [59]. Soon after that, a

quantum mechanical cooling mechanism with multilevel atoms in polarization-

gradient field was proposed [24, 92]. The cooling effect of optical pumping of

a multilevel atom in laser fields with certain polarization gradient was largely

ignored in the previous analysis of classical laser-cooling mechanism. Next, we

examine two cooling mechanisms that are independent of the Doppler cooling

mechanism. The first one occurs in multilevel atoms with level diagrams as

shown in Figure 1.1a in a 1D standing wave with polarization configuration

as shown in Figure 1.2a. The polarization configuration shown in Figure 1.2a

results from two counter-propagating same-frequency laser beams with circular

polarizations of opposite helicities (thus given the name σ+-σ−). The second

cooling mechanism occurs in multilevel atoms with level diagram as shown in

Figure 1.1b in a standing-wave laser field with polarization of the kind shown
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Figure 1.1: Examples of magnetic sublevels and transition matrix elements.
Due to the selection rule of electric dipole transition, a transition between sub-
states with equal mF must absorb or emit a photon with linear polarization
and that between substates with mF ’s differing by ±1 must absorb or emit a
photon with σ± polarization, respectively. The numbers by the lines connect-
ing a ground and an excited state are the Clebsch-Gordan coefficients for the
corresponding transition. a Level diagram for a bosonic atom whose ground
states have quantum numbers F = 1, mF = ±1, 0 and excited states have
quantum numbers F = 2, mF = ±2,±1, 0. b Level diagram for a fermionic
atom whose ground states have quantum numbers F = 1/2, mF = ±1/2 and
excited states have quantum numbers F = 3/2, mF = ±3/2,±1/2.

in Figure 1.2b. The polarization configuration shown in Figure 1.2b results

from two counter-propagating same-frequency laser beams with orthogonal

linear polarizations (thus the name lin⊥lin).

Firstly, let us study fiducial atoms from Figure 1.1a in polarization

gradient field of σ+-σ− configuration of Figure 1.2a. From the illustration

of the polarization field, an atom that sits still in the light field will inter-

act with a (locally) linearly polarized electromagnetic field. Thus the |g,−1〉
and |g, +1〉 are equally populated, because there is no net optical pump-

ing. However for a moving atom toward the source of the σ+ laser beam,
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Figure 1.2: Polarization gradients in one-dimensional optical field. The sur-
faces (red) represent the trace of the end of the electric field vectors at various
positions z over a period of the wave oscillation. The lines (black) highlight
a few positions z1, z2, · · · . a. σ+-σ− configuration. The laser field is formed
by two circularly polarized, counter-propagating beams with opposite helicity.
This configuration induces a static magnetic field in the frame of a moving
atom whose hyperfine splitting causes a frequency shift in addition to the
Doppler shift. b. lin⊥lin configuration. The laser field is formed by two
linearly polarized, counter-propagating beams with orthogonal polarization
planes.

it feels an electromagnetic field with rotating polarization that is reminis-

cent of σ+ light. This symmetry-breaking effect results in more absorptions

of σ+ photons than σ− photons. On the other hand, once an atom is in

state |g, +1〉, it likely gets ‘stuck’ in the cycling transitions, |g, +1〉 ⇔ |e, +1〉
and |g + 1〉 ⇔ |e, +2〉, since these transitions have bigger strengths than the

other transition |g, +1〉 ⇔ |e, 0〉. Consequently, the atomic population in state

|g, +1〉 slightly outweighs that in |g,−1〉, due to the optical pumping effect.

These extra atomic population in the magnetic sublevel |g, +1〉 scatters six-

times more σ+ photons than σ−. The faster atoms move, the faster the local

laser polarization spins, the more population imbalance, and the more photon
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scattering imbalance. In a similar way, atoms moving toward the source of the

σ− laser beam may be argued. In summary, atoms experience a viscous force

moving in both directions and this force is independent of the Doppler effect

and thus is not bound by the Doppler limit given by Equation (1.2). The only

intrinsic cooling limit of this cooling mechanism originates from the photon-

recoil energy. The lowest temperature reachable with this cooling mechanism

is

Trecoil =
~2ω2

2mkBc2
, (1.3)

where m is the mass of the atom. Note that this cooling mechanism does not

require the laser to be specifically detuned. However, in consideration of the

classical laser cooling mechanism, red-detuning is still necessary for efficient

general laser cooling.

Now we study the other sub-Doppler cooling mechanism with the fidu-

cial atoms of Figure 1.1b in polarization gradient field of Figure 1.2b, the

lin⊥lin configuration. The presence of a near-resonance laser field not only in-

duces atomic transitions, but also causes the atomic levels to shift. The light

shifts in the two state that are involved in an electric dipole transition is

∆E = ±~Ω
2

4δ
, (1.4)

where ‘+ (−)’ is for the lower (upper) level, δ is the detuning of the laser

frequency from the resonance frequency, Ω is the Rabi oscillation frequency.

Apparently, with a red-detuned laser field, the lower level shifts down and the

upper level shifts up.

8



According to Reference [70],

Ω =
−eE0

~
〈e|r|g〉, (1.5)

where E0 is the amplitude of the electric field that drives this transition, the

matrix element 〈e|r|g〉 is proportional to the Clebsch-Gordan coefficient shown

in Figure 1.1. Due to quantum mechanical selection rules, transitions with

∆m = −1, 0, +1 can only be driven by electric fields with polarizations σ−,

linear, and σ+, respectively. Therefore for multilevel atoms with different

magnetic sublevels, E0 should be understood as the amplitude of the compo-

nent electric field with the corresponding polarization. For multilevel atoms,

if there are multiple transitions associated with a single level, then the total

shift in the energy level is the sum of all the transitions. For example, for the

magnetic sublevel |g, +1/2〉, the total light-shift is

∆E = ∆E−1/2 + ∆E1/2 + ∆E3/2, (1.6)

where ∆E−1/2, ∆E, and ∆E are the light-shifts caused by the transitions

|g, 1/2〉 ⇔ |e,−1/2〉, |g, 1/2〉 ⇔ |e, 1/2〉, and |g, 1/2〉 ⇔ |e, 3/2〉 driven by the

corresponding constituent laser fields with polarizations σ−, linear, and σ+,

respectively.

As shown in Figure 1.2b, the local polarization varies between linear

and circular on the scale of λ/4. Although the total laser intensity is uniform

along the axis, for the magnetic sub-state |g, 1/2〉, the total light-shift varies on

the scale of λ/4, in the same pattern as the polarization gradient. As a result,
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the energy level of the magnetic sub-state |g, 1/2〉 becomes rugged—hills and

valleys of size λ/4 form along the standing-wave direction. In a similar way,

the energy levels of the magnetic sub-state |g, 1/2〉 is modulated. The two

have opposite signs—where it is a hill for one, it is a valley for the other.

For atoms with zero speed, the steady-state atomic population is al-

ways distributed in favor of energy valley. Therefore the population difference

between |g, 1/2〉 and |g,−1/2〉 varies sinusoidally, according to the hill-valley

pattern. For an atom that moves, it has to climb a hill in either direction.

However, as it climbs the hill, the optical pumping effect redistribute the pop-

ulations among the magnetic sub-states to renewed equilibrium with the local

polarization. Therefore, as the atom continues moving on, it has to climb out

the valley it has just dug. This is analogous to a heavy wheel rolling on a

sandy seashore. Note that though this cooling mechanism requires the laser

beam to be red-detuned, the cooling effect is not affected either by the line

width of any absorption peak, or by the Doppler effect. In fact, this cooling

mechanism can result in the same temperature limit given by Equation (1.3).

1.2 Trapping and storing of atoms

To make cooling results sustainable in experiment, we need a way of

storing atoms. There are quite a few types of storage techniques, including

various kinds of magnetic traps, magneto-optical traps, and optical dipole

traps.

Magnetic trapping relies on static magnetic field to confine atoms with
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permanent magnetic dipole moments. Since the amplitude maximum in the

magnetic field is forbidden, the center of a magnetic trap lies in a field mini-

mum. Adiabatic following assumption states that an atom’s magnetic moment

can usually follow the changing magnetic field. But this assumption can be vi-

olated with extremely abrupt changes in magnetic field, such as a sign-flipping,

where Majorana losses will occurs [66]. Optical dipole traps rely solely on the

interaction between photons and atomic dipoles to provide confinement. Be-

cause of parity symmetry, neutral atoms have zero permanent dipole moment.

Instead, an oscillating dipole moment is induced in an atom by the applied

light field which, in turn, interacts with the light field. Magneto-optical trap

(MOT) is a hybrid type of magnetic and optical traps. It combines cooling

and trapping in a single step and proves the most robust and commonly used

trap so far. We will talk more about all three types of traps next.

1.2.1 Magnetic traps

Magnetically trapped neutral atoms were first observed in 1985 [73].

The biggest advantage of a magnetic trap is that it provides the best isolation

for ultracold atoms from any interaction with photons and material (chamber

wall etc.), leaving only collisions from background gas. Since its first successful

demonstration, magnetic traps have found applications in high-resolution pre-

cision spectroscopy, collision studies, Bose-Einstein condensation, and atom

optics. We study a type of magnetic trap constructed with sophisticated con-

trols of trapping frequencies and ease of optical access—the Ioffe-Pritchard
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Figure 1.3: a. Magnetic coils for a Ioffe-Pritchard-type trap. b. Magnetic
trapping potential of a Ioffe-Pritchard trap in the x-z plane.

trap (see Figure 1.3a).

When an atom with a magnetic dipole moment is in an external mag-

netic field, an extra term will appear in its Hamiltonian,

V = −~µ · ~B

= −gµB| ~B|mF , (1.7)

where ~µ is the atomic magnetic moment, and ~B is the magnetic field, we

have chosen the quantization axis to be along the ~B direction and mF is the

quantum number. With adiabatic following assumption, the quantum number

mF remains unchanged as the atom moves in the magnetic field and then the

energy at any position is directly proportional to the absolute value of the

local magnetic field. The magnetic field produced by Ioffe-Pritchard trap is
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[53]
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z2 − (x2 + y2)/2


 , (1.8)

where x, y are the radial coordinates and z is the axial coordinate. Therefore

the trapping potential can be obtained as

V = −gµBmF

√
B0

2 +
(
B′2 −B0B

′′/2
)

(x2 + y2) + B0B
′′z2. (1.9)

From Equation (1.9), it is clear that magnetic sublevels with negative mF ’s are

weak-field-seekers and thus trappable. The trapping potential in the x−z plane

is plotted in Figure 1.3b. The trapping frequency along the axial direction is

ω1 =

√
gµBmF B′′

m
, (1.10)

where m is the atomic mass. The trapping frequency in the radial directions

is given by

ω2 =

√√√√gµBmF

m

(
B′2

B0

− B′′

2

)
. (1.11)

1.2.2 Optical dipole trap

As we discussed in Section 1.1.1, near-resonance oscillating electromag-

netic fields not only cause atomic transitions, but also light shifts in the related

atomic levels (Equation (1.4)). It is these light shifts that make optical dipole

traps possible [19, 39]. For simplicity, we study the interaction between a

strongly focused Gaussian beam and a two-level atom. The laser intensity of

a Gaussian beam is given by

I(ρ, z) = I0

(
w0

w(z)

)2

e
− 2ρ2

w(z)2 , (1.12)
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Figure 1.4: Rabi oscillations as these occur in 2-level atom driven by coherent
laser field with detunings 0 (blue), 3γ (purple), 6γ (yellow), and 9γ (green),
where γ is the absorption peak width. The average population in the excited
state is proportional to δ−2, as δ →∞.

where ρ =
√

x2 + y2, w0 is the beam waist, I0 = 2P/πw0
2, P is the total

power in the laser beam, and

w(z) = w0

√
1 + z2/zR

2, (1.13)

where zR = πw0
2/λ is the Rayleigh range.

Recall the light shifts in atomic energy levels as given by Equation (1.4),

when interacting with a Gaussian beam, atoms experience a dipole force,

F ' ± ~
4δ
∇ [

Ω2(~r)
]
, (1.14)

where ‘+ (−)’ is for populations in the lower (upper) level and ~r ≡ (~ρ, z) ≡
(x, y, z). Depending on whether it is in the ground or excited state, an atom

may be attracted to or repelled from the center of the beam focus under the in-

fluence of this dipole force. Furthermore, along the Gaussian beam axis, atoms

experience a radiation pressure due to the travelling-wave nature of the laser
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beam and may stay untrapped. During a period of the Rabi oscillation, the

fraction of time that an atom spends in the excited state is ∝ δ−2 (see Figure

1.4). On average, atoms experience an attractive force toward the center of

the beam waist if they spend most of the time in the ground state. The radia-

tion pressure is also ∝ δ−2, however the dipole force is ∝ δ−1. Therefore, with

sufficiently large detuning |δ|, both the radiation pressure and the repellent

force to the excited-state population decrease faster than the attractive force

on ground state population. Beyond some threshold the attractive force dom-

inates. In the so-called far-off-resonance trap (FORT), an optical dipole trap

produces three-dimensional confinement as well as keeping the atomic pop-

ulation in ground-state. Expanded around the energy minimum, the optical

dipole trap may be approximated by harmonic potential:

V (ρ, z) = −V0

(
1− 2ρ2

w0
2
− z2

zR
2

)

= −V0 +
1

2
mω1

2ρ2 +
1

2
mω2

2z2. (1.15)

One of the main disadvantages of the red-detuned optical trap is that

the minimum of the trap potential lies at the laser intensity maximum. This

leads to significant photon-scattering, even with big detuning [35]. A solution

is to form a blue-detuned optical “cup” where atoms are confined near the

intensity minima and spontaneous emission is thus ameliorated [25]. TEM10-

based quasi-1D optical “box” was developed in our group [45, 72], which can

provide extremely tight confinement in the transverse directions [71].
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Figure 1.5: a. Schematic drawing of a magneto-optical trap. Three orthogonal
pairs of counter-propagating laser beams converge to the trap center(shown
as red directed lines). All laser beams are red-detuned with respect to the
resonance frequency. A pair of anti-Helmholtz coils (shown in gray, the arrows
denotes the direction of current) generate magnetic fields (shown as black
lines). The laser beams converge onto the point with minimum magnetic field,
where atoms are collected and trapped (shown in blue). The laser beams
are also used for optical molasses with sub-Doppler cooling mechanism. The
six circular lines denote the helicities of the circular polarizations. b. The
difference of the Zeeman shifts as function of position in a 1D MOT. δ is the
laser detuning. Atoms are confined approximately to [−x0, x0] (the gray area).

1.2.3 Magneto-optical traps

A MOT is a hybrid trap composed of a static inhomogeneous magnetic

field and six laser beams, which contrive to provide a robust trapping potential

[83]. Because of the robustness and strong atom-capturing capability, a MOT

is frequently used to accumulate cold atoms in the early stage of an ultracold

physics experiment. A schematic of a MOT setup is shown in Figure 1.5a. In

addition to the Doppler cooling effect, the MOT also provides spatial confine-

ment for a certain range of atomic velocities. This is done through a magnetic

field gradient generated by anti-Helmholtz coils. On a suitable length scale,
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along any direction starting from the trap center, the magnetic field can be

approximately expressed as

B = B′r, (1.16)

where B′ is the magnetic gradient along a given direction (a function of the

polar and azimuthal angles of that direction), r is the radius. Usually the laser

frequency is red-detuned by ∼ 15 MHz and B′ is along the axis of the anti-

Helmholtz coils which is ∼ 10 Gauss/cm. A MOT can capture atoms up to 30

m/s. Near the trap center where the magnetic field is about zero, classical and

sub-Doppler cooling mechanism works as usual. In pure optical molasses, very

slowly moving atoms can keep wandering with little confining force. But in a

MOT, cold atoms are confined to a volume which is approximately defined by

the equation

−~µ · ~B(r) = ~δ. (1.17)

To summarize, atoms can both be captured and trapped within a MOT.

1.3 Bose-Einstein condensates

The development of cooling and trapping of neutral atoms culminated

with the successful achievement of Bose-Einstein condensates (BEC) in dilute

gases [3, 15, 26], seventy years later after its first prediction by Satyendra N.

Bose and Albert Einstein [13]. BECs provide a research platform for quantum

physics on macroscopic scale. BECs become the playground and jurisdiction of

many theories in modern physics. See references [47, 81] for more information.
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1.4 Atomic Fock states and quantum computing

Quantum computing with trapped ultracold atoms were proposed a

decade ago [50]. The earlier efforts in implementing quantum logic with neutral

atoms have focused on neutral atoms in optical lattices. However, as we note

it, neutral atoms in optical lattices has two disadvantages that hinder further

progress. Firstly, there is no individually addressable well-defined qubits in

optical lattice. Secondly, there is no effective way of measuring the state

of an individual qubit. To overcome these difficulties, some proposals were

made to use atomic ensembles as the building blocks of quantum computing

[30, 63, 64, 89].

The realization of Bose-Einstein condensation (BEC) in dilute gases

has provided a new path toward the production of atomic Fock (or number)

states. Fock states refer to the quantum states with definite particle numbers.

Trapped ultracold atoms in the ground-state of an optical trap has many

attractive characteristics for quantum computing: individual addressability,

easy manipulation, superior scalability [4, 31, 50]. Recent experimental work

has demonstrated all the necessary steps toward the realization of atomic Fock

states with ultracold bosonic atoms [21].

1.5 The DiVincenzo criteria for quantum computing

The necessary characteristics for any quantum computing candidates,

the so-called DiVincenzo criteria, have been outlined [29]. The DiVincenzo

criteria states that for a system to be a candidate for an implementation of
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quantum computation, it should

1. be a scalable physical system with well-defined qubits,

2. be initializable to a simple fiducial state such as |000 . . .〉,

3. have decoherence times much longer than gate operation time,

4. have a universal set of quantum gates;

5. permit high quantum efficiency, qubit-specific measurements;

Additionally, for the system to be compatible with requirements of quantum

information and communication, it should

6. readily convert quantum information between stationary and flying qubits;

7. transmit flying qubits between different locations with high fidelity.

Table 1.1 gives the latest status of several promising physical systems as the

building blocks of quantum computing, including that of neutral atoms in

optical lattices [67].

1.6 Interacting many-boson systems and the Bethe ansatz
method

Ultracold bosonic atoms have become the starting point for many mod-

ern physics researches. Experimental and theoretical studies have been car-

ried out toward the production of Fock states with trapped sodium atoms
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Table 1.1: The Mid-Level Quantum Computation Roadmap: Promise Criteria.

QC Approach Quantum Computation QC Networkability
#1 #2 #3 #4 #5 #6 #7

NMR

Trapped Ion

Neutral Atom

Cavity QED

Optical

Solid State

Superconducting
Unique Qubits This field is so diverse that it is not feasible to label the

criteria with “Promise” symbols.

Legend:

= a potentially viable approach has achieved sufficient proof of
principle

= a potentially viable approach has been proposed, but there has
not been sufficient proof of principle

= no viable approach is known
(Data taken from “Quantum Computation Roadmap”, last updated in
April 2004, http://qist.lanl.gov/pdfs/rm intro.pdf)
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[21, 27, 32, 82]. However, interacting many-boson systems pose a computation-

ally hard problem. Previous theoretical work is either carried out with special

cases with infinitely strong interaction, or unnaturally divided the interaction

into a few regimes and used different calculation methods in different regimes.

The interaction strength between atoms is another control parameter

in addition to the trap size and trap depth. Atomic interaction strength can

be tuned by Feshbach resonances or by adjusting the transverse confinement of

the optical trap [49, 72]. Though strong repulsion between atoms are desirable

for the production of Fock states, what can be experimentally realized is the

regime of relatively but not infinitely strong interactions. As a result, calcula-

tions made in the Tonks-Girardeau regime may only provide very inaccurate

guide for experiment [37]. In order to provide more accurate calculations for

the production of bosonic Fock states, we use the Bethe ansatz to calculate

the single-particle energies of a group of interacting atoms with interaction

strength as one of the scalable parameters.

1.7 Organization of the dissertation

In Chapter 2, we consider optically trapped ultracold fermionic atoms

(exemplified by 6Li atoms) as the basics for quantum logic and provide the-

oretical insights on the advantages. We simulate the production of fermion

Fock states with the aim to implementing practical quantum logic. We focus

on the most practical aspects of quantum computation: the fidelities of ini-

tialization, gate operation and state-detection. We produce atom Fock states
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step by step, and in each step, we ensure certain predefined fidelity so that

overall we can have ultra-high fidelity in any quantum operation and qubit

state detection. With an array of fermionic atoms in Fock states as the start-

ing point of quantum logic, we strive to fulfill the DiVincenzo criteria for

quantum computation.

In Chapter 3, we discuss the application of the Bethe ansatz to cal-

culate the single-particle energies in many-boson systems confined in one-

dimensional square-wells and the production of Fock states in bosonic atoms,

such as sodium atoms (23Na).

The works discussed in this dissertation are published in [84] and [91].
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Chapter 2

Quantum Computing with Ultracold

Fermionic Atoms in Optical Traps

The potential impact of quantum computing has stimulated a world-

wide effort to develop the necessary experimental and theoretical resources

[12, 18, 40, 42, 51, 54, 57, 75, 97]. A status report of a few proposed quantum

computing schemes are listed in Table 1.1. In this chapter, we develop an

quantum computing approach based on ultracold fermionic atoms in optical

traps that have the potential for large-scale quantum computations.

One of the key questions is that of fidelity of the atomic Fock states, and

in that regard bosons are not ideal because they rely on strong interactions to

maintain a relatively large excitation gap, and to suppress low-frequency exci-

tations during the culling process. This leads us to propose instead fermionic

atoms where a precise number would be rigorously enforced by the Pauli ex-

clusion principle which states that “No two identical fermionic particles may

exist the same quantum state at any moment”. Calculations of eigen-energies

and wavefunctions of non-interacting fermionic atoms are thus straightforward.

We show that laser-culling of fermionic atoms in optical traps can produce a

scalable number of ultra-high fidelity Fock-state qubits. We show how each
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qubit can be independently prepared, how to perform the required entangle-

ment operations, and how to measure the qubit state with spatially-resolved,

single-atom detection.

More specifically, we exemplify our simulations using 6Li atoms. 6Li has

the advantage that the interaction strength and sign (attractive or repulsive)

can be tuned with an external magnetic field. Two magnetic sublevels of one

hyperfine ground state,
∣∣F = 1

2
,mF = 1

2

〉
and

∣∣F = 1
2
,mF = −1

2

〉
are used to

define a qubit. We denote these states as |↑〉 and |↓〉 respectively. Under low

magnetic field condition, the atom in spin state |↓〉 is a low-field-seeker while

the atom in spin state |↑〉 is a high-field-seeker. At large magnetic field, both

of these states become high-field seekers with a well-defined frequency splitting

that is nearly field-independent [35].

2.1 Preparation of fermionic Fock states

The starting point of the “on demand” single atom preparation is op-

tically trapped ultracold 6Li atoms with equal populations in two spin states

[1, 78]. The atoms can be cooled by evaporation at a magnetic field around

300 Gauss, where the scattering length as ≈ −300a0 (a0 is the Bohr radius)

[65]. as is large enough for efficient evaporation of the spin mixture, and is at a

minimum as a function of magnetic field. After evaporative cooling, a weakly

interacting degenerate Fermi gas forms at temperature T ¿ TF , where TF is

the Fermi temperature. The single atom preparation process can be split into

three steps (see Figure 2.1):
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Figure 2.1: Steps used in producing ultra-high-fidelity qubits. I. A degener-
ate Fermi gas, produced by evaporative cooling, whose interaction strength is
tuned to zero (B ≈ 0). II. Adiabatic laser-culling removes all of the atoms
except a pair of atoms in the ground state of the trap which have opposite
spins, following the Pauli exclusion principle. Due to the applied magnetic
field gradient, the two spin states experience different potentials. Only the
potential for the |↑〉 state is shown. III. An adiabatic trap-splitting separates
the pair into two adjacent micro-traps. Potentials for both spin states are
shown (solid and dashed).

Step I The magnetic field is tuned to near ∼ 0 Gauss from the initial field of

300 Gauss, resulting in a non-interacting degenerate Fermi gas (DFG).

In this state, a spin pair fills each level, up to the Fermi level.

Step II Atom pairs are ejected by laser-culling. This is accomplished by

adiabatic lowering of the optical potential. This prepares a single pair

in the ground state.

Step III The well is adiabatically split into two parts that are spatially sep-

arated. In the presence of a magnetic field bias this prepares one spin

state on the left and the other on the right. Each atom can then serve

as the initial state for a qubit.

Step IV The trap wall is adiabatically raised to a higher level to preserve the
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resultant qubit states.

There are two important non-trivial steps in the Fock state preparation,

i.e., the laser-culling and the trap-splitting. Next we explain the simulation

models we used for the analysis of these two steps in Section 2.2 and then, in

Section 2.3, we show how ultra-high fidelity is enforced at each step.

2.2 Simulation models

We will explain the simulation models that are used in preparing the

ultracold atomic fermionic qubits. For the rest of this chapter, we adopt the

following units: the unit of energy is ~ω, the unit of length is x0 ≡
√

~
mω

, and

the unit of force is ~ω/x0.

2.2.1 Laser-culling

The laser-culling technique was first studied in Reference [32] for pro-

ducing Fock states in strongly interacting bosonic atoms. Here we go over the

simulation models used for analyzing the fidelities in preparing Fock states in

optically trapped fermionic atoms. The Bethe ansatz calculation method for

generating bosonic atomic Fock states using laser-culling will be presented in

Chapter 3.

A harmonic trapping potential is the most common approximation for

an optical trap. Naturally, a truncated harmonic trap becomes the convenient

model in the discussion of laser-culling (see Figure 2.2a). In this chapter, we
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Figure 2.2: The trapping potentials used in the simulations. a. Truncated
harmonic trap. The truncation energy Et and truncated trap size (or simply
trap size) zt are shown. b. Truncated harmonic trap with a positive magnetic
gradient. The trap size, z, is defined as the length of the parabolic part in the
potential profile. Dashed lines denote the level of the ground and first-excited
state.

consider the 1D case only. The arguments can be easily generalized to 3D.

For the calculation of states whose energy levels are deeply bound in

a truncated harmonic trap, the Wentzel-Kramers-Brillouin (WKB) method

provides a good approximation. The details of using this method to calculate

the energy levels and wavefunctions of fermionic atoms in a 1D optical trap is

described Appendix C. But the result of the WKB calculation is surprisingly

simple—the energy levels and wavefunctions are exactly the same as those in

a harmonic trap with the same trapping frequency.

However, as pointed out in the Appendix, WKB method has its limitation—

a sufficient spatial gap is required between the turning point z/2 of the state

of interest and the truncation point zt/2. Equivalently, there must be a suf-

ficient energy gap between the energy level and the truncation energy (see
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Figure 2.3: Exact numerical calculation for truncated harmonic trap with trap
size z = 4.14. Dashed lines denote the eigen-energy level of the ground and
first-excited state. The trapping potential of the truncated harmonic trap is
depicted (dot-dashed). The unit of energy is ~ω and energy reference is set at
the bottom of the trap.

Figure 2.2). Since we are primarily interested in the ground state during a

laser-culling process, WKB method is useful only for Et À ~ω.

A direct numerical calculation is possible, in which the wavefunction in

the trap area is expressed as parabolic cylinder function, while that outside is

exponential function. By specifying the wavefunction is continuous and have

continuous derivatives at the the boundaries, we can get numerical eigen-

energies and wavefunctions for the ground state and first excited state (see

Figure 2.3).

A comparison between the WKB method and the exact numerical

method sheds light on the validity range of the WKB approximation. As

shown in Figure 2.4, the WKB approximation remains valid until the trap size

decreases to z ≈ 4.0.

As outlined in Section 2.1, we need a constant force (or a tilt in the

trapping potential), f , to split the atoms apart in Step III. But as will become
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Figure 2.4: Comparison between exact numerical calculations and WKB ap-
proximation. a. Ground-state wavefunction comparison at fixed trap size
z = 4.14. The left vertical axis is the probability density; the right axis de-
picts the trapping potential (dot-dashed) and energy level. The ground state
wavefunctions of the direct numerical calculation (solid) is compared with that
obtained with the WKB method (dashed). b. Ground-state eigen-energy as a
function of the truncation size z. The vertical lines show the ionization thresh-
olds for atoms in the first (solid thick), second (solid thin), third (dot-dashed),
and fourth (dashed) excited states.

clear in the fidelity analysis of the final qubit preparation (Section 2.3), a force

is already necessary during the laser-culling process of Step II. We can provide

this force by applying a magnetic field gradient along the axis of the 1D optical

trap. The purpose of f is to sweep the atoms away from the micro-traps as

soon as they are ionized. For simplicity, we assume the force has a positive

sign for the |↑〉 state.

To accurately predict the fidelity in the laser-culling process of fermionic

atoms, we need to develop a more general solution which incorporate a slope in

the trapping potential and remain valid throughout the laser-culling process.

In our next simulation, we approximate the optical trap and the magnetic

gradient with a tilted, truncated harmonic trap (see Figure 2.2b). The tilted,
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truncated harmonic trap is specified by the trap size (or truncation size) z and

the force (or potential gradient) f . After reaching a minimum trap size, the

trap is held constant for a certain time to allow ionized atoms to escape, while

maintaining a high occupation probability of the ground-state. The trap size,

force, and holding time are optimized for best fidelity.

Because of the tilt, the trap has no stationary bound state, only quasi-

bound states. In the limit z → ∞, these quasi-bound states become the

bound states. The lifetimes of the quasi-bound states determine the rate of

the change of trap occupation probability. The optimized final trap depth,

tilt, and holding time is estimated with the following scattering model [28].

Suppose a stream of incoming atoms is incident from x = −∞, with

energy E, scattered by the trap potential. We assume the trap is located

at [−z/2, z/2]. Let ψE (x) be the wavefunction of the stationary state of the

incoming atoms. Outside the trap (x < −z/2),

cos (b) Ai (χ) + sin (b) Bi (χ) , (2.1)

where χ = 3
√

2f
(
x− −z2+2E

2f

)
, and b is an unknown parameter. Inside the

trap,

ψE (x) = a(E) e−x2/2Hν(x), (2.2)

where Hν(x) is the Hermite function of degree ν, a(E) is the amplitude [58].

We require that ψE (x) be continuous and differentiable for all x. Boundary

conditions are thus established, from which a(E) can be obtained. Of special

interest to us are those states that have significant amplitude in the trap area,
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Figure 2.5: Laser-culling simulation model. Parameters used in the simulation:
the trap size is 4.4x0, the magnetic force is 0.5~ω/x0. a Density of states
(DOS). The vertical dotdashed line denotes the barrier height of the trap.
Inset: Lorentzian (solid) and Gaussian (dashed) regressions of the resonance
peak at E ≈ 0.365 and the unit of the horizontal axis is this peak’s FWHM.
b Stationary wavefunction at E ≈ 0.365. Inset shows the panorama of the
wavefunction. c Stationary wavefunction at E ≈ 1.29.
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because they correspond to the quasi-bound states of the trap. For simplicity,

we can take P (E) ≡ |a(E)|2 as a measure of the density-of-states of the trap.

For z = 2.2, f = 0.5, we find two conspicuous peaks at E ≈ 0.366 and 1.29

in the DOS vs E plot (see Figure 2.5a). The wavefunctions of the stationary

states at these two energies are also shown in panel b and c of the same figure.

Note that in the limit of zero magnetic force, the resonance peaks at these two

energies correspond to the ground and first-excited states of the truncated

harmonic trap, respectively.

P (E) describes not only the ionization thresholds, but also the dynam-

ical properties of the quasi-bound states. To see that, we study the evolution

of a wavefunction φ(x, t). Imagine that at time t = 0, we have

φ(x, 0) =

{
c ψE0(x), −z/2 < x < z/2;

0, otherwise,
(2.3)

where E0 is one of the resonance energies, c is a normalization factor such

that
∫∞
−∞ |φ(x, 0)|2dx = 1 and there is no other atom source. Subsequently,

the atom will start to tunnel out of the trap. The probability, RE0(t), for an

atom to remain in the trap is given by

RE0(t) =

∫ z/2

−z/2

dx |φ(x, t)|2. (2.4)

To make further progress, we make two approximations. Firstly, in

the vicinity of a resonance peak at E = E0, one can write the stationary

wavefunction at energy E as

ψE(x) ≈ C(E)a(E)ψE0(x), (2.5)
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Figure 2.6: Peak width (FWHM) ratio of the excited state to the ground
state (in base-10 logarithmic scale) as function of the trap size and magnetic
gradient, in the laser-culling process. The white color represents out-of-range
color, i.e., should be colored more than its surrounding.

where C(E) is a slowly varying quantity. Secondly, due to the oscillatory

nature of Airy functions, the main contribution to the inner product of two

wavefunctions comes from the integral over the trap region, or,

∫ ∞

−∞
dxψ∗E(x)ψE0(x) ≈

∫ z/2

−z/2

dxψ∗E(x)ψE0(x) (2.6)

for E 6= E0.

Now we can evaluate RE0(t) by expanding φ(x, t) in terms of the wave-

functions of the stationary states, ψE(x). We find

RE0(t) ≈ |C(E0)|2
∣∣∣∣∣
∫ E0+ε/2

E0−ε/2

a(E)eiEtdE

∣∣∣∣∣

2

, (2.7)
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where ε is the range of integration. In the vicinity of a resonance peak, the

function P (E) is essentially Lorentzian (see the inset of Figure 2.5a), and we

finally obtain

RE0(t) ≈ e−γE0
t, (2.8)

where γE0 is the full width at half maximum (FWHM) of the resonance peak

at E = E0. The lifetime of the quasi-bound state at E = E0 is τE0 = γ−1
E0

.

Eq.(2.8) is used to determine an optimized combination of minimum trap

depth, magnetic force, and holding time for the best fidelity. It is also worth

noting that ultimately the difference in the lifetimes between the ground and

the first excited quasi-bound states determines the fidelity of producing a pair

of atoms in the ground state of the trap. In Figure 2.6, we plot the peak width

(FWHM) ratio between the resonance peaks corresponding to the first excited

and the ground quasi-bound states.

Of course, when the width of the resonance peak is big enough, the

shape of the peak will deviate from Lorentzian. Then the decay of the quasi-

bound state due to tunnelling would become non-exponential (see Reference

[93] for more details). But this non-exponential decay does not affect the

precision of our simulation.

2.2.2 Adiabatic trap-splitting

A double-well potential with a bias (voltage in solid-state physics) po-

tential is a very commonly used model to study transport problems. In Step

II of the process of producing qubits for quantum computing, we use this
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Figure 2.7: Simulation model of separating a pair of atoms in opposite spin
states. The parameters shown in this figure are d, the distance between the
energy minima (in unit of x0), and g, the force produced by the applied mag-
netic field gradient (in unit of ~ω/x0). Dashed lines show the energy levels of
the ground and first excited state, obtained numerically. The excitation gap
is defined as the energy difference between the two levels.

model to study the adiabatic trap splitting. For simplicity, we adopt a simpler

potential than that of a realistic optical tweezer. The double-well potential

is composed of two spliced parabolic sections. Each parabolic section has

an energy minimum and each has the same trapping frequency (see Figure

2.7). Such a double-well potential has an infinitely sharp, unrealistic ‘tip’ on

the barrier separating the two wells. But this should not affect the order of

magnitude in our estimation. The bias potential is produced by applying an

appropriate magnetic field gradient. Since |↓〉 is a low-field-seeker and |↑〉 is

a high-field-seeker at low magnetic field, each atom is displaced to a different

location as soon as the trap is split.

We assume the splitting is performed adiabatically. We calculate the
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energy levels and probability distribution at various splitting parameters (dis-

placement and force). A sufficient energy gap between the ground state and

the first-excited state, or the excitation gap, (see Figure 2.7) must be main-

tained throughout the trap-splitting process in order to suppress transitions

from the ground state. In Figure 2.8, we plot the excitation gap as function

of the splitting parameters g and d. As shown in this figure, the best we can

do is to always remain in regions where the gap is close to ~ω. This can gen-

erally be fulfilled by applying a magnetic field gradient at the beginning of

the trap-splitting such that a force of 0.7 is maintained throughout the split-

ting process. For ω = 2π × 1 kHz and magnetic field gradient of about 2.3

Gauss/cm, the excitation gap is about 48 nano-Kelvin (see Figure 2.8).

2.3 Fidelity of preparing fermionic atoms in ground Fock
states

We now show in detail how ultra-high fidelity is enforced at each step

of the preparation of fermionic Fock states.

Step I In the presence of a scattering length as ≈ −300a0 between the

|↑〉 and |↓〉 states, the Fermi gas is weakly interacting. At T = 0, the Fermi

gas may form a BCS state. The pairing gap for such a state can be estimated

through ∆ ≈ 0.5EF exp (π/2kF a) [36]. For a degenerate 6Li gas with k−1
F ∼

1000a0, the pairing gap ∆ ≈ 0.002EF . With such a small ∆, the occupation

probability of the lowest energy state (e.g. the k = 0 state for a uniform gas)

nk=0 = (1− ηk/εk) /2 ≈ 1−4×10−6, where ηk = εk−EF , εk = ~2k2/2m, εk =
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Figure 2.8: Excitation gap (in unit of ~ω) during adiabatic trap-splitting for
separating a pair of ultracold 6Li atoms. Red (blue) color represents large
(small) excitation gap. The horizontal axis is the magnetic force g and the
vertical axis is the distance d.

(∆2 + η2
k)

1/2
is the quasi-particle excitation energy, and we take the chemical

potential µ ≈ EF for the BCS state. In addition, for such a small pairing gap,

finite temperature effects dominate, and there may be even no BCS pairing.

However, the finite temperature does not affect the ground state occupation

probability. Consider a temperature T = 0.05TF , for which the ground state

occupation probability is approximately 1/ [exp (−EF /kBT ) + 1] = 1 − 4 ×
10−5. Clearly, the probability loss is negligibly small. Therefore a fast sweep

of the magnetic field (i.e., the scattering length) to the non-interacting region

does not affect the ground state occupation probability or the fidelity of the

single atom preparation.
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Step II A non-interacting DFG in a deep optical trap serves as the

starting point for the laser-culling process. The trap wall is reduced to a level

slightly below the ionization threshold of the first-excited state of the opti-

cal dipole trap. The trap reduction rate is chosen to fulfill the adiabaticity

requirement. To that end, we enforce a constraint: we always maintain a con-

stant trapping frequency, ω, throughout the laser-culling process, which can

be accomplished by dynamically varying the focus of the beam [55]. (In prac-

tice, this step may not be necessary, but it greatly simplifies the calculation.)

According to the WKB method, the non-interacting atoms with energy much

lower than the trap depth are largely unaffected by the laser-culling until the

trap depth is very close to the energy level of first-excited state. Therefore

if we start out with degenerate Fermi gas, we should have essentially unitary

fidelity of completely filled ground state. The adiabaticity condition is fulfilled

as long as the WKB approximation is maintained valid, which holds until the

trap depth is around 3~ω/2, where ~ ≡ h/2π and h is Planck’s constant.

Beyond this point, the trap reduction rate must be slowed down to continue

maintaining adiabaticity conditions.

With the simulation model explained in Section 2.2.1, we now estimate

the resulting fidelity of the laser-culling process. The goal is to produce exactly

one pair of atoms, with spin up and down, respectively, on the ground state

of the optical trap. With the help of Pauli exclusion principle, if we got two

atoms in the ground state, they are guaranteed to be of spin up and down,

respectively. Now let’s estimate the fidelity of eliminating all atoms except the
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Figure 2.9: Holding time (in unit of 1/ω) during the laser-culling process.
The scale of the contour plot is in base-10 logarithmic scale. Redder color
represents longer holding time.

ground-state ones, assuming unity fidelity from the last step.

Because of the applied magnetic field gradient, all states are quasi-

bound states and have finite lifetime. Our task is to let go the extra atoms

in the optical trap while keeping the pair of ground state atoms as entirely

as possible. There are three parameters at our play: the force f , the culling

length z, and the holding time t. By virtue of Equation (2.8), we can estimate

the lifetime of each quasi-bound states by obtaining the width (FWHM) of

the corresponding resonance peaks. In practice, we choose f and z as the

independent variables. For given f and z, we determine the holding time t to

be six times the lifetime of the first-excited quasi-bound state. That is, we
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Figure 2.10: Fidelity of laser-culling. Shown is the base-10 logarithm of the
ground state fidelity loss. Red (blue) color represents high (low) fidelity. The
white areas are out-of-range clippings: near the left-hand side, the white areas
should be redder than its surrounding color; near center-top, the white area
should be bluer than its surrounding color.

require a residual probability ≤ 10−5 for any remaining excited atom as the

benchmark for any combination of f and z. The necessary holding times are

shown in Figure 2.9.

Taking into account all the steps in laser-culling, we show the fidelity

of preparing a single pair of atoms in the ground state of a micro-trap in

Figure 2.10. For a set of realistic parameters: trapping frequency ω = 2π × 1

kHz, magnetic field gradient 0.66 Gauss/cm, truncated trap size 8.8 µm, the

ground-state to first-excited state lifetime ratio is 7.53× 105. With a holding

time 218 ms, we get a residual probability of 10−5 for the excited-state and a
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ground state occupation probability larger than 0.99998.

Step III Now we should have a pair of 6Li atoms with spin states |↓〉
and |↑〉, respectively, in the ground state of an optical trap. What we need to

do next is to produce two separate well-defined qubits. We realize this by using

a deterministic trap-splitting technique [10, 45]. We impose a suitable positive

magnetic field gradient while we adiabatically split the optical tweezer (that

holds the pair) into two beams. Under low magnetic field condition, the atom

in spin state |↓〉, a low-field-seeker, is driven to the left while the atom in spin

state |↑〉, a high-field-seeker, is driven to the right. If we do this adiabatically,

during and after the splitting the atoms should stay in the ground state and

become two well-defined qubits.

Figure 2.11 shows the calculated loss of fidelity of the trap-splitting

process, defined as 1 minus the combined probability that the atoms with the

right spin states finish in the ground-state of the right traps, according to

the scheme outlined above. It shows that this step can be realized at ultra-

high fidelity, as a function of the separation displacement d and of the applied

magnetic force g. (As a digression, if the two wells are identical, this method

creates an entangled spin pair, which will be analyzed in more detail in a later

publication.) With a trapping frequency ω = 2π × 1 kHz, a magnetic field

gradient of 0.66 Gauss/cm and a separation displacement d = 6.25 µm, we

find 0.99998 trap-splitting fidelity.
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Figure 2.11: Loss of fidelity during trap-splitting. Shown in base-10 logarith-
mic scale. Red (blue) color represents high (low) fidelity. We assume complete
suppression of excitation by maintaining a sufficient energy gap and keeping
the process adiabatic. The horizontal axis is the magnetic force g and the
vertical axis is the distance d.

2.4 Scalability

So far, we have shown that two fermionic Lithium-6 atoms in the ground

states of two adjacent micro-traps can be prepared at ultra-high fidelity. The

quantum computing power of this system is manifest only after we scale it up

by a factor of ≈ 50.

How can scale this qubit-preparation process to multiple traps, and

make the “switchyard” of multiplexed beams to perform the required complex

operations while maintaining a relatively high fidelity? This can be done with

the scalable microelectromechanical systems (MEMS) technology [56]. Using
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this technology, an array of beams can be directed to each site. Alternative

approaches have also been developed and proposed in Reference [8, 33, 96]. By

steering the beams, we can transport individual atoms and bring them into

pairwise interaction with arbitrary control. The geometry that optimizes such

an arrangement is an optical donut mode from a blue-detuned beam at 532

nm which would confine the atoms in a long tube [72]. An array of micro-

traps would most easily be accomplished with red-detuned beams that create

attractive potentials along the axis.

The preparation process is the same as outlined in Section 2.1. With

the numbers used for the fidelity analysis of laser-culling and trap-splitting

processes, we estimate an overall fidelity of 0.998 to prepare 100 qubits initial-

ized in the antiferromagnetic state

100 qubits︷ ︸︸ ︷
|↓, ↑, ↓, ↑, · · · , ↓, ↑〉, (2.9)

starting with a degenerate fermi gas of 6Li atoms. To summarize, we can

prepare an array of 2N micro-traps, each with one atom in the ground state,

as illustrated in Figure 2.12.

This technique also enables the creation of a two dimensional optical

trap array, and entanglement of any pair using the qubit transfer technique of

Reference [10]. This could overcome the limitations of linear case where only

nearest-neighbor operations are possible (see artist’s concept Figure 2.13).
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…

Figure 2.12: Array of 2N optical traps. With the scalability of our system, we
can prepare a fiducial antiferromagnetic state with 2N qubits.

2.5 Entanglement generation and implementation of uni-
versal gates

Consider a system that can be subdivided into two or more subsystems.

Quantum entanglement refers to the correlated state among the subsystems

where the state of one subsystem can not be determined on itself but together

with other subsystem(s). This property is not affected whether the subsystems

directly interact with each other or however far they are spatially apart from

each other. Quantum entanglement has important applications in quantum

information theory, quantum computing, quantum cryptography and quantum

state teleportation [6, 7, 14].

Let each subsystem in the system has a set of eigen states |ai〉. The

system state can be expressed as a superposition of the direct products of each

subsystem:

|Ψ〉 = C1 |α1〉 |β1〉+ C2 |α2〉 |β2〉+ · · · . (2.10)

If the state |Ψ〉 can be factored, with each factor represents the state
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Figure 2.13: Artist’s concept of a 4× 4 matrix of fermionic, Fock-state qubits,
initialized to fiducial antiferromagnetic state with 16 qubits. Red (blue) color
in the trapping potential means higher (lower) energy. Atoms are shown as
little balls, with blue color meaning spin-up, red-color spin-down. All atoms
are in the ground-state of the micro-traps. By moving the containing micro-
trap, each atom can be made to engage in a two-qubit gate operation with
each other atom by the qubit transport technique [10].
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of one subsystem, then the state |Ψ〉 is an unentangled state, otherwise, an

entangled state.

Here we give a näıve example of quantum entanglement generation

out of an isolated system consisting of 2 identical, spin-1/2 atoms. Imagine

that the electric dipole transition between the two spin states, denoted as |↑〉
and |↓〉, is forbidden. However, the two spin states are coupled through a

stimulated Raman transition via an excited state |e〉 and the Rabi oscillation

rate is controlled precisely by the detunings and intensities of the Raman

beams [88]. The quantum mechanical state of the two atoms may be expressed

as |η1, η2〉, where η1 (η2) represents the state of the first (second) particle and

each of η1, η2 may assume values ↑, ↓, respectively.

Imagine also that we have an analogue knob controlling the atom-atom

interaction. When the knob is set to a number λ, the atom-atom interaction

energy is [50] {
λc0, if the atomic state is |↑, ↓〉,
0 otherwise.

(2.11)

We can generate an Einstein-Podolsky-Rosen (EPR) pair (maximum entan-

glement) with the following steps

1. With help of the stimulated Raman transition, we apply a π/2-pulse on

both atoms. The state of the atomic system is transformed to

|ψ〉 =
1

2
[|↑, ↑〉+ |↑, ↓〉+ |↓, ↑〉+ |↓, ↓〉] . (2.12)

2. We turn the interaction-knob up to a certain level for a certain time to

introduce a π/2-pulse in the phase-shift of the atomic state. The state
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of the atomic system is then transformed to

|ψ〉 =
1

2

[|↑, ↑〉+ eiπ |↑, ↓〉+ |↓, ↑〉+ |↓, ↓〉]

=
1

2
[|↑, ↑〉 − |↑, ↓〉+ |↓, ↑〉+ |↓, ↓〉] . (2.13)

3. Now we selectively address the second atom with the stimulated Raman

transition and produce a π/2-rotation. The state of the atomic system

becomes

|ψ〉 =
1

2
√

2
[|↑, ↑〉+ |↑, ↓〉]− 1

2
√

2
[− |↑, ↑〉+ |↑, ↓〉]

+
1

2
√

2
[|↓, ↑〉+ |↓, ↓〉] +

1

2
√

2
[− |↓, ↑〉+ |↓, ↓〉]

=
1√
2

[|↑, ↑〉+ |↓, ↓〉] . (2.14)

Expression (2.14) represents an entangled state for the two atoms. Note that

from Equation (2.12) to Equation (2.13), conditional evolution is needed; from

Equation (2.13) to Equation (2.14), individual atom addressability is needed.

Now that we have an understanding of what entanglement is and how

to generate it, we are well motivated to discuss how to realize arbitrary single-

qubit gates and two-qubit gates in the fermionic Fock state qubit(s). The im-

plementation of a single-qubit gate demands the capability of addressing each

atom individually. As seen in the above example, this can be accomplished

with the stimulated Raman transitions, as what is currently implemented with

trapped ions [11, 74] and with neutral atoms [95]. In addition to the individual

atom addressability, the realization of a two-qubit gate demands tunable in-

teraction between qubits, upon which conditional evolution may be built. The
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original proposal of a two-qubit gate for neutral atoms was based on collisions

[50]. This scheme was realized experimentally with atoms in an optical lattice

[67]. As is well-known, fermionic atoms in the same internal state cannot col-

lide due to the Pauli exclusion principle. However, atoms in different internal

states can be made to have a large collisional phase-shift, which can be used to

engineer two-qubit SWAP gates, as proposed in Reference [44]. (A full SWAP

gate performs a π-rotation, which swaps the qubit states |01〉 and |10〉, while

a
√

SWAP generates entanglements between the two qubits.) One significant

advantage of this approach is that the scattering length can be made very large

by tuning closer to the Feshbach resonance. The speed of each gate operation

is therefore only limited by the trap frequencies.

In the realization of a
√

SWAP gate, one should choose the trapping fre-

quency ω of the optical trap and s-wave scattering length such that (~/mω)1/2

and 2as are comparable, thus optimizing the speed of
√

SWAP gate [44]. For a

set of parameters ω = 2π×1 kHz and as ∼ 330a0, a high fidelity
√

SWAP gate

can be implemented in a time period ≈ 40 ms. It is straightforward to envision

that with an array of many qubits, a sequence of
√

SWAP operations can build

scalable entanglement in this system. This two-qubit operation, together with

single-qubit rotations, provides a set of universal quantum gates.

2.6 Qubit State Detection

The detection of each qubit at the end of a quantum computation is

accomplished by spatially-resolved fluorescent imaging. Fluorescent imaging

48



technique has recently been refined to resolve atom pair separations down to

nearest neighbors in a 1D optical lattice [52]. The reproducible fluorescent

imaging has become a highly reliable tool for measuring the final quantum

states of qubits [77].

To reliably detect the qubit state, we first displace the two spin compo-

nent spatially. This can be accomplished with the same method that was used

to separate the spin pair (see Figure 2.7 and Figure 2.11). When we perform

the trap-splitting with an arbitrary state, the atom is ambiguously shifted

both to the right and the left (in a state similar to the Schrödinger’s cat).

The fidelity of such shift can be just as high as the adiabatic trap-splitting,

analyzed in the previous sections.

Then, we probe the location of the qubit, taking advantage of the

spatial-resolution capability of the fluorescent imaging. This step can be per-

formed with a few repeated detections for better fidelity, if necessary. Through

the fluorescent imaging, the ambiguity of the position of the qubit is resolved:

the atom is either found to the left or to the right, by the power of quantum

projection (in analogy to finding out whether the cat is dead or alive). The

probability of finding the qubit in one spin state or the other may be obtained

by repeated measurements. The overall fidelity of this split-and-detect process

can be made sufficiently high to fulfill the requirements of a realistic quantum

computation.
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2.7 Sources of decoherence

Decoherence is closely related to entanglement between system and

environment. Decoherence so far is one of the major challenges in the way of

a practical quantum computer for all the promising candidates listed in Table

1.1.

For any system bearing our interests, there is always the complimen-

tary part—the environment which includes everything else that has interac-

tions with the system but is not in the system— and together the two form an

isolated universe. Decoherence occurs when a system interacts with its envi-

ronment such that quantum entanglement is produced between the two [69].

Often, the environment contains large amount of degrees of freedom, that the

decoherence process is practically irreversible in a thermodynamical sense. In

this regard, decoherence results in the loss of information from a system into

the environment.

We denote the system as S and the environment as E. We assume that

S has a basis consisting of two orthogonal states {|αi〉 |i = 1, 2}. Initially, S is

in state

|φ〉 = C1 |α1〉+ C2 |α2〉 , (2.15)

E is in state |Φ0〉, and as a result, the universe is in state C1 |α1〉 |Φ0〉 +

C2 |α2〉 |Φ0〉. Then the system and environment are allowed to evolve together,

for a certain period of time. As before, the interaction between the system
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and the environment results in a conditional evolution:

|α1〉 |Φ0〉 → |α1〉 |Φ′〉 ,
|α2〉 |Φ0〉 → |α2〉 |Φ′′〉 . (2.16)

At the end of the time period, the state of the universe becomes

|Ψ〉 = C1 |α1〉 |Φ′〉+ C2 |α2〉 |Φ′′〉 (2.17)

At this time, the state of the system is not a well-defined state by

itself—it is coupled with that of the environment in a non-locally correlated

way. Decoherence does not generate wave function collapse. It only gives the

appearance that the wavefunction of the system collapses. Often, there are

immense number of degrees of freedom in E. This has two closely related

effects. Firstly, the inner product between |Φ′〉 and |Φ′′〉 is made essentially

zero; secondly, the time period for the reversal in the state of the universe

becomes essentially infinity. If we trace off all the degrees of freedom belonging

to the environment from Equation (2.17), we obtain the density matrix for the

system:

ρ = TrE {|Ψ〉 〈Ψ|}

= |C1|2 |α1〉 〈α1|+ |C2|2 |α2〉 〈α2| . (2.18)

The system cannot be described by a pure state of its own, but by the density

matrix ρ of Equation (2.18).

Our proposed system for quantum computation has many decoherence

sources. For example, since we rely on stimulated Raman transition to imple-
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ment the one-qubit gate, spontaneous Raman transitions are inevitable and

this process entangles the system with the surrounding vacuum.

Other sources of decoherence in this system include spontaneous ab-

sorption and emission. Still another decoherence source comes from the shot

noise of the laser tweezers, which results in fluctuation in the trapping po-

tential. Yet another decoherence source comes from off-resonance photon-

scattering of the optical tweezer. The photon-scattering effect in optical dipole

trap was studied in Reference [35] and the scattering rate for a far-off-resonance

trap is given by

Γscat =
2A

~ω0

(
ω

ω0

)3

U0, (2.19)

where A = 4ω0
3µ2

3~c3 is the Einstein coefficient, ω0 is the resonance frequency and

the ω is the laser frequency, U0 is the well-depth.

Among the various decoherence sources, the laser intensity noise in the

optical trap can be one of the major factors. Experimental control of intensity

noise is discussed in Appendix A.6. Additionally, this can be reduced by

injection-locked semiconductor lasers which can be intensity squeezed almost

10 dB below the shot noise [48]. The photon-scattering effect can also be

reduced. Since the scattering rate is proportional to the cube of ω, large

detuning can help the decoherence due to photon-scattering. The current

estimate of various decoherence effects is made in Reference [22].
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2.8 The DiVincenzo criteria

The DiVincenzo criteria have been discussed in Section 1.4. For con-

venience we reiterate the five DiVincenzo criteria for quantum computation

here: for a system to be a candidate for an implementation of quantum com-

putation, it should (1) be a scalable physical system with well-defined qubits,

(2) be initializable to a simple fiducial state such as |000 . . .〉, (3) have de-

coherence times much longer than gate operation time, (4) have a universal

set of quantum gates, and (5) permit high quantum efficiency, qubit-specific

measurements. In this section, we test our system of an array of ultracold 6Li

qubits against the criteria for quantum computation, and show that it has the

potential for satisfying these five DiVincenzo criteria.

First DiVincenzo criterion As shown in Figure 2.10, if we choose param-

eters near the upper-left corner, ultrahigh fidelity can be achieved in

preparing a single pair of qubits. Thus our system provides well-defined

qubits and fulfills first part of the first DiVincenzo criterion. Also the

scalability of our system is guaranteed by the MEMS beam steering

technology, by which a relatively high fidelity can still be ensured. This

completes the first DiVincenzo criterion.

Second DiVincenzo criterion As explained in Section 2.3 and 2.4, the qubit

preparation process automatically initializes the produced array of qubits

in the antiferromagnetic Néel state |↑, ↓, ↑, ↓, · · · , ↑, ↓〉 [76]. Thus this

fulfills the second DiVincenzo criterion.
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Third DiVincenzo criterion With the decoherence analysis of Section 2.7,

the decoherence time of this system depends on the photon shot-noise in

optical trap, off-resonance photon-scattering, spontaneous absorptions

and emissions, and spontaneous Raman transitions. Even so, this quan-

tum computing system has much less of a decoherence problem in com-

parison with other proposals listed in Table 1.1.

Fourth DiVincenzo criterion The trap-splitting and fluorescent imaging

techniques enables the detection of arbitrary qubit states with the indi-

vidual atom addressability. This fulfills the fourth DiVincenzo criterion.

Fifth DiVincenzo criterion As explained in Section 2.5, we realized single-

qubit gates, two-qubit gates, and other complicated qubit manipulation

and operations using various techniques either in existence or developed

in this report. All these evidences suggest that the third DiVincenzo

criterion be also fulfilled.

The last two criteria with regard to the quantum networkability are

yet to be confirmed for the fermionic Fock-state atomic qubits. However, we

believe that no other system is known to satisfy all the five DiVincenzo criteria

for quantum computation, while our system has the potential to do so.
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Chapter 3

Calculations of Atomic Fock States Using

Bethe Ansatz

Due to the potential application in quantum computation and infor-

mation processing, few-body quantum states with a definite number of atoms

and well-defined wavefunctions have recently become the focus of research en-

deavors. Theoretical work on producing atoms in Fock states has been done

in many publications [27, 32, 82]. The role of physical parameters such as trap

depth and trap size are considered. Possible time sequence in varying these

parameters, either in parallel or in tandem, are also analyzed. However a sys-

tematic analysis involving the role of interaction is still largely missing in the

literature. In this Chapter, we present a unique calculation model based on

the Bethe ansatz.

3.1 Strongly interacting atoms

With their tendency to stick together, bosonic atoms rely on strong

repulsive interactions for the production of Fock states. In the infinitely

strong interaction regime, the so-called Tonks-Girardeau regime, calculations

have been made trivial thanks to the boson-fermion correspondence in one-
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dimension [37]. With the available experimental technology, it is possible to

artificially generate strong interactions between bosonic atoms such as sodium.

One method is to use Feshbach resonances [49]; another is to use the optical box

technique to confine the atomic wavefunction in two of the three dimensions

[72]. Even so, the Tonks-Girardeau regime remains experimentally challeng-

ing. To make it worse, with the maximum interaction strength that can be

realized with the above techniques, we are left with a difficult many-body prob-

lem and no existing method to obtain a solution. Direct diagonalization of an

N -atom hamiltonian has been used in Reference [32]. However, there are var-

ious drawbacks in this method, not to mention that it is very time-consuming

to calculate the quantum state for a large number of particles.

There is also a technical reason to tune the interaction strength during

the number-state experiment. In order to load a Bose-Einstein condensate

into the optical box, the transverse trapping frequency is often relaxed in the

beginning and tightened up toward the end. This is done so as to promote

loading efficiency and then enhance atom-atom interactions. We need to ana-

lyze the change in the atomic state during this process to gain insight in the

fidelity of the number-state production.

To face up to reality, we need a new model that can calculate the en-

ergy levels and wavefunctions of an N -atom system with variable interaction

strength. The Bethe ansatz method makes no assumptions about the interac-

tion strength between atoms and thus provides an ideal tool for this purpose

and we are able to study the connections across various interaction regimes.
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This method was first developed by Hans Bethe to solve the problem of a one-

dimensional (1D) spin 1/2 Heisenberg ferromagnet [9]. Since it’s invention,

Bethe’s method has found important applications in the study of interacting

spin systems [61, 80, 90]. It has also been applied to solve the problem of a 1D

bosonic gas with repulsive δ-function interactions [34, 43, 60, 62, 68, 86, 94].

We use the Bethe ansatz method to calculate the single-particle energy

levels for arbitrary interaction. With these calculations, we are able to chart

Fock states in the parameter space with interaction as one of its dimensions.

3.2 Formulation of the problem

In order to tackle the interacting many-body problem with arbitrary

interaction strength, we make a few simplifications. Firstly, we compromise on

the exactness of the trapping potential. We assume that the trapping potential

is a one-dimensional (1D) square well potential. For an N -particle system, the

configuration space, consisting of the N coordinates, {x1, x2, · · ·xN}, would be

a N -dimensional (ND) Euclidian space. Secondly, we assume the atom-atom

interaction potential is a δ-function.

A many-atom system with a δ-function interaction trapped in 1D square

well potential with finite well depth was first studied using the Bethe ansatz

in Reference [60]. Following the notations and formulation therein, we specify

the 1D square well potential by its length L and depth V0. We write the atom-

atom interaction potential as ~2
m

cδ(xi − xj), where xi and xj are the positions

of the interacting particles, ~ is Planck’s constant, m is an atom’s mass, and c
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Figure 3.1: Configuration space for a 3-atom system. The space is divided by
the δ-interaction into wedged open spaces. The red, blue, and green surfaces
denotes the positions where the atom-atom interactions take place. Together
with the square-well potential, the spaces where atoms can move freely are the
so-called Weyl Chambers [60].

is the interaction strength with dimensions [1/length]. In Figure 3.1, we show

the configuration space of 3-particles. According to Reference [79] we have the

following expression for c,

c =
4a

a⊥2

(
1− C

a

a⊥

)−1

, (3.1)

where a is the s-wave scattering length in 3D space, a⊥ =
√

2~2/mω⊥, ω⊥ is

the transverse trapping frequency, and C ≈ 1.4603 is an empirical constant

number. Since the interaction strength c depends on both the scattering length

and the transverse trapping frequency ω⊥, tuning either of them will affect

it. The transverse trapping frequency may be controlled by the optical box

parameters [72], and the scattering length may be adjusted by a Feshbach

resonance [49]. To gain a sense of order of magnitude, for sodium atoms
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trapped in a 1D optical box with transverse trapping frequency ω⊥ = 2π×150

kHz and zero magnetic field, we have c = 16863.6 cm−1, and for 87Rb atoms

in a similar trap with zero magnetic field, we have c = 92391.6 cm−1.

We can properly scale our equations to contain dimensionless quantities

only. One way to do that is to use 1/c as the unit of length and ~2c2/m as the

unit of energy. The square well potential is then

V (x) =

{ −k0
2/2, |x| < x0/2,

0, otherwise,
(3.2)

where k0 and x0 are dimensionless numbers. With these parameters, the well

width is L = x0/c and well depth is V0 = ~2c2k0
2/2m in cgs unit.

The hamiltonian for the many-body system may be written as

H = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑

i=1

V (xi) +
N∑

i,j=1

i>j

δ (xi − xj). (3.3)

This way of dimension-scaling gives simple equations, with the interaction

strength hidden from any consideration. However, the resulting equations are

valid only for 0 < |c| < ∞.

Another way to scale the quantities is using L as the unit of length and

~2/mL2 as the unit of energy. The potential of the square well is given as

V (x) =

{ −k0
2/2, |x| ≤ 1/2,

0, |x| > 1/2,
(3.4)

where, as before, k0 is a dimensionless number. The N -atom hamiltonian is

then

H = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑

i=1

V (xi) + c

N∑
i,j=1

i>j

δ (xi − xj). (3.5)
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This scaling method does not put any restrictions on the interaction strength

c which is explicit in the equations. We will refer to the first scaling scheme

as ‘c-scaling’, with square-well potential given by (3.2) and the many-body

hamiltonian given by Equation (3.3); the second scaling scheme as ‘L-scaling’,

with the Equation (3.4) and (3.5). We adopt c-scaling and implicitly use

the Equation (3.1) and Equation (3.2) for subsequent discussions, except in

Section 3.3, Appendix B.2, and B.3, where L-scaling is used for the discussions

of varying interaction.

3.3 The perturbation and variational solutions

Before setting out to discuss the Bethe ansatz method, it is beneficial to

consider some special limiting cases and try different approximation methods

on them for these special limiting cases.

First of all, for the cases c = 0 and c = ∞, the solutions of Equation

(3.5) are trivial. In the case of c = 0, the system reduces to a non-interacting

one-body problem, whose energy levels are k2/2 and k is given by a transcen-

dental equation,

k

k0

=

{ |sin(k/2)| , sin k < 0,
|cos(k/2)| , sin k > 0.

(3.6)

whose wavefunction is

ψ(x) =





Aeκx, x < 0,
Beikx + Ce−ikx, 0 < x < 1,

De−κx, x > 1,
(3.7)

where κ =
√

k0
2 − k2 and A,B, C, D are coefficients that can be determined

separately.
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In the case of c = ∞, due to the finite energy restriction, the many-

body wavefunction must remain antisymmetric at any point where two atom

meet. In other words, the many-atom wavefunction is similar to a many-

fermion wavefunction: each of the atoms exclusively occupies an energy level

k2/2, where k is a root of Equation (3.6)—in compliance with Pauli Exclusion

Principle. This is the celebrated boson-fermion correspondence principle, first

discovered in Reference [37].

Of course, we can do more than just the special cases. In the weak in-

teraction regime, c ¿ 1, we can treat problem with perturbation or variational

theory.

To illustrate the perturbation approach, one can split the hamiltonian

in Equation (3.5) into H = H0 + H1, where the zeroth-order part is

H0 = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑

i=1

V (xi) (3.8)

and the first-order part is

H1 = c

N∑
i,j=1

i>j

δ (xi − xj). (3.9)

According to perturbation theory, the first-order correction to the total energy

of the N -atom system may be obtained as

∆E =
N∑

i,j=1

i>j

∫∫
ψ∗(xi)ψ

∗(xj)cδ(xi − xj)ψ(xi)ψ(xj)dxidxj

= N(N − 1)c

∫
|ψ(x)|4 dx. (3.10)
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In Figure 3.2a, we plot the average energy (total energy divided by

number of atoms) vs interaction strength.

The variational approach to calculate single-particle energies is moti-

vated by the wavefunction form taken by the free particles in Equation (3.7).

In the weak limit, we can continue to assume that each atom is described by

a wave number ki for i = 1, 2, · · · , N . Then its energy is k2/2 and its wave-

function is of the form of Equation (3.7). The rest of the calculation is done

in a routine way and the resulting single-particle energy levels are plotted in

Figure 3.2b.

As will become clear in Appendix B.2, the calculations in the weak (and

strong) limit will help determine the correctness of the Bethe ansatz solutions

with arbitrary interaction strength.
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Figure 3.2: Eigenenergies of Equation (3.5) for weakly interacting atoms with
perturbation and variational methods. The zero energy reference is the bottom
of the square well. a. The average energy per atom for a system of 2 through
17 atoms. b. The single-particle energies of 17 interacting atoms.
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3.4 Bethe Ansatz solutions

We discuss how the Bethe ansatz can be used to calculate Fock states

production in many bosonic atoms with arbitrary interaction strengths. We

adopt the ‘c-scaling’: we use ~2/mL2 as the energy unit, L as the length unit,

1/L as the wave number unit, etc.

Relevant to the production of Fock states is to solve the following eigen-

value problem

Hψ(~x) = Eψ(~x), (3.11)

where ~x is the shorthand for x1, x2, · · · , xN .

In this section, we obtain the Bethe ansatz solutions. We are pri-

marily interested in bound states whose wavefunctions must be normalizable.

As a minimum requirement, the wavefunction of a bound state must satisfy

limx→±∞ ψ(~x) = 0.

As studied in the literature [60, 62, 94], the Bethe ansatz introduces a

set of unknown wave numbers ~k = {k1, k2, · · · , kN}. In conjugate to these

wave numbers, another set ~κ = {κ1, κ2, · · · , κN} is defined as

κj =
√

k2
0 − kj

2, (3.12)

for j = 1, 2, · · · , N . The total energy of the Bethe ansatz state is E =

−∑N
j κj

2/2 =
∑N

j

(
kj

2 − k0
2
)
/2. The eigenfunction (wavefunction) of Equa-

tion (3.11) is piecewise continuous in the N -dimensional coordinate space

{x1, x2, · · · , xN}. For simplicity, we consider three representative regions in
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the N -dimensional coordinate space:

R1 : −x0/2 < x1 < x2 < · · · < xN < x0/2, (3.13)

R2 : x1 < −x0/2 < x2 < · · · < xN < x0/2, (3.14)

R3 : −x0/2 < x1 < · · · < xN−1 < x0/2 < xN . (3.15)

R1 represents a region where all particles are trapped; R2,(3) represent a region

where the 1st (Nth) particle tunnels into the left (right) barrier. In fact,

each of these regions falls in a class consisting of N ! regions that are related

by coordinate permutations. For ease of reference, we name A the class of

regions that can be obtained from R1 by mere coordinate permutations and

study the wavefunctions in these regions at once.

We denote the wavefunctions in a region of A as φτ (~x), where τ is the

permutation operator that transforms R1 into this region, i.e., Rτ = τR1. This

wavefunction is the superposition of pure plane waves with “± signs” times

permuted wave numbers,

φτ (~x) =
∑

ς∈CN
2

∑
σ∈G

A (ς, σ; τ) ei(ςσ~k)·~x. (3.16)

where ς ≡ {ς1, ς2, · · · , ςN} represents a possible combination of N signs each

of which is either + or −, CN
2 represents the group of such operations (direct

product of N C2 groups), G is the permutation group of N particles, and

A(ς, σ; τ) is the superposition amplitude.

It is clear that the amplitude A(ς, σ; τ) is a functional of the sign-

flipping operator, the wave number permutation operator, and the region per-
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mutation operator. By bosonic particle permutation symmetry, we establish

the first set of equations among the superposition amplitudes,

A(ς, σ; τ) = A(ς, τσ; I), (3.17)

where I is the identity element in the permutation group.

The wavefunctions in region R2 have a more complicated form,

φ2(~x) =
∑

ς

∑
σ∈G

B(ς, σ)e(σ~κ)1x1ei
PN

j=2 (ςσ~k)jxj , (3.18)

where (ςσ~k)j is the jth component wave number after the permutation oper-

ation σ and the sign-flipping operation ς, (σ~κ)1 ≡
√

k2
0 − (σ~k)1

2
, which can

be regarded as an extra operator on top of the permutation operator σ, and

B(ς, σ) is the superposition amplitude. Similarly, the wavefunctions in region

R3 may be written as,

φ3(~x) =
∑

ς

∑
σ∈G

C(ς, σ)ei
PN−1

j=1 (ςσ~k)jxje−(σ~κ)NxN , (3.19)

where (σ~κ)N ≡
√

k2
0 − (σ~k)N

2
and C(ς, σ) is the superposition amplitude.

From Equation (3.12), it is clear that if, for some i, ki > k0, then there

will be a corresponding pure imaginary κi. In turn, any pure imaginary κi

will cause the Bethe ansatz wavefunction to be unnormalizable (see Equation

(3.18) and Equation (3.19)). Then from the normalizability requirement stated

in the beginning of this section, we reason that a Bethe ansatz state is bound if

and only if all of the wave numbers are real and smaller than k0. Since we are
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primarily interested in bound states, from now on we implicitly mean bound

state when we say Bethe ansatz state, unless otherwise stated.

Once we get the Bethe ansatz wavefunctions, the rest is straightforward.

The main features of the many-body hamiltonian (Equation (3.3)) are the

singular δ-function particle-particle interaction and the nonzero potential step

at the edge of the square well. The Bethe ansatz method an elegantly treats

both as boundary conditions. The boundary conditions at xi−xj = 0 for i, j =

1, 2, · · · , N in regions of class A requires the continuity of the wavefunctions

on the one hand,

ψ|xi=xj
+ = ψ|xi=xj

− (3.20)

and certain discontinuity in their first-derivatives on the other,

[
∂ψ

∂xi

− ∂ψ

∂xj

]∣∣∣∣
xi=xj

+

−
[

∂ψ

∂xi

− ∂ψ

∂xj

]∣∣∣∣
xi=xj

−
= 2c ψ|xi=xj

. (3.21)

The boundary conditions at xi = ±x0/2, i = 1, 2, · · · , N require the continuity

of both wavefunctions and their first-derivatives:

ψ|xi=x0/2+ = ψ|xi=x0/2− (3.22)

∂ψ

∂xi

∣∣∣∣
xi=x0/2+

=
∂ψ

∂xi

∣∣∣∣
xi=x0/2−

. (3.23)

Plugging Equation (3.16), Equation (3.18), and Equation (3.19) into Equation

(3.20), Equation (3.21), Equation (3.22), and Equation (3.23) and including

Equation (3.17), we obtain the complete group of equations for our original

problem.
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To get the eigen-energies, it suffices to keep just the wave numbers and

eliminate all other unknowns. Doing so yields the following secular equations

for the N wave numbers,

πIj − x0kj = 2 sin−1

(
kj

k0

)
+

N∑

l=1
l 6=j

[
tan−1 (kj + kl) + tan−1 (kj − kl)

]
, (3.24)

where j = 1, 2, · · · , N , and I = {I1, I2, · · · , IN} is a set of preselected integers.

In retrospect, you may be wondering how R1, R2, and R3 have been

chosen and why we haven’t included more regions (and more equations), pos-

sibly with two or more particles lying outside the trap area simultaneously. In

fact, this is possible, but only with small probability for deeply bound states.

The effect on the number-state condition can be ignored. Firstly, insofar as all

the representative limiting cases (weak, strong interaction limit and deep trap

limit), our Bethe ansatz solutions agree with known results (see Figure 3.7a

and Appendix B.1). Secondly, the energy spacings between single-particle lev-

els are large near the strong interaction regime where Fock state experiments

take place most likely and therefore the probability for more than one particle

to tunnel into the barrier is negligible at all times. For this reason, we argue

that the Bethe ansatz-based approach is a sufficiently good approximation to

our problem.

Equation (3.24) is a transcendental equation and we solve it numer-

ically. We must pick a set of integers I = {I1, I2, · · · , IN} before we start

the numerical computation. Apparently, not any set of integers would lead to

a physically meaningful solution. As argued in Appendix B.2, we find that
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Equation (3.24) yields valid solutions if and only if the set of integers I are

mutually distinct, which is similar to the theorem in Reference [94]. A corol-

lary of this is that the wave numbers thus obtained have mutually distinct

absolute values. Because of this one-one correspondence, we use the set I as

the quantum numbers for the corresponding Bethe ansatz state.

Besides knowing what set of integers are valid quantum numbers, we

need to identify the ground state and the first-excited state. As argued in

Appendix B.3, we find that the ground state of an N -atom system has the

quantum numbers {1, 2, · · · , N}, and the first-excited state has the quantum

numbers {1, 2, · · · , N − 1, N + 1} (see Figure 3.3).

Without loss of generality, we reorganize the set of wave numbers such

that 0 < k1 < k2 < · · · < kN < k0. We define the jth single particle energy as

ej = −κj
2/2, for j = 1, 2, · · · , N .

On the other hand, had we chosen the L-scaling, we would have arrived

at the following equivalent secular equations for the wave numbers:

πIj − kj = 2 sin−1 kj

k0

+
N∑

l=1
l 6=j

[
tan−1 kj + kl

c
+ tan−1 kj − kl

c

]
. (3.25)

By solving the secular equations (Equation (3.24) and/or Equation

(3.25)) for the wave numbers ki’s, we can get the single-particle energy levels

and the many-particle total energy. Figure 3.3 a and b gives the dependence

of the total energies of the low-lying Bethe ansatz states on trap depth V0

and interaction strength c, respectively. Note that there are crossovers be-
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Figure 3.3: Bethe ansatz states for sodium atoms. The total energy of
4-particle bound states are plotted against trap depth (a) and interaction
strength (b). The numbers at the beginning of each energy level are the quan-
tum numbers of the bound state. We used the bottom of the trap as the energy
zero. Trap size L = 5 µm. Transverse trapping frequency ω⊥ = 2π× 150 kHz.
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tween some of the energy levels as the trap depth (or interaction strength) is

changed. Also note that the slopes at very small c agrees with the calculated

values by perturbation theory (see Section 3.3).

3.5 More about the single-particle energies

We are used to thinking of the concept of ‘single-particle energies’—

each particle has a definite energy consisting of kinetic energy and potential

energy. But single-particle energies are only well-defined for free particles. In

interacting many-body physics, the ‘single-particle energy’ may not be well-

defined. In fact, the Bethe ansatz ‘single-particle energy’, kj
2/2, may be purely

conceptual. As the interaction strength is varied from extremely weak to

extremely strong, we showed the panorama of the ‘single-particle energies’ of

the many-atom system across many orders of magnitude in the interaction

strength. In Figure 3.4a-h, we show the transition of the energy levels from a

free-boson system to a free-fermion system.

One interesting fact of the single-particle energy levels is that a dip

occurs in the lowest single-particle level as the interaction strength c reaches

the intermediate regime, even for the many-body ground-states. The mini-

mum number of particles for this feature to occur is two and Figure 3.5 shows

the dip with a closeup view, being more conspicuous in excited states with

large particle number. Nevertheless, a dip in the lowest single-particle energy

is anticipated. As calculated both in the Bethe ansatz and in the variational

methods, the lowest single-particle energy decreases as interaction increases
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Figure 3.4: Bethe ansatz single-particle energies for sodium atoms. The energy
zero is set to the bottom of the trap. The horizontal axis is the interaction
c (in unit of ~2/2mL2) and the vertical is the single-particle energy (circle,
square, diamond, and triangle in that order). Trap size L = 5 µm. Transverse
trapping frequency ω⊥ = 2π × 150 kHz. Panel from a-h shows the ground
state and the lowest 7 excited states of Bethe ansatz solutions as shown in
Figure 3.3.

71



ææææææææææææææææææææææææææææææææ
ææ
ææ
æææ

æææææææææææààààààààààààà
àààà

àà
àà
à
à
à
à
à
à

à

à

à

à

à

à

à

à

à
à
à
àà
ààà

ààààààà

0.01 1 100
0
2
4
6
8

10
12
14

c L

E
HÑ

2 �
m
�L

2 L
a

æææææææææææææ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æææ

æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
ææ
æææ

æææææ

0.01 1 100
2.0

2.5

3.0

3.5

4.0

c L

E
HÑ

2 �
m
�L

2 L

b

Figure 3.5: a. Single-particle energies of 2 sodium atoms in a square well of
width 100 µm. b. Zoomed-in view of the dip in the lowest single-particle
energy.

when c ¿ 1 (Figure 3.2). However, for both free bosons and free fermions,

the lowest single-particle energy should be the same. That is, as the interac-

tion strength varies from extremely weak through extremely strong, the lowest

single-particle energy, though first decreases then increases and eventually ap-

proaches the same value as c → ∞. This feature, if confirmed, will become

an interesting phenomenon. As is well-known, the zero energy in the ground

state, ∼ ~2/2mL2, originates from the Heisenberg uncertainty principle. If this

energy is reduced beyond the uncertainty limit, it has a similar implications

to squeezed state in quantum optics.

We designed a gedanken experiment to probe the single-particle ener-

gies in the interacting many-atom system. As shown in Figure 3.6, the system

is sandwiched in a transistor-like environment with a source, a drain and a

gate. We monitor the flow of atoms—the atomic ‘current’. Resonance tun-
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nelling occurs when the energy levels of the system and the gate are aligned.

By tuning the width or energy offset of the gate, we expect to observe peaks in

the current whenever a resonance tunnelling occurs. Likewise, by tuning the

inter-particle interaction strength c in the system, the same resonance effect

should be observed. If a dip is present in the lowest single-particle energy level,

it should be reflected in the atomic current. Of course, some details remain to

be cleared. For example, the single-particle energies may be modified by the

complex trapping potential of Figure 3.6. Possibly, the Bethe ansatz method

can be used for that calculation, too.

E

x

S System G D

Figure 3.6: Gedanken experiment designed to probe the ‘single-particle’ (quasi-
particle) energy. The experimental setup consists of an ultracold atom source
(S), a controlling gate (G) and a drain (D). We assume S is full of particles
while D is empty. The 1D many-atom system (System) is embedded between
the source and the gate. The source, system, gate, and drain are separated
by δ-barriers, which may be generated by tightly focused blue-detuned laser
beams. The source and drain may be considered as reservoirs whose chemical
potentials can be controlled. The experiment is designed to detect the atomic
‘current’, which is throttled by the gate energy offset and/or size through the
resonant tunnelling. The energy levels are drawn schematically.
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3.6 Atomic Fock states

We now apply the results of the previous sections to the production of

Fock states. We can safely assume no atom with positive energy is present

near the optical trap. In reality, if an atom acquires positive energy, it would

be quickly swept out of the chamber by vacuum pumps. Therefore, it is safe

to assume that the states in the continuum spectrum are virtually unoccupied

all the time.
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Figure 3.7: Single-particle energies of 4 sodium atoms in Bethe ansatz ground
states. Trap size L = 5µm. a. Dependence on interaction strengths (c). Trap
depth V0 = kB × 25nK, where kB is Boltzmann’s constant. The dotdashed
vertical line denotes the maximum interaction strength above which no Bethe
ansatz state of 4-atom system exists. The other two vertical lines denote the
interaction strengths of sodium (dotted) and 87Rb (dashed) atoms at ω⊥ =
2π × 150 kHz and zero magnetic field. Inset, the trap depth is lifted to kB ×
40nK, the condition at which all 4 atoms remain trapped to the Tonks limit.
b. Dependence of the single-particle energies of a 4-atom system on the trap
depth (V0). Transverse trapping frequency ω⊥ = 2π×150 kHz. Magnetic field
is zero. The vertical line (dotdashed) denotes the minimum trap depth below
which no bound state of the 4-atom system exists.
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As dictated by Bethe ansatz, for some given trap parameters (depth

V0, trap size L, scattering length a, and transverse trapping frequency ω⊥), N

atoms can be contained in the trap if and only if there is an N -atom Bethe

ansatz state. The energy levels for an N -atom system has been calculated,

by numerically solving Equation (3.24). As an example, Figure 3.7 shows a

4-atom Bethe ansatz state that ceases to exist in certain regions of the param-

eter space. In the main plot of Figure 3.7a, the 4-atom Bethe ansatz state can

only exist up to certain interaction strength for a small trap depth, while in

the inset the Bethe ansatz state exists regardless of the interaction for a large

trap depth; in panel b of the same figure, the 4-atom Bethe ansatz state can

only exist down to a certain trap depth. We assume that all other parameters

are held unchanged. We define trap capacity to be the maximum number of

particles that can be contained. Trap capacities put upper bounds on the pos-

sible Fock states. The whole parameter space is thus partitioned into zones

of certain trap capacities. We define the boundaries of these partitions as

the ionization thresholds, because atom numbers change only at these bound-

aries in an adiabatic laser-culling process. In Figure 3.8 we show how Bethe

ansatz solutions discontinue for 2, 3, 4, 5 and 6 atoms while the corresponding

ionization thresholds are approached.

Now that we obtained the trap capacity as the upper limit on the atom

number of Fock states that can be contained in a given trap, it remains to be

pursued whether or not this limit can be reached. The adiabatic laser culling

technique developed in Reference [32] and the simulations in Tonks-Girardeau
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Figure 3.8: Ionization thresholds of sodium atoms with all parameters fixed
except trap depth. Only highest single particle energies of the Bethe ansatz N -
atom states are shown for N = 2 (circle), 3 (square), 4 (diamond), 5 (upright
triangle), and 6 (invert triangle). Trap size L = 5 µm; Transverse trapping
frequency ω⊥ = 2π × 150 kHz. The ionization thresholds (with the current
numeric calculation step size) are also ticked along the horizontal axis.

region in Reference [27, 82] seem to suggest that it is possible to reach the trap

capacity with the ultracold technique [21, 72].

For bosonic atoms, a convenient starting point is a BEC that is trapped

in 1D optical box. Ignoring excitation effects for now, it is useful to view the

process from the angle of quantum optics and regard the state of the BEC

as a coherent state [5]. A coherent state is essentially a superposition state

of an infinite number of Fock states whose particle numbers form a Poisson

distribution. As one adiabatically reduces the trap capacity, a smaller and

smaller maximum number is enforced on the possible Fock states in the su-

perposition. The system state thus undergoes two changes side by side: No.1,
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Figure 3.9: Map of Fock states and the calculated ionization thresholds for
sodium atoms in a 1D optical trap in the adiabatic limit. Transverse trapping
frequency ω⊥ = 2π × 150 kHz and zero magnetic field are assumed. The
interaction strength is implicit in the unit we adopted, since c−1 and ~2c2/m
are used to make the axes dimensionless. a. Contour plot of Fock states as
function of trap depth and size; b. and c. views of cross-sectional cuts along
the lines indicated in a, respectively. The ticks on horizontal axes give the
corresponding ionization thresholds.
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more and more high-energy atoms are ejected; No.2, more and more high-

number Fock states are eliminated, resulting in the so-called squeezed states.

Each of these two changes has its distinctive effect on the system state: the

first leads to smaller and smaller average particle number N = 〈N〉 whereas

the second leads to a reduction in the number uncertainty σ2 =
〈
N2 −N

2
〉
.

Under optimal experimental conditions, the process continues until at some

point, while the average number 〈N〉 > 0, the number uncertainty σ ≈ 0. A

rigorous simulation of this would require calculating the value σ
N

as a function

of time in a dynamic process.

There are several ways to tune the physical parameters to achieve the

squeezing effect. In previous references [27, 32, 82], only culling (reducing trap

depth), squeezing (reducing trap size), or some combinations of the two are

discussed. We propose to tune the interaction strength as a complementary

method. In certain circumstances, atom-atom interaction strength c may be a

better tuning method. In still other circumstances, it may be the only tunable

parameters. Thus interaction strength plays a key roll in producing Fock states

in many-atom systems.

To recap, the path to Fock states is clear now. By tuning the physical

parameters of the 1D optical trap adiabatically, we force the ultracold atom

sample through a series of quantum collapses until it eventually reaches the

desired Fock state with some acceptable fidelity. In Figure 3.9, we show a map

of Fock states and ionization thresholds in the parameter space of trap size

and trap depth.
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Figure 3.10: Excitation energy gaps between ground and first-excited states
as function of trap depth for 2 (circle), 3 (square), 4 (diamond), 5 (upright
triangle), and 6 (invert triangle) sodium atoms. Trap size is 5 µm.

Ideally, the path connecting the starting point and a targeted Fock state

consists of a series of states (the Bethe ansatz states) with well-defined particle

numbers. But in reality, there are always some elementary excitations, which

are defined here as any deviations from the ideal adiabatic course. Possible

elementary excitations include occupations of excited Bethe ansatz state (of

the same particle number), earlier ionizations (loss of particles before reaching

the Bethe ansatz ionization threshold), and simultaneous ionizations of more

than one particles.

We now analyze the effects of excitations. Abrupt changes in the trap-

ping potential tend to introduce extra terms into the system density matrix. As

the system gets near an ionization threshold, the system becomes particularly
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delicate, since the particle with the highest energy can tunnel further away

from the center of the trap and thus external disturbances have larger exciting

effects on the system. Moreover, immediately after the ionization threshold is

passed, the system density matrix is subject to various excitations due to wave-

function collapses. These excitations are crucial to the fidelity of Fock state

production, since they cause significant reversion in the number uncertainty

of the final state. A characteristic measurement of tendency of excitation is

the energy gap, ∆, which is defined as the difference between total energies of

the ground and first-excited Bethe ansatz states (if both exist). According to

our calculation, they are of the order of a few kB × 10nK (see Figure 3.10).

∆ limits the laser culling process in two folds. Firstly, the temperature must

be maintained lower than a few 10nK, otherwise, fidelity could be endangered

due to thermal excitation. Secondly, the energy gap puts a requirement on the

adiabaticity condition [2]: the culling speed must be much smaller than ∆2

~ .

To give a sense of the numbers, we consider culling with a trapping potential

from the ionization threshold of 3 particles down to that of 2 particles at trap

size of 5µm and transverse trapping frequency ω⊥ = 2π × 150kHz. According

to our calculation, the minimum time required to complete this portion of the

culling should be no less than 0.3ms to be considered as adiabatic.
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Chapter 4

Conclusion

In conclusion, we studied the Fock states of bosonic and fermionic atoms

with an eye on applying these systems to quantum computation.

We considered the system of fermionic atoms in the micro-traps of

optical tweezers for quantum computing. We start from N sites and cull to

a series of N spin pairs in the ground state of each micro-trap. We then

split them into 2N sites, each with one atom. Thus, we initialize our 2N

qubits in an anti-ferromagnetic configuration. 2N qubits can be prepared

and manipulated by appropriate rotation either individually or collectively.

Entanglement operations are implemented by the collisional shift of the two

spin states as two micro-traps are brought together. To read out the spin

states, each qubit is split into two sites that are spatially resolved, a total of

4N sites. The read-out is provided by fluorescent imaging, where each site is

either 0 or 1.

We have shown that fermionic lithium atoms can be the basis for ultra-

high fidelity quantum logic. This system has the potential to satisfy all of

the DiVincenzo criteria and is therefore a promising candidate for quantum

computing.
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We also calculated the single-particle energies of interacting bosonic

atoms using the Bethe ansatz. We predicted the conditions for producing

Fock states in ultracold bosonic atoms in 1D optical trap.
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Appendix A

Controlling laser power, laser frequency, and

temperature

Due to the ubiquitous presence of noise and varying surrounding envi-

ronment, active feedback control systems are pivotal components in an ultra-

cold physics labs. Usually we want to control the parameters, such as laser

frequency, lens position, room temperature, liquid level, in a physical process

at some preset points. Any deviation from such a setpoint is considered the

locking error. A feedback control system usually has three functional modules:

the module for locking error detection and error signal generation; the module

for purifying and amplifying the error signal; and the module that perceives

the error signal and accordingly compensates for the locking error to restore

the preset value.

In the following sections, we study proportional-integral-derivative (PID)

control basics and a few realistic projects that are most relevant to ultracold

atomic physics.
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A.1 Basics of PID control

A PID control is a generic closed-loop feedback algorithm that is widely

used in industrial control systems. The PID controller provides three separate

but related feedbacks based on some statistics of the error signal: the propor-

tional value P (t), the integral value I(t) and the derivative value D(t) (see

Figure A.1a). The overall reaction of the PID controller is a weighed sum of

the three feedbacks,

R(t) = KP P (t) + KII(t) + KDD(t), (A.1)

where KP , KI , and KD are tunable constants. Finally R(t) is applied to the

system via actuators such as piezoelectric stacks, heating elements, etc.

Let E(t) denote the error signal. The proportional feedback, P (t) ≡
E(t), measures the error signal at the present time. Often, the propor-

tional feedback makes the weight-lifting contribution for AC-coupled processes.

Larger KP typically mean more substantial response. However, an excessively

large KP will lead to instabilities and oscillations.

The integral feedback is given as

I(t) ' KI

∫ t

−T

E(τ) dτ , (A.2)

where T ≥ 0 is the characteristic cutoff time of the integrating component.

I(t) measures the accumulation of the error signal over a certain period of

time in the immediate past. The integral feedback collects small yet persistent

errors and generate a remedial output. Larger KI implies steady state errors
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Figure A.1: a The PID control flowchart. Arrow denotes direction of control
flow. The detector senses fluctuations in the process (red) and sends error
signal to the PID controller (labelled as P, I, and D, respectively). The outputs
of the PID controller is summed and applied to the process to reduce the
fluctuation. b. The Bode plots of the transfer functions of the P, I, D control
units (black), and the process (red). The latter is assumed to be a two-stage
amplifier which starts to roll off at 12dB/octave at frequency fc [46].

are eliminated more quickly. Since for a sinusoidal signal of frequency ω,

I(t) ∝ 1
ω
, integral feedback is inefficient in reducing high-frequency locking-

errors. Moreover, since the information collected by the integral feedback is

often out-of-date, inappropriately large KI can cause excessive overshooting.

The derivative feedback, D(t) = d
dt

E(t), measures the rate of change

of the error signal at the present time. The derivative feedback ‘guesses’ on

the tendency of the near-future error signal based on the measured rate of

change and tries to check that tendency with a contravening output. Hence,

derivative control is used to reduce the overshoot produced by the integral

feedback, at the price of slowing down transient response (lengthening the

settling time). Clearly, for a sinusoidal signal with frequency ω, D(T ) ∝ ω.
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Table A.1: Ziegler-Nichols tuning method
Ziegler-Nichols method

control type KP KI KD

P 0.5Kc - -
PI 0.45Kc 0.54 Kc/Pc -

PID 0.60Kc 1.20Kc/Pc KcPc/13

Therefore, with sufficiently high loop-gain and large KD, derivative feedback

can lead to oscillations and other instabilities. A common solution is to use

low-pass filters to safeguard against the build-up of high-frequency noise. The

spectral response of the three feedback controls and a typical system transfer

functions are shown in Figure A.1b.

It should be clear by now that even with the world best PID controller,

substantial tuning is required to harness it to do good. As shown in Figure A.2,

overall transfer function of the PID controller is calculated and the product

of the transfer functions of the process and the PID controller gives the loop

transfer function. The transfer functions of the other components including the

detector, the summer circuits are assumed to be unity. A tuning process fits the

PID spectral response to that of the process to produce the desired spectral

responses, by adjusting the parameters, KP , KI and KD, to the optimum

values.

A widely used tuning method is the Ziegler-Nichols method: with the

KI and KD set to zero, KP is increased until it reaches the critical gain, Kc,

which is characterized by the onset of oscillation in the process output. Kc

and the oscillation period Pc are recorded and used to calculate the optimum
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Figure A.2: The Bode plot of the response frequencies of the weighed sum
of the P, I, and D control units (black) after the PID tuning. The transfer
function of the system is characterized by a two-stage RC-filter (red). Their
product gives the overall loop gain, whose Bode plot is shown (green).

values for the PID gain parameters with formulae given Table A.1.

Insights on the above tuning method are made clear in Figure A.2. The

critical step in the Ziegler-Nichols tuning method is measuring the values Kc

and Pc. If one examines the tuning process carefully, one will be convinced

that this just finds the coordinate of the point in the Bode plot where the

process transfer function starts to roll off at 12 dB/octave and the phase-shift

approaches 180 ◦ [46]. Because a phase-shift ∼ 180 ◦ would convert a negative

feedback to positive. With a high enough gain Kc, a positive feedback with > 1

loop-gain will surely start the oscillation at frequency fc. Obviously, Pc = 1/fc.

After obtaining these two numbers, the rest is straightforward. Depending on

the number and types of feedback controls, various optimum values can be
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obtained by looking up the above table. Usually, after the tuning, a simple

loop-transfer function results. Figure A.1b shows a 1/ω transfer function (solid

green line).

However, no tuning formula fits all. In practice one should choose a

closest tuning method and use it only as a guideline. The ultimate goal is to

obtain the desired response.

A.1.1 Feed forwards

PID controllers, when used alone, may perform poorly, i.e., excessive

overshoots, oscillations, and/or divergence. And often, one has to improve one

feature in the process response function at the price of others. This can be

improved by combining a PID controller with a feed-forward controller. Feed-

forward is an open-loop control algorithm. With enough knowledge about the

system, the next behavior of a system can be successfully anticipated with

sufficient accuracy. Accordingly, a preventing measure can be taken, without

relying on feedback. An obvious advantage of feed-forward relative to feedback

is that it causes no overshooting or transient oscillations. Therefore, the less

we rely on feedback, the smaller the overshoots and transient response times

are. With the feed-forward, the major portion of the controller output is lifted

from the PID feedback which is merely used to respond to the error of the

feed-forward and the setpoint. In this way, the overall system performance is

substantially improved.
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Figure A.3: a. Absorption peak as measured by the voltage output of a
photodiode. Without using lock-in amplification, the best locking reference
level are as shown in the dashed line and the resulted laser frequency is one
of the side points (red) of the absorption peak. b. The decoded lock-in signal
for the absorption peak. With the lock-in amplification, an absolute reference
signal at 0 volt can lock laser frequency on the center of the absorption peak.

A.2 Lock-in amplification

A lock-in amplifier is a type of amplifier that can encode and extract

a small signal with a known carrier wave in an extremely noisy environment.

This is done under the board by a homodyne followed by a narrow-band low-

pass filter. In laser spectroscopy, precision control on frequency necessitates

the use of lock-in amplifiers to extract small error signals and, more impor-

tantly, to lock to the center of an absorption peak, instead of the sides, as will

be discussed below.

To see how, consider an absorption peak shown in Figure A.3a. Let the

laser power after absorption be I(ω(t)), which could be the voltage of a photo-

diode and where ω is the slowly drifting laser frequency. Without using lock-in

amplifiers, the best one can do is to lock laser frequency to one of the two sides

of the peak. This has two drawbacks. Firstly, the precision of frequency lock
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is entangled with laser power. This is because the photodiode output voltage

measures the absolute laser power. If there is power fluctuation, it will appear

in frequency fluctuation, by the translation of the locking. Secondly, though

locked, the laser frequency may not be exactly known. To obtain the exact

laser frequency, we must calculate the peak width. However, the calculation

is complicated by various peak broadening effects, e.g., Doppler-broadening,

power-broadening, etc. [70].

Lock-in technique solves both problems elegantly. Firstly the laser fre-

quency is modulated with a carrier signal, which is usually a sinusoidal func-

tion with a clean constant frequency 2πfr. This modulates the laser intensity

I(ω(t) + χ cos 2πfrt). When the modulation amplitude χ is small, we can

expand the laser intensity and get

I(ω(t) + χ cos 2πfrt) ' I(ω(t)) + I ′(ω(t))χ cos 2πfrt, (A.3)

where I ′(ω(t)) is the derivative of the laser intensity with respect to the laser

frequency.

The photodiode signal is sent to the lock-in amplifier, where the signal

is homodyned with the carrier signal and subject to a low-pass filter.

O(ω(t)) = LP
{
|I(ω(t)) + I ′(ω(t))χ cos 2πfrt + cos(2πfrt)|2

}

' I ′(ω(t))χ, (A.4)

where LP stands for the transfer function of the low-pass filter. We have

assumed the Fourier component of frequency 2πfr in the drifting waveform of

the laser frequency is negligible.
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The resultant signal O(ω(t)) is the derivative of the absorption peak

I(ω) (see Figure A.3). Within a certain range, O(ω(t)) truthfully reflects the

difference between the laser frequency and the absorption center frequency.

With help of subsequent PID feedback control, laser frequency is typically

locked at the zero-crossing in O(ω(t)) (see Figure A.3).

A.3 Saturated absorption spectroscopy

The Doppler-free, saturated absorption spectroscopy is commonly used

to precisely detect errors in laser frequencies. The experimental arrangement

for the saturated absorption spectroscopy is shown in Figure A.4. The incident

laser beam (with mW power) is split by the beam-splitter BS with power ratio

≈ 1 : 9. The less intense beam, called the probe beam, passes through the cell

and enters the photodiode detector. The more intense beam, called the pump

beam, traverses the atomic vapor cell in the opposite direction.

Firstly, we consider a single atomic transition with center frequency

ω0 and natural linewidth γ. The absorption probability of a photon with

frequency ω by a ground-state atom at rest is

σ(ω, ω0) = σ0
γ2

4(ω − ω0)2 + γ2
, (A.5)

where σ0 is the on-resonance absorption probability. At room temperature,

the velocity distribution of the atoms in the glass cell is

N(v) = N0e
− mv2

2kBT , (A.6)
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Figure A.4: Experimental set-up for saturated absorption spectroscopy.

where N0 is the number of atoms at zero velocity, kB is Boltzmann’s constant,

and T is the room temperature.

If there is no pump beam, almost all the atomic population would be in

ground-state. With the complication of the Doppler-shift (see Section 1.1.1),

the absorption peak is given by the convolution between σ(ω) and N(v)

R(ω) =

∫ ∞

−∞
σ(ω − kv/c, ω0)N(v)d v. (A.7)

With the intense pump beam, a significant portion of the atomic pop-

ulation whose velocity falls in the following range:

|vω/c− (ω − ω0)| < γ

2
(A.8)

is pumped to the excited state. The distribution of population in the ground

state and the excited state are shown in Figure A.5a. Selectively optical

pumping atomic population with certain property (velocity in this case) to

the excited state is termed ‘hole-burning’.
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As the laser frequency is scanned, the absorption-effective population

of the probe beam and the burnt hole shift oppositely (see Figure A.5). At

proper laser frequency, the two oppositely moving peaks overlap. Provably this

occurs precisely at zero velocity, where the probe and the pump will compete

for absorptions by the low-speed atomic population. Deprived of suitable

atomic population to absorb the laser power, the probe beam passes through

the cell without much loss of power. This results a peak of linewidth γ in the

saturated absorption spectrum for an isolated transition (see Figure A.5a).

It is straightforward to see that the saturated absorption spectroscopy

of atoms with multiple transitions will have multiple peaks, each of which has

the center frequency and natural linewidth of the corresponding transition.

However, for atoms with atomic structures of either Figure A.6a or b, extra

peaks can appear.

v

N
a

-v1 v1 Ω

P
b

Figure A.5: a. Population distribution of the ground state (blue) and the
excited state (purple) for a blue-detuned laser frequency. The absorptions
distribution of the probe beam is also shown (dashed). b. The saturated
absorption spectroscopy for an isolated transition. When the peak in the
dashed line and the burnt hole aligns at v = 0, a peak appears.
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Figure A.6: a. Two transitions sharing one ground state. b. Two transitions
sharing one excited state.

We take Figure A.6a for example. If the two transitions at frequencies

ω1 and ω2 are close enough, both can fall in the frequency range specified by

Equation (A.8). Consequently, two holes can be burnt in the population dis-

tribution, and both transitions at ω1 and ω2 can contribute to the absorption

of the probe beam. Figure A.7a shows this situation. There are three possi-

ble alignments between the absorption peaks of the probe beam and the two

burnt holes. Particularly, when the laser frequency is close to ω1+ω2

2
, the two

absorption peaks and the two burnt holes overlap. This causes the following

effects: the atomic transition at ω1 pumps atomic population with velocity

v1 ≈ v2 ≈ cω2−ω1

ω1+ω2
to excited state |e1〉; at the same time the atomic transition

at ω2 pumps atomic population with velocity −v1 to excited state |e2〉. As a

result, absorptions of the probe beam at both transitions are blocked and the

power loss in the probe beam is reduced twice as strongly. That is, an extra

peak at the frequency ω1+ω2

2
appears in the saturated absorption spectroscopy

and it is referred to as the crossover line (Figure A.7b).
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Figure A.7: a. Population distribution of the ground state (blue) and the
excited state (purple) The absorption distribution of the probe beam has two
peaks corresponding to the two transitions ω1 and ω2 (dashed). b. The satu-
rated absorption spectroscopy for an isolated transition.

A.4 Frequency controls in a semiconductor diode laser

Due to their high-quality mode, tunable frequency, stable power, and

low price, semiconductor diode lasers find many applications in laser cooling

and trapping experiments. However, a bare laser diode is not a useful laser

source with single-frequency and high-quality mode, unless it is wrapped in

sophisticated conditioning infrastructure. The infrastructure provides electric

current control, temperature control, frequency stabilization and tunability,

etc. One popular design is the Littrow configuration.

The infrastructures of the Littrow configuration is usually housed in a

sealed resin or metal case, for easy control of temperature and humidity. At the

heart of this configuration is a diffraction grating (see Figure A.8) which splits

the incident power into zeroth-order (about 90% of the incident laser power)
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Figure A.8: Diffraction grating used in Littrow configuration for use in a
semiconductor diode laser.

and first-order diffraction beams. The first-order beam is directed back into

the laser diode. The grating and the back facet in the laser diode thus form an

external cavity. With the huge spectral resolution capability of the diffraction

grating, the reflection angle of the first-order diffraction beam is very sensitive

to the incident laser frequency. As a result, the output laser frequency can be

controlled by tilting the grating. By actively controlling this tilting angle, one

can accurately control the frequency of the output laser beam to within ±2

MHz.

Usually, the detection of frequency error is realized through saturated

absorption spectroscopy (see Section A.3). Lock-in amplifiers are used to ac-

curately determine the center of the peaks in the absorption spectrum, and

the integral control algorithm is enough for fast frequency locking.
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Figure A.9: PID temperature control servo circuit. Starting from upper left are
1) a bridge with a thermistor on one of the 4 arms, error signal generation unit,
2) differential amplifier, error signal filtering and amplifying unit, 3) integral,
derivative, and proportional feedbacks, 3) heater, actuator, respectively.

A.5 Temperature Control

The lasing frequency and mode quality of a semiconductor diode laser

is very temperature-sensitive. For a common laser diode, the laser wavelength

tunes by 0.1 nanometer when temperature changes by 1/4 Kelvin and mode

quality deteriorates quickly, too.

To have a reliable laser source, several stages of temperature stabiliza-
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tions are needed. Firstly, the laser diode itself must be stabilized to reduce

fast temperature fluctuation (with frequencies of a few kHz). Secondly, to

reduce warm-up time for day-by-day uses, another stage of temperature con-

trol is needed to pin down the temperature of a larger environment, e.g., the

platform or baseplate of the Littrow infrastructure. The circuit diagram in

Figure A.9 is a broadband temperature stabilization servo module designed

for semiconductor diode. With a properly tuned feedback loop, the servo can

stabilize the temperature of a diode laser within 10 minutes and extend the

duration of locking to about 10 hours without interruption.

A.6 Laser power control

In many applications, one needs to control the fluctuation in the laser

power. This becomes important, for example, during entanglement generation

and gate operation using stimulated Raman transition where precision control

of Rabi oscillation frequency is necessary.

However, the resonance frequency is very sensitive to the laser power of

Raman laser beams, due to the notorious light-shift (Equation (1.4)). There-

fore, precisely controlling the powers of the Raman laser beams is critical.

More often than not, there are many conditioning optics before the laser

is finally delivered into the chamber and among them many are polarizing de-

vices (not necessarily polarizers). To make it worse, laser beams are frequently

coupled in and out of optic fibers. As is well-known, significant polarization

rotations occur because of optical waveguide bending. The combined effect is

99



a wild laser power fluctuation.

An active feedback loop can greatly reduce the power fluctuation. One

way to do so is to skim the noisy part out of the laser power by power-splitting

components such as an electro-optical modulator (EOM).

An EOM consists of two polarizers sandwiching one, sometimes two

birefringent crystal(s), such as Lithium niobate. The crystal is cradled in a

transverse static electric field created by a pair of electrodes. A laser beam

is incident on the input polarizer, passes through the crystal and finally exits

the output polarizer. The input polarization is properly oriented with respect

to the crystal axes, so that the optical power can be equally split into the

ordinary and extraordinary beams in the crystal. With an applied voltage, a

variable phase delay can be produced between the ordinary and extraordinary

beams. Upon exiting the crystal, the two beams recombine into one, but the

polarization of the resultant beam is changed because of the phase delay. As

a result, the output polarizer will split off a certain amount of laser power,

depending on the phase-delay.

By controlling the phase-delay with a voltage on the electrodes, one can

control the transmitted laser power. With a closed-loop feedback system, the

noisy part of the laser power can be skimmed away, leaving clean laser power

in the chamber. The schematic of the power stabilization system is shown in

Figure A.10a. The feedback control circuit is shown in the panel b of the same

figure.
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Figure A.10: A laser power stabilization system a The schematic drawing for
the feedback loop. The laser power in the chamber is the control object. The
laser power exiting the vacuum chamber is detected by a photodiode. The
difference between the output voltage and a preset voltage is taken as the
error signal. This error signal is amplified and conditioned in the feedback
control circuit. Finally, the circuit outputs a voltage to adjust the laser power
dissevered to the chamber. b The feedback control circuit. The reference
voltage is generated by a temperature-stabilized zener diode. A simple integral
control is used. All electronic components in the feedback loop are of high
bandwidth so that the overall signal has a bandwidth ≥ 1 MHz.
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Appendix B

Issues Related to Bethe Ansatz

B.1 Truncations on the boundary conditions in Bethe
ansatz method

In Section 3.4, we implicitly truncated boundary conditions. We can

obtain more equations by joining wavefunctions at boundaries other than those

between R1, R2 and R3 but we did not. In fact, we just considered the cases

with no more than one particle in the barrier regions. There are more several

reasons, but the most important one is that we got just enough equations to

derive the secular equations (3.24) and (3.25). On the other hand, had we

included more equations, we would have got inconsistencies and the Bethe

ansatz method would not bear any solutions. For this reason, we admit that

our method is an approximation.

The inconsistency results partly from the finite barrier. To understand

this point, note that there are more than one ways of partitioning N (> 1)

atoms into the two groups. For example, we can have 0, 1, or 2 atoms in the

barrier while the rest are in the well, respectively. With the finite square well,

each partition corresponds to a realizable configuration by placing one group

to in the well and the other in the barrier (either left or right). Recall that

the interaction energy is proportional to the particle number in the well, from
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the discussion of the perturbation solution in Section 3.3 (Equation (3.10)).

Thus, each partition has a different interaction energy. In reality, the quan-

tum state of the system could be a simultaneous superposition of all these

partitions. However, under the current formulation framework, this cannot be

possible—all the different partitions have different energies! We refer to this

inconsistency as the inhomogeneous interaction difficulty.

Next we illustrate the inhomogeneous interaction difficulty with a in-

teracting two-atom system. The configuration space x1-O-x2 is partitioned

into various regions by the boundaries where particle-particle interactions take

place and the square well potential steps (see Figure B.1). The Bethe ansatz

wavefunctions in these regions consist of linear superpositions of plane waves

and/or exponentially decaying waves. If one follows the procedure outlined

in section 3.4 in the regions 1, 2, 3, and 4 and boundary conditions BC(1,3),

BC(1,2), and BC(1,4) (see Figure B.1), one would soon rediscover Equation

(3.24) (with N = 2).

But this time, we go beyond that. We continue to dig more equations

out of other boundary conditions and eventually derive another set of secular

equations to be contrasted with Equation (3.24). Let us first write out the

wavefunctions in regions 4, 5 and 7,

• Region 4,

φ4(x1, x2) = Ape
ik1x1+κ2x2 + Ame−ik1x1+κ2x2+

+Bpe
ik2x1+κ1x2 + Bme−ik2x1+κ1x2 , (B.1)
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Figure B.1: Configuration space and boundary conditions for a 2-boson sys-
tem. The perpendicular dotted lines, x1 and x2, are the coordinate axes. The
solid lines at x1,2 = ±x0

2
denotes the square well enclosed by potential barrier.

The solid diagonal line x1+x2 = 0 denotes where δ-interaction takes place; the
anti-diagonal line x1−x2 = 0 (dashed) denotes the additional space-reflection
symmetry. The other dashed lines are boundaries for the problem. The num-
bers 1-8 denote the regions that have distinct forms of wavefunctions where
regions 1 & 2, 1 & 3, 5 & 6, and 7 & 8 are related by space-reflection symmetry,
respectively.
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• Region 5,

φ5(x1, x2) = A5e
κ1x1+κ2x2 + B5e

κ2x1+κ1x2 , (B.2)

• Region 7,

φ7(x1, x2) = A7e
−κ1x1+κ2x2 + B7e

−κ2x1+κ1x2 . (B.3)

Then we explicitly derive the boundary conditions below:

1. BC(4,5) (x1 = −x0/2, and x2 < −x0/2),

Combine continuity of both wavefunction and first-order derivative,

(k1 − iκ1)Ameik1x0 = (k1 + iκ1)Ap, (B.4)

(k2 − iκ2)Bmeik2x0 = (k2 + iκ2)Bp. (B.5)

2. BC(4,7) (x1 = x0/2, and x2 < −x0/2),

Similar to BC(4,5),

(k1 − iκ1)Ape
ik1x0 = (k1 + iκ1)Am, (B.6)

(k2 − iκ2)Bpe
ik2x0 = (k2 + iκ2)Bm. (B.7)

Here Ap, Am, Bp, and Bm are superposition coefficients in region 4 and the su-

perposition coefficients A5,7 and B5,7 have been eliminated. Again we truncate

our process, since we have enough equations for demonstrating the inconsis-

tency. Combining Equation (B.4) and (B.6), Equation (B.5) and (B.7), we

obtain another set of secular equations,

e2ikjx0 =

(
kj + iκj

kj − iκj

)2

, j = 1, 2, (B.8)
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which describes essentially non-interacting bosons in the same square well.

Obviously, Equation (3.24) and Equation (B.8) are irreconcilable unless c = 0.

So generally speaking, the problem of δ-function bosons in finite-barrier square

well potential has no solution in the framework of Bethe ansatz. Equation

(3.24) and Equation (B.8) are irreconcilable as long as partitions with different

particle numbers exist in the configuration space. These arguments can be

easily extended to an arbitrary number of bosons. i.e. when the probability

for m > 1 particles to tunnel simultaneously into the barrier of the square well

is small compared with that for m = 0, 1, the Bethe ansatz solution may be

taken as a sufficiently good approximation. From our calculation we learned

that, away from the strongly interacting region, single particle energy levels

cluster. Unless all the levels are deeply seated in the trap, the probability

for more than one particle to simultaneously get outside of the square well is

comparable with that of the most energetic particle.

Therefore, we conclude that because of the inhomogeneous interaction

difficulty, Bethe ansatz method cannot give exact solutions to the interact-

ing many-boson problem in general. However, for the purpose of Fock states

simulations, this approximate method is sufficient. The energy spacings be-

tween single-particle levels are big near the strong interaction regime where

Fock-state experiments will likely take place. Therefore, the probability for

more than one particles to tunnel into the barrier of the square well is small,

compared with no tunnelling or one tunnelling.

106



B.2 Valid Bethe ansatz solutions

We work with the L−scaling scheme (see Section 3.2). The secular

equations (3.25) depend on the interaction strength, the trap depth, and a set

of integers. Clearly, the interaction strength and trap depth can assume the

values of any positive real numbers. The purpose of this section is to study

what are good sets of integers to be used in the secular equations (3.25), to

obtain physically meaningful solutions.

Firstly, recall that in Section 3.3, we got the solutions for many-boson

systems for a few special cases by simply using textbook methods, perturbation

theory, and variational principle. Those solutions are either experimentally

verified or corroborated by other theories, and thus are trustworthy. Now,

we show how to use those trustworthy solutions to inspect the Bethe ansatz

solutions.

Let us once more take a 4-particle system for example. We assume

k0 = 10 for the trap. For the mere purpose of obtaining a solution, we

plug {0, 1, 2, 3} into the secular equations (3.25) with some small interaction

strengths in the weak regime. The wave numbers of the solutions are shown

in Figure B.2. As we insert more and more points, we expect to see the so-

lutions form continuous paths connecting solutions at some finite interaction

strengths to that of c = 0. However, we know the solutions for the case of

c = 0 with the previously mentioned methods and we can simply compare that

to the end of the continuous path—if they do not match, the solutions on the

whole path are invalid. The three other panels in Figure B.2 show more of
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Figure B.2: Verification of the Bethe ansatz solutions using solutions at c = 0.
The title of each panel denotes the quantum numbers that are used for the
calculation; the horizontal axis denotes the interaction strengths; the vertical
axis denotes the wave numbers of the Bethe ansatz solutions. The red bold
numbers together with the dotdashed lines in each panel denotes the wave
numbers of the solutions at c = 0. The quantum numbers {0, 1, 2, 3} and
{1, 2, 2, 3} denote states that have no valid limit as c → 0.
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the trials with the integer sets {1, 2, 3, 4}, {1, 2, 3, 5}, and {1, 2, 2, 3}, among

which, the integer sets, {0, 1, 2, 3} and {1, 2, 2, 3}, should both be rejected.

This method can be generalized to any many-particle system with any

trap depths and interaction strengths. A ‘promising solution’ to Equation

(3.25) should be connected to valid solutions at c = 0. If this path does not

connect to a valid solution at c = 0, then we can decide with certainty that

the chosen integer set is bad. Our non-exhaustive experiments show that a

Bethe ansatz solution is connected to a solution at c = 0 if and only if the set

I consists of positive and mutually distinct integers, as shown in Figure B.2.

We also find that for c 6= 0, the wave numbers in the solution are mutually

distinct if and only if the integers in the set I are mutually distinct.

B.3 Energy-level ordering of Bethe ansatz states

With the verification process explained in Appendix B.2, we know that

only positive, mutually distinct integers can be supplied to Equation (3.25).

However it is still left to determine which integer set gives the ground state,

which gives the first excited state, and so on.

In this section, we use a similar method as what is used in the previous

section to partially order the levels. This time, our clue comes from the solu-

tions in the strong interaction limit c →∞. In that case, the ground state of

the many-boson system is similar to that of a degenerate-fermion gas because

of the boson-fermion correspondence principle [37]. Our numerical calculations

show that with the set I = {1, 2, · · · , N}, the solution of Equation (3.25) ap-
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proaches that of the ground state of the degenerate fermion system in the

limit c → ∞. We therefore expect that for finite c, the ground state is also

obtained with this same set. Knowing that I = {1, 2, · · · , N} generates the

ground state, it is almost intuitive to see that I = {1, 2, · · · , N−1, N +1} will

generate the first-excited state. Indeed, experiments with this set of integers

for all interaction strengths support this viewpoint.

We are thus certain about the ground and first-excited states in general.

However, little could be said beyond that. Within the limit of calculation error,

our experiment is not conclusive about which is the second excited state for all

interaction strength. As shown in Figure 3.3, there are crossovers in the total

energies at some interaction strengths and trap depths. In general the energy-

level ordering depends on both the largest quantum number and the total of

the quantum numbers. For complete ordering, one needs something analogous

to Hund’s Rule in atomic physics. But for the purpose of applications in

producing Fock states, it suffices to know the energy levels of the ground and

first-excited states.

To summarize, we conclude that for any given N , the set I = {1, 2, · · · , N}
leads to the ground state and the set I = {1, 2, · · · , N − 1, N + 1} to the first

excited state. However, a general rule for ordering all the energy levels at

arbitrary interaction strength is neither simple nor necessary.
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Appendix C

The Wentzel-Kramers-Brillouin (WKB)

method

Generally, the WKB theory is a method for approximating the solution

of a differential equation whose highest-order derivative is multiplied by a

small parameter in comparison with other variables [23]. As a semiclassical

approximate calculation in quantum mechanics, the WKB method is a very

efficient method to solve single-particle eigen-problems in a one-dimensional

potential. In this section, we use this method to solve the problem of an atom

trapped in a truncated harmonic trap and compare the result to a harmonic

oscillator with the same trapping frequency.

Let us modify the notation of Section 2.2.1 a little bit and denote the

truncated trap size as zt (where it was originally denoted as z). The notation

for truncation energy is still denoted as Et (see Figure C.1). At the same

time, we denote the distance between the classical turning points as z and the

energy of the atom as E. We assume E < Et, which also implies that z < zt.

The Schrödinger equation of an atom in such a trap is

[−~2

2m

d2

dx2
+ V (x)

]
Ψ(x) = EΨ(x), (C.1)
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Figure C.1: The trapping potential used for the WKB calculation. For
|x| ≤ zt/2, the trap is parabolic; for |x| > zt/2, the trap is assumed to be
flat. The truncation energy Et, truncated trap size zt, atom energy E and
classical turning point z/2 are as shown. A patching region (gray rectangle)is
constructed around the turning point.

where

V (x) =





1
2
mω2x2 , |x| < zt

1
2
mω2zt

2 , |x| > zt

(C.2)

To the first order following the WKB approach [38], the space can be

partitioned into the classical regions, where classically the particle may present,

and the quantum regions, where classically the particle is forbidden to enter.

In the classical region, one can write the wavefunctions as

Ψ(x) =
B√
p(x)

e
i
~
R x p(x′)dx′ +

C√
p(x)

e−
i
~
R x p(x′)dx′ , (C.3)

and in the quantum region,

Ψ(x) =
A√
|p(x)|e

1
~
R x |p(x′)|dx′ +

D√
|p(x)|e

− 1
~
R x |p(x′)|dx′ , (C.4)
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where

p(x) =
√

2m (E − V (x)) (C.5)

We classify the wavefunctions as either symmetric or antisymmetric

under space reflection about the origin. In this way, we can concentrate on

the half-space x > 0 only. Around the classical turning points x = ±z/2, both

wavefunctions, Equation (C.3) and Equation (C.4), become singular because

lim
x→z/2

p(x) → 0. (C.6)

To get over the divergence difficulty, we build the so-called patching region

(Figure C.1): it wraps the turning point and overlaps on the left with the

classical region and on the right with the quantum region. In other words, the

turning point is cushioned from both the classical and quantum region by the

patching region.

It is known that the wavefunction of a particle in a linear-potential is

a superposition of the Airy functions [58]. Therefore, the so-called patching

wavefunction can be expressed as

Ψ(x) = aAi(α(x− z/2)) + bBi(α(x− z/2)), (C.7)

where α−1 =
(

2m
~2 V ′(0)

) 1
3 is the scaling length and

Ai(αx) =
1

π

∫ ∞

0

cos

(
t3

3
+ αxt

)
dt, (C.8)

Bi(αx) =
1

π

∫ ∞

0

[
exp

(
−t3

3
+ αxt

)
+ sin

(
t3

3
+ αxt

)]
dt (C.9)

are the Airy functions [58].
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There are two useful asymptotic forms of the Airy functions when |x| À
1: when x < 0,

Ai(x) ∼ sin(2
3
(−x)3/2 + 1

4
π)√

π (−x)1/4
, (C.10)

Bi(x) ∼ cos(2
3
(−αx)3/2 + 1

4
π)√

π (−x)1/4
; (C.11)

when x > 0,

Ai(x) ∼ e−
2
3
(x)3/2

2
√

π (x)1/4
, (C.12)

Bi(x) ∼ e
2
3
(x)3/2

√
π (x)1/4

; (C.13)

The Airy functions Ai and Bi approach their asymptotic forms much

more quickly than it seems. As a matter of fact, the asymptotic forms in the

limits of ±∞ differ from the Airy function Ai(x) by 1% at x = 4.57,−1.30,

respectively.

To proceed with the WKB calculations, we assume the existence of the

patching region with the following two properties:

1. The patching region is so thin that the trapping potential can be lin-

earized in the entire region with sufficient precision;

2. The patching region is so thick that the turning point is deeply em-

bedded from both sides and the asymptotic forms are accurate enough

approximations before x leaves the patching region.
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After all the elaborate discussions about the patching region and the

patching wavefunctions, we use them only as a bridge. We splice the asymp-

totic forms of the patching wavefunction with the quantum wavefunction on

the right side, that is, we require that the two become identical in the limit

x →∞. Similarly, we splice the asymptotic forms of the patching wavefunction

with the classical wavefunction on the left side. After some algebraic manipu-

lation by eliminating everything about the patching wavefunction, we get the

following relationship between the classical and the quantum wavefunctions:

A = 0, (C.14)

B√
~α

= −ieiπ/4D, (C.15)

C√
~α

= ieiπ/4D. (C.16)

The wavefunction can now be written as

Ψ(x) =





2D
p(x)

sin
[

π
4

+ 1
~
∫ z/2

x
p(x′)dx′

]
|x| < z/2

D
p(x)

exp
[
− 1
~
∫ x

z/2
p(x′)dx′

]
|x| > z/2

(C.17)

Now recall that we required the wavefunctions be either symmetric or anti-

symmetric under space reflection about the origin. This is equivalent to re-

quiring that the wavefunction in Equation (C.17) satisfy Ψ(0) = 0 (even) or

Ψ′(0) = 0 (odd), respectively. As can be easily verified, these quantization

conditions lead to the eigen-energies E = (n + 1
2
)~ω. That is right! It is the

same as a simple harmonic oscillator with identical trapping frequency.

Now it is time for us to examine our assumptions made about the

patching region. After all, we may have assumed too much—the two properties
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of the patching region are self-conflicting. Provably, the possibility for the

existence of such a region diminishes as the truncation energy approaches the

ground state energy ~ω/2. Therefore, WKB is a valid method to calculate the

energy and wavefunction of the ground state of the truncated harmonic trap

only if zt À a ≡
√
~/mω.
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