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The thermal velocity fluctuations of microscopic particles mediate the

transition from microscopic statistical mechanics to macroscopic long-time dif-

fusion. Prior to this work, detection methods lacked the sensitivity necessary

to resolve motion at the length and time scales at which thermal velocity fluc-

tuations occur. This dissertation details two experiments which resulted in

velocity measurement of the thermal motion of dielectric microspheres sus-

pended by an optical trap in gases and liquids.

First, optical tweezers were used to trap glass microspheres in air over

a wide range of pressures and a detection system was developed to track the

trapped microspheres’ trajectories with MHz bandwidth and <100 fm/
√

Hz

position sensitivity. Low-noise trajectory measurements allowed for observa-

tion of fluctuations in the instantaneous velocity of a trapped particle with a
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signal to noise ratio (SNR) of 26 dB, and provided direct verification of the

equipartition theorem and of the Maxwell-Boltzmann velocity distribution for

a single Brownian particle.

Next, the detection technology was further optimized and used to track

optically trapped silica and barium titanate glass microspheres in water and

acetone with >50 MHz bandwidth and <3 fm/
√

Hz sensitivity. Brownian

motion in a liquid is influenced by hydrodynamic, time-retarded coupling be-

tween the particle and the fluid flow its motion generates. Our measurements

allowed for instantaneous velocity measurement with an SNR of up to 16 dB

and confirmed the Maxwell Boltzmann distribution for Brownian motion in a

liquid. The measurements also revealed several unusual features predicted for

Brownian motion in the regime of hydrodynamic coupling, including faster-

than-exponential decay of the velocity autocorrelation function, correlation of

the thermal force and non-zero cross-correlation between the particle’s velocity

and the thermal force preceding it.
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Chapter 1

Introduction

In 1827, Robert Brown reported his observation1 of what is now known

to be the thermal motion of microscopic particles which now bears his name [2].

The nineteenth century saw several attempts to explain the phenomenon:

Brownian motion seemed to be a macroscopic embodiment of the otherwise

invisible erratic motion of molecules posited by kinetic theory. However, exper-

imental measurements of the velocity, and thus kinetic energy, of the thermal

motion of microscopic particles fell orders of magnitude short of the theory’s

prediction. [2, 3].

In 1905, Albert Einstein published paper in which he used statistical

mechanics to predict the statistics of a particle’s displacement rather than of

its velocity [4]. In contemporary terms, Einstein’s description was that of a

Wiener process: for any time interval, no matter how short, consecutive dis-

placements are statistically independent [5]. However, one of the properties of

a Wiener process is that it has no well-defined derivative: Einstein’s prediction

gives no account of the statistics of the particle’s velocity.

1Brown studied the motion systematically and concluded it was not caused by a living
thing, but he was not the first to report on thermal motion, which was observed as early as
1785 by Jan Ingenhauz in 1785 [1]
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In 1907, Einstein published a note in which he addressed the lack of

an account of the particle’s velocity in his description of Brownian motion.

He noted that the time scales at which thermal energy is exchanged between

the particle and the fluid, which are determined by fluid mechanics, were ex-

perimentally out of reach. Moreover, the displacements made by the particle

during that time scale were many orders of magnitude smaller than even the

particle size. He concluded that measurement of the velocity would be ‘im-

possible’ [6].

In 1908, Paul Langevin published a paper in which he tackled Brownian

motion with a different approach: that of a stochastic differential equation [7].

In Langevin’s description, the Brownian particle’s velocity is an Ornstein-

Uhlenbeck process, and its position is the time integral of its velocity, reducing

to Einstein’s prediction in the long time limit [5].

By 1909, Einstein’s prediction was verified in experiments by Jean Per-

rin using the newly invented ultramicroscope; a significant result in that it

removed final doubt in the scientific community of the molecular nature of

matter [8, 9]. However, experimental confirmation of Langevin’s prediction of

Brownian motion in velocity space would require a measurement deemed im-

possible by Einstein and even after a century’s worth of technological advances

Einstein’s claim still held true. This dissertation details the results of two ex-

periments involving successful measurement of Brownian motion in velocity

space: the first using glass microspheres in gas [10], the second in liquid [11].

Both experiments relied on the use of tightly focused laser beams to

2



both contain and probe the microspheres’ thermal motion. A dielectric sphere

near the focus of a laser beam scatters some of the incident photons in a

direction which depends on the bead’s position. Changes in the bead’s position

are encoded in the spatial distribution of the scattered beam, which can be

measured with high sensitivity. For sufficiently low measurement noise and

bandwidth, the position signal can be differentiated to determine the particle’s

velocity. Also, the recoil force imparted on the sphere by the scattered photons

happens to always point towards the center of the laser focus. This restoring

force is negligible at the time scales of thermal velocity fluctuations, but at long

times it prevents diffusion of the sphere out of the detection region, enabling

continuous measurement over long time intervals. The principles of optical

trapping and detection are discussed in Chapter 2.

1.1 Effect of fluid on Brownian dynamics

The dynamics of thermal velocity fluctuations of a glass microsphere

strongly depend on the fluid’s density and viscosity, and thus there are several

distinct differences between the dynamics of glass microspheres in gases and

in liquids. The viscosity of gases is typically much smaller than that of liquids,

and the density of gasses is much smaller than that of dielectric solids, whereas

liquids have densities comparable to those of dielectrics. In a gas with viscosity

η, a dense sphere released with initial velocity v0 experiences viscous damping,

and its velocity decays exponentially with time constant τp ∝ 1/η, known as

the momentum relaxation time. The dynamics of thermal velocity fluctuations

3



of a glass microsphere strongly depend on the fluid’s density and viscosity,

and thus there are several distinct differences between the dynamics of glass

microspheres in gases and in liquids. The viscosity of gases is typically much

smaller than that of liquids, and the density of gasses is much smaller than

that of dielectric solids, whereas liquids have densities comparable to those

of dielectrics. In a gas with viscosity η, a dense sphere released with initial

velocity v0 experiences viscous damping, and its velocity decays exponentially

with time constant τp ∝ 1/η, known as the momentum relaxation time.

The same particle in a liquid will have much shorter τp, however, when

released, the sphere’s velocity does not decay as a simple exponential. In fact,

the damping force exerted on the sphere by the fluid depends on the history

of the sphere’s motion before its release. This is because a fluctuation in

the sphere’s velocity at one instant results in a perturbation of the fluid flow

around the sphere which gradually weakens as it decays outward to infinity. As

long as the perturbation is near the sphere, it affects the force exerted on the

sphere by the fluid; the fluid has ‘memory’ of the sphere’s prior motion. The

characteristic decay time of such interactions is τf = τpρf/ρp, where ρf and ρp

are the densities of the fluid and sphere, respectively. In gases, τf � τp; the

velocity change during the exponential decay is too slow to result in significant

perturbations to the flow, and the effect can be ignored. In liquids, the two

time scales can be comparable. The decay can be faster or slower than an

exponential, depending on the history of the sphere’s velocity prior to being

released.
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An initially stationary sphere when released in a fluid at finite temper-

ature does not remain stationary as a consequence of the force on the sphere

from collisions with the thermal molecules of the fluid. Although the long-time

average of the force from the collisions is zero, at short times the net force fluc-

tuates resulting in Brownian motion. The steady state behavior represents a

balance between acceleration due to thermal forces and deceleration from vis-

cous forces. The distribution of the particle’s velocity over time is predicted

by the Maxwell-Boltzmann velocity distribution. The rate at which it explores

this distribution is closely related to the damping dynamics described in the

previous paragraphs (the relationship is precisely described by the fluctuation

dissipation theorem [12]). Thus in air, velocity fluctuations occur over the

time scale τp, while in water, the fluctuations have more variability, sometimes

shorter, sometimes longer than τp.

Measurement of velocity by differentiation of consecutive position mea-

surements is very demanding on the noise and bandwidth requirements for

position detection. The time interval between successive position measure-

ments must be small enough that the velocity remains relatively constant over

its duration, while the uncertainty in each position measurement must be much

smaller than the displacement over the interval. For a 3 µm diameter glass

bead in water, it takes, on average, 10 ns for the velocity to change by 10 %.

The root mean square velocity is about 0.3 mm per second. To measure the

velocity with 10 % uncertainty, the position resolution must be at least 0.2

pm in 10 ns, corresponding to 6×10−17 m/
√

Hz position sensitivity. The mea-

5



surement requirements in air are less demanding due to the weaker coupling

between fluctuations in the bead and fluctuations in the gas. For the same 3

µm bead in air, the average time for the velocity to fluctuate by 10 % is ∼ 50

µs. Velocity measurement with 10 % uncertainty requires 15 nm resolution in

50 µs, requiring a more reasonable position sensitivity of 10−10 m/
√

Hz. This

was one of the main motivations for first attempting a measurement of the

velocity of the Brownian motion of a trapped particle in air, described in the

first part of this dissertation. The second part of this dissertation describes

measurement in liquid, made possible by a detailed understanding of the com-

plex dynamics in liquid and optimization of all aspects of the measurement

process first developed for the air experiment.

1.2 Measurement in air

The theory of Brownian motion in air (in which hydrodynamic ef-

fects are neglected), is often referred to as Einstein-Ornstein-Uhlenbeck theory

(EOU theory), though it is based more on Langevin’s initial work than that

of Einstein. By the 1930s, Ornstein and Uhlenbeck formalized Langevin’s

approach and extended the results to Brownian motion in a harmonic poten-

tial [13]. An overview of their results is given in Chapter 3.

The two greatest experimental challenges in measurement in air were

that of launching the beads into and sensitive detection. Loading the trap in air

is much more difficult than in water because van der Waals forces make micro-

spheres stick to all surfaces and each other. An ultrasonic, inertial launching

6



method was developed to separate the microspheres and load them into an op-

tical trap located within a vacuum chamber. A split-beam detection technique

was developed, and gave improved performance over existing particle tracking

methods. The description of the trapping and detection apparatus is given in

Chapter 4.

The analysis of recorded trajectories is presented in Chapter 3. This

includes comparison to the predictions of Einstein and EOU theory, followed by

the results of instantaneous velocity measurement, including the confirmation

of the Maxwell-Boltzmann velocity distribution for a single Brownian particle.

1.3 Measurement in liquid

Although the effect of hydrodynamic interaction on the force on a mov-

ing sphere was already known by Stokes in the nineteenth century, its influence

on Brownian motion in liquids was not considered until much later. In the mid

1960s, developments in computers allowed, for the first time, to simulate sta-

tistical mechanics on the single-particle level. An anomaly was observed in the

results of such hard-sphere molecular simulations, in the long-time behavior of

the autocorrelation of individual molecules’ velocity. The velocity autocorre-

lation at long times was much significantly larger than the prediction of EOU

theory. The tails of the autocorrelation fit to a power law, and not the EOU

prediction of an exponential [14–16]. These observations sparked interest in

Brownian motion in the regime of hydrodynamic coupling that persists to this

day [17,18].
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The earliest theoretical description of hydrodynamic Brownian motion

was given in a Soviet journal in 1945, but was not known to western scientists

until much later [17, 19]. Most of the theoretical progress in the field was

made in the 1970s [20–24]. Though the expressions for the dynamics are

much more complicated than those of EOU theory, the system can be solved

analytically. A summary of those results, and comparison to EOU theory is

given in Chapter 6. The most relevant difference, in the context of velocity

measurement, is that velocity fluctuations occur at much shorter times than

τp, which is already much shorter in liquid than in air.

Initial estimates (using EOU theory), suggested that with the detec-

tion method used in the air experiment could be easily improved to a level

that would facilitate the measurement of instantaneous velocity in water. Not

long after initial attempts, however, it was realized that hydrodynamic cou-

pling leads to a much more gradual transition between the ballistic (constant-

velocity) and diffusive regimes. At times shorter than τf , hydrodynamic the-

ory of Brownian motion predicts that velocity autocorrelation function decays

much faster than than the exponential prediction of EOU theory, meaning

measurement in water was further out of reach than initial estimates sug-

gested.

In order to resolve the velocity above the detection noise, it was neces-

sary to optimize every parameter available. Silica microspheres were replaced

by barium titanate glass microspheres, whose high refractive index increases

the scattering of the detection beam, and whose high density slowed the Brow-

8



nian dynamics, allowing for longer averaging times. Water was replaced with

acetone. Its low density and low viscosity further slows the rate of veloc-

ity fluctuation. To reduce the quantum-limited noise floor, a custom, high

power, high bandwidth detector was developed. The experimental apparatus

is described in Chapter 7.

The results are presented in Chapter 8. The instantaneous velocity was

measured with an SNR of 14 dB and was observed to be in agreement with

the Maxwell-Boltzmann distribution. Other results include the observation of

faster-than-exponential decay in the velocity autocorrelation function, color in

the thermal force and nonzero force-velocity cross correlation for positive and

negative time.
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Chapter 2

Position and velocity measurement of optically

trapped particles

The existence of radiation pressure was first deduced from electromag-

netic theory by James Clerk Maxwell in 1873 [25, 26]. It was first measured

experimentally at the turn of the 20th century [27, 28]. Radiation pressure is

very weak; 1 W of light reflecting from a mirror exerts about 7 nN of force.

The advent of lasers introduced the possibility of focusing high power radia-

tion to µm length scales; a 1W laser interacting with a microscopic particle

can apply a force 105 times that of the gravitational force on the particle.

In 1970, Arthur Ashkin published a seminal paper reporting the use of

focused laser beams to accelerate and trap µm size transparent particles [29].

Several years later he demonstrated optical levitation of oil droplets and glass

microspheres in air [30], shortly followed by a demonstration of trapping in

vacuum [31]. This powerful new tool was not limited to microparticles; it

revolutionized the field of atomic physics by creating the ability to cool and

trap atoms [32–35], paving the way towards atomic clocks and quantum de-

generacy in the lab. In 1986, Ashkin et al. [36] observed stable trapping of

dielectric particles using the gradient force from a single strongly focused laser
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beam, an improvement over the prior work which required a restoring force

to counteract the radiation pressure. This technique was then developed to

trap and manipulate viruses and bacteria [37, 38] becoming a standard tool

of biophysicists now known as optical tweezers [39]. The first section of this

chapter gives an overview of the principles of optical trapping and calcula-

tions for some limiting cases which shed some light on the behavior of traps

as a function of properties of the trapping laser, trapped particle and trapping

medium.

The second section of this chapter discusses techniques to track the

position of the particle within the trap. The most powerful of these is that

of split beam detection, in which a focused laser (often the same beam used

for trapping) is used to measure the position of the particle. The same mech-

anism that transfers momentum from the trapping beam to the particle also

results in a change in the beam profile of the beam downstream of the particle.

Measurement of changes in the beam profile can give a very sensitive readout

of the particle’s position.

In this work, position measurements are used to determine the velocity

of the particle. The third section of this chapter gives an overview of sources

of limitation to velocity measurements.

2.1 Optical trapping

The position-dependence of the force that a tightly-focused laser beam

exerts on a microsphere located near the beam’s focus results from momentum
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transfer from photons scattering off the particle. An exact solution requires

solving for the scattered light field and calculating the associated momentum

transfer. In most real-world cases, the bead diameter d is comparable to

trapping field wavelength λ and an analytical solution is impossible due to

the combined effects of internal reflection and interference. However, many

of the essential principles of optical trapping are revealed by considering the

limiting cases: d� λ, in which beam propagation can be approximated using

ray optics [40], and d � λ, in which the trapped particle is approximated as

a Rayleigh scatterer [41].

2.1.1 Rayleigh approximation

When the trapped particle diameter is much smaller than the wave-

length of the trapping beam, at any instant in time, the electric field is uniform

over the entire particle. In this case, it is possible to treat the particle as a

point-dipole (a Rayleigh scatterer) when calculating the interaction between

the particle and the trapping field [36]. This section will summarize the results

which are derived in Ref. [41]. As a rule of thumb, the Rayleigh approximation

is valid for d < λ/5.

The radiation pressure exerted by the laser on the particle can be split

into two parts: the scattering force and the gradient force. As the electric field

oscillates in time, it induces a dipole moment, whose oscillations follow that

of the electric field. The oscillating dipole radiates a secondary, or scattered

field, in all directions. The momentum flux of the resulting field is nonzero;
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some of it is transferred to the dipole in the form of the scattering force. The

second component of radiation pressure is due to the Lorenz force exerted by

the optical field on the induced dipole, which is proportional to the gradient

of the laser field.

In the Rayleigh approximation, for a scatterer in a fluid with permit-

tivity εm, the dipole moment p induced by an electric field E is given by

p = 4πεfαE, where α is the particle’s polarizability. For a sphere in a uniform

electric field E, the polarizability is given by:

α = a3m
2 − 1

m2 + 2
, (2.1)

where a is the radius of the particle, m = np/nf is the ratio of the particle’s

refractive index (np) and that of the fluid (nf ). For a particle at the focus

of a Gaussian laser beam, the scattering force points in the direction of laser

propagation and its magnitude is:

Fscat =
8π

3

nf
c
k4α2I(r) (2.2)

where I(r) is the intensity of the laser beam at the position r of the particle,

k = 2π/λ, and λ is the wavelength of the trapping field in the fluid.

The gradient force is given by

Fgrad = 2π
nf
c
α∇I(r). (2.3)

For Gaussian beam with total power P , 1/e2 diameter of w0 at its focus,

the intensity profile is:

2P

πw2
0

1

1 + (2z̃)2
exp

[
−2(x̃2 + ỹ2)

1 + (2z̃)2

]
, (2.4)
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where x̃,ỹ and z̃ are the normalized spatial coordinates: (x̃, ỹ, z̃)

= (x/w0, y/w0, z/kw
2
0).

On its own, the gradient force produces a stable trapping potential. For

displacements much smaller than w0, the potential is, to first order, harmonic.

The transverse force constant is

Kx =
8πnfαI(0)

cw2
0

, (2.5)

where I(0) = P/πw2
0 is the laser intensity at the focus. The axial force constant

is

Kz =
16πnfαI(0)

k2cw4
0

. (2.6)

The scattering force causes in a shift of the minimum of the trapping

potential in the direction of laser propagation. If the scattering force is too

strong, there is no trap minimum and the particle cannot be trapped by the

laser. The scattering force goes as α2 and thus d6, while the gradient force

is linear in α and thus proportional to d3, thus it is easier to form a stable

minimum for a smaller particle than a larger one. However, the depth of the

trap decreases as the size of the particle decreases, while the average thermal

energy is independent of particle size, thus if the particle is too small, the trap

lifetime will be very short. Also, α increases with increasing m, thus for large

refractive index mismatch, the scattering force dominates the gradient force

and trapping becomes more difficult.

The strength of the gradient force can be increased relative to the scat-

tering force by decreasing the waist of the focus, w0. Minimizing w0 requires
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focusing of the laser at a very steep angle, which can be quantified by a pa-

rameter known as the numerical aperture, NA ≡ nm sin θ, where θ is the 1/e2

half-angle of convergence of the trapping beam. In terms of the NA, the beam

waist is w0 = λ/πNA. The upper limit for NA is nf , and experimental re-

alization of high-NA focusing requires a lens system corrected for spherical

aberration. State-of-the-art optical tweezer experiments can operate close to

this limit, achieving NA of around 1.2 in water [36, 42] and 0.95 in air [43].

2.1.2 Ray Optics Approximation

Perhaps a more intuitive understanding of the principle of optical trap-

ping can be gained in the opposite limit. In the ray optics regime, the scat-

tering force corresponds to back-reflections of the laser from the surfaces of

the sphere. The gradient force corresponds to the recoil force from photons

refracted by the sphere.

When a ‘ray’ of photons is bent by refraction through a glass sphere,

momentum is transferred from the photons to the sphere. The average force

on the sphere is F = (Pnf/c) sin θ, where P is the power of the ray, c is the

speed of light in vacuum, and θ is the angle of deflection. The force from a

converging laser beam can be calculated by splitting the beam as a collection

of rays and summing the force from each one.

Figure 2.1 illustrates the counter-intuitive mechanism of optical trap-

ping: that a displacement of the sphere in any direction from the focus of

the laser results in a restoring force. The figure shows the refraction of two
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rays within the laser beam, which represent the 1/e2 contours of the Gaussian

trapping beam. Ignoring surface reflections, when the bead is the center of

the focus, all incoming and outgoing rays are perpendicular to the bead sur-

face and no force is exerted on the bead. When the bead is displaced in a

direction perpendicular to the optical axis, the outgoing rays are refracted in

the same direction as the bead’s displacement. The recoil force points towards

the center of the trap. When the bead is displaced axially, upstream (opposite

to the direction of laser propagation), it causes the outgoing rays to fan out

into a wider cone than in the equilibrium position, the net forward momentum

of the outgoing beam is reduced; some of the momentum is transferred into

a force on the bead in the direction of beam propagation. When the bead

is displaced downstream of the focus, the rays converge, the outgoing beam’s

forward momentum is increased, and the recoil forces the bead backwards.

The strength of the restoring force depends on the laser power, P , as

well as the relative index of refraction between the bead and the medium

m. For fixed laser power, the magnitude of the axial force (illustrated in the

right two panels of figure 2.1) increases with large NA. The transverse force,

however, is maximized when NA→ 0.

Not shown in Fig. 2.1 are rays reflected from the external and internal

surfaces of the bead. These reflected rays also exert a recoil force on the bead.

The net effect of reflected rays is to push the bead in the laser propagation

direction, which is the ray-tracing analog of the scattering force. If the scat-

tering force is stronger than the peak axial force, the potential of the optical
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Figure 2.1: Illustration of optical trapping using ray tracing. The trapping
laser is represented by two rays converging on the center of the trap. If scat-
tering is ignored, the equilibrium position of the bead is at the laser focus.
Each panel shows the effect of displacement of the microsphere on the direc-
tion and divergence angle of the outgoing laser (solid rays) compared to the
outgoing beam when the microsphere is in the equilibrium position (dotted
rays). Left: lateral displacement of the particle refracts the beam towards the
same direction as displacement. Center: displacement upstream causes the
outgoing beam to diverge faster, forward momentum is exchanged from the
beam to the bead. Right: displacement downstream causes tighter focusing of
the laser, recoil pushes the bead back upstream.
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trap has no minimum. Stable trapping requires a potential well that is deep

compared to the thermal energy. The axial force must be strong enough to

counteract the radiation pressure from the reflected rays. For normal inci-

dence, the reflectance is proportional to (m2 − 1)/(m2 + 2), while the axial

force has a linear dependence on m, thus particles with too large an index

mismatch are more difficult to trap [42].

2.2 Position detection of trapped particles

Early optical trapping experiments relied on 2-D imaging to track par-

ticle position. In most cases, the same lens used to create a tight laser focus

can be used to create a diffraction-limited image of the trapping plane, which

can be recorded with a CCD camera. Circle-fitting algorithms can be used to

measure the center of the imaged particle with much higher precision than the

resolution of the microscope. The bandwidth of detection using this method

is limited by the frame-rate of the camera used to record the image.

One early example of fast single-particle tracking is given in Ref. [44],

in which an image of the particle’s trajectory is recorded onto the film of a

rotating drum camera with a time resolution of 0.1 µs. A later version of a

similar experiment projected the image of a particle onto a neutral density

wedge filter and the position was mapped to a voltage on a photodiode that

collected the transmitted light [45].

In the 1990s, several techniques were developed in which a probe laser

beam, or the trapping beam itself, was used in conjunction with fast photodi-
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Figure 2.2: Illustration of split-beam detection. The trapping beam is re-
collimated by a detection lens, and a cut mirror is used to split the beam onto
two photodiodes. The output of the detector is proportional to the difference in
the photocurrents of the two photodiodes. When the microsphere is displaced
from the center of the trap, the beam is deflected, changing the powers of the
two split beams. For small displacements, the detector output is proportional
to the displacement of the microsphere

odes to track motion of microscopic particles with high bandwidth. A variety

of techniques were used to produce a position-dependent intensity variation,

including Wollaston interferometry [46,47], clipping of the scattered beam [48],

and the use of a position-sensitive detector to detect deflection of the trans-

mitted beam [49]. The technique that became the standard tool for position

detection was the use of a quadrant photodiode to detect the deflection of the

trapping beam [50–53]; a technique known as split beam detection (sometimes

also referred to as back-focal plane detection).

2.2.1 Split beam detection

When the particle is displaced relative to the trapped beam, the same

mechanism that results in a transverse force on the particle also changes the
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angular intensity distribution of the outgoing, scattered (or refracted, in the

ray optics picture) trapping beam. If a second lens is positioned with is focal

point at the trap focus, it will re-collimate the outgoing beam (now referred

to as the detection beam), and the angular intensity distribution is mapped

the transverse intensity distribution of the laser.

In a quadrant photodiode, the photosensitive area of the semiconductor

is split into four quadrants, each of which is an individual photodiode and

photocurrent of each diode can be amplified separately. Changes in position

of an incident laser beam can be measured by looking at linear combinations

of the four signals. Horizontal deflection is proportional as the difference in

signal between the left and right halves, while the vertical is proportional to

the difference in photocurrent between top and bottom halves. When the two

halves are perfectly aligned, laser intensity fluctuations are heavily suppressed

because they contribute equally to both halves. The effect of laser intensity

fluctuations can be minimized by normalizing each signal by the sum of all

four quadrants.

In biophysics experiments the trapping beam is often used to manipu-

late the trapped sample; an appropriately placed mirror can be used to adjust

the transverse location of the trapping beam without affecting its direction.

When the quadrant detector is placed in a plane conjugate to the back focal

plane of the detection lens, beam displacement at the detector is sensitive only

to changes in the angular distribution of light exiting the trap and is (to first

order) independent of the position of the trap in the trapping plane.
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The bandwidth of quadrant photo-detection is less than that which can

be achieved for single photodiodes. The bandwidth of an amplified photodiode

is limited, among other things, by the photodiode capacitance. The large area

and close spacing of the four photodiodes within a quadrant detector creates

a relatively large capacitance that limits their bandwidth to ∼10-100 KHz.

A faster detection method developed by the Raizen group separates

the spatial splitting and detection of the light. consists of a fiber-optic bundle

that spatially splits the incident beam. Light exiting each half of the bundle

was then focused onto two inputs of a fast, balanced photodetector [54]. The

photodiodes in the balanced photodetector can be physically separated, and

have much smaller area than those used in a quadrant detector because the

beams can be focused without having to maintain the beam profile. Also, in a

quadrant detector, the photocurrent from each diode is amplified individually

before subtraction. In a balanced detector, it is possible to wire the photo-

diodes in a kind of push-pull configuration and amplify only the difference

current. This allows for much higher gain, higher bandwidth and lower noise.

This method only measures deflection in one dimension but can be extended

to two dimensions by splitting the beam into two with a beam-splitter and

using two orthogonally aligned fiber bundle detectors.

The detection configuration used in this work is an improved version of

the fiber bundle method, and is illustrated in Fig. 2.2. The spatial splitting of

the laser is performed using a mirror with a sharp edge. Half of the beam is

reflected by the mirror while the other half is not. Each half is then focused
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onto an input of a fast balanced detector. This method has been extended for

three-dimensional imaging [55], however when studying Brownian motion in

fluids, one-dimensional detection is sufficient because the equation of motion

has no coupling terms and can be separated into three independent equations

of motion, one for each Cartesian coordinate.

In split beam detection, for bead displacements much smaller than the

wavelength, the voltage signal V from the balanced photodiode is proportional

to the displacement δ of the microsphere. The relationship can be written as:

V (d) = ΓPηZδ, (2.7)

where P is the laser power, Z is the detector transimpedance gain (volts/amp),

η is the sensitivity of the photodiode (amps/Watt), and Γ is the optical gain,

which has dimensions of inverse length. At low frequencies, the sensitivity of

split beam is typically limited by mechanical motion of detection optics. At

high frequencies, it is limited by noise from the detection system, and ulti-

mately by shot noise of the arrival rate of electrons in the photocurrent. Ve-

locity measurement (when determined from position measurements) is most

sensitive to high frequency noise. Sensitivity at high frequency can be im-

proved by reducing noise from the detection system or by increasing optical

gain. However, increasing the optical gain does not reduce the low frequency

noise from mechanical vibrations.
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2.2.2 Maximizing optical gain

The optical gain can be defined in terms of the dimensionless quantity

f(δ):

f(x) ≡
∫∞
−∞

∫∞
−∞ sgn(x)Iδ(x, y)dxdy∫∞
−∞

∫∞
−∞ Iδ(x, y)dxdy

, (2.8)

where Iδ(x, y) is the intensity profile at the plane of the cut mirror result-

ing from a displacement d of the microsphere from the optical axis in the

x-direction, and where sgn(x) is the sign function, equal to −1 for x < 0, 0

for x = 0 and 1 for x > 0. f(d) corresponds to the difference of the power of

the two split beams normalized by their sum. For δ � λ, f(δ) = Γδ.

The magnitude of Γ is closely related to transverse force constant of the

optical trap: The detection lens maps momentum space at the trapping plane

to position space at the detection plane. Thus the momentum distribution

of scattered photons, directly responsible for the trapping force, determines

the intensity distribution at the detector. However, not all the photons that

exert a transverse force on the trapped particle contribute to the detection

signal, only those forward scattered within the finite aperture of the detection

lens. An analytic calculation of Γ requires Mie scattering calculations, as is

necessary for the calculation of the trapping force, but again, the limiting

cases of Rayleigh scattering and ray optics provide useful quantitative and

qualitative information.

In the Rayleigh scattering regime, the gain can be calculated from the

intensity distribution that results from the sum of the unscattered, trapping
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field and the (typically much weaker) scattered field radiated by the induced

dipole. When the bead is displaced from the center of the trap, the relative

phase between the scattered and unscattered fields is increased for one half of

the beam and deceased on the other half. Crucial to the process is the Guoy

phase shift that occurs when a Gaussian beam is focused. Thus in the far

field, the scattered light is out of phase with the unscattered light and the

amplitude of their sum is sensitive to small phase changes in the scattered

light. The resulting (first order) optical gain is [51]:

Γ =
4
√
πnfd

3

λw3
0

m2 − 1

m2 + 2
(2.9)

Where nf is the refractive index of the fluid, d is the bead diameter, λ is the

wavelength in vacuum, w0 is the 1/e2 beam waist, and m = nb/nf , is the ratio

of the refractive indices of the bead and fluid, where nb is the refractive index

of the bead.

The most striking feature of Eq. 2.9 is the (d/w0)3 dependence. To max-

imize Γ, the beam waist should be focused as tightly as possible, maximizing

the overlap between the trapping field and the particle. For the same reason,

the particle should be as large as possible, though Eq. 2.9 is only accurate if

d� λ.

The ray optics approximation can be used to get a sense for the behavior

of Γ for large particles. Although a sphere is far from a perfect lens, for small

angles, it can be approximated as a thin lens [56] whose effective focal length

(EFL), back focal length (BFL), and NA (as illustrated in Fig 2.3) are given
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Figure 2.3: Ball lens

by:

EFL =
md

4(m− 1)
(2.10)

BFL = EFL− d

2
(2.11)

NA =
2w(m− 1)

md
, (2.12)

where m is the relative index of the sphere to the surrounding fluid, d is

its diameter, and w is the diameter of the incident beam. For rays with

a large angle of convergence, the approximation breaks down and spherical

aberration is introduced: rays are focused at different locations depending on

their distance from the optical axis.

Ray optics can be used to illustrate the dependence of Γ on the axial

location of the sphere relative to the laser focus. If the sphere is aligned

with the laser focus, the cone of light emerging from the sphere has the same

divergence angle as the incoming light. A small transverse displacement δ of

the sphere results in a tilt of the refracted cone by an angle φ = δ/EFL.

This corresponds to a shift in the intensity distribution at a distance D from
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the sphere by a distance ∆ = Dδ/EFL. Assuming, for simplicity, a uniform

intensity distribution with angular width θ, the change in the normalized signal

caused by a bead displacement δ is

f(δ)− f(0) =
2φθ

πθ2
=

8δ(m− 1)

πθmd
, (2.13)

and the corresponding optical gain is

Γ =
8(m− 1)

πm

1

θd
(2.14)

The gain improves with smaller bead size and smaller width of the

incident beam. It is advantageous to use as shallow of a detection focus as

possible. However, if the focus is too shallow, the waist of the detection beam

may be larger than the sphere, and the sphere will not interact with the entire

trapping field. The minimum angle of convergence such that the beam waist

is the size of the bead is θ0 = λ/πd. The resulting optical gain is independent

of d:

Γ =
8(m− 1)

mλ
(2.15)

Another possible detection configuration is shown in Fig. 2.4, with the

bead displaced axially from the detection beam focus.

The lensing effect of the sphere can be taken advantage of by shifting it

forward such that its focal point overlaps the focus of the detection beam. An

incoming beam with angle of divergence θ will be collimated by the sphere, the

outgoing collimated beam having waist w′0 = θ0EFL. In a ray optics picture,

the collimated beam will have the same waist w′0 at any distance D from the
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Figure 2.4: Beam deflection by a sphere in front of the focus.

bead, but its displacement from the optical will increase indefinitely: ∆ = φD

with φ = δ/EFL. In this limit, Γ is proportional to D, which can be made

arbitrarily large.

Physically, this is impossible, because a laser beam cannot be perfectly

collimated. A Gaussian beam with waist w0 begins to diverge when D > zR,

where zR = πw2
0/λ is the Rayleigh range. The 1/e2 half-angle of divergence

is θ = λ/πw0. Thus the refracted beam has an angle of divergence θ′ =

λ/(πθ0EFL). The resulting change in f is

f(δ)− f(0) =
2φθ′

πθ′2
=

2πδθ0EFL

πλEFL
=

2δθ0

λ
, (2.16)

and resulting optical gain, Γ = 2θ0/λ, also independent of particle size, but is

limited by the NA of the sphere, whose maximum is 2(m+ 1)/m.
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The above estimates must be understood as an upper limit. However

it is interesting that both configurations predict almost the same value for

maximal Γ, in both cases independent of particle size. For any size bead

it is advantageous to use short wavelength light and microspheres with high

refractive index.

2.2.3 Sources of noise

Noise in the output of the balanced detector can come from a variety

of sources. These include laser intensity noise, laser pointing noise, mechan-

ical vibration of the trapping and detection optics, quantum fluctuations of

laser intensity at the detector inputs and electronic noise from the balanced

photodetector circuit.

The power of the detection laser typically has small fluctuations about

its mean value: P (t) = P0 + Pn(t), with 〈Pn〉 = 0. The output of the detector

in the presence of such noise will be V (t) = P (t)ΓηZδ(t). The measured

position of the particle,δm is inferred by dividing V (t) by the average total

gain P0ΓηZ, and power fluctuations will result in the addition of a noise term:

δm(t) = δ(t) + δPF (t), where δPF (t) is the effective position noise due to power

fluctuations, given by:

δPF (t) =
Pn(t)δ(t)

P0

, (2.17)

The amount of cancellation of intensity fluctuations depends on the alignment

of the cut mirror. Misalignment of the cut mirror effectively adds a constant

displacement to the otherwise zero-mean fluctuations:δ′(t) = δ̄ + δ(t) if δ̄ �
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δrms, then most of the contribution from position noise will come from the

term Pn(t)δ̄/P0. The power spectral density (PSD) of δPF will be:

SδPF
=
SPn δ̄

2

P 2
0

(2.18)

where SPn is the PSD of the laser intensity noise. Perfect alignment of the cut

mirror, however, will not completely eliminate the effect of intensity noise. If

δ̄ = 0, there remains the term Pn(t)δ(t)/P0. This can be thought of as the

intensity noise modulated by the envelope of δ(t). The effect of laser intensity

noise will then be

SδPF
=
SPn δ̄

2

P 2
0

(2.19)

where δ̄2 is the variance of δ(t).

Laser pointing noise, and mechanical vibration of the trapping and de-

tection optics result in motion of the laser relative to the cut mirror that is not

caused by motion of the trapped particle. Laser pointing noise can be elimi-

nated by fiber coupling the laser into a single mode fiber, but vibration of the

optics is difficult to minimize. Vibration can be transferred through the ground

via the optical table or acoustically through sound waves in the air. There is

no easy way to eliminate this noise. The spectrum of mechanical vibrations

typically falls off as 1/f , and thus dominates at low frequency. However me-

chanical vibration also contributes to the δ̄2 coefficient which determines the

leakage of laser intensity noise.

Electronic noise from the detector consists of 1/f drift-type noise as

well as white-spectrum thermal noise from resistors and op-amps within the
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circuit. Velocity measurement is more sensitive to high frequency noise, so 1/f

noise is not as much of a concern as the high frequency white noise, though

with careful detector design this can be reduced below the level of white noise

contributed from photon shot noise, which imposes the fundamental limit to

noise at high frequencies.

For photons in a laser beam, arrival times obey the statistics of a Pois-

son process. The ‘power’ of a single photon is a delta function with the area

of the photon’s energy, P0(t) = hνδ(t). A beam with constant power P̄ has a

photon rate of r̄ = P̄ /hν, thus the statistical fluctuations of the power in the

laser have a spectrum of:

SP =
P̄

hν
(hν)2 = P̄ hν (2.20)

If the photodiodes have quantum efficiency q (photoelectrons per photon), The

effective position noise as a result of this shot noise is

SδSN
=

SP
(qPΓ)2

=
hν

qPΓ2
(2.21)

The absolute photon shot noise scales with
√
P , but the signal scales

linearly, thus the noise floor in the position signal decreases as 1/
√
P . If all

technical noise sources are driven below the shot noise level, the shot noise can

be reduced by increasing the power. The maximum power can be limited by

technical constraints of generating and detecting a high power laser beam, but

will ultimately be limited by absorption and heating of the trapped particle

or fluid.
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2.3 Effects of noise and bandwidth on position and ve-
locity measurement

The practical process of determining velocity from position measure-

ments is far from trivial, especially in the presence of noise and limited band-

width. There are different methods by which velocity can be estimated and

noise filtered out. This section gives a discussion of ways in which measured

velocity can deviate from the ‘real’ velocity, and strategies to quantify and

minimize this deviation.

2.3.1 Effects of noise

Velocity measurement is particularly sensitive to the high frequency

components of the position measurement noise. As discussed above, the dom-

inant source of noise at high frequencies is photon shot noise, which has a

flat spectrum. Figures 2.5, 2.6 and 2.7 illustrate effect of adding white noise

to a simulated trajectory of a Brownian particle. The top graph of Fig. 2.6

shows a sample of the simulated position with and without noise. While the

noise appears small relative to the position signal, when the the velocity is

calculated by differentiating the position (bottom of Fig. 2.6), the velocity of

the noise completely dominates that of signal.

The reason for this can be understood by looking at the power spectral

densities (PSD) of the position (Sx and velocity (Sv signals. The PSD of a

fluctuating signal represents the relative contribution of the various Fourier

components of the signal to the signal’s total variance. The area of a PSD
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Figure 2.5: Sample of the position and velocity of a simulated Brownian tra-
jectory, with and without noise. Position (top) and corresponding velocity
(bottom) of a simulated Brownian trajectory (black curve), as well as simu-
lated white noise (red curve) and the resulting noisy trajectory (brown curve).
While the noise is small relative to the position signal, it dominates the velocity
signal.
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Figure 2.6: The position (top) and velocity (bottom) PSDs corresponding to a
simulated Brownian trajectory, a sample of which is shown in Fig. 2.5. When
differentiated, the white noise in position measurement becomes noise with
slope 2 in the velocity.
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gives the variance of the signal. For this discussion, the details the particular

form of the PSDs for a Brownian trajectory are not important (the theory is

discussed in detail in Chapters 3 and 6). The upper graph in Fig 2.6 shows

the PSDs of the position signal and noise. The spectrum of the white noise is

flat, while that of the position decreases with increasing frequency. For most

frequencies, the signal dominates the noise, and the area of the signal spectrum

is larger than that of the noise.

The lower graph of Fig. 2.6 shows the PSD of the velocity. The position

and velocity PSD are closely related: Sv = ω2Sx. Thus white noise in position,

when differentiated, results in a noise with PSD of slope 2 on a log-log plot.

The result of differentiation is that the high frequency components of both

the signal and noise contribute more to the velocity variance than to that of

the position. For velocity, the frequency range over which noise dominates the

signal is the same, but its relative contribution to the final signal-to-noise ratio

(SNR) is much more significant than it was for position. The logarithmic scale

can be misleading when visually estimating the area.

The lower graph of Fig. 2.7 shows the cumulative distribution of the

velocity PSD (CSv), calculated by integrating Sv from zero to f . The vertical

axis is on a linear scale, and it is more evident from this plot the frequency

range at which the noise begins to dominate the signal. The CSv of the

noiseless velocity has a sigmoidal shape. Most of the contribution comes from

intermediate frequencies, and at high frequencies it approaches an asymptotic

value which represents the mean-square instantaneous velocity. The CSv of
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Figure 2.7: The velocity PSD (top) and corresponding cumulative velocity
PSD corresponding to a simulated Brownian trajectory, a sample of which is
shown in Fig. 2.5. In the cumulative PSD it is more clear at which frequencies
the noise begins to become significant relative to the signal.

35



0 0.1 0.2 0.3 0.4 0.5
−2

−1

0

1

2

3

v(
m

m
/s

)

t (ms)

 

 

instantaneous

τp = 50 μs

τavg=τp/2

τavg=τp×20

Figure 2.8: Sample of simulated Brownian velocity (black curve), and the
result of filtering with two different window sizes; τp/2 (blue curve) and 20τp
(cyan curve). The characteristic time scale for velocity fluctuations in this
simulation is τp = 50µs.

the noise grows as ω3, transitioning rapidly from being negligible to being

many orders of magnitude greater than the signal.

In order to measure velocity with high SNR, it is necessary to perform

low pass filtering of the position data prior to differentiation. Low pass filtering

suppresses the noise, but also suppresses the signal. If the low-pass frequency

is too low, the filtering will reduce the variance of the signal as well as that of

the noise.

36



t (ms)

−3 −2 −1 0 1 2 3
10

−3

10
−2

10
−1

10
0

P(
v)

/P
(0

)

v(mm/s)

 

 

0.88 mm/s

0.81 mm/s

0.28 mm/s

Figure 2.9: Normalized velocity distribution for unfiltered and filtered velocity
of a simulated Brownian trajectory, a sample of which is shown in Fig. 2.8. The
filtered velocity has narrow distribution than the unfiltered velocity, because
filtering suppresses high frequency components that contribute to the total
width of the distribution

2.3.2 Effects of low-pass filtering

Figures 2.8, 2.9 and 2.10 illustrate the effects of filtering on the velocity

of a simulated Brownian trajectory. Velocity fluctuations of Brownian particles

have a characteristic time scale associated with them known as τp. The velocity

in this simulation was generated with, τp was set to 50 µs. A sample of the

velocity is shown in Fig. 2.8, along with the results of filtering the velocity with

running-average filters: a ‘fast’ filter with a window size of τp/2, and a ‘slow’

filter with a window size of 20τp. The fast filter suppresses only the short time

fluctuations while the slow filter suppresses most of the fluctuations.
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One of the main goals of this work is to measure the velocity distribu-

tion, thus it is important to understand how it is affected by low-pass filtering.

The distribution of the instantaneous velocity and filtered velocities are shown

in Fig. 2.9. The effect of low pass filtering is to make the distribution nar-

rower. The mean square velocity of the trajectory determines the associated

mean kinetic energy, and thus effective temperature of the Brownian particle.

Low pass filtering results in narrow distributions; some of the kinetic energy

(that contained at high frequencies) is suppressed by the filter.

Figure 2.10 shows the Sv and CSv for raw and filtered signals. The

ripples in the filtered velocity spectrum are an artifact of the filtering method.

Filtering has negligible effect at low frequencies but suppresses components

contained at high frequencies. The cumulative spectrum can be interpreted

as showing how the variance of the filtered signal depends on the frequency of

the low-pass filter.

If the filter frequency is such that, at that frequency, CSv of the signal

is flat, and has reached its asymptotic value, then the statistics of the filtered

signal will closely match the real signal. If CSv is less than its asymptotic

value at the filter frequency, then the will deviate significantly from the real

signal.
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Figure 2.10: Velocity PSD (top) and cumulative velocity PSD (bottom) for for
unfiltered and filtered velocity of a simulated Brownian trajectory, a sample
of which is shown in Fig. 2.8. The spectral distribution illustrates the effect
of filter frequency on the resulting variance. The cumulative PSDs for the
filtered velocities begin to plateau at the low-pass filter frequency, and do not
reach the asymptotic value of the instantaneous velocity.
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Chapter 3

Einstein-Ornstein-Uhlenbeck theory of

Brownian motion

The force exerted on a moving sphere by a fluid depends on the history

of the sphere’s motion. The characteristic time scale of the ‘memory’ of this

force is τp, and is discussed in Ch. 6. If changes in the sphere’s velocity

occur over time scales longer than τp, then the force on the sphere can be

approximated as the force on a sphere moving at constant velocity for all

time, which is Ffr = −γsv, where γs is the Stokes damping coefficient for the

particle. For a for a sphere with radius r in a fluid with dynamic viscosity η,

Stokes law gives:γs = 6πηr.

If Stokes damping is assumed for the Brownian motion of a particle

with mass mp, the result predicts that the time scale for velocity fluctuations

will be τp = mp/γs. If τp is comparable to τf , the assumption of Stokes damp-

ing is invalid, and the memory effect must be taken into account. However,

if τp � τf , the assumption is valid. This is the case for Brownian motion

of dielectric microspheres in gas. The resulting theory is known as Einstein-

Ornstein-Uhlenbeck theory, and its results are presented in this chapter. When

the memory effect is taken into account, the corresponding theory increases in
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complexity due to the coupling between the Brownian motion and the hydro-

dynamic memory. Those results will be discussed in Ch. 6.

In all of the following derivations, 〈. . .〉 formally represents an aver-

age over many identical systems started at the same initial conditions each

with different Fth(t). This is not a priori equivalent to the time average of

equilibrium motion of a single particle.

〈f(t1, t2)〉 ?
= lim

T→∞

1

T

∫ T

0

f(t, t+ t2 − t1)dt. (3.1)

The ergodic theorem posits that it is true, although it has only been proven

for specific cases.

3.1 Einstein vs Langevin

Einstein’s seminal paper on Brownian motion contained two major re-

sults. The first is his expression for the mean-square displacement of a free

Brownian particle:

〈[∆x(t)]2〉 = 2Dt (3.2)

where 〈[∆x(t)]2〉 ≡ 〈(x(t) − x(0))2〉 is the MSD of a free Brownian particle

in one dimension for time interval t, and D is the diffusion constant. The

second result was a derivation of an expression for the diffusion constant,

which combined thermodynamics and mechanics:

D = kBT/γs (3.3)

Where kB is Boltzmann’s constant T is the temperature [4].
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Using 3.2 to determine the mean squared average velocity in time in-

terval t gives
√
〈v̄2
t 〉 ≡

√
〈[∆x(t)]2〉/t =

√
2D/
√
t, which diverges as t → 0.

Since equipartition predicts a well defined (and certainly finite) mean squared

instantaneous velocity of
√
〈v̄2

0〉 = kBT/mp, where mp is the mass of the par-

ticle, 3.2 must break down below some time scale.

A more complete description of Brownian motion can be obtained from

the Langevin equation [5, 7, 13]:

mpẍ(t) = −γsẋ(t) + Fth(t) (3.4)

where ẋ and ẍ are the particle’s velocity and acceleration, respectively, and Fth

is the instantaneous thermal force exerted on the particle by random collisions

with fluid molecules. In fact, the damping term is also caused by collisions

with molecules; it is the deterministic part of that force, and can be determined

by measuring the response to an external force. Fth is the part of the force

exerted by the fluid which deviates from the deterministic, average force.

When the mpẍ term in the Langevin equation is ignored, the resulting

dynamics correspond Einstein’s prediction. This inertial term is negligible

for times t � τp, and the predictions of the Langevin equation agree with

those of Einstein at long time scales. This is known as the diffusive regime.

At shorter times, the two predictions diverge. Over very short time intervals

(t� τp), in what is known as the ballistic regime, the dominant force is that

of the particle’s inertia and trajectories are approximately straight lines with

constant velocity. Solutions of the Langevin equation contain an account of the
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Figure 3.1: Double logarithmic plot of the mean square displacement of a free
particle given by Eq. 3.5.

transition between ballistic and diffusive motion. It is within this transition

that velocity fluctuations occur.

3.2 Solutions for a free particle

One of the fundamental properties of a Brownian particle’s trajectory

is its mean square displacement. It is fundamental because it can be easily

determined from a recorded trajectory, and its t-dependence reveals much of

the underlying dynamics.For a free particle, Eq. 3.4 predicts a mean-square

displacement of:

〈[∆x(t)]2〉 =
2τ 2
pkBT

mp

(
t

τp
− (1− et/τp)

)
(3.5)
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which is plotted in Fig. 3.1. For t� τp, Eq. 3.5 reduces to Einstein’s prediction:

〈[∆x(t)]2〉 = 2Dt (3.6)

which corresponds to a line with slope 1 on a log-log plot. For t� τp, Eq. 3.5

describes ballistic (constant-velocity) motion:

〈[∆x(t)]2〉 =
kBT

mp

t2. (3.7)

which corresponds to a line with slope 2 on a log-log plot.

Closely related to the mean square displacement is the velocity auto-

correlation function Cv(t), which describes the time-dependence of velocity

fluctuations. For a free particle, the prediction from Eq. 3.4 is:

Cv(t) =
kBT

mp

e−|t|/τ . (3.8)
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which is shown in Fig. 3.2. Cv(t) is actually proportional to the second deriva-

tive of the MSD with respect to time. In the ballistic regime Cv = kBT/mp,

equal to the mean squared thermal velocity. In the transition to the diffusive

regime, Cv decays exponentially to zero; in the diffusive regime the velocity is

uncorrelated.

The Fourier transform pairs of the MSD and velocity autocorrelation

are the position and velocity power spectral densities, Sx and Sv
1. The power

spectral density of a signal conveys information about underlying physical

processes, and the effect of noise to its measurement, in a more direct way than

the temporal correlation functions. For a stationary process u(t), the total area

of Su gives the variance of u, 〈u2〉. Su(ω) quantifies the relative contribution

of fluctuations near frequency ω to the total variance. Equation 3.4 predicts

position and velocity power spectral densities of:

Sx =
2γkBT

m2
pω

4 + ω2γ2
(3.9)

Sv =
2γkBT

m2
pω

2 + γ2
(3.10)

which are shown in top panels of Figs. 3.3 and 3.4 for different γs. The slope

of Sx in the two different regimes corresponds to that of the MSD.

45



10
0

10
2

10
4

10
6

10
8

10
−30

10
−20

10
−10

S
x
 (

m
2
/H

z
)

 

 

η = η
air

× 10
−2

η = η
air

η = η
air

× 10
2

shot noise

10
0

10
2

10
4

10
6

10
8

10
−30

10
−20

10
−10

ω (rad/s)

S
x
 (

m
2
/H

z
)

 

 

K = 0 N/m

K = 10
−8

 N/m

K = 10
−6

 N/m

K = 10
−4

 N/m

shot noise

Figure 3.3: Position PSDs predicted by EOU theory. Top: plot of Eq. 3.9 for
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in a harmonic trap with varying trap strengths.
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Figure 3.4: Velocity PSDs predicted by EOU theory. Top: plot of Eq. 3.10 for
a free particle with varying viscosity. Bottom: plot of Eq. 3.13 for a particle
in a harmonic trap with varying trap strengths.
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3.3 Brownian motion in a harmonic potential

To correctly describe brownian motion in an an optical trap, it is neces-

sary to include the trapping force F = −Kx in the Langevin equation, where

K is the trap spring constant:

mpẍ(t) = −γsẋ(t)−Kx+ Fth(t). (3.11)

For a Brownian particle in a harmonic potential, the position and velocity

PSDs are:

Sx =
2γkBT

m2
p(ω

2
0 − ω2)2 + ω2γ2

(3.12)

Sv = ω2Sx =
2ω2γkBT

m2
p(ω

2
0 − ω2)2 + ω2γ2

(3.13)

Where ω0 =
√
K/mp is the characteristic frequency of the harmonic potential.

The effect of different trap strengths on the position and velocity PSDs is in the

lower panels of Figs. 3.3 and 3.4. There is a qualitative crossover in behavior

at ω0 = 1/2τp. When ω0 < 1/2τp, the system is overdamped; the effect of the

potential occurs only in the diffusive regime. In the overdamped case, there

are three different regimes defined by the characteristic frequencies: ωk ≡ ω2
0τp

and ωp ≡ 1/τp. For ω < ωk, Sx is constant; the amplitude of oscillations is

limited by the harmonic potential. For ωk < ω < ωp, Sx ∝ ω−2 (slope -2 on

a log-log plot). In this regime, the amplitude of motion is limited by Stokes

1Sx is the Fourier transform of the position autocorrelation, which differs from the MSD
by a factor of −2 and an offset of 〈x2〉, the mean-square position. For a free particle,
〈x2〉 = 0, thus the position autocorrelation is not well defined, and this corresponds to a
divergence of Sx as ω → 0.
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by ω0. Image courtesy of Tongcang Li.

damping, while the restoring force of the trap is negligible in comparison to

viscous forces. For ω > ωp, Sx has slope -4 on the log-log plot. This regime

is dominated by the inertial force; the velocity is small enough that damping

forces are negligible compared to the inertial force necessary to accelerate the

particle.

When ω0 > 1/2τp, the system is underdamped. The effect of the poten-

tial occurs in the ballistic regime, and thus the particle will tend to oscillate

multiple times within the trap before its motion is damped out. In that case

Sx develops a resonant peak centered near ω0. The bead’s Brownian motion

appears less like a random walk and more like sinusoidal oscillation with noisy

phase. The weaker the damping, the narrower and taller the resonant peak.
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The MSD and Cv corresponding to the overdamped case are:

MSD(t) =
2kBT

mpω2
0

[
1− 1

2|ω1|τ ′+
e−t/τ

′
− +

1

2|ω1|τ ′−
e−t/τ

′
+

]
. (3.14)

Cv(t) =
kBT

mp

[
− 1

2|ω1|τ ′−
e−t/τ

′
− +

1

2|ω1|τ ′+
e−t/τ

′
+

]
, (3.15)

Where ω1 =
√
ω2

0 − (2τp)−2 is the corner frequency, and

τ ′± =
2τp

1± 2τp|ω1|
. (3.16)

while in the underdamped case, the MSD and Cv are:

MSD(t) =
2kBT

mpω2
0

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
, (3.17)

and

Cv(t) =
A

2γsmp

(
cosω1t−

sinω1t

2ω1τp

)
e−t/2τp (3.18)

3.4 Equilibrium instantaneous velocity probability dis-
tribution

Statistical mechanics predicts a Maxwell Boltzmann distribution for the

velocity of an ensemble of Brownian particles. At a fixed instant in time, the

probability that a randomly chosen particle has a (one-dimensional Cartesian

component of) velocity between vi and vi + dvi is given by p(vi)dvi, where:

p(vi) =
mp

2πkBT
exp

(
−mpv

2
i

2kBT

)
(3.19)

However, we perform experiments on single particles, and are interested in the

velocity distribution of that particle’s velocity as it fluctuates in time. We
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would like to know whether, for a single particle, with velocity v0 at t = −∞,

for an arbitrarily chosen t > 0, the probability of v(t) to lie between v and

v + dvis given by the same probability density as that in Eq. 3.19.

The ergodic theorem predicts that the answer is yes, however, the er-

godic theorem not been universally proven. This is one of the reasons why it

is important to measure the velocity of a single Brownian particle and exper-

imentally determine whether its distribution is the same as predicted by the

equipartition theorem.
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Chapter 4

Trapping and detection of microspheres in air

To date, the majority of experimental study of Brownian motion has

concentrated on that of particles in water. Other than initial trapping, all other

aspects of measurement of the velocity of Brownian particles are simpler in air

than in water. The dynamics of velocity fluctuations of Brownian motion in air

occur over longer time scales than in water, allowing for longer averaging time

for position measurements and thus much better signal-to-noise in velocity

measurement.

This section describes our experimental setup for launching and trap-

ping microspheres in air and vacuum. The same setup was also used to perform

active 3D cooling of the center of mass motion of a trapped microsphere to

mK temperatures [55].

4.1 Launching microspheres in air

In vacuum, dielectric surfaces attract each other by the van der Waals

force: surface charge of opposite polarity is spontaneously induced on both sur-

faces resulting in electrostatic attraction [57]. When two surfaces are immersed

in water, the polar water molecules screen the surface charge and substantially

53



reduce the attraction between the two dielectric . In air, the screening effect

is negligible, and glass microspheres in air adhere to each other and to any

surface with which they come into contact.

The minimum force necessary to separate two surfaces is known as the

“pull off” force. The pull off force between a microsphere and a flat surface

is [58, 59]

Fsphere-flat = 4πrΓ, (4.1)

where r is the radius of the microsphere and Γ is the effective solid surface

energy. The pull-off force between two identical spheres is

Fsphere-sphere = 2πrΓ, (4.2)

half that between a sphere and a plane. In reference [59], the pull-off force

between two 1 µm diameter silica microspheres was measured to be about 88

nN, and the force between such a microsphere and a flat silica surface was

measured to be 176 nN. In comparison, the gravitational force on the same

size bead is ∼ 10 fN, while the maximum force that can be exerted by an

optical tweezer is ∼ 0.1 nN. Both of these are far too small to overcome the

pull-off force.

A simple method to separate a bead from a surface is to apply to the

surface an acceleration sufficiently large such that the resulting inertial force

overcomes the attractive force. The required acceleration to separate a bead

from a flat surface scales as r−2. For the 1 µm diameter microsphere, the

required acceleration is ∼ 2× 108 m/s2.
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Figure 4.1: (A) A home-built ultrasonic transducer for launching glass micro-
spheres in air, consisting of a piezoelectric ring and a glass microscope slide
sandwiched between a pair of copper plates. The microspheres adhere to the
coverslip due to van der Waals attraction. (B) 3.0 µm diameter silica micro-
spheres distributed on the surface of the coverslip after ultrasonic vibration,
imaged under a microscope with a 40x objective lens.

Microspheres were launched into air from the surface of a glass slide

by mechanically vibrating the slide with very high frequency and high ampli-

tude. The vibration was driven by a home-built ultrasonic transducer, which

consisted of a piezoelectric ring and a 1 mm thick glass microscope slide sand-

wiched between two copper plates (Fig. 4.1A). The electrical contacts of the

piezoelectric ring were on its two faces, one of which was grounded by the cop-

per plate. The other, isolated by the glass slide, was connected to the drive

electronics by a copper wire soldered to its surface. Gluing a much thinner

(∼0.2 mm thick) No. 2 microscope coverslip to the end of the slide resulted

in larger vibration amplitude than that of the thick slide by itself. Dry micro-

spheres were applied to the coverslip in a thin layer.

The piezoelectric ring was driven by a high power square wave at 340
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Figure 4.2: Microscope images of 3.0 µ diameter microspheres on the surface
of a glass slide. Left: taken using a 4x objective lens. Right: taken using a
10× objective lens, in the region labeled ‘A’. Image courtesy of Tongcang Li.

kHz for a short duration of time (∼10 ms). The quantity and size distribution

of launched particles depended on the magnitude of the launching RF power,

the air pressure, and the number of beads remaining on the slide. At very low

power, only loosely bound clumps of particles were launched. When the power

is increased, the threshold for the minimum bead size that can be launched

decreases. The ultrasonic power for launching 3 µm diameter microspheres is

∼4 W, while for beads just half the size, the required power is already ∼130

W. The limit to the minimum size of bead which can be launched is 1 µm,

a limit determined by the damage threshold of the piezoelectric ring, which

was several hundred watts Ref. [60] provides additional information about the

launching mechanism and driving electronics.

It is fortuitous that Fsphere-sphere < Fsphere-flat: as a result, microspheres

separate from one-another before separating from the oscillating glass surface,

ensuring that most microspheres are launched as single particles rather than
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in ‘clumps’. Fig. 4.2 shows microscope images of a glass slide after ultrasonic

vibration. The area labeled ‘A’ was vibrated at sufficiently high amplitude

to overcome Fsphere-sphere and the beads are uniformly distributed. The area

labeled ‘B’ did not vibrate at sufficient amplitude and the beads remain stuck

together as they were when applied to the slide.

4.2 Trap optics

The trap configuration used to trap microspheres was that of a counter-

propagating dual-beam optical trap. A single-beam gradient force trap would

have been simpler to implement, but the refractive index mismatch between air

and silica is much larger than in water, and much more power is back-scattered

by a trapped bead. A single-beam trap would have required a very high NA

lens for the gradient force to overcome this scatting force, and high NA lenses

for vacuum use are prohibitively expensive, and typically have a very short

working distance, which would result in a coating of microspheres on the lens

after several rounds of launching. A dual-beam configuration allowed the use

of lenses with lower NA and longer working distance than allowed by a single-

beam trap, since in the dual-beam configuration, the gradient forces of the two

beams add and their scattering forces cancel. A dual beam configuration is

also well suited for trapping high refractive index microspheres in water [61].

One disadvantage of a dual beam trap is that misaligned trapping beams

result in a much more complicated trapping potential which can have multiple

minima, and exert non-conservative forces; doing net work on the trapped
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particle [62,63]. For this reason, precise alignment of the two beams is critical.

Figure 4.3 shows a detailed optical schematic of the trapping and de-

tection system used for instantaneous velocity measurement in air. The two

trapping beams were generated by an ultra-stable NPRO (non-planar ring os-

cillator) laser (Lightwave Electronics1 Model: 126-1063-700). Its rms intensity

fluctuations are < 0.05% between 10 Hz and 2 MHz and shot noise limited

above 10 MHz. It emits at a single frequency with a line-width of < 5 KHz/ms

and a coherence length > 1000 m (detailed characterization of the properties

of NPRO lasers can be found in Ref. [64]). A third, 532 nm wavelength laser

beam was used for secondary detection, alignment and illumination. It was

generated by a diode-pumped solid-state CW laser (Coherent Inc. model:

Verdi V10).

It is important that the two trapping beams do not interfere, since inter-

ference at the trap could introduce stationary or dynamic intensity variations

at length scales of the laser wavelength and potentially cause perturbation of

the equilibrium motion of the trapped particle. One measure taken to avoid

this was the use of the two outputs of a polarizing beam-splitter cube to gener-

ate orthogonally polarized trapping beams. However, reflection from mirrors

and transmission through birefringent media can affect the polarization of the

two beams. Another degree of protection from interference was provided by us-

ing acousto-optic modulators (AOMs) to control the power in the two beams.

1Since acquired by JDSU
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Figure 4.3: Schematic of the optical system for trapping and detection of
microspheres in air. The 1064 nm laser is shown in red, and the 532 nm laser
is shown in green. Beam No. 1 was used for trapping and detection and enters
the trap from the left. Beam No. 2 was used only for trapping and enters the
trap from the right. Image courtesy of Tongcang Li.

59



One beam was the order +1 diffraction peak from the AOM while the other

was the order −1 diffraction peak. As a result, the frequencies of the beams

were shifted in opposite directions, resulting in a total separation of 160 MHz.

The intensity of the three laser beams was controlled using AOMs.

Photodiodes were used to monitor the powers of each beam. For each beam,

the measured power was used as the error signal for an analog proportional-

integral-derivative (PID) circuit whose output was used to control and stabilize

each beam’s power via the AOMs. The set point for the PID controllers was

sent via a digital-to-analog converter (DAC) from the control computer.

The two trapping beams entered the vacuum chamber from either side

and were focused by two identical aspheric lenses. After passing through the

trapped bead, the beams were re-collimated by the opposite lens, and one

of the re-collimated beams was used for high bandwidth back-focal-plane de-

tection. In addition, some of the scattered light was used to perform spatial

imaging of the trapping volume. A lens outside the vacuum chamber was used

to create an image of the trapped microsphere in front of a 10× microscope

objective which magnified that image onto a CCD camera behind it. This

diagnostic tool was useful to observe shifts in the axial position of the mi-

crosphere within the trap as well as to confirm the presence or absence of a

microsphere in the trap.

A top-down view of inside the vacuum chamber is shown in Fig. 4.4.

The ultrasonic transducer is mounted vertically, ∼5 cm above the optical trap.

The two identical aspheric lenses used for trapping had focal length 3.1 mm
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Figure 4.4: Top view inside the vacuum chamber showing the two trapping
lenses and the piezoelectric ultrasonic launching transducer. The glass slide
from which beads are launched was ∼5 cm above the trap. Image courtesy of
Tongcang Li.
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and NA of 0.68. The lenses were mounted inside the vacuum chamber, epoxied

to steel brackets which were bolted on to an aluminum base. The separation of

the lenses was adjusted using a collimated input beam. The separation was set

such that after passing through the two lenses, the beam emerged collimated.

Such alignment resulted in a separation of ∼3.5 mm between the front surfaces

of the lenses. Once the lenses were fixed, the 532 nm beam and second 1064

nm beam were aligned so that they overlapped with the first beam on both

sides of the lens pair. Final precise alignment was performed using a pinhole

located at the trap focus.

A schematic of the pinhole alignment setup is shown in Fig. 4.5. The

pinhole had diameter 1.0±0.5 µm and was mounted on a 3-axis translation

stage, controlled by 3 manual differential actuators, as well as a piezoelectric

actuator for fine-tuning the vertical displacement. A lens focused the light

exiting the pinhole onto a photodiode. First, the pinhole was centered on the

focus of beam No. 1 by maximizing transmission. Next, the green beam and

beam No. 2 were aligned such that their transmission through the pinhole in

the other direction was also maximized. This allowed us to align the foci with

an accuracy of about 0.5 µm. When beam No. 2 was being aligned, the lens

and photodiode were repositioned to the other side of the trap.

The pinhole was also used to estimate the beam profiles of the two lasers

at the focus by measuring transmitted power as the pinhole was scanned across

the beam focus. The measured beam profiles were very close to Gaussian, and

typical measured beam waists were 2.01 µm in the horizontal direction and 2.12
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Figure 4.5: Schematic of setup used to measure the beam profile at the waist
of the trapping beams. A pinhole was scanned across the waist, and the trans-
mitted power was measured with a photodiode. Image courtesy of Tongcang
Li.

µm in the vertical. Waist measurement did not take into account convolution

with the finite extent of the pinhole, thus set an upper bound for the actual

beam waists. Once the traps were aligned and characterized, the system was

ready for launching and trapping of microspheres.

4.3 Trapping procedure

After being launched in air, microspheres fell at terminal velocity under

the influence of gravity. Microspheres falling near the trapping region (at the

foci of the two lasers) may be trapped as long as there is sufficient damping

to reduce the kinetic energy of the particle to be less than the trap depth,

ensuring the bead turns around before reaching the edge of the trap. If the air

pressure is too low, particles will have too much energy and escape the trap.
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However, once already trapped at high pressure, it is possible to reduce the

air pressure without losing the bead from the trap.

Typically, microspheres were trapped within 2-3 launching attempts,

and successful trapping could typically be achieved within 10 minutes. Once

a bead was trapped, it was very stable. The longest observed lifetime of con-

tinuous trapping was 46 hours, during which the laser power was significantly

varied. In vacuum, the trap was less stable; heating effects from trap mis-

alignment are independent of pressure (if not exacerbated at low pressure due

to warping of the chamber caused by the pressure differential) while damping

decreases at low pressure, resulting in runaway heating. The lowest pressure

at which we trapped a bead without active stabilization was ∼0.1 Pa.

Fig. 4.6 shows a trapped 4.7 µm diameter silica microsphere, made

visible to the naked eye by scattering of the 532 nm laser. During acquisition

of Brownian trajectories the 532 nm laser was turned off. Trapped beads were

also visible on a VCR monitor connected to the CCD camera which imaged

the scattered light from the bead, as shown in Fig. 4.7.

When the beam waists at the two foci were of the same size, we found

that there was high probability of simultaneous trapping of multiple beads

(typically two, though sometimes more). This could have been caused by

nonzero separation of the two foci along the optical axis, which would result

in a double well potential. The rate at which multiple beads were trapped

was reduced significantly by making the waist of one of the beams larger than

the other. The left panel of Fig. 4.7, shows the scattered light image of a
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Figure 4.6: Photos of a 4.7 µm diameter silica microsphere trapped by a
counter-propagating dual-beam optical tweezer. The trapping beams are out-
side the visible spectrum, but the bead is visible due to its scattering of a weak
532 nm laser beam used to illuminate the bead. Image courtesy of Tongcang
Li.
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Figure 4.7: CCD images of trapped beads, formed using scattered light col-
lected from the side of the trap. Left: A single 3.0 µm diameter microsphere;
Right: multiple beads in the trap. The air pressure was 752 torr, and the trap-
ping beam powers were 119 mW and 100 mW. Image courtesy of Tongcang
Li.

single bead, while the the right corresponds to multiple (2 or 3) beads trapped

simultaneously. To ensure that only single beads were trapped at a time, the

sizes of the incoming trapping beams were set such that waist of beam No. 1

was twice that of beam No. 2.

4.4 Vacuum system

The trapping chamber and most of the optics were mounted on a 3

ft × 3 ft optical breadboard, itself supported by elastomers on an air-floated

optical table. The peak-to-peak vibration amplitude of the lab floor was ap-

proximately 30 µm, due to seismic vibrations. For the optical table with

floating disabled, the peak-to-peak relative vibration was approximately 0.1

µm. Enabling floating reduced this to approximately 10 nm.

The pressure inside the trapping chamber was controlled using a sorp-
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tion pump. A sorption pump consists of a container filled with porous, high-

surface-area media. When the pump is cooled with liquid nitrogen, much of

the gas in the vacuum system adsorbs to surfaces inside the pump. Once the

desired pressure was reached, the pump was closed off by a valve to eliminate

the need for continuous cooling. A sorption pump is preferable over mechan-

ical pumps because it has no moving parts and thus introduces no vibration.

Since pressure would only be reduced after a bead was in the trap, mechanical

vibration of the pump could have perturbed the trapping optics, and thus the

trapped bead, enough for the bead to escape from the trap.

The pressure in the trapping chamber was measured using a combina-

tion gauge (Kurt J. Lesker Company, model: KJLC 910) with an operating

range of 10−10 torr to 1500 torr. The gauge uses both a Piezo and a Pirani

sensor. The Pirani sensor is gas-type sensitive since it infers pressure by mea-

suring thermal conductivity. The Piezo sensor measures the absolute pressure

independent of gas type. The Piezo sensor is used for pressures above 15 torr,

the Pirani sensor is used below 5 torr, and the two are used simultaneously

between 5 and 15 torr. The accuracy is 1% in the range of 10 - 1000 torr and

10% at pressures below 10 torr.

4.5 Detection system

Fig. 4.8 shows the split-beam detection configuration used in this work.

Half of the beam of the beam was reflected by a cut mirror(Thorlabs, model:

BBD05-E03) [10], and the two halves were focused onto a balanced detector
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Figure 4.8: Simplified schematic showing the counter-propagating dual-beam
optical tweezers, and a novel detection system with 75 MHz bandwidth and
ultra-low noise. The s-polarized beam was reflected by a polarizing beam
splitter cube after it passed through a trapped bead inside a vacuum chamber.
The p-polarized beam passed through the cube. The detection beam was split
into two halves with a cut mirror, and the two halves were focused onto the
inputs of a balanced photodetector. Motion of the bead causes deflection of the
beam. The difference of the two beams’ power is proportional to the transverse
displacement of the microsphere.

(Thorlabs, model: PDB120C) with 0.3 mm diameter InGaAs photodiodes,

sensitive to wavelengths in the range of 800-1700 nm. The detector bandwidth

was 75 MHz and transimpedance gain was 1.8× 105 V/A.

4.6 Digital acquisition system

The high-bandwidth output of the balanced photodetector was digi-

tized using a DAQ card (National Instruments, model: PCI 6133), with max-

imum sampling rate of 2 Ms/s, maximum sample length of 4 million samples

and resolution of 12 bits. A LabVIEW program controlled the acquisition
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(a) 749 torr (b) 20.6 torr

Figure 4.9: Waveforms and position power spectral densities for a 3 µm di-
ameter silica microsphere trapped in air at a)749 torr and b) 20.6 torr. The
low pressure position PSD shows the resonant peak that results from a heavily
underdamped trap.

card, and was also used to set the operating powers of the lasers and to trig-

ger launching of microspheres. Upon acquisition, the program calculated and

displayed the waveform and PSD of the acquired data, examples of which are

shown in Fig. 4.9.

69



Chapter 5

Measurements of Brownian motion in air

For the data presented in this section, unless otherwise stated, the pow-

ers of the two laser beams were 10.7 mW and 14.1 mW, the diameter of the

bead was (nominally) 3 µm, the temperature of the system was 297 K, and the

air pressure was 99.8 kPa or 2.75 kPa. The waists of the two beams (as mea-

sured using the pinhole), were 2.2 µm and 3.0 µm. The trapping was stable,

and the heating due to laser absorption was negligible under these conditions.

For each pressure level, the results were calculated from ten consecutive ac-

quisitions of 4 million points each, acquired in quick succession. The position

signal was recorded at the digitizer’s maximum sampling rate of 2 Ms/s.

Figure 4.9 shows, for both pressures, the raw position waveforms and

power spectral densities (PSDs) corresponding one of the 10 acquisitions gen-

erated in real-time by the LabVIEW acquisition program. The waveforms

resemble random noise and do not convey much information. The units are in

volts, as measured by the digitizer.
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5.1 Mean-square displacement

Figure 5.1 shows the MSDs of a 3 µm silica bead as a function of time.

For both pressures, the measured MSDs agree with Eq. 1.30 over three decades

of time. The calibration factor α ≡position/voltage of the detection system

was the only fitting parameter of Eq. 1.30 for each pressure. τp and ω0 were

obtained from the measured normalized Cv(t). The bead mass mp was calcu-

lated from the diameter and density of the microsphere. The two values of α

obtained for these two pressures differ by 10.8%. This was caused by distor-

tion of the vacuum chamber at low pressure, which affected the equilibrium

position of the bead relative to the detection laser.

The measured MSDs are completely different from those predicted by

Einstein’s theory of Brownian motion in a diffusive regime. The slopes (on

a double logarithmic plot, Fig. 5.1A) of measured MSD curves at short time

scales are twice those of the MSD curves of diffusive Brownian motion. This is

because the MSD is proportional to t2 for ballistic Brownian motion, while it is

proportional to t for diffusive Brownian motion. In addition, in the short time

ballistic regime, the MSD curves, as predicted by 〈[∆x(t)]2〉 = (kBt/mp)t
2,

are independent of air pressure. In contrast, the MSD in the diffusive regime

does depend on the air pressure. At long time scales, the MSD saturates at a

constant value because of the optical trap. Fig. 5.1B displays more detail of

the MSD at short time scales.
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Figure 5.1: (A) The mean square displacements of a 3 µm silica bead trapped
in air at 99.8 kPa (red squares) and 2.75 kPa (black circles). They were cal-
culated from 40 million position measurements for each pressure. The “noise”
signal (blue triangles) is recorded with no particle in the optical trap. The
solid lines are theoretical predictions of Eq. 1.30. The prediction of Einstein’s
theory of free Brownian motion in the diffusive regime is shown in dashed lines
for comparison. (B) MSDs at short time scales shown in detail. The dash-dot
line indicates ballistic Brownian motion of a free particle.
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5.2 Velocity autocorrelation

Figure 5.2 shows the normalized Cv(t) of the bead at two different

pressures. The oscillations were caused by the optical trap, and are particu-

larly pronounced at 2.75 kPa. When normalized by the mean-square velocity

(Cv(0)), Eq. 1.29 is independent of the calibration factor α of the detection

system. The only independent variable is time t, which can be measured with

high precision. Thus the normalized Cv(t) provides an accurate method to

measure τp and ω0. Fitting of the normalized Cv to Eq. 1.29, resulted in values

of τp = 48.5±0.1µs, ω0 = 2π ·(3064±4) Hz at 99.8 kPa, and τp = 147.3±0.1µs,

ω0 = 2π · (3168± 0.5) Hz at 2.75 kPa. The trapping frequency changed by 3%

because the distortion of the vacuum chamber at different pressures resulted

in slight changes in the trapping potential. It was also possible to calculate

the diameter of the silica bead from the τp value at 99.8 kPa [65]. The ob-

tained diameter was 2.79 µm, which is within the uncertainty range given by

the supplier. We used this value in the calculation of the theoretical MSD and

normalized Cv(t) curves.

For fixed pressure and temperature, τp should be independent of the

trapping frequency. We verified this by changing the total power of the two

laser beams from 25 mW to 220 mW. The measured τp changed less than

1.3% for both pressures, confirming the accuracy of our fitting method, and

demonstrating that any heating effects due to the laser beams (which would

change the viscosity and affect τp) were negligible.
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Figure 5.2: The normalized velocity autocorrelation functions for the 3 µm
bead at 99.8 kPa (red squares) and 2.75 kPa (black circles). The solid lines
show the result of fitting the data to Eq. 1.29
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5.3 Power spectral density of position and velocity

Figure 4.9 shows, for both pressures, the raw position waveforms and

power spectral densities (PSDs) corresponding one of the 10 acquisitions gen-

erated in real-time by the LabVIEW acquisition program. The waveforms

resemble random noise and do not convey much information. The units are in

volts, as measured by the digitizer. The PSDs (plotted, as is conventional, on

a double-logarithmic scale) show the distribution of the signal among different

frequency components and reveal physical information that is concealed by

the randomness of the waveforms.

Figure 5.3 shows processed PSDs corresponding to the same data as

shown in Fig. 4.9. The units were converted from volts to meters using the

calibration parameter α determined from fitting the mean square displacement.

The physics underlying the signal and noise is much more clearly conveyed in

the frequency domain. The trapping parameters can be estimated by com-

paring Fig. 5.3 to the theoretical prediction of Eq. 3.12, plotted in Fig. 3.5.

For the bead trapped at high pressure, location of the ‘knee’ reveals that the

trapping frequency, ω0/2π, is ∼ 3 KHz and the slight peak at the corner fre-

quency suggests that the system is slightly underdamped (τpω0 ≈ 1). At the

lower pressure, the system is more underdamped, and a well pronounced peak

appears at the trapping frequency. At high frequencies, the magnitude of the

PSD is smaller for the bead trapped at low pressure. This is because the

thermal force is proportional to the damping strength (in accordance with the

fluctuation dissipation theorem) and thus is weaker at low pressure.
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Figure 5.3: Position power spectral densities for a 3 µm diameter silica mi-
crosphere trapped in air at 749 torr (red squares) and 20.6 torr (black circles)
as well as the PSD of the detector noise with an empty trap (blue triangles),
scaled to match the magnitude of the high frequency noise floor visible in the
position PSDs. At the lower pressure, the resonant peak of the underdamped
oscillator becomes more pronounced, while at high frequencies position fluc-
tuations are reduced, due to the weaker thermal force.
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The plateau at frequencies above ∼100 KHz is due to detection noise,

whose PSD dominates that of the bead’s motion at high frequencies. To

understand the noise of the system, 10 more acquisitions were made with

an empty trap: the resulting signal is the combination of vibrational noise in

the detection beam and electronic noise from the detector and digitizer. The

PSD of the noise signal is also shown in Fig. 5.3, however it was scaled by

a factor of 3 prior to plotting so that it overlaps with the high frequency

noise floor in the position measurements. The reason that the noise with no

bead had a higher magnitude than with a trapped bead is most likely because

the power to the detector was different during the acquisition of noise. The

magnitude of the contribution of laser pointing noise to the noise floor PSD

is proportional to the input power squared. More laser power is transmitted

through the trap when there is no bead to cause scattering.

Although the measured MSD and Cv clearly show signatures deep into

the ballistic regime, that is not sufficient to confirm the observation of in-

stantaneous velocity. Those functions are averages over a long measurement

time. The longer the averaging time, the more the noise in the MSD and

Cv is suppressed, because the noise is (typically) uncorrelated. The effect of

noise on velocity measurement can be determined by looking in the frequency

domain, where the noise spectra are not suppressed but rather added to the

signal spectra.

At high frequency, detection noise, which has a flat power spectrum,

dominates the position PSD. Directly differentiating this position signal would
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Figure 5.4: Velocity power spectral densities for a 3 µm diameter silica micro-
sphere trapped in air at 749 torr (red squares) and 20.6 torr (black circles) as
well as the PSD of the time derivative of detector noise (blue triangles), scaled
to match the high frequency noise in the acquisitions with a bead present.
The velocity signal is centered on the trap frequency, and has a much nar-
rower distribution at low pressure. When the flat position noise spectrum is
differentiated, it results in velocity noise with slope 2 on the log-log plot.
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result in a velocity measurement dominated by noise. The velocity PSDs are

shown in Fig 5.4. Most of the velocity signal is concentrated at the trap

frequency. At low pressure, the motion is more oscillatory, concentrated within

a narrower frequency range. The noise curve has a slope of 2. The scale on

the log-log plot can be deceptive. Between 100 KHz and 1 MHz, the noise

contributes more to the area of the velocity PSD than the velocity signal does

between 100 Hz and 100KHz. A more accurate representation can be seen in

the cumulative velocity PSDs in Fig 5.5 which reflects how the velocity signal

is accumulated when bandwidth is increased. For both pressures the CSV

approaches the the same asymptotic value: the thermal mean square velocity,

which depends only on particle mass, however at low pressure, this value is

reached at lower frequencies, because more of the signal is concentrated at

the trap frequency. The noise contribution grows as bandwidth to the third

power, but only begins to dominate the signal at frequencies where the signal

is already close to its asymptotic value, meaning that, with correct choice of

bandwidth for low-pass filtering, an accurate measurement of instantaneous

velocity can be recovered.

5.4 Instantaneous velocity measurement

Noise was reduced by averaging every 10 successive position measure-

ments and differentiating the averaged position, resulting in instantaneous ve-

locity measurements with time resolution of 5 µs. Although averaging reduced

the temporal resolution by a factor of 10, it greatly increased the signal-to-noise
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Figure 5.5: Cumulative velocity power spectral densities for a 3 µm diameter
silica microsphere trapped in air at 749 torr (red squares) and 20.6 torr (black
circles) and for no bead (blue triangles). At both pressures the CSV approaches
the thermal mean square velocity, which is independent of pressure. The noise
contribution grows as bandwidth to the third power.
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ratio of the measured velocity. As discussed in section 2.3, the averaged veloc-

ity is close to the instantaneous velocity as long as CSv(ω) at ω = 1/(2πτav)

is in its flat, plateau region. For this data, τp = 48 µs at 99.8 kPa and τp =

147 µs at 2.75 kPa.

Figure 5.6 shows 2 ms long snapshots of position and velocity traces

from the recorded trajectories. The position traces of the bead at the two

different pressures appear very similar to one another. On the other hand,

the velocity traces are clearly different. The instantaneous velocity of the

bead at 99.8 kPa fluctuates more rapidly than that at 2.75 kPa, because the

momentum relaxation time is shorter at higher pressure.

The distributions of the measured instantaneous velocities (Fig. 5.7) are

in agreement with the Maxwell-Boltzmann distribution (Eq. 3.19). The mea-

sured rms velocities were vrms= 0.422 mm/s at 99.8 kPa and vrms= 0.425 mm/s

at 2.75 kPa. These are very close to the prediction of the energy equipartition

theorem, vrms =
√
kBT/mp, which is 0.429 mm/s. As expected, the velocity

distribution was independent of pressure. The rms value of the (unscaled)

noise signal was 0.021 mm/s, corresponding to 1.0 Å spatial resolution in 5 µs.

This measurement noise was about 4.8% of the rms velocity, corresponding

to an SNR1 of 26 dB. Fig. 5.7 represents direct verification of the Maxwell-

Boltzmann distribution of velocities and the equipartition theorem of energy

for Brownian motion.

1SNR defined as 10 log
(
〈v2signal〉/〈v2noise〉

)
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Figure 5.6: One-dimensional trajectories of a 3 µm diameter silica bead
trapped in air at 99.8 kPa (A) and 2.75 kPa (B). The instantaneous veloc-
ities of the bead corresponding to these trajectories are shown in (C) and
(D).
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Figure 5.7: The distribution of the measured instantaneous velocities of a 3
µm silica bead. The statistics at each pressure are calculated from 4 million
instantaneous velocities. The solid lines are Maxwell-Boltzmann distributions.
We obtained vrms = 0.422 mm/s at 99.8 kPa (red squares) and vrms = 0.425
mm/s at 2.75 kPa (black circles) from the measurements. The rms value of
the noise (blue triangles) is 0.021 mm/s.
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5.5 Outlook

The ability to measure the instantaneous velocity of a Brownian particle

will be invaluable in studying non-equilibrium statistical mechanics [66, 67]

and can be used to cool Brownian motion by applying a feedback force in a

direction opposite to the velocity [68, 69]. In vacuum, our optically trapped

particle promises to be an ideal system for investigating quantum effects in a

mechanical system [70–73], due to its near-perfect isolation from the thermal

environment. Combining feedback cooling and cavity cooling, we expect to

cool the Brownian motion of a bead starting from room temperature to the

quantum regime, as predicted by recent theoretical calculations [72, 73]. We

have directly verified the energy equipartition theorem of Brownian motion.

However, we also expect to observe deviation from this theorem when the

bead is cooled to the quantum regime. The kinetic energy of the bead will

not approach zero even at 0 K because of its zero-point energy. The rotational

energy of the bead should also become quantized.
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Chapter 6

Brownian motion with memory

The results of Ch. 3 were derived assuming that the damping force on

a sphere moving at velocity v relative to the surrounding fluid is given by

Stokes law: FStokes = −γsv. However, when a bead changes speed in a dense,

viscous liquid, it triggers a dynamic, gradual change in the flow around the

bead, and this flow affects the force on the bead at future times. The force at

any instant depends on the history of the bead’s motion, not just the bead’s

velocity at that instant. This is referred to as the memory effect. This effect

was in fact understood by Sir George Stokes: the same paper which contains

Stokes law also gives the frequency dependent damping on an oscillating sphere

in liquid. [74]. Both the amplitude and the phase of the damping force has

frequency dependence. The memory effect exists in air as well, but in air the

time scales of Brownian motion and the memory effect are distinctly separated.

For microspheres in liquids, τp ≈ τf . When two dynamic processes

occur at similar time scales, the coupled behavior becomes much more com-

plicated than the uncoupled behavior. In this case, the fluid flow resulting

from the bead’s Brownian motion ‘sloshes around’ at similar time scales as

the bead, the fluctuations become much more erratic, as sometimes the slosh-
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ing adds constructively, and some times it cancels out. This situation raises

the possibility for deviation from equipartition; there is strong correlation be-

tween the bead’s motion and the fluid’s force on the bead which may lead to

a non-Gaussian distribution for the force.

6.1 Fluid dynamics: forces on a moving sphere

Although fluid dynamics can be notoriously nonlinear, in the case of

Brownian motion the Reynolds number is � 1 and the linearized approxima-

tion of fluid dynamics is accurate. Linearity means that a solution for arbitrary

motion can be written in as a sum of solutions for oscillatory motion at many

different frequencies.

This section will present the full expressions for hydrodynamic interac-

tion between a sphere with arbitrary velocity submerged in fluid, followed by

a brief discussion of the nature of that force.

The interaction between the fluid and a sphere can be isolated by con-

sidering the force necessary to maintain oscillation of a mass-less spherical shell

with velocity v(t) = Re(v0e
iωt). The damping can be described by γ[ω], with

Ffr(t) = Re(v0γ[ω]eiωt). The solution requires solving for the fluid flow around

the bead and integrating the viscous and normal forces over the sphere’s sur-

face. The result gives γ[ω]:

γ[ω] = γs(1 +
√
−iωτf )−

iωmf

2
(6.1)
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where

mf ≡
4πr3ρf

3
= mp

ρf
ρp

(6.2)

is the mass of the fluid displaced by the bead, and

τf ≡
r2ρf
η

= τp
9

2

ρf
ρp

(6.3)

is a characteristic timescale of the fluid flow around the bead, which shall be

explained below.

The expression for the friction force at time t0, exerted on a sphere

arbitrary velocity v(t) defined in the interval −∞ < t < t0, can be found by

inverse Fourier1 transformation of equation 6.1. The result is [75]:

Ffr(t0) = −γs
[
v(t0) +

√
τf
π

∫ t0

−∞

v̇(t)√
t0 − t

dt

]
− mf

2
v̇(t0) (6.4)

Equations 6.1 and 6.4 each have three terms, which correspond to dif-

ferent aspects of the fluid flow generated by the bead. Figure 6.1 illustrates

flow around the bead in different regimes in which the three effects are isolated.

6.1.1 Dissipative forces

The first term is of Eq. 6.4 identical to Stokes damping. It is the only

non-vanishing term for motion at constant velocity in a fluid with zero density.

The corresponding flow field for this situation is shown in Fig. 6.1B. Roughly

speaking, the net damping force is determined by integrating, over the bead’s

1Technically it is calculated using inverse Laplace transformation, which are more con-
venient with causal-like boundary conditions

87



Figure 6.1: Theoretical flow fields for different regimes of fluid flow around a
sphere, each case shows the fluid flow in an instant when the bead is moving
to the right with velocity v0. The ‘camera’ is stationary and the bead is
moving past it. Blue shading represents fluid velocity magnitude on a linear
scale, while green shading represents the component of shear stress which
contributes to damping. (A) Potential flow of an inviscid fluid, resulting in
only the effective mass force. (B) Flow of a hypothetical fluid with viscosity
but no density, (equivalently, flow in a dense, viscous fluid in which the particle
has been moving at constant velocity) resulting in Stokes damping. (C) and
(D), Full hydrodynamic flow around an oscillating particle, with oscillation
period 9 τf and 0.8 τf , respectively.
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surface, the component of the stress tensor parallel to the surface. In Figs. 6.1B

and D, the green shading indicates the magnitude of the relevant component

of the stress tensor corresponding to the fluid flow indicated.

The second term of Eq. 6.4 does not lend itself to straightforward in-

terpretation in neither the time nor the frequency domain. It is known as the

Basset force [75–77]. It arises due to vorticity that originates at the surface

of an accelerating particle and diffuses outward, expanding to the size of the

bead in time τf . The strength of the Basset force is proportional to
√
ηρf . As

the density approaches zero, the vorticity diffuses away too quickly to affect

the motion of the sphere. When the viscosity approaches zero, the interaction

strength between the bead and the vorticity approaches zero.

In Equation 6.1, the Basset force can be split into its real and imaginary

components:

γ[ω] = γs(1 +

√
ωτf
2

)− iωmf

2
(1 + 9

√
1

2ωτf
) (6.5)

The real part acts in phase with the velocity and represents the damping-like,

dissipative component of the force. The imaginary part acts out-of-phase with

the velocity and can be thought of as an inertia-like, conservative component

of the thermal force. The strength of the in-phase component relative to that

of Stokes damping is negligible at low ω and increases at high frequencies.

For ω > 2/τf , the dissipative component of the Basset force is stronger than

Stokes damping.

An example of the fluid flow responsible for the increase in damping
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is illustrated in Fig. 6.1D, which should be compared to Fig. 6.1B. Fig. 6.1D

shows the fluid field around a sphere oscillating at ω ≈ 8τf , at the instant of

maximum velocity. The fluctuation of the sphere’s direction creates a toroidal

vortex around the equator of the sphere: the fluid nearest the surface moves

in the same direction of the sphere, while fluid further away moves in the

opposite direction of an earlier phase of the sphere’s oscillation. Vorticity in a

fluid obeys a diffusion equation. Its spread driven by the viscous force between

adjacent layers of water moving different speeds. Over time viscosity tends to

reduce velocity gradients and localized information diffuses outwards. The

spatial extent of the vortex generated by the oscillating bead depends on the

oscillation frequency. When the frequency is high, the vortex is close to the

surface and creates more shear in the velocity at the surface than in the case

of a sphere moving at constant velocity and thus a stronger damping force.

6.1.2 Conservative forces

The third term of Eq. 6.4 results in what is known as the added mass.

In a dense fluid, the gravitational mass of an object is modified due to pressure

from the fluid it displaces. Similarly, an objects inertial mass must be modified

to account for the inertia the displaced fluid, and this effect is contained in

the third term in equations 6.1 and 6.4. The effective particle mass is thus

m∗ = mp+ma. Where, for a sphere in an unbounded fluid, the added (inertial)

mass of the displaced fluid is ma = mf/2 [78]. It is the only force experienced

by a sphere accelerating in an inviscid, incompressible fluid, and can be derived
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using the approximation of potential flow [79].

Figure 6.1A illustrates the fluid flow around a moving sphere for a fluid

with zero viscosity but nonzero density. The only non-vanishing force term

in this case is effective mass term. The magnitude of the fluid flow velocity

is indicated in blue. Assuming the fluid is incompressible, the illustrated flow

instantaneously tracks the velocity of the bead, thus a force on the sphere

must accelerate the mass of the shaded volume of fluid as well as the mass of

sphere. The flow field extends to infinity, but most of the contribution comes

from the fluid near the bead.

The imaginary component of the Basset force in Eq. 6.5 is in some ways

comparable to the effective mass term. The relative strength of the imaginary,

inertial component of the effective mass is negligible at high frequencies but

increases for low frequencies, contributing more than the added mass for ω <

40/τf . Fig. 6.1C shows the velocity of the flow field around a sphere oscillating

at a frequency of ω ≈ 0.7τf . The momentum of the fluid flow at the instant of

maximum velocity is shaded in blue. This fluid flow does not instantaneously

follow changes in the bead’s velocity, but some of it contributes to the bead’s

apparent inertia.

When ω → 0, the contribution of the Basset force to the inertial mass

goes to infinity. This corresponds to the entrainment of an infinitely large

volume of fluid that occurs after motion at constant velocity for an infinitely

long time. The resulting force itself is not infinite, but can be nonzero even

when the velocity and acceleration of the sphere is zero.
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6.1.3 An example in the time domain

The behavior of the Basset force can be illustrated in the time domain

by considering the force necessary to maintain constant velocity for an ini-

tially stationary sphere accelerated by an impulse at t = 0. Immediately after

the impulse, the fluid at the surface of the sphere has the same velocity as

the sphere, but fluid slightly further is stationary, resulting in a very strong

velocity shear and thus strong damping force. Over time, this shear at the

surface relaxes as information about the velocity change diffuses in the direc-

tion perpendicular to the sphere’s propagation, transitioning from a flow like

that of Fig. 6.1D to one more like that of Fig. 6.1C. By the time that t ≈ τf ,

the spatial extent of the vorticity expands to a volume of fluid comparable to

the size of the bead. The fluid around the bead is temporarily entrained and

the shear at its surface, and thus the damping force, undershoots that of the

steady state Stokes damping. Eventually the vorticity expands to infinity and

the flow field approaches to the case of Fig. 6.1B.

6.2 Effect on Brownian motion

To include the effects of hydrodynamic interaction, the term γsv the

Langevin equation of Eq. 3.4 must be replaced with the friction force of Eq. 6.4:

mpẍ(t) = −Kx−
[
mf

2
ẍ(t) + γs

(
ẋ(t) +

√
τf
π

∫ t

−∞

ẍ(t′)dt′√
t− t′

)]
+Fth(t)+Fext(t),

(6.6)

Moreover, the corresponding thermal force fluctuations can no longer be
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described as delta-correlated. The thermal force is less a series of independent

kicks and more the result of fluctuating fluid flows that persist over time. The

same kind of vorticity that is generated by damping a sphere’s motion can

spontaneously form and decay due to thermal fluctuations in the fluid. Thus,

for consistency with equilibrium, the thermal force has non-white spectrum

and non-delta autocorrelation:

SFth
(ω) = 2γskBT (1 +

√
ωτf/2), (6.7)

CFth
(t) = 2γskBT

[
δ(t)− 1

2

√
τf
π
t−3/2

]
. (6.8)

The resulting theoretical predictions for hydrodynamic Brownian mo-

tion are given in Section 1.2. To illustrate the differences between Brownian

motion in air and liquid, this section will compare three different sets of re-

sults for a 3 µm diameter silica microsphere (density ρp=2×103 kg/m3), in a

harmonic trap with trap constant K=10−6 N/m. The first is the prediction of

EOU theory for the microsphere in air. The second is the prediction of EOU

theory using the viscosity of water and the effective mass of the microsphere in

water (η = 1.00 mPa·s, ρf = 1×103 Kg/m3): it ignores the Basset force term.

The third uses the results of the complete hydrodynamic theory of Section 1.2.

Also included in the comparison is the effect of white-spectrum position

shot noise with an amplitude
√
Sxn = 20 fm/

√
Hz, assuming detection power

and optical gain are identical for the three systems (in reality, the optical gain

would probably be less in water due to the smaller relative refractive index).
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6.2.1 Position PSD

Figure 6.2 shows the the predictions of Sx for the three systems. The

noise is shown as a red dashed line. Interestingly, the noise overpowers the

Brownian motion in air at a lower frequency than it does the two predictions

for water. At low frequencies, the EOU theory and hydrodynamic theory

converge. At intermediate frequencies, the hydrodynamic theory begins to dip

below the EOU theory. This is caused by the inertial component of γ[ω] in the

denominator of Eq. 1.48. At high frequencies, the hydrodynamic theory has

higher amplitude than EOU theory. This is a result of the Re(γ[ω]) term in

the force spectrum in the numerator of Eq. 1.48; the increasing magnitude of

the colored thermal force at high frequencies. In the limit of large ω, the EOU

Sx decays (on the log-log plot) with a slope of −4, while the colored term in

the force causes the hydrodynamic Sx to decay with a shallower slope of −3.5.

6.2.2 Velocity PSD

Figure 6.3 shows the corresponding predictions for Sv, in which the

difference between the three is somewhat more pronounced. The flat shot

noise in the position spectrum results in ‘pink’ noise in the velocity spectrum,

with slope 2 when drawn on a log-log plot. The velocity of the particle in air

has a much more narrow distribution among frequency components, centered

around ω0. At high ω the hydrodynamic velocity PSD decays with slope

−1.5 while the EOU prediction decays with slope −2. Equipartition requires

the area of both curves be equal to kBT/m
∗. The larger amplitude of the
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Figure 6.2: Comparison of position PSDs predicted by EOU in air (dash-
dot line), EOU in water (dotted line) and the full hydrodynamic theory in
water (solid line). Also shown is the shot noise spectrum corresponding to
a position sensitivity of 20 fm/

√
Hz. Higher viscosity results in much larger

amplitude at low frequency and at high frequencies. Addition of the Basset
force term results in slightly suppressed amplitude below ∼ 2π×107 Hz due to
the imaginary part of the damping in the denominator. Above ∼ 2π× 107 Hz
the real part of the damping in the numerator, the color in the thermal force,
results in more fluctuation at high frequencies than EOU theory predicts.
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hydrodynamic Sv at high frequencies is compensated by its smaller amplitude

at intermediate frequencies. This is related to the nature of the Basset force

- at long time scales it increases the inertial mass of the bead and suppresses

the amplitude of fluctuations. As a trade-off, more energy is taken away from

the bead’s motion at short time scales, resulting in stronger damping and a

stronger thermal force.

6.2.3 Mean-square displacement

The three MSD curves are shown on a log-log plot in Fig. 6.4. The

difference between the EOU and hydrodynamic theories for water are very

minimal here. The MSD for the bead trapped in air approaches the asymptotic

value of 〈x2〉 = kBT/K more quickly than the beads in water. In the ballistic

regime, the MSD of the bead in air is ∼ 25% higher due to its lighter bare

mass.

6.2.4 Velocity autocorrelation

The theoretical predictions for velocity autocorrelation are shown in

Fig. 6.5. Here the difference between the three systems stands out much more

clearly.

The effective mass term results in an important implication for Brow-

nian motion in liquid. Hydrodynamic theory predicts Cv(0) = kBT/m
∗ where

the effective mass m∗ is the sum of the mass of the particle and half the mass

of the displaced fluid [78]. Thus the predicted velocity of the particle will be
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Figure 6.3: Comparison of velocity PSDs predicted by EOU in air (dash-dot
line), EOU in water (dotted line) and the full hydrodynamic theory in water
(solid line). Also shown is the shot noise spectrum corresponding to a position
sensitivity of 20 fm/

√
Hz, which in the velocity spectrum results in ‘pink’

noise with slope 2. The velocity of the bead in air is distributed over a much
narrower frequency range. The hydrodynamic Sv gives velocity with slightly
broader distribution than that of the EOU theory.
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Figure 6.4: Comparison of MSDs predicted by EOU in air (dash-dot line),
EOU in water(dotted line) and the full hydrodynamic theory in water (solid
line). The biggest difference is the slower approach to the plateau of the two
systems with higher damping. All three curves approach the same asymptotic
value of 〈x2〉 = kBT/K. The effective mass of the beads in water is 25%
heavier than the bare mass of the bead in air, thus the magnitude of the MSD
in the Ballistic regime is correspondingly smaller. However on a log scale, such
a difference is barely noticeable.
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v∗rms =
√
kBT/m∗ in the ballistic regime, in contradiction to the prediction of

the equipartition theorem. The apparent contradiction is resolved when the

finite compressibility of the fluid is taken into account. In a compressible fluid,

information about the particles velocity takes time to propagate through the

fluid. The effects of compressibility become significant at timescales shorter

than τc = r/c, where c is the speed of sound in the fluid [78]. In order to mea-

sure the true instantaneous velocity in liquid as predicted by the equipartition

theorem, the temporal resolution must be much shorter than τc.

In the case of the microspheres in Ch. 8, for the barium titanate micro-

sphere in acetone (c=1180 m/s), τc ≈2 ns, while for the silica microsphere in

water (c=1480 m/s), τc ≈1 ns. In both cases these timescales are far shorter

than those at which we observe Brownian motion. The effects of compress-

ibility are well separated from the regime of coupled hydrodynamic Brownian

motion. If compressibility were taken into account, theory predicts that veloc-

ity autocorrelation begins to rise around τc and plateaus at the mean square

velocity of the bare mass, corresponding to decoupling between the motion of

the bead from the fluid envelope around it.

The bead in air has slight anticorrelation due to a small amount of

resonance allowed by the lower damping. The Cv predicted by EOU approach

a plateau much more rapidly than the hydrodynamic theory.
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Figure 6.5: Comparison of velocity PSDs predicted by EOU in air (dash-dot
line), EOU in water(dotted line) and the full hydrodynamic theory in water
(solid line). Velocity correlation is proportional to the second derivative of the
MSD, but there is much more variation between the prediction for the velocity
autocorrelation of the three systems compared to that of the MSD (the linear
scale on the vertical axis helps accentuate the difference). The beads in water
have a smaller equilibrium velocity than the bead in air due to the effective
mass. The EOU Cv have a much flatter plateau region than the hydrodynamic
prediction.
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6.2.5 Implications for velocity measurement

The cumulative velocity PSDs are shown in Fig. 6.6, along with CSvn ,

the variance of noise in the measured velocity. Qualitatively, the CSv curves

are closely related to the velocity autocorrelation curves in Fig. 6.5, except

shown in the frequency domain rather than the time domain. However, from

the CSv curves it is possible to directly estimate the effect of low pass filtering

on the signal and the noise, which is not as obvious from the velocity auto-

correlation curves, in which there is no straightforward way to even quantify

noise. The cumulative velocity PSD of the noise has ω3 dependence, acting as

an almost vertical wall concealing the signal above a certain frequency. The

three cumulative velocity spectra approach their asymptotic value (〈v2〉) at

very different rates.

To better compare the effect of measurement bandwidth on signal and

noise, Fig. 6.7, shows the quantity δ−2 ≡ 1 − CSv/〈v2〉, on a log-log scale. δ

can be loosely identified as the signal-to-noise ratio for instantaneous velocity

measurement, caused either by additive noise or by distortion from low-pass

filtering.

The contribution from the noise is δ−2
noise = Sxnω

3
b/(6π〈v2〉). The full

expressions for CSv for Brownian motion are rather complicated but they

obey simple power laws at high frequency: δ−2
EOU(ωb) = (2πωbτp)

−1 for the

EOU theory and δ2
hydro(ωb) = (8τvωb/π)−1/2. The difference in the power laws

comes from the
√
ω in the numerator of the hydrodynamic PSD.
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Figure 6.6: Comparison of cumulative velocity PSD
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Figure 6.7: Power law dependence of 1-CSv and the contribution of noise.
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The contribution from noise increases with increasing bandwidth, while

the contribution from the filter decreases with increasing bandwidth. One pos-

sible choice for a tradeoff is to choose ωb such that the effects of noise and of low

pass filtering are of equal magnitude, ie. CSvn(ωb) = 〈v2〉−CSv(ωb) = 〈v2〉/δ2.

In Fig. 6.7, this corresponds to the point where the black curve intersects with

the red curve. The frequency at which they intersect, ωm, determines the

necessary measurement bandwidth, while the vertical coordinate, δ2
m gives a

measure of the signal-to-noise that will be achieved. EOU theory predicts:

ωm =

(
1

2πτp

6π

Sxn

kBT

mp

)1/4

(6.9)

and

δ2
m = (2πτp)

3/4

(
6π

Sxn

kBT

mp

)1/4

(6.10)

While hydrodynamic theory predicts:

ωm =

(
π

8τv

)1/7(
6π

Sxn

kBT

m∗

)2/7

(6.11)

and

δ2
m =

(
8τv
π

)3/7(
6π

Sxn

kBT

m∗

)1/7

(6.12)

Figure 6.7 most clearly presents the difficulty of measuring velocity in liquid

compared to measurement in air. For the position sensitivity of 20 fm/
√

Hz

measurement in air has δ > 10; the variance of the noise is less than 1/100

that of the velocity, while the variance in the measured velocity is at least

99% that of the instantaneous velocity, the average relative uncertainty for

measured velocity is 1/10.
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With the same position sensitivity, velocity measurement in water has

δ ∼ 1.7. The variance of the noise is 1/3 that of the instantaneous velocity,

and the measured velocity is only 66% of the instantaneous. Not only is

water more difficult to begin with, but marginal improvements are also more

difficult. In air, doubling SNR requires twice as high a bandwidth and 24 better

sensitivity. In water, doubling SNR requires a four-fold increase in bandwidth

and 27 times better sensitivity. Velocity measurement in water with δ = 10

requires a reduction of Sx by 12 orders of magnitude, or a position sensitivity

of 20 am/
√

Hz.

6.3 Improving SNR of velocity measurement in liquid

While it may not be possible to measure the velocity for a silica bead

in water, it is possible to choose different materials for the bead and the liquid

which give better velocity SNR for a given position noise. We can rewrite

Eq. 6.12 in terms of material properties:

δ2
m ∝

(
kBT

Sxn

r3(ρp + ρf/2)5

η3ρ3
f

)1/7

(6.13)

ωm ∝
(
kBT

Sxn

)2/7(
ηρf

r8(ρp + ρf/2)5

)1/7

(6.14)

The strongest dependence is on bead density, (which should be maxi-

mized). The fluid density and fluid viscosity should be minimized. It appears

that increasing bead diameter also increases δ, but complete description re-

quires the consideration of the dependence of optical gain on bead diameter,
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which is discussed in Chapter 2.

The ideal bead material for measuring the velocity of Brownian motion

is barium titanate glass. It is available in highly spherical microspheres, which

have been previously used for whispering gallery mode resonators [80] and

superresolution [81], both of which take advantage of its exceptionally high

index of refraction (2.1). The high index of refraction is expected to offer

improvement in the optical gain for position detection, lowering Sx. Of even

more benefit to velocity measurement is its high density 4.2 g/cm3, more than

double that of silica.

Acetone has similar optical properties to water, but has lower density

(0.785 g/cm3 vs. 0.998 g/cm3) and lower viscosity (0.322 mPa·s vs. 1002

mPa·s). The combined effect of barium titanate and acetone, compared to

silica and water, assuming the same bead size and position sensitivity, gives a

factor of improvement for δ2 of 2.8. It also results in a slight decrease in the

necessary detection bandwidth, by a factor of 1.7.

In the air experiment, the detection noise was not optimized. If care is

taken to reduce external sources of noise, detection is limited by photon shot

noise, which depends on the detected laser power P . The effective position

noise scales as Sxn ∝ P−1. We developed a detection system in which the

detected power was increased by a factor of 20 compared to the air experiment,

which wasn’t even shot noise limited to begin with. This gives another factor

of 1.5 increase in δ2.
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Due to the complex dependence of optical gain on bead diameter, the

location of the bead within the trap, and the NA of the trapping beam, it is dif-

ficult to estimate the dependence of δ on particle diameter. This optimization

was performed by trial-and-error.

With the combined improvements of optimized bead and fluid mate-

rials, high power detection system, and particle diameter, we expected that,

while it might not be possible to measure velocity with as high SNR as was

done in air, we could expect measurement with δ2 of at least 12.
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Chapter 7

Trapping and detection of microspheres in

water and acetone

As discussed in the previous chapter, the key ingredients of high SNR

measurement of Brownian velocity in liquid are high optical gain, high de-

tection power, low density fluid, and high density microspheres. The setup

of our experiment to measure velocity was designed with these elements in

mind. The trap geometry and flow cell system were designed to allow trap-

ping of beads with high terminal velocity, and to be compatible with reactive,

low viscosity fluids such as acetone. Water-immersion lenses were used for

diffraction-limited focusing and detection. The biggest single contribution to

successful velocity measurement was the use of barium titanate glass micro-

spheres, which have exceptionally high density and very high refractive index,

acting to improve both the signal and the detection.

A simplified schematic of the trapping and detection configuration is

shown in Fig. 7.1. A counter-propagating dual-beam trap configuration, the

same as that used in the air experiment, was also chosen for trapping and

measuring particles in liquid. The primary reason was that the high refractive

index barium titanate microspheres necessary for velocity measurement results
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Figure 7.1: A simplified schematic of the optical trap and position detection
system. A microsphere is trapped by counter-propagating 1064 nm (shown in
red) and 532 nm (shown in green) laser beams, focused by identical microscope
objectives (OBJ). The 1064 nm laser is then used to detect the horizontal
motion of the bead. It is split between a low power DC balanced photodetector
(DC BPD) and a high power, AC coupled balanced photodetector (AC BPD)
(DM: dichroic mirror).
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in a strong scattering force, rendering single-beam trapping unstable. Again,

like in the air experiment, the optical trap used for trapping in water was

designed to have a horizontal optical axis, such that the flow cell was mounted

vertically. This provided several advantages over the more common design of a

horizontal sample chamber and vertical optical axis. It reduced the likelihood

of dirt collecting on the inside surfaces of the flow cell which could distort the

trapping and detection beams. Also, barium titanate microspheres in acetone

have such a high terminal velocity (∼10 µm/s), that in a horizontal chamber,

they would collect on the bottom surface within seconds, far from the trapping

plane. This configuration also allowed for the laser beams to remain in a single

horizontal plane close to the optical table, which made adjustment of optics

easier. Reduction of the vibration amplitude of optical components was also

easier because all of the optical elements could be mounted close to the surface

of the optical table. The experiment was conducted on the same air-floated

optical table as that used for trapping in air.

An additional advantage of the dual beam configuration was that it

allowed for more flexibility in optimizing the optical gain, whose magnitude

has nontrivial dependence on the relative position between the trapped bead

and the detection laser as well as the numerical aperture of the detection

laser. It was possible to adjust the relative position between the bead by

either adjusting the position of the trapping lenses or by changing the power

and geometry of the trapping beams. The presence of the counter-propagating

beam made it possible to use a low NA detection beam, and to move the bead
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relative to the detection beam without affecting the detection optics.

7.1 Flow-cell trapping chamber

Preliminary experiments were performed using ‘disposable’ sample

chambers, which were filled with bead solution and then sealed. Such a design

posed several problems. In a horizontal sealed chamber, once the particles set-

tle on the bottom of the chamber, trapping requires translation of the chamber

so that the trap is near the wall of the chamber. This was not possible with

the narrow clearance of our objectives, which have a short working distance.

The situation was improved by constructing a microfluidic flow cell,

closely based on a design from the Minitweezers project [82]. An illustration of

the chamber, mounting and plumbing connections is shown in Fig. 7.2. Beads

and fluid were introduced into the chamber via a syringe, thus the chamber

could be reused, and the flow through the chamber could be controlled to

optimize conditions for trapping. Although such chambers were more difficult

to construct than those the more common sealed design, the flow cells did

not need to be replaced as often, since new particles can be re-introduced

whenever trapping is desired. Once a particle is trapped, pure solution can

be gently flowed through the cell to clear out any stray microspheres or other

contaminants liable to enter the trap over time and affect the Brownian motion

signal.

The maximum allowable (outer) thickness of the complete flow cell was

limited by the combined working distance of the two objectives, which was
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Figure 7.2: Schematic of the flow cell shape with cliff, mounting geometry,and
fluid connections.
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roughly 300 µm. If the inner chamber of flow cell is too narrow, boundary

effects become non-negligible: if the trapped bead is too close to the chamber

wall, the presence of the boundary affects statistics of Brownian motion. A

rule of thumb is that the bead-wall distance should be 10 times the bead

diameter [83].

The flow cell was constructed using a layer of Nescofilm (Bando Chem-

ical Ind. LTD., thickness ∼80 µm) sandwiched between two 24 mm × 60 mm

No. 0 microscope coverslips (Gold Seal model: 24X60-0-002) with thickness

∼100 µm. Nescofilm was used rather than the Parafilm used in reference [82]

due to its resistance to acetone and slightly smaller thickness (80 µm)1.

The input and output ports to the flow cell were made by drilling ∼1

mm diameter holes were drilled into each side of one of the coverslips (prior

to assembly). The holes were made by drilling into a stack of coverslips using

a diamond drill bit at very high speed on a CNC milling machine. A scalpel

was used to cut the shape of the flow cell into the Nescofilm. The inside of

the Nescofilm formed the inner walls of the flow cell, creating a sealed volume

between the two drilled holes. The typical shape was similar to that in Fig 7.2.

1 mm wide entry and exit channels, aligned with the holes in the coverslip,

connected the inputs of the flow cell to a larger, ∼3 mm × 3 mm trapping

chamber at its center.

The flow cell was assembled by sandwiching the Nescofilm between two

1As of July 2014 Nescofilm is no longer available from distributors in the United States.
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microscope coverslips. One with holes and one without. A pressure-resistant

seal between the glass and Nescofilm was made by heating the sandwich under

pressure. The sandwich was placed on a lab hotplate, at around 155 ◦ C for

about 4-5 minutes, with an aluminium weight on top of it to apply pressure.

The sandwich was mounted to an aluminium bracket using acrylic plates. The

aluminium bracket had threaded holes aligned with the drilled holes in the

coverslip. Silicone tubing was inserted inside a drilled nylon setscrew. When

the set screw was screwed into the aluminium bracket, the tubing was pressed

onto the coverslip and a pressure seal formed around the drilled hole. PTFE

tubing was used to connect the needle of a syringe to the nylon tubing. The

outside of the PTFE tubing was pressed into the inside of the silicone tubing

and held by friction.

The flow cell and bracket were suspended between the two objectives by

a 3-axis translation stage. The mounting geometry was such that the bracket

could be removed and installed without the need to remove the closely-spaced

trapping objectives. The translation stage provided adjustment of the location

of the optical trap within the trapping chamber.

Microspheres are shipped from the supplier in the form of a dry powder.

Trapping in liquid requires a solution of microspheres with minimal concen-

tration. The solution was prepared by adding a small quantity of the powder

to a vial of high purity water or acetone. Uniform mixing was achieved by

immersing the vial in the bath of an ultrasonic cleaner. Ultrasonic agitation

was sufficiently strong to separate and disperse the microspheres. The solution
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was then transferred from the vial to a 1 cc syringe. The syringe was mounted

in a syringe pump suspended above the flow cell. The syringe pump allowed

introduction of the solution into the microchamber at a precisely controlled

flow rate. Hand-pumping of the syringe introduced the risk of breaking the

seal of the flow cell by applying too much pressure. The exit port of the flow

cell was connected to a waste collection vial mounted on the optical table

below the flow cell.

Barium titanate microspheres were more difficult to trap than silica

particles. Particularly in acetone, in which they have a very high terminal

velocity, the microspheres sank to the bottom of the flow cell very rapidly.

The Nescofilm edge of the bottom of the flow cell distorted one or both of the

trapping beams enough that it was not possible to pick up a sunken bead.

The only way to trap barium titanate beads in acetone was to ‘catch’ them

while they were sinking to the bottom. For this reason the Nescofilm chamber

was designed with the shape shown in Fig. 7.2: the input channel connected

to the trapping chamber at the top, and the output channel connected at the

bottom. By activating the syringe pump, microspheres would skirt along the

bottom of the input channel until they reached the trapping chamber, where

they would fall from the ‘cliff’ below the edge of the input channel. The cliff

was under-cut at an angle so that falling beads fell away from the chamber

wall, and could be ‘caught’ in a region with no Nescofilm in the way. Once a

particle was trapped, the flow cell was translated to move the trap away from

the cliff area to reduce the chance that stray particles would interfere with the
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trap.

7.2 Trap lenses

Although they are not explicitly designed to focus lasers, microscope ob-

jectives are often chosen for optical trapping, because the optics of diffraction-

limited imaging is closely related to that of diffraction-limited focusing of a

laser beam. However microscope objectives also include features to correct

for chromatic aberration, coma and flat imaging plane, which do not improve

diffraction-limited laser focusing along the optical axis but increase the com-

plexity of the lens and number of optical elements, usually at the cost of

reduced transmission. The transmission at 1064 nm can be particularly low

since imaging lenses are typically designed for the visible spectrum. On the

other hand, the fundamental design criteria for high-end microscope objectives

overlap with the requirements of a lens used for optical trapping: high NA and

diffraction-limited imaging.

The most common microscope objective lenses that are designed for

high NA, diffraction-limited imaging, are based on what is known as an ‘oil

immersion’ design. Optimal imaging for such a lens occurs when there is no

variation in refractive index between the image plane and the sample. This is

achieved by imaging the part of the sample in contact with the plane of the

coverslip. Refractive-index-matching oil is applied in the gap between the last

lens of the objective and the coverslip. Using such a lens to image at some

depth beyond the coverslip rapidly degrades its performance due to aberration
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introduced by the addition of the coverslip - sample medium (usually water)

interface. Likewise, using an oil immersion lens to focus a laser at some depth

beyond the coverslip will result in a non-Gaussian beam focus, whose prop-

erties depend on the distance between the focus and the coverslip, even for

distances as short as tens of µm.

Water immersion microscope objectives are designed for imaging in

water some depth below the cover slip. Rather than matching the coverslip

index, water (or index matching oil with the same refractive index as water) is

used between the objective and the coverslip to match the index of the medium.

This reduction allows for a design optimized for imaging hundreds of microns

beyond the coverslip into water. Water immersion lenses are superior for

optical trapping and detection in water because they provide a near-diffraction-

limited focusing at distances beyond the cover slip where trapped microspheres

are away from the influence of boundary effects imposed by the coverslip.

However, there is less demand for water immersion objectives, so they are

mainly available as very high-end objectives, with high cost and with many

features that are unnecessary for optical trapping.

Our trap was formed using two identical finite-conjugate water-

immersion microscope objective lenses (LOMO, model: OM-25)23, with nom-

inal NA of 1.23, focal length 2.5 mm, and working distance of 140 µm. The

2The LOMO objectives are in fact based on an late 19th century Zeiss design ‘acquired’
by LOMO after World War II [84].

3As of July 2014 the lenses are no longer available from vendors in the USA
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objectives feature a coverslip-thickness-correction adjustment ring, which was

set to its lowest setting, 0.1 mm, on both objectives. The relatively simple

design, by modern standards, results in a lens that costs an order of magnitude

lower than other water immersion lenses with comparable NA.

The transmission 1046 nm was estimated by measuring the transmission

through the two lenses with a flowcell in between. Water-index-matching oil

was used between the flow cell and each lens, and the flow cell was filled with

water. The resulting transmission was approximately 35%, corresponding to

transmission of about 60% for each lens. Our laser had a maximum power of

1.2W, but after losses from fiber coupling, the objectives, and scattering from

a trapped bead, the maximum power available to the high power detector was

slightly more than 100mW, only a factor of two below the detector’s damage

threshold.

Most modern microscope objectives are infinity conjugate; they are

optimized for the specimen to be at the lens’ focal plane, its image is formed

at infinity. However, the LOMO objectives are finite conjugate: for optimal

imaging, the specimen plane is slightly further from the lens than the focal

point, and the image is formed 160 mm from the mounting threads of the

objective. When used for optical trapping, a diffraction-limited spot is formed

when the incoming beam is diverging from a point 160 mm away from the

lens.
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7.3 Lasers

In the air experiment, the counter-propagating beams originated from

the same laser. Cross-coupling and interference were minimized by the use of

orthogonally polarized and frequency shifted trapping beams. For trapping

in water, it proved more convenient to use two separate lasers, one at 1064

nm, used for both trapping and detection, and one at 532 nm used for only

trapping. A detailed schematic of the optical setup is shown in Fig. 7.3.

It was important that both lasers had low intensity fluctuations so as

not to perturb the trapped bead. Most critical was intensity noise in the

detection laser: although split beam detection suppresses intensity noise, it

does not eliminate it completely.

The 1064 nm trapping and detection beam was produced by an

internally-stabilized non-planar ring oscillator (NPRO) laser (Innolight

GmbH4, model: Mephisto), with a maximum output power of 1.2 W, a spectral

line-width of 1 KHz over 100 ms, and with internal noise-eater enabled, <140

dB/Hz relative intensity noise spectral density. The 532 nm trapping beam

was produced by a diode-pumped solid state laser (Coherent, model: Verdi

V-10), the same laser used to illuminate trapped beads in the air experiment.

Both lasers were fiber coupled in order to reduce pointing noise. For

the 532 laser, an analog PID circuit was used to set the power and suppress

intensity noise; the output of the PID controlled an AOM, located upstream

4Since acquired by Coherent Inc.
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Figure 7.3: Schematic of optical setup for trapping and detection in liquids.
The red line represents the optical path of the 1064 nm trapping and detection
beam. The green line represents the path of the 532 nm trapping beam. The
black line represents the optical path of the illumination beam.

120



of the fiber, the set point for the PID was generated by an ADC board con-

trolled by the LabVIEW control program. The error signal was measured by

a photodiode collecting light leaked through mirror M4 downstream of the

fiber output. AOMs are known to degrade the beam profile and in some cases

impart pointing noise to the transmitted beam [85]. For this reason the AOM

was placed up-stream of the single mode fiber, through which pointing noise

is converted into intensity fluctuations, which are then suppressed by the PID

loop.

Initially, the power of the 1064 nm laser was controlled in a similar

way, except an EOM (electro-optic modulator) was used rather than an AOM.

However, electronic noise from the EOM driver introduced more noise to the

laser intensity than there was in the absence of power stabilization. The control

method was then modified: the power was controlled by a waveplate and

polarizing beam-splitter mounted before the fiber input. The waveplate was

mounted on a motorized rotary mount which was controlled by the LabVIEW

program to set the desired laser power. The EOM was re-purposed to provide a

high-frequency intensity modulation which was used for cut mirror alignment,

described below.

7.4 Imaging

Optical imaging of the trapping region provided valuable visual access

to the trapping region. The CCD image of the trap was used to ‘catch’ beads

as they fell near the trap. It also provided information about the size and
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type of trapped bead, the potential presence of contaminants or stray beads

approaching the trap, or changes in the position of the trapped particles. It

was also used in the alignment process of the two trapping beams.

The optimal configuration of the illumination optics for bright-field

imaging (known as Köhler illumination) is for the lamp filament to be imaged

onto the back focal plane of the condenser lens. In this case, in the specimen

plane, the rays from any point of the filament are parallel. In the dual-beam

configuration several constraints were imposed on the illumination optics. The

objective OBJ2 had to be used as the condenser, rather than a specialized con-

denser lens. Also, mirrors DM2 and M5, were in the path of the illumination

light, blocking a large portion of its spectrum and also imposing a minimum

distance between the remaining illumination optics and OBJ2.

The light source used for optical imaging was was a 100 mW red LED

with a 15 degree angle of divergence. A red LED was used for the light source

rather than a white one because much of the spectrum of the light emitted by

a white LED would be blocked by the mirrors DM2 and M5. A short focal

length lens (25 mm) near the LED was used to focus the LED light through a

pinhole. The pinhole was then imaged onto the back focal plane of the second

objective using a long focal length lens to achieve Köhler illumination.

The image-containing light emerged from OBJ1, passed through two

more mirrors, DM1 and M6. Since OBJ1 was a finite conjugate lens, an image

of the trapping plane was produced 160 mm away. This virtual image plane

was imaged onto a CCD using a single achromatic lens, M6. Moving the
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CCD moved closer and further from the objective allowed for adjustment of

location of the image plane. This was required because the trap minimum was

not necessarily at the focal plane of the objective.

7.5 Trapping optics

Both of the trapping lasers emerged from their fiber output couplers as

collimated beams, both with 1/e2 waist of 1.5 mm. Since the objectives were

finite conjugate, a lens was used to focus each beam 160 mm away from the

objective: L1 for the 1064 nm beam and L3 for the 532 nm beam. These shall

be referred to as the conjugate lenses. The 1064 nm beam was focused by

L1, then reflected by DM1 and focused by OBJ1. It was then recollimated by

OBJ2, and reflected by DM1 to be used for detection. The 532 nm beam was

focused by L3, reflected by M5, transmitted through DM2, focused by OBJ2,

recollimated by OBJ1, transmitted through DM1 and reflected by M6 into a

beam dump. DM1 and DM2 are dichroic mirrors with high transmission for

532 nm and high reflectivity for 1064 nm.

The conjugate lenses were useful because they allowed for fine adjust-

ment of the trapping beams. The conjugate lenses were mounted on x-y ad-

justable lens mounts as well as translation stages that allowed adjustment in

the axial position of the lenses. Translating the lenses’ x-y position resulted

in adjustment of the optical trap in the trapping plane without affecting the

trapping beams’ angle of incidence. Translation of the lenses along the op-

tical axis enabled adjustment of the axial position of the optical traps. The
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conjugate lenses also made it convenient to adjust the beam size entering the

objectives, and thus NA of the trapping beams. This was done by removing

L1 (f=200 mm) and installing L1’ (f=50 mm), 150mm away from the location

of L1. This would ensure that the beam focus remained at the conjugate point

of OBJ1, but the NA reduced by a factor of 4.

7.6 Trap alignment procedure

As noted in Chapter 4, counter-propagating dual-beam optical traps

traps are particularly sensitive to misalignment, which can create artificial

heating through non-conservative trajectories. Care was taken in setting up

the traps to ensure misalignment was minimized.

First, the conjugate lens L1 was removed and mirrors M1 and DM1

were used to align the 1064 nm beam such that it was perpendicular to and

centered on the fixed objective OBJ1. This was determined by observing the

back-reflections from the multiple internal surfaces OBJ1, transmitted through

DM1 which were visible in the imaging CCD camera. The two mirrors were

used to adjust the beam angle and position until the back reflections were

symmetric and concentric.

Both objectives were temporarily removed, and the path of the colli-

mated beam marked with two irises to define the optical axis on the detection

side of the trap. Both objectives were then installed, along with the flow cell.

L1 was replaced, and its position was adjusted until the back reflections on

the CCD were again symmetric and concentric. OBJ2 was aligned so that the
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transmitted beam was collimated and centered on both irises.

Next, conjugate lens L3 was removed, and M4 and M5 were used to

align the 532 nm trapping beam, using two reference points: the leakage

through M6 of the light transmitted through the optical trap, and the back

reflections from OBJ2 visible on the iris next to the output coupler of the

green beam. L3 was replaced and aligned to center both reference points.

Rough alignment of the axial position of OBJ2 was performed such that

the beam emerging from it was focused at a distance of 160 mm. The stability

and behavior of the trap were quite sensitive to the axial position of OBJ2

since this directly affected the separation of the two trap minima. Further fine

tuning was performed by optimizing the system with a particle present in the

trap.

The index of refraction of silica is sufficiently low that a 3 µm diameter

silica microsphere can be trapped using either one of the two trapping beams.

The 1064 nm beam is held fixed as much as possible, since adjustment of

this beam is coupled to adjustment of the alignment of the detection system.

Thus most of the fine tuning is performed on the 532 nm trapping beam. The

relative transverse alignment of the two beams can be observed by blocking

and unblocking the 532 nm laser when a bead is in the trap. If the green beam

was misaligned, the position of the bead would shift. The green beam was

adjusted until it no longer caused a shift in the position of the trapped bead.
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7.7 Detection System

A second conjugate lens, L2, was used to recollimate the 1064 nm

detection beam. This was followed by a half waveplate and PBS, which were

used to adjust the power to the detector. A glass plate (BS1) was used to

reflect a small portion of the beam for monitoring - which was itself split

with a 50/50 beam splitter between a photodiode and CCD camera. The

photodiode was used to monitor the power to the detector, while the CCD

camera was used to monitor the beam profile. The remaining light was split

using BS2, between two cut-mirror detection systems. Most of the power

(95%) went to a home built, high power, AC-coupled detector. 5% was sent

to a commercial low power, DC-coupled detector (Thorlabs model:PDB110C).

The cut mirrors (CM1 and CM2) and CCD camera were positioned such that

all three were the same optical path length away from BS1, ensuring that the

beam profile imaged by the CCD camera corresponded to the beam profile at

both cut mirrors. The beam profile contained information about the location

(or absence) of the bead within the trapping beam and changes or instabilities

in the bead’s position. It was also used to monitor the dependence of the

optical gain on the beam profile at the cut mirror.

7.7.1 High power balanced detector

In order to reduce the contribution of photon shot noise to optical po-

sition measurement, we built a custom detector with much higher operating

power (up to 100 mW per photodiode) than commercially available detec-
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tors (the Thorlabs balanced detectors we used had a damage threshold of 5

mW per photodiode). There are three main differences between the design

of our custom detector and that of commercially available detectors: lower

transimpedance gain, larger photodiodes with higher damage threshold and

the addition of AC coupling (high pass filter) before the transimpedance am-

plifier.

The main limitation to the maximum operating power is thermal dam-

age to the photodiodes. The damage threshold can be increased by using larger

area photodiodes. However, though increasing photodiode area increases its

capacitance Cp, and the bandwidth of a transimpedance amplifier goes as√
1/Cp. The photodiodes used in our detector (Excelitas model: C30641)

have a 1 mm diameter and capacitance of <50 pF when reverse biased at >5

V, a particularly low capacitance for such a high area. Similar photodiodes are

used in photodetectors used for interferometric gravitational wave detection,

which too require high detection power to reduce photon shot noise limit (al-

though usually in circuits with much lower bandwidth) [86–88]. Some of the

reduction in bandwidth can be compensated for by reducing the gain, which

is permitted since, with the increase in laser power, the photocurrent will have

much higher amplitude. While the (transimpedance) gain of the detector used

in the air experiment was 1.8× 105 V/A, the gain of our custom detector was

below 1 KV/A.

Another limitation to the maximum input power of the detector is

the resulting peak-to-peak voltage swing, which must be within the limits of
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Figure 7.4: Schematic of the circuit for the high power balanced detector, used
in SPICE simulations. The photodiode is modeled as a current source (IG1)
with resistance (R2) and capacitance (C2) in parallel. Rather than the typical
feedback loop of a resistor and capacitor in parallel, the feedback loop in this
circuit is based on a Sallen-Key topology [89] which results in a second-order
high-pass filter, whose response is determined by R4, C6, R8 and C3.

both the op-amp and the digitizer. A large contribution to the peak-to-peak

amplitude in our detected signal was due to low frequency noise, particularly

noise centered at harmonics of 60 Hz. These peaks appeared due to not only

electronic interference but also acoustic vibration (a 120 Hz hum can be heard

by putting ones ear against the wall of the lab). We circumvented this problem

by adding a high pass filter before the transimpedance amplifier. A schematic

of the detector is shown in figure 7.4. The high-pass filter had −3 dB frequency

of ∼600Hz.

Although high-pass filtering did not significantly affect velocity mea-

surement, it increased the complexity of the fitting. Fitting was usually per-

formed by a 3-parameter fit of either Sx or the MSD to Eq. 1.48 or 1.53.

High pass filtering significantly modified Sx at low frequencies and the MSD
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Figure 7.5: Photos of high power balanced detector. The circuit was built
mainly using 0603 size surface-mount components to minimize the effects of
parasitic capacitance, which could act to reduce the detector’s bandwidth.

at long time scales, and directly fitting filtered data to theoretical equations

would introduce systematic error into the fit parameters, particularly the trap

strength, which only affects the dynamics at the low frequencies which are

distorted by the AC coupling. However, as long as the effect of the high-pass

filter is known precisely, it can be incorporated into the fit; the data can be

deconvolved to infer the PSD or autocorrelation of the unfiltered signal.

For this reason we carefully measured the transfer function of the detec-

tor and incorporated it into fitting. The measured transfer function is shown

in Fig. 7.6. The fall-off at high frequencies is not only due to the detector

bandwidth but also the bandwidth of the digitizer.

7.8 Data acquisition system

The outputs of the AC and DC detectors were digitized using a high

bandwidth, ultra low noise ADC board (GaGe model: Razor 1622 Express
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Figure 7.6: Measured AC detector transfer function and its fit. The green
dots show the amplitude of the response function recorded through a 125
MHz bandwidth digitizer. The black line shows a fit with and 9 poles and 3
zeros. The resonant peak near 30 MHz is due to the digitizer

CompuScope). The board had two channels, 16 bits of resolution, a maximum

sampling rate of 200 Ms/s (100 times faster than that used for the air exper-

iment), and a maximum sample length of 64 million consecutive samples (or

128 million in single-channel operation).

Acquisition was triggered from the LabVIEW control program, and

then the acquired data was sent to the control computer. 128 million samples

at 16 bit resolution results in very large amounts of data (0.25 Gb, more after

conversion into voltage from the raw binary format). So much so that it was

necessary to specially program the LabVIEW code to transfer the data one

‘page’ at a time and then reconstruct it into a single file.

Along with the split-beam detector data, with each acquisition the

control program also saved images from the optical imaging and beam profile
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monitoring CCDs, the powers of the trapping beams, and the power of the

beam entering the detectors.

7.9 Cut mirror alignment

It is important that the cut mirror splits the beam so that the photo-

currents of each photodiode of the balanced detector cancel. On the DC

coupled detector this can be done by zeroing the output of the detector. For

the AC coupled detector, the output is always zeroed. The cut mirror for the

AC detector is aligned by adding a 1 MHz amplitude modulation to the 1064

nm laser by applying a small oscillating signal from a function generator to

the EOM. When the cut mirror is perfectly aligned, this intensity modulation

is absent from the difference signal. If it is misaligned, the signal is visible,

and its phase depends on the direction in which the mirror is misaligned.

A feature was written to the LabVIEW control program to lock-in

on the modulated signal and read out its amplitude and phase (the phase

was known because the function generator and digitizer were synchronized to

the same clock). This allowed for precise alignment of the cut mirror. The

amplitude modulation was switched off during acquisition of Brownian motion

data.
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7.10 Optimal filling of objectives

The size of the beam entering the objective, often expressed as the

objective filling ratio, is a critical parameter which influences both the trapping

strength and the detection efficiency [90]. When trapping particles smaller

than the beam waist (< 1 µm diameter) optimal trapping and detection occurs

for the smallest possible beam waist, and thus the beam should be as large

as possible until clipping inside the objective introduces deviations from a

Gaussian profile at the focus.

For larger beads, it is less obvious how to determine filling ratio to

optimize detection sensitivity. We determined the optimum empirically by

trapping with different configurations and determining the resulting optical

gain.
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Chapter 8

Measurements of Brownian motion in water

and acetone

Unless otherwise stated, all of the data presented in this section come

from continuous recordings of trajectories of the thermal motion of a ∼ 3 µm

diameter silica microsphere in water, and a ∼ 4 µm diameter barium titanate

microsphere in acetone. For both microspheres, the results were calculated

from one continuous acquisition of duration ∼ 0.35 s, consisting of 64 million

points recorded at the digitizer’s maximum sampling rate of 200 Ms/s. The

recording of the barium titanate microsphere in acetone was acquired with

the digitizer’s 20 MHz anti-aliasing filter enabled. The recording of the silica

microsphere was made with the filter disabled.

8.1 Mean square displacement

For both recordings, the bead diameter, trap strength and calibration

constant were determined by fitting the calculated MSDs to the hydrodynamic

prediction of Eq. 1.53. The calculated and theoretical MSDs are shown in

Fig. 8.2. For the silica microsphere in water, fitting gives a diameter of d =

2.86±0.03 µm and trap strength ofK = 1.6±0.3 N/m. For the barium titanate

133



-4

4

nSig al
Noise

-0.3

0.3

x(t)
nm

v(t)
mm/s

20 µs

Figure 8.1: Top: A 100 µs long sample of the position fluctuations of a trapped
3.7 µm diameter barium titanate microsphere recorded by the AC detector
(blue line), as well as the signal recorded with the same laser power incident on
the detector but no microsphere in the trap (red line). Bottom: corresponding
velocity calculated from the position measurement in the top trace, using an
averaging time of 0.16 µs.

microsphere in acetone, fitting gives a diameter of d = 3.72±0.06 µm, and trap

strength of K = 3.2±0.2 N/m. For both microspheres, the uncertainty of each

fit parameter was determined from the variance in the results of independent

MSD fits for 10 sub-trajectories. The red dash-dot lines in Fig. 8.2 represent

the MSD of a bead moving at a constant velocity of v∗th ≡
√
kBT/m∗. The

equipartition predictions of v∗th for the silica and barium titanate particles are

0.35 mm/s and 0.18 mm/s, respectively. For short times, the measured MSDs

overlap with the red dash-dot lines of constant velocity, a signature that the

dynamics has been observed well into the ballistic regime. The MSD of the

silica particle deviates away from ballistic behavior at much shorter times than

that of the barium titanate microsphere. For the silica microsphere in water,

τf = 2.0 µs, while for the barium titanate microsphere in water, τf = 8.5. For
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Figure 8.2: Double logarithmic plot of the experimental and theoretical MSD
for two different bead-fluid combinations: an optically trapped barium titanate
glass (BTG) bead (3.7 µm diameter) in acetone (blue circles; τp = 11.0 µs,
τf = 8.5 µs, τv = 11.2 µs), and a silica bead (2.8 µm in diameter) in water
(green squares; τp = 1.2 µs, τf = 2.01 µs, τv = 0.57 µs). The red dashed lines
indicate the MSD of a particle moving at constant velocity v∗th. The solid black
lines correspond to the full hydrodynamic theory of equation 1.53 [91].
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both microspheres, the harmonic potential caused the MSD to plateau around

τk = γs/K , before the purely diffusive regime is reached.

8.2 Velocity autocorrelation

The transition from ballistic motion is also evident in the calculated

Cv curves, shown normalized by v∗2th in Fig. 8.3. At short times, Cv decays,

to first order, as 1 −
√
t/τv (Eq. 1.54). The approximation is shown by the

dashed red lines in Fig. 8.3. This faster-than-exponential decay results from

a two-fold action of the Basset force, which increases both the strength of

the damping force and the magnitude of thermal force fluctuations at short

time scales. The more familiar long-time tails [15, 20, 44, 92] appear at times

longer than τf . The barium titanate microsphere in acetone has a much larger

τv (11 µs) than that of the silica microsphere in water (0.57 µs), due to the

comparatively larger ρp of barium titanate and smaller ρf and η of acetone.

The larger value of τv facilitates instantaneous velocity measurement.

8.3 Position and velocity PSDs

Figure 8.4 shows the position power spectral densities for the two micro-

spheres, as well as the corresponding noise PSDs, calculated from acquisitions

where no bead is in the trap, but the laser power incident on the detector, and

thus the photon shot noise floor, matches that of the acquisition with beads

in the trap. The noise floor for the barium titanate microsphere decays at 20

MHz because the low pass anti-aliasing filter of the digitizer was enabled. En-
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Figure 8.3: Semi-logarithmic plot of the corresponding experimental and the-
oretical Cv(t) calculated from same data used for Fig. 8.2. The Cv(t) are
normalized by v∗2th . The horizontal dashed black line guides the eye to the
asymptotic value of the Cv(t) at short times. The solid blue and green lines
correspond to the predictions of EOU theory (neglecting hydrodynamic in-
teractions) of Eq. 3.15. The dashed red lines correspond to the first-order
approximation 1 −

√
t/τv (Eq. 1.54). The solid black lines correspond to the

full hydrodynamic theory [91].

abling the filter results in a small reduction in noise, by reducing the amount

of noise that gets aliased when the velocity is low-pass filtered. The noise floor

for the detection of the silica microsphere in water was 2.9 fm/
√

Hz, while the

noise floor for position detection of the barium titanate glass microsphere in

acetone is was 2.1 fm/
√

Hz.
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The broad peak centered at 1 MHz in the noise PSD for the silica

bead in water is caused by a slight misalignment in the detector’s cut mirror,

resulting in incomplete suppression of the laser intensity fluctuations.

Figure 8.5A shows the velocity PSD for the two beads (with noise

subtracted). Here the difference between the barium titanate microsphere

in acetone and the silica microsphere in water is very evident. The difference

between the two is somewhat reminiscent of the difference between the velocity

PSDs for the silica particle in air at two different pressures, of figure 5.4. The

velocity of the silica particle is spread out over a much broader frequency

range than the velocity of the barium titanate particle. Also evident is the

difference of the slope of the measured PSD to the prediction of EOU theory

(thin green and blue lines). The spectra of the two theories have the same

area, but EOU theory predicts more velocity fluctuations at low frequencies

and less at high frequencies. The basset force is responsible for this shift:

the damping and thermal force are stronger for short-time (high frequency)

velocity fluctuations due to the coupling of the bead’s motion to vorticity close

to its surface. At long times (low frequencies), the energy dissipated into the

vorticity is returned to the bead in the form of inertial force. Fluctuations at

long times are suppressed because the bead has more inertia at long times due

to the fluid entrained around it.

Figure 8.5B shows the cumulative velocity PSD (normalized by v∗2th )for

the two beads (with noise subtracted). The approach of the measured CSv,

towards unity agrees with hydrodynamic theory and is strikingly different from

138



Figure 8.4: The position power spectral density for the barium titanate mi-
crosphere in acetone (top, blue circles) and the silica microsphere in water
(bottom, green squares). The red triangles in both plots are power spectral
densities of laser noise in the balanced detector, matching the input power of
the acquisition with the bead present. In the top plot the 25 MHz anti-aliasing
filter is enabled. The dashed lines correspond to noise floor of 2.9 fm/

√
Hz in

for the silica microsphere in water and 2.1 fm/
√

Hz for the barium titanate
microsphere in acetone.
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Figure 8.5: (A) Double logarithmic plot of the velocity PSD and (B) semi-
logarithmic plot of the cumulative velocity PSD (normalized by v∗2th ) for the
same particles as in Fig 8.2. The solid blue and green lines correspond to
EOU theory and the solid black lines correspond to the full hydrodynamic
theory [91]. The dashed black line guides the eye to the asymptotic approach
towards unity.
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Figure 8.6: The instantaneous velocity distribution for the barium titanate
microsphere in acetone (blue line) and the distribution of the velocity noise
both calculated with an averaging time of 0.16 µs (red line). The black line
shows the theoretical Maxwell Boltzmann distribution for a temperature of
291 K.

the prediction of EOU theory.

8.4 Instantaneous velocity measurement

Even though the heavier barium titanate bead has lower v∗2th , its larger

τv enables measurement further into the ballistic regime than for the silica

microsphere in water. We achieve a noise floor of 2.9 fm/
√

Hz in the position

spectrum for the silica microsphere in water and 2.1 fm/
√

Hz for the barium

titanate microsphere in acetone, as reflected in Fig. 8.4. Although the noise

floor for silica is comparable to that of barium titanate, and v∗2th is four times as
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large for the silica microsphere, the error in the measurement of instantaneous

velocity for the silica microsphere is much larger than that in acetone. For

the silica microsphere, τv is a factor of ten shorter than for barium titanate;

less time is available to average the position signal before the velocity changes

significantly from its instantaneous value. However, for the barium titanate

microsphere in acetone the longer value of τv allows for a longer averaging

time. The velocity in Fig. 8.1 is calculated using an averaging time of 0.16 µs

per velocity sample. During the averaging time, the velocity autocorrelation

decays to Cv(t = 0.16 µs) = 0.89v∗2th .

Figure 8.6 shows the velocity distribution calculated from the two mil-

lion velocity measurements that result from averaging and differentiating the

recorded position signal. The resulting mean square velocity of the signal is

vrms= 0.174 mm/s, while that of velocity noise is vrms=34 µm/s, within the

experimental uncertainty of the predicted Maxwell-Boltzmann distribution,

v∗th =0.180 mm/s. The bin size in the velocity histogram was chosen to match

the root-mean-square magnitude of the noise. Our measured distribution cor-

responds to a mean kinetic energy 0.93 kBT , to which the noise contributes

0.035 kBT . This corresponds to a measurement of the instantaneous velocity

with a signal-to-noise ratio of ∼14 dB. A shorter averaging time would increase

the fraction of kinetic energy observed at the cost of a lower signal-to-noise

ratio.
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8.5 Measurements of the thermal force

From our position measurements, we can directly measure the velocity

and acceleration of the particle. The acceleration is proportional to the sum

of the thermal force, the trapping force and the damping force. By using

the parameters determined in the fit, we can determine the magnitude of the

damping and trapping forces based on the history of the particle’s velocity.

The acceleration that is unaccounted for must be due to the thermal force. In

this way we are able to infer the thermal force exerted on the microsphere by

the fluid, and use it to test predictions about its spectrum, and correlations.

While EOU theory predicts a thermal force with a white (single-sided)

power spectral density of SFth
= 4kBTγs [13], addition of the Basset term re-

sults in a colored component: SFth
= 4kBTγs(1 +

√
ωτf/2) [91]. The thermal

force spectrum can be obtained by dividing the velocity spectrum by the me-

chanical response function determined by the fitting parameters. The result is

shown in Fig. 8.7, in which thermal force spectrum is plotted on a log-log plot

with the constant term subtracted. The result is a line with slope 1/2 corre-

sponding to the
√

(ω) term in the real part of the basset force, as predicted

by the fluctuation dissipation theorem.

It is also possible to infer the thermal force fluctuations in the time

domain. Color in SFth
necessarily implies a non-delta autocorrelation func-

tion, which can be obtained by Fourier transformation of the thermal force

spectrum. The result is shown in (Fig. 8.8). Interestingly, the force is anticor-

related, displaying a −3/2 power law dependence over our measurement range.
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Figure 8.7: Double-logarithmic plot of the colored component of the thermal
force power spectral density for the same particles as in Fig 8.2. The black
solid and dashed lines correspond to the prediction of the full hydrodynamic
theory for the barium titanate and silica microspheres, respectively [91,93].
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Figure 8.8: A semi-logarithmic plot of the autocorrelation of the thermal force
for the two beads. The inset contains a double logarithmic plot of the ab-
solute value of the force autocorrelation, showing its power law dependence.
The black solid and dashed lines correspond to the prediction of the full hy-
drodynamic theory for the barium titanate and silica microspheres, respec-
tively [91,93].

Whereas Stokes damping leads to a delta-correlated thermal force consisting

of uncorrelated ‘kicks,’ hydrodynamic coupling effectively adds a negative tail

to each kick, which is represented by an additional term −γskBT
√
τf/4πt

−3/2

in the force autocorrelation.

Last but not least is the measurement of the cross-correlation between

the thermal force and the velocity CvFth
(τ) ≡ 〈v(t)Fth(t+τ)〉. It seems natural

to consider a causal relationship between the thermal force and the resulting

velocity. The velocity in the present depends on the force in the past, thus it
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Figure 8.9: Semi-logarithmic plot of the cross correlation of the thermal force
with the particle velocity. The cross correlation function is asymmetric in
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hydrodynamic theory for the barium titanate and silica microspheres, respec-
tively [91,93].
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is to be expected that CvFth
(τ < 0) is nonzero and is some kind of decaying

function of time. However, unlike autocorrelation functions, cross-correlation

functions are not necessarily time-symmetric. On first inspection one would

expect that the thermal force of the present should be independent of the

velocity in the past. After all, it is the deterministic, damping force, which

depends on past velocity; the thermal force should be random. This is not

the case. The cross correlation function is calculated by Fourier transforma-

tion of the force-velocity cross-power spectrum, and is shown in Fig. 8.9. The

horizontal axis is on a logarithmic scale; on the left hand side is correlation

between velocity of the future and the thermal force of the past, which is

nonzero, as expected. The right hand side shows correlation between velocity

of the past and thermal force of the future. EOU theory predicts zero corre-

lation for τ > 0, but the data and hydrodynamic theory show that there is

anticorrelation for τ > 0.

Nonzero correlation does not in fact violate causality; this is an example

of the mantra that correlation does not imply causation. The nonzero cross

correlation can be explained by the fact that the thermal force as nonzero au-

tocorrelation, thus the thermal force in the future is correlated to the thermal

force in the past, which directly caused changes in the velocity in the present,

thus the future force and present velocity are influenced by the same thermal

force fluctuations of the past [93, 94].
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8.6 Outlook

Prior to this work, the trajectory in velocity space of the Brownian

motion of a particle in liquid was inaccessible. In earlier work, signatures of

the ballistic regime were observed, but only in the time-averaged correlation

functions in which uncorrelated noise gets suppressed [95]. The actual tra-

jectory in velocity space could not be observed, because detection techniques

were unable to resolve the particle’s displacements over the short times during

which velocity remains approximately constant.

In this work, the measurement was made possible by pushing the noise

and bandwidth limits of single particle tracking and by careful choice of sys-

tem parameters, resulting in the resolution of instantaneous velocity with an

SNR of 16 dB. Our measurements confirmed a Maxwell-Boltzmann probability

distribution for the velocity, with the particle mass replaced by an effective

mass that accounts for the inertia of the displaced liquid.

The low noise of our detection system also allowed resolution of the

time-averaged properties of the Brownian trajectories to much shorter time

scales than before. This allowed for confirmation of previously untested pre-

dictions of the theory of hydrodynamic Brownian motion. This included the

faster-than-exponential decay of the VACF, as well as short time correlations

of the random thermal force.

There are many directions in which this work can be extended. To begin

with, it may be possible to use the existing data to further study equilibrium
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Brownian motion. There are also several possibilities for making more precise

measurements of equilibrium dynamics. Also, the techniques of this work could

be applied to the study of nonequilibrium statistical mechanics and equilibrium

motion in complex fluids [96] or confined geometries [67,97].

8.6.1 Further study of existing data

Following the initial publication of the data presented in Chapter 5 [10],

the same data was used to demonstrate that for trajectories with fixed, nonzero

initial velocity, the dispersion grows as time to the third power [98]. In water,

the memory effect might result in deviation from this behavior.

Aside from the instantaneous velocity distribution, all other time-

averaged functions presented in Chapter 5 are effectively two-point correlation

functions. It should be possible to calculate higher-order correlation functions,

or other statistical properties such as zero-crossing statistics, which could shed

light on otherwise unseen physical processes.

Another interesting aspect of Brownian trajectories is that of time-

symmetry. The entropy of the fluid-particle system stays constant, thus it

should not be possible to determine the arrow of time from a recording of

Brownian motion. However, most formulations of Brownian motion are written

in a causal way (for instance, the Langevin equation). Studying the time-

symmetry properties of recorded brownian trajectories could shed light on

whether the system is truly in equilibrium.
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8.6.2 Improving velocity measurement

It is natural to think about extending this work to reach even shorter

time scales. The theory of hydrodynamic interaction presented in Chapter 6

does not take into account the nonzero compressibility of the fluid. With

nonzero compressibility, there exists further detail in the trajectory of Brown-

ian motion at even shorter time and length scales. At the time scale τc = d/c,

where d is the particle diameter and c is the speed of sound in fluid, Eq. 6.4 is

no longer accurate. At such time scales, motion of the microsphere is decou-

pled from its fluid envelope; the fluid compresses rather than flowing out of

the way. The effective mass term can no longer be lumped with the bare mass.

If the particle’s velocity is measured with time resolution shorter than τc, it is

expected that its variance will be v2
th = kBT/mp rather than v∗2th = kBT/m

∗.

In order to access such short time scales, it will be necessary to push

the limits even further by reducing the noise floor, increasing optical gain, and

optimizing the materials to increase τc without decreasing the SNR. Increas-

ing the laser power to reduce the noise floor ultimately faces the problem of

heating of the fluid and microsphere near the high intensity of the focused

detection beam. One possible strategy to improve the time resolution of ve-

locity measurement without increasing the laser power is to switch from a CW

detection laser to a pulsed detection laser. For the CW measurement used in

this work, the averaging time of each sampled velocity is the same as the time

between samples. If a pulsed laser were used, it could be possible, with the

same average laser power and the same sampling rate, to have a much shorter
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averaging time for each sample. As the averaging time is reduced, the vari-

ance of the measured velocity should increase from v∗2th to v2
th. As the averaging

time is reduced, it is more likely to reveal any deviation of the shape of the

velocity distribution from that of the Maxwell-Boltzmann distribution. By the

central limit theorem, the distribution of a time averaged random variable will

tend to approach a normal distribution, thus time averaging can conceal any

underlying deviations.

As for the velocity distribution measured in this work, it only places

an upper bound on deviation from the predicted distribution. There are three

limitations: averaging time, as discussed earlier, measurement noise, which

effectively imposes horizontal error bars on the measured distribution, and

finally the number of samples, which limits how much of the tails of the dis-

tribution can be observed. It should be possible to improve on the latter

limitation by recording the trajectory for a long period of time.

Another possible extension of this work would be to independently

measure the mechanical response function of the microsphere. In Chapter 8,

the thermal force was inferred by assuming a mechanical response function

determined by theory and the fit parameters. This makes the assumption

that the theoretical prediction is correct. A more robust method would be to

independently measure the mechanical response of the microsphere by driving

with an external force and measuring the response of the velocity. Then, the

thermal force of the undriven motion can be determined more precisely and

more directly. One method to apply an external driving force would be to
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radiation pressure from a laser beam from the side of the microsphere, similar

to the way a feedback force was applied in Ref. [55].

8.6.3 Nonequilibrium thermodynamics

Since the 1990s there as been increasing theoretical study of nonequi-

librium thermodynamics, including the extension of the fluctuation dissipation

theorem to systems not in thermal equilibrium [99]. Most tests of these predic-

tions have been made by studying the fluctuation of the position of a Brownian

particle in a nonequilibrium environment [67,97,100–104]. The ability to mea-

sure trajectories in velocity will allow direct access to statistics of the energy

and entropy exchange between the microsphere and the fluid.

One possible extension is to measure the velocity of trapped gold

nanospheres. Trapping of gold nanospheres in water should possible using

the same optical trap used in this work [105], and trapping has been report of

gold nanospheres as small as 10 nm and as large as 250 nm [106]. The density

of gold is among the highest of any room-temperature solid, (19.3 g/cm3),

almost five times that of the barium titanate microspheres used in this work.

The optical gain for a gold nanosphere should be much higher than that of

a dielectric sphere of the same size, though it is harder to estimate because

of the complex dielectric constant of gold. The skin depth, at which the field

of a 1064 nm laser is attenuated by a factor of e, is ∼ 20 nm. For diameters

comparable to the skin depth, the polarizability, and thus optical gain, of a

sphere, is proportional to α ∝ |(ε̃1 − ε2)/(ε̃1 + 2ε2)|, where ε̃1 is the complex
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dielectric constant of the microsphere and ε2 is the dielectric constant of the

fluid. For a silica sphere in water, this factor is 0.12, for a barium titanate

sphere in water, it is 0.43, while for a gold nanosphere it is 1.13. However, for

sphere diameters much larger than the skin depth, this factor will be somewhat

reduced.

A trapped gold nanosphere would absorb much more of the laser power

than a dielectric sphere, which would cause heating. The resulting motion

should deviate from the predictions of equilibrium Brownian motion because

there is constant energy flow from the microsphere to the fluid [107–109].

Because the density of gold is much higher, the correlation time of the bead’s

velocity should be much longer than a dielectric sphere of the same size, thus

it should be possible to resolve nonequilibrium motion of such a sphere in

velocity space.

Another possibility is to measure the velocity of a trapped microsphere

in a moving fluid. This would perhaps break the symmetry of the velocity

distribution and of the velocity dynamics.
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Appendix 1

Additional Theory

1.1 Derivation of EOU theory

1.1.1 Solution of the Langevin equation for a free particle

The solutions for average behavior of the system described by Eq. 3.4,

namely the resulting mean square displacement, (MSD) and velocity autocor-

relation function (Cv), can by derived using the fluctuation dissipation theo-

rem [12], however this case is simple enough that it can be solved in the time

domain using only the following assumptions about mean and autocorrelation

of the thermal force:

〈Fth(t)〉 = 0, (1.1)

〈Fth(t)Fth(t′)〉 = Aδ(t− t′), (1.2)

where A is some proportionality constant and δ is the Dirac delta function.

The first assumption states that on average the force does not push the bead

in any given direction (any part that did would be contained in the systematic,

damping term). The second assumption is a statement that value of the force

at any instant in time does not (systematically) depend on its value at any

other time. A reasonable assumption given that Fth is the sum of trillions of

tiny molecular impulses.
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Solving 3.4 for v(t) with initial conditions v(0) = v0, x(0) = 0 and some

arbitrary Fth(t) gives [13]:

v(t) = v0e
−t/τp +

e−t/τp

mp

∫ t

0

et
′/τpFth(t

′)dt′. (1.3)

Taking the product of the velocity at two different times t1 and t2, with t2 > t1,

and averaging over the distribution of [Fth(t)] gives the velocity autocorrelation

function, Cv ≡ 〈v(t1)v(t2)〉:

Cv = v2
0e
−(t1+t2)/τp +

Ae−(t1+t2)/τp

m2
p

∫ t1

0

∫ t2

0

e(t′1+t′2)/τpδ(t′1 − t′2)dt′1dt
′
2 (1.4)

= v2
0e
−(t1+t2)/τp +

Ae−(t1+t2)/τp

m2
p

τp
2

[e2t1/τp − 1] (1.5)

where, in the first line, the cross terms are not shown because they average to

zero. The double integral is evaluated under the assumption that t2 > t1. If

not, they must be switched. The expression is greatly simplified in the limit

that t1 + t2 →∞:

lim
t1+t2→∞

Cv(t1, t2) =
A

2γsmp

e−|t2−t1|/τp . (1.6)

This long time result depends neither on the initial velocity, nor the magni-

tudes of t1 or t2. It depends only on the time difference t ≡ t2 − t1, thus we

can write:

Cv(t) =
A

2γsmp

e−|t|/τ . (1.7)

Though an initial velocity was specified, it is forgotten by the system in the

long time limit, and any a trajectory with initial velocity will revert to one
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obeying equilibrium statistics after sufficient time. Consistency with equipar-

tition requires that 〈v2〉 = Cv(0) = kBT/mp, thus:

A = 2γskBT. (1.8)

This result is a special case of the fluctuation-dissipation theorem: the strength

of the thermal force is proportional to the strength of dissipation. One way to

understand this relationship by considering the symmetry between damping,

in which the particle’s kinetic energy is converted into thermal motion of the

fluid, and the thermal force, in which kinetic energy from fluid fluctuations is

converted to kinetic energy of the sphere. The two effects can be thought of

as the same interaction going in different directions in time, thus magnitude

of one should be related to that of the other.

Integrating 1.3 a second time gives the position of the particle [13]:

x(t) = x0 +

∫ t

0

v(t′)dt′. (1.9)

Using this expression, the mean square displacement can be written in terms

of the velocity autocorrelation, Cv(t1, t2):

〈(x(t2)− x(t1))2〉 =

〈(
x0 +

∫ t2

0

v(t′)dt′ − x0 −
∫ t1

0

v(t′)dt′
)2
〉

(1.10)

=

〈(∫ t2

t1

v(t′)dt′
)2
〉

(1.11)

=

∫ t2

t1

∫ t2

t1

〈v(t)v(t′)〉dtdt′. (1.12)

At this stage we again take the limit t1 + t2 →∞, and substitute Eq. 1.7 into

the integrand. Since Cv(t) = Cv(|t|) the inner integral must be split into two
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parts for time ordering:

〈(x(t2)− x(t1))2〉 = 〈v2〉
∫ t2

t1

(∫ t2

t′
e−(t−t′)/τpdt+

∫ t′

t1

e−(t′−t)/τpdt

)
dt′ (1.13)

= 2τ 2
p 〈v2〉

(
t1 − t2
τp

− 1 + e−(t1−t2)/τp

)
(1.14)

This result is again independent of initial conditions and only depends on the

time difference. The MSD is thus:

〈[∆x(t)]2〉 =
2τ 2
pkBT

mp

(
t

τp
− (1− et/τp)

)
(1.15)

For t� τp it reduces to Einstein’s theory:

〈[∆x(t)]2〉 = 2Dt (1.16)

while for t� τp it describes ballistic (constant-velocity) motion:

〈[∆x(t)]2〉 =
kBT

mp

t2. (1.17)

1.1.2 Solution of the Langevin equation with a harmonic potential

Since MSD(t) ≡ 〈∆2(t1, t1 + t)〉 = 2(Cx(0) − Cx(t)), we will calculate

the MSD by first calculating Cx, the position autocorrelation function, which

is the Fourier transform pair of the position PSDSx(ω).

Taking the Fourier transform of both sides and solving for x̃(ω) ≡

F[x(t)]:

x̃(ω) =
F̃th(ω)

−mpω2 +K − iωγs
(1.18)
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Squaring the magnitude of x̃(ω) gives the power spectral density1 correspond-

ing to x(t)

Sx = x̃(ω)x̃∗(ω) =
SFth

m2
p(ω

2
0 − ω2)2 + ω2γ2

s

(1.19)

Where ω0 ≡
√
K/mp is the trap resonant frequency and SFth

is the thermal

force PSD which can be obtained from its autocorrelation function defined in

Eq. 1.2:

SFth
(ω) =

∫ ∞
−∞

Aδ(t)eiωtdt = 2γskBT. (1.20)

Any delta-correlated process has a flat PSD, which is why such processes are

often referred to as “white noise”. The resulting position autocorrelation is:

Cx(t) =

∫ ∞
−∞

Sx(ω)

2π
e−iωtdω (1.21)

=
2γskBT

2π

∫ ∞
−∞

e−iωt

−mpω2 +K − iωγs
dω (1.22)

. (1.23)

The denominator of 1.23 can be written as m2
p(ω

2 + τ−2
+ )(ω2 + τ−2

− ) where

τ± =
2τp

1± 2τpω1

(1.24)

and ω1 =
√
ω2

0 − (2τp)−2 is the corner frequency. The system is underdamped

when ω1 is real (ω0 > 1/2τp), critically damped when ω1 = 0 and underdamped

when ω1 is imaginary (ω0 < 1/2τp). For the experiments discussed in Ch. 4,

the system is always underdamped. For a microsphere in an optical trap in

1Unless otherwise stated, the power spectral densities given in this paper are all double
sided
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water, at laboratory scale laser power the system will be heavily overdamped,

though an accurate description of such a system (given in Ch. 6), requires

modification of Eq. 3.4 to take into account the inertia of the fluid.

Integration using the Cauchy residue theorem gives:

Cx(t) =
2γskBT

2m2
p

[
eit/τ−

τ−1
− (τ−2

+ − τ−2
− )
− eit/τ+

τ−1
+ (τ−2

+ − τ−2
− )

]
(1.25)

(1.26)

The VACF can be found by Fourier transformation of the velocity

power spectrum, which is related to the position power spectrum by Sv(ω) =

ω2Sx(ω). Equivalently, it can be found using the identity Cv(t) = −(d2/dt2)Cx,

giving:

Cv(t) =
2γskBT

2m2
p

[
e−t/τ+

τ+(τ−2
+ − τ−2

− )
− e−t/τ−

τ−(τ−2
+ − τ−2

− )

]
(1.27)

In the underdamped case, τ± are real, resulting in

Cx(t) =
A

2γsmpω2
0

(
cosω1t+

sinω1t

2ω1τp

)
e−t/2τp (1.28)

and

Cv(t) =
A

2γsmp

(
cosω1t−

sinω1t

2ω1τp

)
e−t/2τp (1.29)

Again, consistency with equipartition results in the same value for A as Eq. 1.8,

giving 〈x2〉 = Cx(0) = kBT/mω
2
0 and 〈v2〉 = Cv(0) = kBT/mω

2
0. The MSD is:

MSD(t) =
2kBT

mpω2
0

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
, (1.30)

which, at short times, has the same limit as the free particle (Eq. 1.17, since

for short intervals the trap appears as a constant force, whose time average is
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zero. The long time MSD of a trapped particle is very different from that of a

free particle. It is a constant, since after time of order 1/ω0 the particle turns

around within the trap, and never travels much further than the amplitude of

(damped) oscillation.

In the overdamped case,

Cx(t) =
kBT

mpω2
0

[
1

2|ω1|τ ′+
e−t/τ

′
− − 1

2|ω1|τ ′−
e−t/τ

′
+

]
, (1.31)

Cv(t) =
kBT

mp

[
− 1

2|ω1|τ ′−
e−t/τ

′
− +

1

2|ω1|τ ′+
e−t/τ

′
+

]
, (1.32)

MSD(t) =
2kBT

mpω2
0

[
1− 1

2|ω1|τ ′+
e−t/τ

′
− +

1

2|ω1|τ ′−
e−t/τ

′
+

]
. (1.33)

Where

τ ′± =
2τp

1± 2τp|ω1|
(1.34)

For the Brownian motion of a free particle, the position and velocity

power spectral densities are:

Sx =
2γkBT

m2
pω

4 + ω2γ2
(1.35)

Sv =
2γkBT

m2
pω

2 + γ2
(1.36)

For a Brownian particle in a harmonic potential, the position and ve-

locity PSDs are:

Sx =
2γkBT

m2
p(ω

2
0 − ω2)2 + ω2γ2

(1.37)

Sv = ω2Sx =
2ω2γkBT

m2
p(ω

2
0 − ω2)2 + ω2γ2

(1.38)
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1.2 Derivation of hydrodynamic Brownian motion

To include the effects of hydrodynamic interaction, the term γsv the

Langevin equation of Eq. 3.4 is replaced with the friction force of Eq. 6.4:

mpẍ(t) = −Kx−
[
mf

2
ẍ(t) + γs

(
ẋ(t) +

√
τf
π

∫ t

−∞

ẍ(t′)dt′√
t− t′

)]
+Fth(t)+Fext(t),

(1.39)

the result is an example of a generalized Langevin Equation (GLE), the generic

form of which is:

mpẍ(t) = −(γ ∗ ẋ)(t) + Fth(t) + Fext(t) (1.40)

where γ(t) is the damping kernel which represents the retarded damping force.

The convolution ∗ is defined as:

(γ ∗ ẋ)(t) =

∫ ∞
−∞

γ(t− t′)ẋ(t′)dt′ (1.41)

=

∫ t

−∞
γ(t− t′)ẋ(t′)dt′. (1.42)

an important feature of the GLE is that causality is built into the damping

kernel. In this section we summarize the results. The results in this section

reduce to those of EOU theory by replacing γ[ω] with γs.

1.2.1 Thermal force autocorrelation

Making the assumption of a delta-correlated thermal force (Eq. 1.2

for Eq. 1.39 would lead to solutions that contradict equipartition. The correct

expression for the thermal force autocorrelation is predicted by the fluctuation
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dissipation theorem (FDT) to be:

SFth
= 2mp〈v2〉Re(γ[ω]) (1.43)

Where γ[ω] is the Laplace transform of γ(t) from equation 1.40; for a sphere

in liquid, γ[ω] is the same as given in equation 6.1. An explicit form for γ(t)

would contain differential operators.

SFth
(ω) = 2γskBT (1 +

√
ωτf/2), (1.44)

and the corresponding thermal force autocorrelation is:

CFth
(t) = 2γskBT

[
δ(t) +

1

2

√
τf
π
t−3/2

]
. (1.45)

1.2.2 Mobility

The complex mobility µ(ω) describes the amplitude and phase response

of the particle’s velocity to an oscillating driving force:

µ(ω) =
iω/mp

(ω2 − ω2
0) + iωγ[ω]/mp

(1.46)

1.2.3 Position and velocity power spectral densities

The position PSD is

Sx(ω) =
2kBT Re γ[ω]

(mp(ω2 − ω2
0)− ω Im γ[ω])

2
+ (ωRe γ[ω])2

(1.47)

=
2γskBT (1 +

√
ωτf/2)(

ω2(m∗ + (9mf/2)
√

1/2ωτf )− ω2
0mp

)2

+
(
ωγs(1 +

√
ωτf/2)

)2 . (1.48)
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The velocity PSD is Sv = ω2Sx.

Sv(ω) =

2ω2γskBT (1 +
√
ωτf/2)(

ω2(m∗ + (9mf/2)
√

1/2ωτf )− ω2
0mp

)2

+
(
ωγs(1 +

√
ωτf/2)

)2 (1.49)

1.2.4 Correlation functions

The velocity autocorrelation is the sum of four terms:

Cv(t) =
1 + εijkl

2

kBT

m∗
c3
i exp(c2

i t) erfc(ci
√
t)

(ci − cj)(ci − ck)(ci − cl)
(1.50)

where εijkl is the Levi-Civita permutation symbol2, erfc(z) is the complimen-

tary error function3, and the four constants ci are the complex solutions of the

quartic equation:

m∗s2+γ0
√
τfs

3/2 + γ0s+K (1.51)

= m∗(
√
s+ c1)(

√
s+ c2)(

√
s+ c3)(

√
s+ c4) (1.52)

The mean square displacement has a similar form (ci are the same as

those above):

MSD(t) =
2kBT

k
+

2kBT

m∗
1 + εijkl

2

exp(c2
i t) erfc(ci

√
t)

ci(ci − cj)(ci − ck)(ci − cl)
(1.53)

2(1 + εijkl)/2 means there are four terms in the sum, the four cyclic permutations
[1,2,3,4],[2,3,4,1],[3,4,1,2] and [4,1,2,3]

3the built-in MATLAB erfc(x) function is only defined for real x, but the ci are complex.
A third party MATLAB function for the complex generalization of erfc is available at [110]
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Expansion of Eq. 1.50 about t = 0 in powers of t1/2 results in a much

simpler expression:

Cv(t) ≈
kBT

m∗

(
1−

√
t/τv

)
(1.54)

with

τv ≡
πr2(ρp + ρf/2)2

81ηρf
=
π

4

τ ∗2p
τf

(1.55)

1.2.5 Force-velocity cross correlation

The complex force-velocity cross-power spectral density is

βSv,Fth
(ω) = mpµ(ω)γ∗[ω] (1.56)

While the force-velocity cross-correlation function is its Fourier trans-

form:

βCv,Fth
(t) = 2mp

∫ ∞
−∞

dω

2π
e−iωtµ(ω)γ∗[ω] (1.57)

1.2.6 Cumulative velocity PSD (first order approximation)

By considering the dominant terms in Sv for large ω, it can be shown

that when CSv(ω) ≈ 〈v2〉, it can be estimated using first order approximation:

CSv ≈
kBT

m∗

[
1−

√
π

8τv
ω−1/2

]
(1.58)
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