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We propose two experimentally feasible methods based on atom interferometry to measure the quantum

state of the kicked rotor.
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Atom optics [1] has become a very active experimental
testing ground for quantum chaos [2]. Such experiments
[3] have investigated dynamical localization, quantum
resonances, and quantum dynamics in a regime of classical
anomalous diffusion. So far, these studies have concen-
trated on the probability distribution rather than the full
quantum state determined by amplitude and phase.

State reconstruction of simple quantum systems [4] has
become a standard routine in labs. Such systems range
from the motional state of a single ion in a trap [5] via
tomography [6] of a single photon state [7] or atomic
beams [8] to quantum state holography [9] of a Rydberg
electron [10]. Moreover, many theoretical suggestions
[11,12] exist. In the present paper we propose two methods
to reconstruct the quantum state of the kicked rotor.

Our proposal is an application of atom interferometry
to quantum chaology [13]: We consider an atom whose
motional degree of freedom is determined by a classically
chaotic Hamiltonian. Entanglement between the internal
and external dynamics allows us to measure the quan-
tum state of the motion. The kicked rotor [14] in its
realization of a kicked particle [15] serves as an illustration
of our scheme. We emphasize that the present state of the
art of experimental techniques suffices to perform this
experiment.

Both reconstruction methods rely on controlling the
dynamics of the atomic states |1) and |2) associated with
two energy levels by the use of a laser field that couples the
two levels with an excited electronic state (Fig. 1). This
coupling influences the translational motion of the atom in
the standing wave of the laser. Initially, a laser pulse
prepares the atoms in a coherent superposition of states
|1) and |2) establishing in this way a reference phase. It is
followed by a sequence of N pulses kicking the system. In
the method of self-interference we use a classical electro-
magnetic standing wave that is detuned to the middle of the
atomic transition. In this case the periodic potential felt by
the atoms in state |1) is shifted by half a wavelength with
respect to the potential corresponding to state |2). In the
holographic method the standing wave is prepared in such
a way as to influence only the atom in the upper state |1).
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Consequently, an atom in the lower state |2) propagates
freely. The readout is common to both methods. A laser
pulse shifts the momentum wave function of the lower state
in order to measure the phase at the individual momenta.

We consider the quantum mechanical motion of an atom
of mass m, characterized by coordinate x and momentum
p. This motion is driven by appropriately tailored
S-function kicks. They serve two purposes: On one hand,
they create the kicked rotor; on the other hand, they
provide the readout of the wave function. The state
|(T,)) of the center-of-mass motion immediately after
a d-function kick described by the Hamiltonian

)
j2 - 5—m +V(R)6(t—T) (1)

is related to the state |H(7_)) just before the kick by a
phase determined by the potential V(x); that is

) =exp| V) [l6T). @

In an experimental realization the potential results from the

3o+ )

FIG. 1. Methods of self-interference (left) and holography
(right) to reconstruct the wave function of the kicked rotor.
The method of self-interference considers a three-level atom
with a laser field detuned half between the two hyperfine levels
[1) and |2). The periodic potentials due to the light shifts experi-
enced by the individual levels are out of phase. The method of
holography uses a phase modulator to put sidebands on the tran-
sition frequency whereas the frequency w, itself is filtered out.
This symmetric detuning around w, leads to a constant potential
for the lower state |2) but a periodic potential for the upper state
|1). In both methods atoms in state |1) play the role of the kicked
rotor whereas the atoms in state |2) serve as our reference.
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interaction of the atomic dipole with the electromagnetic
field in a given mode. A standing wave of wave number
ko/2 creates a periodic potential V(x) = k sin(kqx) leading
[3] to the Hamiltonian
N p? .
= — + ksin(kyx) () 3)
2m

of the kicked rotor [14]. Here we assume a sequence of
pulses &7(1) =S5, 8(t — nT) of period T and « de-
notes the kicking strength of the light field.

The Schrodinger equation together with the
Hamiltonian, Eq. (3), determines the state | (7)) at time
t. Because of the sequence &7(¢) of pulses it is convenient
to consider the recurrence relation

82
) = exp| — i Fsinllod) fexp| — i 7 | ldn-) ()
m h
connecting the state |¢y) = |p(NT)) immediately after
the Nth kick with the state |¢,_,) after the kick N — 1.
Throughout the paper we focus on the momentum wave
function ¢(p, t) = {pld(z)). With the help of the expan-
sion exp(izsin@) = >, J,(z) exp(il6) in terms of Bessel
functions J; the momentum probability amplitude
¢n(p) = (pléy) obeys the mapping

ou(p) = 3 a= K ) B g (p — 1po). (5
[=—00

Here we have introduced the phase B(p) = p>T/(2mh)
quadratic in the momentum and the abbreviation py =
hky. When we iterate this recurrence relation N times we
obtain a wave function with a rather complicated behavior
of phases. This feature is due to the quadratic phase factor
B(p) arising from the free time evolution between the
kicks.

In order to measure the phase of a wave function we
need an interferometric scheme with a reference phase. In
our proposal we use the superposition (|1) + |2))/~+/2 be-
tween the internal states |1) and |2) of the atom. The level
[1) is associated with the motion of the kicked rotor
whereas |2) provides a reference. The initial state

1
|W(z = 0)) NG (D1 +12)] o) (6)
of the complete system consists of the internal states and
the state |¢) of the center-of-mass motion.

In our reconstruction method the two internal states
undergo different dynamics governed by the Schrodinger
equation

i W) = [ L+ F2) @) )
leading to the state
1

W (1)) = NG

(D 160y + 12) [@(e)]. ®
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Indeed, atoms in the upper state feel the dynamics of the
kicked rotor and are described by the state | ¢ (7)) obtained
by propagating |¢,) with the Hamiltonian A. In contrast,
atoms in the reference state |2) experience the Hamiltonian
JH giving rise to the state |o(t)).

‘We now turn to the readout of the wave function. For this
purpose we apply after N kicks a final §-function kick with
a linear potential Vp(x) = Px to the atom in |2) that means
a final laser pulse shifts the momentum wave function of
state |2) in order to measure the wave function of state |1).
According to Eq. (2) the state immediately after this kick
reads

1
V2
where |@y) = [@(NT)).

Hence, the probability W,(\,H)(p; P) = [(j(O)| { p|¥)|* to

find the atom in the superposition |j(#)) = %[I 1)+
e~%|2)] with momentum p takes the form

[Wn) = —=[11) [pn) + [2)e™ P op)] ©)

Wi (ps P) =3 Wa(p) + Wi(p+ P)
+Re[pn(p)ey(p + Ple” ]t (10)

Here we have made use of the relation { ple = F3/|py) =
(p + Ploy) = @yn(p + P). Moreover, the distributions
Wy (p) = lon(p)I?/2 and Wy(p) = len(p)|?/2 are the
probabilities to find the atom in the upper state or in the
reference state with the momentum p, respectively.

In order to reconstruct the wave function ¢ y( p) we need
to measure the probability distribution W](\,e)( p; P) for two
angles # = 0 and # = 7/2 together with the momentum
distributions Wy( p) and "W y( p). With the help of Eq. (10)
for these angles # we can express the product

dn(p)ey(p + P) = My(p; P) (11)

in terms of the sum

My (p; P) = 2W\)(p; P) + 2iW"> (p; P)
— (L +)[Wy(p)+ Wy(p+P)] (12)

of measured distributions. The inversion formula, Eq. (11),
is the central tool for the reconstruction of the kicked
rotor’s wave function.

We now illustrate our reconstruction scheme by discus-
sing two special cases of the reference Hamiltonian. In the
method of self-interference, we use

R 52
H = 571 + resin(kok + m)87(7) (13)

which differs from the Hamiltonian of the kicked rotor by
the phase difference of .

In order to solve Eq. (11) for the momentum wave
function of the kicked rotor we select the negative diagonal
P = —p of the two-dimensional measured probabilities
W,(\,e)( p; P) which yields
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dx(p) = ———
2Wy(0)

My(p;—p). (14)

Here we have assumed W (0) # 0. Since we have meas-
ured the distribution, we already know that value. In case
of Wy (0) = 0 we use another suitable P. Moreover, we
have chosen the phase of ¢x(0) to vanish.

In the case of well-separated peaks, that is when the
width o of the initial momentum distribution is much
smaller than the shift p,, the two momentum distributions
Wy(p) and "W (p) are identical [16]. This property re-
duces the number of measurements.

In the holographic method the reference is provided by
the atom in the lower state moving in the absence of any
potential; that is

R ~2
Hzé’—m. (15)

However, the freely propagated momentum wave function
of the lower state is too narrow to cover the state to be
reconstructed. For this reason we impart another kick to
displace the reference state. We can always shift it by
integer multiples of p,, that is P = np,, to cover all
significant parts of the momentum wave function.
Nevertheless smaller displacements are possible in order
to improve the accuracy of the reconstruction scheme.

During the free time evolution the momentum wave
function @y(p) = exp(—i{-3D)¢o(p) only accumulates
a phase which yields the measured distribution "W y(p) =
len(P)I?/2 = |¢o(p)|?/2. With the help of the inversion
formula, Eq. (11), we find

1

W e INBwtnp) M (p, npg). (16)
0 0

dn(p) =

We now exemplify our reconstruction scheme using a
Monte Carlo simulation of the holographic method. We
propagate the momentum wave function of the kicked rotor
with the help of a fast Fourier transform algorithm. Our
initial wave function is a Gaussian of width o that is
(pldo) ~ exp(— p*/40?). The parameters of the simula-
tion lead to a comb of localized peaks in momentum space.
Therefore, we shift the reference state by multiples of p, in
order to reconstruct each single peak and calculate the
distributions Wy, Wl(\?), and Wl(v”/ 2. These distribu-
tions serve as the weight function for a random number
generator which simulates a single measurement event.
The distributions emerge from M measurement events,
that is measurements of M single atoms. In the final step,
these histograms are used to reconstruct an individual peak
of the state to be reconstructed with the help of Eq. (16).
This procedure is repeated until all significant peaks
of the kicked rotor’s momentum wave function have
been reconstructed. In Figs. 2 and 3 we show the results
of such a simulation for the dimensionless parameters
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FIG. 2. Monte Carlo simulation (left column) of the holo-
graphic method for the state reconstruction of the kicked rotor
after N = 1, 2, and 5 kicks. For each value of N we represent the
state by the amplitude (top) and the phase (bottom) of the
momentum wave function. For comparison we also show the
exact functions (right column). For the reconstruction of
the momentum wave function we use a grid of 4096 points
and M = 10° simulated measurement events.

K = k3Tx/m = 14 and k = k3Th/m = 15. The width of
the initial momentum wave function is o = 0. 1/ik,.

Figure 2 displays amplitude and phase of the kicked
rotor after NV kicks in a comparison between the exact (right
column) and the reconstructed (left column) version. We
emphasize that the holographic method resolves very well
details of the phase portrait.

Figure 3 compares the two methods based on the fidelity
defined by the overlap [{¢y|¢y)|*> between the recon-
structed state | ¢ ) and the original state |y ) of the kicked
rotor after N kicks. The holographic method has a small
advantage over the method of self-interference: The fidel-
ity of the reconstructed state is larger, at least for the
used parameter regime. Moreover, the holographic method
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FIG. 3. Comparison between the methods of self-interference

and holography based on the fidelity for the state of the kicked
rotor after nine kicks. Shown is the mean fidelity (averaged over
25 realizations) of the reconstructed state versus the accuracy a
of the measured distributions. The accuracy is defined by a =
1/AW with AW being the relative uncertainty of the measured
distributions. The reciprocal of a is the relative uncertainty of the
distributions.

relies on fewer measured distributions. Indeed, it needs the
distributions Wl(\(,)) and WI(V”/ 2 only once per each single
peak of the whole state; whereas with the method of self-
interference it is necessary to record these distributions for
each reconstructed point of the searched wave function.
However, the initial state must be known for the holo-
graphic method.

We now turn to a brief discussion of a possible exper-
imental implementation of our reconstruction scheme but
emphasize that all the ingredients are already in operation.
We choose the (65 ,, F = 3) and (65 », F' = 4) hyperfine
levels of cesium with a level splitting of approximately
9.2 GHz for the reference state |2) and the state |1),
respectively. Two copropagating Raman pulses create the
initial superposition between them. The frequency w,(w,)
denotes the transition frequency between |1) (|2)) and an
excited electronic state. In the method of self-interference
we apply a laser with frequency (w; + w,)/2, and |1) and
|2) evolve in potentials which differ only in a 77-phase shift.
In the holographic method we pass a laser beam at w,
through an electro-optic phase modulator that imposes
symmetric sidebands at *w,,, *2w,,, ... on the carrier.
An absorption cell with a Doppler profile smaller than
w,, strips the carrier but leaves the sidebands unchanged.
For example, in cesium we can take w,,/(27) = 4 GHz.
Finally, we split the beam to create the standing wave.
Since the sidebands are tuned symmetrically to the red and
blue sides of the resonance there will be no effect on the
reference state but |1) will experience a standing wave
potential. For example, in cesium the dominant term will
be detuned 9.2 GHz — 4 GHz = 5.2 GHz from resonance.
The same technique can be used for the final kick in the
readout stage. However, in this case we create sidebands
around w;. In this way we can make an accelerating
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standing wave that will affect only |2). Finally, we drive
a Raman transition using a 77/2 pulse to detect the atoms in
the reference state.

We conclude by summarizing our main results. We have
proposed two experimentally feasible methods to measure
the wave function of the kicked rotor in amplitude and
phase. Both methods rely on atom interferometry, that is
interference between the center-of-mass motions in the two
internal states. In this way we bring to light the convoluted
behaviors of the phases which are at the heart of the
phenomena of dynamical localization and the quantum
resonances.
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