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Stochastic cooling in confined geometries
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The implementation of stochastic cooling in a confined geometry is discussed, where the boundary shape is
found to be an independent control parameter for arriving at a variety of final spatial and momentum distri-
butions. Results for integrable and nonintegrable geometries are contrasted in terms of both efficiency of cool-
ing and mechanisms for saturation. © 2003 Optical Society of America
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1. INTRODUCTION
Over the years advances in laser cooling of atoms have re-
sulted in a number of significant scientific results, most
notably the formation of atomic condensates.1 Even at
somewhat warmer temperatures than those required for
the gas–fluid transition, cold atoms have been used to ad-
dress a variety of dynamical issues bridging atomic and
condensed-matter physics.2,3 Despite these successes,
current techniques in laser cooling have limited applica-
bility to only a small subset of available atoms. As a con-
sequence, there has been an effort in recent years to ex-
plore new methods for cooling, both with and without the
use of lasers, some of which are discussed in this feature
issue.

One of the proposed methods4 was based on a well-
known technique in accelerator physics called stochastic
cooling. There the transverse drift that diminishes the
brightness of the beam is reduced by a measurement,
away from the beam center, followed by a correcting im-
pulse once every beam cycle. In Ref. 4 an analogous pro-
cedure was proposed for cooling atoms by use of far-
detuned lasers. The essential requirements are a simple
feedback scheme to measure either the mean momentum
or position of part of a particle (atom) cloud and then a
mechanism to apply a force (kick) to reset the center of
mass momentum or position of the measured section to
zero. After the kick, remixing is necessary to bring a new
subset of particles into the kicking region, and the proce-
dure is repeated. It is clear that applying this technique
to the entire cloud would negate the value of this iterative
scheme.

The basic mechanism can be illustrated by a simple
model based on the schematic shown in Fig. 1(a). Con-
sider pairs of numbers (qi , pi), i 5 1,..., N, denoting the
positions and momenta of N particles in phase space, cho-
sen at random; q . R denotes the region where the
center-of-mass momentum is to be measured and then
corrected down to zero. The evolution between kicks is
taken in this example to be harmonic, which, in phase
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space, amounts to a simple rotation of the individual
(qi , pi), i.e.,

pi8 5 pi cos a 2 qi sin a (1)

qi8 5 pi sin a 1 qi cos a, (2)

where the angle a can be taken to be fixed or random.
The case of fixed a is shown in Fig. 1. The schematic in
Fig. 1(a) illustrates the basic process in terms of the mo-
tion of the center of mass of the region. Following each
measurement, the center-of-mass momentum pCM is
kicked to zero. The harmonic evolution between kicks re-
sults in a rotation of the center of mass (though the radius
is not necessarily constant as in the schematic) till the
next measurement and correction. In the idealized case,
the process saturates once qCM moves well inside q 5 R.
The results of a simulation are shown in Fig. 1(b), and,
though the trajectory of the center of mass is more com-
plicated, the basic mechanism is seen to be the same.

Several generic consequences become immediately ap-
parent from this illustration: (i) It is clear that the pro-
cedure leads to true compression in phase space as the
spread in both q and p is reduced. (ii) The need for effec-
tive remixing is also clear, or else the procedure saturates
early in the process. Note that remixing essentially en-
sures that the same particles are not addressed during
successive measurement and correction cycles. (iii) Fur-
ther, the limiting distribution for this particular imple-
mentation is a cloud of radius R, where particle accumu-
lation occurs along the circumference. The final
distribution of particles shown in Fig. 1(b) illustrates this
feature. (iv) Finally, the rate of cooling decreases with
time as the center of mass of the section approaches the
boundary. Both spatial aggregation of particles and a de-
crease in cooling efficiency are general features, though
the details of the final distribution and the onset depend
on the particular realization. Nonlinear evolution be-
tween kicks does not necessarily help, as there is quite of-
ten heating (expansion in phase space) that overwhelms
the cooling per cycle.
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We note that two key elements of stochastic cooling also
appear in recent suggestions5,6 for cooling atoms in a cav-
ity. The cavity response to atomic motion accounts for
both measurement and kick aspects of the cooling pro-
cess, though the mixing component was not addressed in
either treatment.

An extension of stochastic cooling was proposed7 that
was to use finer spatial resolution, enabling a multiple
subdivision of each particle bunch. The resulting sensi-
tivity to higher-order correlations of the distribution can
dramatically improve the efficiency of stochastic cooling,
though it is harder to implement experimentally. How-
ever, the work presented here reflects our view that using
the dynamics first to control the nature and size of corre-
lations is perhaps simpler and more efficient, beyond
which multiple measurements can be explored.

2. ROLE OF CONFINED GEOMETRIES
We choose here to exploit another recent advance in atom-
optics experiments,8,9 namely, the ability to draw arbi-

Fig. 1. (a) Schematic of the cooling mechanism for a single kick-
ing regime. The dots represent the particles; the solid vertical
line demarcates the spatial measurement and correction area
which lies to the right of the line; the dashed curve represents
the idealized trajectory of the center of mass of the region. (b)
Results of a simulation in which the final distribution of particles
in phase space and the actual trajectory of the center of mass of
the kicking region (solid curve) are plotted.
trary (in principle) boundaries around a cooled cloud of at-
oms. Given the classical regime of the problem, the
resulting atomic billiard dynamics is a function of the con-
fining geometry. In brief, it is well known that with a
boundary such as a rectangle, square, or circle the motion
of a bouncing particle is integrable, which means that the
particle trajectories are either periodic or quasi periodic.
This is in stark contrast to a stadium geometry, where,
with the exception of a few rare, unstable periodic trajec-
tories, the motion is strictly aperiodic and chaotic.10–11

The aperiodicity ensures that particles visit all parts of
the confined region and are thus efficiently mixed. Al-
though it is possible, by altering the boundary, to realize
situations in which periodic and aperiodic motions coexist
in phase space, these so-called mixed-phase spaces are
not as well understood. We note here that mixed-phase
spaces are of consequence to any experimental realization
of billiard geometries, as the walls of the boundary are
soft.12 This smoothening of the walls can lead to phase-
space structures that trap particles, thereby altering the
effect of the mixing. However, for the purposes of this
paper, we restrict our analysis to the relatively clear-cut
cases of integrable circle and nonintegrable stadium ge-
ometries. For the stadium, unless otherwise stated, the
numerical results shown are for an aspect ratio (ratio of
the length of the straight line segment to the radius of the
semicircular end caps) of one.

The immediate advantages of implementing stochastic
cooling in a confined billiard geometry are that (i) the spa-
tial extent is automatically limited and (ii) the mixing can
be controlled by changing the shape of the boundary.
Further, a combination of boundary geometry and loca-
tion of the spatially resolved measurement can be used to
control the compression (reduction of the width) either in
space or momentum, and in many cases simple geometri-
cal arguments can be used to predict the outcome. For
example, Fig. 2 shows three configurations where, in each
case, the shaded box represents the region for the mea-
surement and correcting kick. The measurement and
kicking is in only one direction, say x. However, the dy-
namics (bouncing off the walls) mixes px and py , and cool-
ing is achieved in both directions. Thus the essential
transformations in momentum space are rotation inter-
rupted periodically by a shear associated with the kick.

In case (a) of Fig. 2 it can be shown that for any given
kicking area there exists a range of angles (with respect
to a radial vector) for which particles with angle a satis-
fying p/2 > uau > acr , where acr is a critical angle de-

Fig. 2. Configurations of billiard boundaries and measurement
regions that lead to differing amounts of cooling and distinctive
momentum or spatial distributions. (a), (c), integrable cases; (b)
nonintegrable case. In each case the shaded box represents the
region for the measurement and correcting kick.
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pending on the specifics of the kicking box geometry, will
never be kicked for any momentum. In other words, par-
ticles in an annular region are never addressed by the
measurement–kick process. The upper panel in Fig. 3
shows the effective temperature, defined as ( px

2 1 py
2) av-

eraged over the ensemble, as a function of time. The
saturation in this case is due to the exclusion of a subset
of particles from the entire cooling process. As a conse-
quence, an initial, thermal, Gaussian velocity distribution
evolves into a final distribution consisting of a narrow
spike centered at px 5 py 5 0 superposed on a Gaussian
background of particles that were never kicked. This ef-
fective two-temperature distribution, shown in Fig. 3(b),
can be cropped to obtain a cooled sample but, like evapo-
rative cooling, at the cost of reduction in particle number.

The exclusion of a subset of particles does not occur in
the case of the stadium billiards shown in Fig. 2(b), and
as seen from the dashed curves in Fig. 4 the cooling con-
tinues for a longer time and is more efficient than for the
circular geometry (solid curve). Case of Fig. 2(c) is an in-
tegrable stadium geometry in which the exclusion of par-
ticles is no longer an issue, as the kicking region extends
from the center to the edge. However, saturation of the
cooling occurs here as well for quite different reasons.

Fig. 3. (a) Effective temperature (see text for definition) ratio
for N 5 4000 particles in a circular billiard, for the kicking loca-
tion shown in Fig. 2(a). The kicking box is 10% of the total area;
time reflects the number of cooling cycles. (b) Initial (dashed)
and final (solid) velocity distributions at T 5 10,000 demonstrat-
ing the resulting two-temperature distribution.
After being kicked, which in this case means that the av-
erage px is set to zero, the particles emerge with a velocity
closer to vertical from the kicking region. Thus, trajecto-
ries spiral out (spatially) toward the stadium perimeter.
A trajectory emerging near vertically close to the edge of
the circle hits the wall at grazing incidence. This means
that it takes a large number of bounces (time) before it re-
enters the kicking region. Thus the cooling rate slows
down as the time between kicks, measured in number of
bounces, increases considerably. In this configuration
the spatial distribution in the radial direction narrows as
the density of particles near the boundary increases with
the number of kicks, providing the distinctive high-
density annulus of particles shown in Fig. 5. As such, ef-
fective compression in terms of the full four-dimensional
phase space is significantly higher than in the case of Fig.
2(a).

Fig. 4. Behavior of the effective temperature with time for the
stadium billiards (light dashed curve); circle geometry (solid
curve) for N 5 4000 and kicking box located similarly to Fig. 2(a)
(circle) and Fig. 2(b) (stadium). The case of random kicking-box
location is also shown for the circle (heavy dashed curve) and sta-
dium (dotted curve) geometries. In all cases, the box size is 10%
of the total area enclosed by the billiards.

Fig. 5. Final velocity distribution for the geometry in Fig. 2(c).
Note the accumulation of particles along the boundary (which is
not explicitly shown but is defined here by the line of high den-
sity) of the billiards.
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Also shown in Fig. 4 are two cases corresponding to
randomizing the location of the measurement–kicking
box with time. In the case of the circular geometry, the
dramatic improvement in cooling rate and extent is ex-
pected as the moving location both offsets the effect of the
periodic trajectories and improves the sampling of the dis-
tribution. What is more surprising is that (i) the circular
geometry with random location does better than the sta-
dium, and (ii) randomizing the box location leads to a sub-
stantial effect even in the case of the stadium boundary.

Randomizing the box location for the circular boundary
cools better than in the stadium with fixed measurement
location because of an important class of periodic trajec-
tories in the stadium. These are the so-called bouncing-
ball orbits corresponding to normal incidence on the
straight-line segments of the stadium. In our case, as
the particles are being kicked in the x direction, they
emerge (on average) closer to normal incidence. With
time, more and more particles satisfy this condition and
^ px& in the kicking box becomes smaller, leading to a de-
crease in cooling efficiency. This continues till a substan-
tial set of particles translates along the straight line seg-
ments to the semicircular end caps, beyond which
rotations mix px and py and cooling can resume. The ef-
fect is more pronounced for stadium geometries with
larger aspect ratios, which is indeed confirmed in our
simulations. This understanding also suggests that
kicking along the length of the stadium is more beneficial
than across the width. Alternatively, as seen in Fig 4,
randomizing the location of the measurement also works
well to minimize the effects of the bouncing-ball orbits.
The use of billiard configurations in which the bouncing-
ball orbits are excluded, as in the case of the stadium bil-
liards with tilted straight-line segments,9,11 would also re-
duce correlations in the dynamics and help maintain
cooling efficiency.

3. CONCLUSION
We have used a numerical study to support the sugges-
tion that implementing stochastic cooling in a confined
geometry greatly improves both cooling efficiency and
control over the final spatial or momentum distribution of
particles. This is significant as, in contrast to its
accelerator-physics counterpart, a key limitation to any
atomic realization of stochastic cooling is the total num-
ber of measurement–kicking cycles. This constraint re-
sults not only from heating associated with the measure-
ment, though this is related to the type of measurement,
but is also due to fundamental time-scale limitations in
atom-optics experiments.3,8,9

In an experimental context, it is worth noting an im-
portant feature that distinguishes the billiard configura-
tion from the harmonic dynamics considered earlier. As
stated earlier, though only one component of the momen-
tum (say px) is kicked, the dynamics ensures that energy
is extracted from py as well because of rotation from the
bounces. This aspect results in cooling even in the ab-
sence of a spatially resolved measurement, which is not
possible with harmonic mixing. The absence of the need
for spatially resolved measurements could be very useful
for experimental realizations, though there will be a com-
mensurate decrease in cooling rate.

The key issues for any experimental realization remain
the optimization of the cooling rate and, consequently, the
ultimate temperature that can be reached over the dura-
tion of the experiment. Simple statistical arguments4

suggest that significant cooling requires that the number
of iterations be of the same order of magnitude as the
number of particles. As seen from Fig. 6, in a stadium
geometry, a single spatially resolved measurement (solid
curves) leads to a factor of 2 change over times much
shorter than the simple estimate. However, the best
strategy is still to make as many spatially resolved mea-
surements as possible. This assertion is supported in
Fig. 6, where the dashed curves illustrate the situation in
which five spatially resolved measurements are made and
where an order-of-magnitude improvement in cooling is
seen. Ongoing work aims to provide the theoretical un-
derstanding necessary to optimize the cooling rate with
respect to geometry and number of measurements, a dif-
ficult problem even in an ideal model.
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