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Dynamical localization of ultracold sodium atoms
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We report a study of atomic motion in time-dependent optical potentials. We measure momentum transfer in
parameter regimes for which the classical dynamics are chaotic, and observe the quantum suppression of chaos
by dynamical localization. The high degree of control over the experimental parameters enables detailed
comparisons with theoretical predictions, and opens new avenues for investigating quantum chaos.
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I. INTRODUCTION

The past few years have seen a resurgence in the us
classical mechanics in the description of strongly pertur
and strongly coupled quantum systems in atomic phy
@1,2#, where the traditional perturbative treatment of t
Schrödinger equation breaks down. In particular, recent
vances in classical nonlinear dynamics and chaos have
important applications in the description of the photoabso
tion spectrum of Rydberg atoms in strong magnetic fie
@3#, the microwave ionization of highly excited hydroge
atoms@4#, and the excitation of doubly excited states of h
lium atoms@5#. These examples, together with recent wo
on mesoscopic systems@6#, explore classical-quantum corre
spondence in situations that exhibits chaos in the class
limit, an area of study referred to as ‘‘quantum chaos’’@7#.

Parallel developments in laser cooling and trapping te
niques have led in recent years to spectacular advances i
manipulation and control of atomic motion@8#. At the ultra-
cold temperatures that are now attainable, the wave natu
atoms becomes important. These advances have led to
development of the new field of atom optics@9#. Until re-
cently, the primary focus in atom optics has been the de
opment of optical elements such as atomic mirrors, be
splitters, and lenses for atomic de Broglie waves. Our w
has emphasized the regime of time-dependent potentials
hence of dynamics, in atom optics. In particular, we stu
momentum distributions of ultracold atoms exposed to tim
dependent, one-dimensional, optical dipole forces that
typically highly nonlinear. Thus the classical motion can b
come chaotic. As dissipation may be made negligibly sm
in this system, quantum-mechanical effects can become
portant. Our work has established that these features toge
make atom optics a simple and controlled setting for
experimental study of quantum chaos@10#.

A particular focus for our discussions is the phenomen
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of dynamical localization@11#, which is an important mecha
nism for the quantum suppression of classical chaotic
namics. Though initially predicted in a simple time
dependent paradigm system called thed-kicked rotor, it has
been since shown to be a universal effect in a class
dynamical systems@12#. In brief, the chaotic evolution of a
classical ensemble of particles results in a diffusive grow
of energy. Under certain conditions, however, the quant
dynamics follows this growth only for a limited time, calle
the break time, after which it saturates. At this point, t
particles also assume a distinctive exponential probab
distribution in momentum~in the one-dimensional case!.
This numerically observed effect has also been shown to
closely related to Anderson localization, which describe
metal-insulator transition at low temperatures@13,14#.

This paper describes our work on the interaction of
ensemble of cold atoms with two particular time-depend
optical potentials. Both optical potentials were created by
interaction of the atoms with a standing wave of light. T
first interaction was a direct realization of the paradig
kicked system. By contrast, the second was a continuo
time interaction, which nonetheless exhibited the same p
nomenon of dynamical localization. Together, these exp
ments and the accompanying analysis have provide
controlled context for the study of dynamical localizatio
and quantum chaos@10#.

This paper starts with this introduction, and continues
Sec. II with a background description of the interaction b
tween the cooled atoms and the standing wave in our exp
ment, and of the simulations used to model the interact
Section III proceeds with a detailed description of our e
perimental realization of this system, including the meth
by which we cooled the atomic sample to create the ini
conditions for the interaction, the system for making t
standing wave that imposed the interaction potential, and
techniques for measuring the final momentum distribution
the atomic sample after the interaction. Section IV prese
the experiments that realized the kicked rotor, and Sec
concerns the experiments in which the atomic sample
exposed to a continuous phase-modulated standing w
These two sections each present a classical analysis o
system, and describe how the quantum predictions di
from this analysis. In addition, Sec. IV presents our obs
vations and analyses of quantum resonances. The wor
summarized in Sec. VI.
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II. BACKGROUND: A TWO-LEVEL ATOM IN A
STANDING-WAVE POTENTIAL

A. Physical model

Consider a two-level atom of transition frequencyvo in-
teracting with a standing wave of near-resonant light. If
standing wave is composed of two counterpropagating
early polarized beams, each with field amplitudeEoŷ and
wave numberkL52p/lL5vL /c, then the atom is subjecte
to an electric fieldEW (x,t)52Eoŷ cos(kLx)cos(vLt), wherex
andp are the center-of-mass position and momentum of
atom.

If the laser light is tuned far from atomic resonance, it c
be shown@15,16# that the center-of-mass motion of the ato
in the standing-wave field can be described by a o
dimensional Schro¨dinger equation for a point particle, with
Hamiltonian given by

H~x,p,t !5
p2

2M
1Vo cos 2kLx. ~1!

HereM represents the mass of the atom. The potential h
period of one-half the optical wavelength, and an amplitu
Vo that is proportional to the intensity of the standing wa
and inversely proportional to its detuning,Vo
5 2

3 \(G/2)2I /dLI sat, whereG is the linewidth of the transi-
tion andI is the intensity~irradiance! of each of the beams in
the standing wave, the detuning is given bydL[vL2vo ,
andI sat[p\voG/3lL

2 is the saturation intensity for the tran
sition. For theD2 transition in sodium atoms, the saturatio
intensity has a value ofI sat56 mW/cm2. In the case where
the two constituent beams of the standing wave are not
fectly matched,I represents the geometric mean of their tw
intensities.

The Hamiltonian in Eq.~1! is readily recognized as th
simple pendulum or rotor, except that the conjugate variab
are now position and momentum rather than the usual a
and angular momentum. This distinction becomes relev
for some quantum applications, as described in Sec. IV
and in Ref. @17#. The pendulum equation is an importa
starting point in the study of nonlinear dynamics, and
optical system represented by Eq.~1! is a valuable realiza-
tion of this one-dimensional paradigm.

B. Time-dependent interaction

Equation ~1! illustrated the realization of a system
which the atomic motion is analogous to the behavior o
pendulum. We can exploit the control available in the expe
ment on the optical standing wave to achieve more inter
ing systems. By adding a time dependence to the laser in
sity, we can vary the amplitude of the potential as a funct
of time. Also, by differentially shifting the optical phases~or
frequencies! of the beams that compose the standing wa
we can vary its position~or velocity! as a function of time.
With these considerations, we see that the electric fi
of the standing wave takes the formEW (x,t)
5 ŷEoF1(t)cos$kL@x2F2(t)#%cos(vLt), whereF1(t) andF2(t)
represent the controls applied to the amplitude and ph
respectively, of the optical standing wave. The time sca
for these controls ranged between;25 ns~the response time
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of our optical modulators! and milliseconds~the duration of
the experiments!. The amplitude and phase modulatio
were therefore slow compared to the parametersvo anddL
relevant to the derivation of Eq.~1!, so they change tha
equation by simply modifying the amplitude and phase of
sinusoidal potential. The generic time-dependent poten
thus has the form

H~x,p,t !5
p2

2M
1VoFamp~ t !cos@2kLx2Fph~ t !#. ~2!

The parametric dependence of this system becomes c
on switching to dimensionless variables of time (t5t/tu),
displacement along the standing wave (f52kLx), and the
atomic momentum (r5p 2kLtu /M ). In these scalings, the
quantitytu is an appropriate time scale chosen with regard
the time dependence of the interaction. These transfor
tions, together with an energy scale defined byH(f,r,t)
5H(x,p,t)8v r tu

2/\, lead to the dimensionless Hamiltonia

H~f,r,t!5
r2

2
1k famp~t!cos@f2 f ph~t!#. ~3!

The scaled potential amplitude here isk[Vo8v r tu
2/\, and

f amp and f ph represent the amplitude and phase controls
posed on the optical standing wave. The recoil-shift f
quencyv r5\kL

2/2M is a characteristic of the atomic trans
tion. In these transformed variables, the Schro¨dinger
equation in the position representation becomes

i k–
]

]t
C~f,t!5F2

k–2

2

]2

]f2
1k famp~t!

3cos@f2 f ph~t!#GC~f,t!. ~4!

The dimensionless quantization scalek– results from the
commutation relation between momentum and posit

@f,r#5 i k–, and is given byk–[8v r tu .
As with the classical analyses of this system, the quan

analysis is similar to that of a pendulum. In the quantu
picture, however, it is important to note a distinction betwe
our system and a pendulum. As noted earlier, the conjug
variables for this system are position and momentum ra
than angle and angular momentum. The distinction is one
more than nomenclature. The basis states for a pendu
have the spatial boundary conditionC l(f12p)5C l(f). In
contrast, the basis states for an atom in the optical poten
have the more general Bloch conditionC l(f12p)
5ei2pnC l(f), wheren indicates the quasimomentum of th
basis state. A quantum description of the atom’s dynam
must therefore consider the general case where the ei
states have different values of quasimomentum.

Another general note on this transformation concerns
measure of the atomic momentum. Since an atom inter
with a near-resonant standing wave, its momentum can
changed by stimulated scattering of photons in the two co
terpropagating beams. If a photon is scattered from one
these beams back into the same beam, the result is no
change in the atom’s momentum. But if the atom scatter
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photon from one of the beams into the other, the net cha
in its momentum is two photon recoils. The atom can th
exchange momentum with the standing wave only in units
2\kL52 recoils56 cm/s3M . This quantization of momen
tum exchange can also be seen by considering the effe
the optical potential on an atomic plane wave with mom
tum po . Because of the optical potential’s spatial periodici
it couples the plane wave only to an evenly spaced ‘‘ladd
of plane waves with momentapo62n\kL . Thus the ex-
change of momentum is restricted to multiples of 2\kL .

Since the atomic momentum is naturally measured in
unit of momentum transfer, we use the quantityp/2\kL
when describing measured momenta in this paper. In
transformed, dimensionless units, this quantity is

p

2\kL
5

r

k–
. ~5!

For a sample of atoms initially confined to a momentu
distribution narrower than one recoil, the discreteness of
momentum transfer would result in a final momentum dis
bution characterized by evenly spaced peaks, with the pe
located on the ladder of coupled momentum states. In
experiments, the initial momentum distributions were sign
cantly wider than two recoils (spo/2\kL;2.3), so the ob-
served final momenta had smooth distributions rather t
discrete structures.

C. Simulations

A careful characterization of the experimental conditio
is necessary for a detailed comparison with theoretical p
dictions, both analytical and numerical. This motivati
leads naturally to the question of what initial state should
used in the quantum simulations to model the initial sam
of atoms used in the experiment. The choice is motivated
several factors.

Our initial atomic sample was prepared in a magne
optic trap that cooled the sodium atoms to a distribution t
was Gaussian in momentum and position. Although the w
functions for individual atoms in the sample were n
known, theensembleof atoms had a well-characterized di
tribution. As described below in Sec. III, the rms momentu
width of the distribution was roughly 4.6\kL ~or, in scaled
units, sr;2.3), and its spatial width was large in compa
son to the period of the standing wave. It should be no
that the atoms in the atomic sample are essentially nonin
acting, and so the observed effects are essentially sin
particle effects. Thus a wave packet evolving according
the Schro¨dinger equation would be a natural choice to d
scribe the behavior of the atomic sample. In our choice of
initial wave packet, we considered that the initial sample
atoms was directly measured to have a Gaussian distribu
in momentum. The spatial and momentum widths of the d
tribution are unrelated, precluding the use of a sin
minimum-uncertainty wave packet, although a superposi
of minimum-uncertainty packets@18# can be used. Also, a
illustrated by the analysis of the quantum resonances in
IV D, the calculation can be performed by time-evolving
ensemble of initial plane-wave states weighted by the Ga
ge
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ian distribution and summing the final probability distrib
tions.

In our space-time integration of the Schro¨dinger equation,
the initial state is a ‘‘squeezed’’ Gaussian wave packet

F~f!5~2psf
2 !1/4exp@2A~f2f̄ !21 i r̄~f2f̄ !/ k– #,

~6!

whereA[(122isfr / k–)/4sf
2 . This wave packet has cen

troid ~mean! values of position and momentum given byf̄

and r̄. Its variancessf
2 , sr

2 , and sfr[^(f2f̄)(r2 r̄)

1(r2 r̄)(f2f̄)&/2 are related by the uncertainty conditio

sf
2 sr

25( k–/2)21sfr
2 . With this wave packet, the initia

widths inf andr may be independently specified by adjus
ing the anticommutatorsfr to maintain the uncertainty con
dition. In our simulations we chose the momentum widthsr

to match the measured initial value in the experiment, and
the spatial widthsf to be large with respect to a period o
the standing wave (2p in these units!. Although it is clear
that Eq. ~6! is a very special initial condition with specia
coherence properties, simulations using this wave pac
agree well with the observations from our experiments
observe dynamical localization. This agreement will be se
in our analyses of quantum resonances~Sec. IV D!. As will
be shown by our simulations of the modulated standi
wave system~Sec. V C!, there is also very close agreeme
between our squeezed-wave-packet analysis and results
tained using plane-wave and coherent-state superposit
The agreement among these calculations and with the ex
mental observations indicates that the dynamics of local
tion is not sensitive to the form of the initial condition. I
some sense, this is not surprising. The classical chaotic
namics leads to a randomization of phase in the quan
evolution ~readily seen from an analogy with Anderson l
calization@13#!. This randomization destroys any special c
herences present in the initial condition; thus any cohere
in the final distribution is a result purely of the dynamics.
detailed analysis of the more complicated issue of mix
versus pure state evolution in the context of these exp
ments will be presented elsewhere@19#.

III. EXPERIMENTAL METHOD

The experimental study of momentum transfer in tim
dependent interactions consists of three important com
nents: the initial conditions, the interaction potential, and
measurement of atomic momentum. The initial distributi
ideally should be narrow in position and momentum, a
should be sufficiently dilute so that atom-atom interactio
can be neglected. The time-dependent potential should
one dimensional, for simplicity, with full control over th
amplitude and phase. In addition, noise and dissipation m
be minimized to enable the study of quantum effects. Fina
the measurement of final momenta after the interact
should be highly sensitive and accurate. It is possible to
alize all these conditions using the techniques of laser c
ing and trapping. This section describes the apparatus
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FIG. 1. Beam configurations for the exper
ments. Laser beams illuminate the atoms in t
vacuum chamber in a standards1-s2 configura-
tion, to provide cooling and trapping~molasses
and MOT!. The standing-wave beam is th
source of the interaction potential for the trapp
and cooled sodium atoms. For the experiments
Sec. V, the standing wave was constructed
two counterpropagating beams with separate f
quency shifts as depicted in part~a! of this figure.
A differential shifting of the two beams provide
the required control on the velocity of the stan
ing wave. For the experiments of Sec. IV, th
layout in ~b! was used to provide the require
control over the standing-wave amplitude whi
holding its position fixed.
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techniques used in our experiments. Further details on
realization of these experiments can be found in Ref.@20#.

A. Initial conditions

Our initial conditions were a sample of ultracold sodiu
atoms that were trapped and laser-cooled in a magneto-o
trap ~MOT! @8,21#. The atoms were contained in a quar
ultrahigh-vacuum cell at room temperature. The trap w
formed with three pairs of counterpropagating, circularly p
larized laser beams with diameters of roughly 2 cm. Th
beams intersected in the center of the glass cell, toge
with a magnetic field gradient provided by current-carryi
wires arranged in an anti-Helmholtz configuration. Th
s1-s2 configuration is standard, and is used in many la
ratories. A dye laser supplied the MOT beams. The laser
locked by saturated-absorption FM spectroscopy to a
quency 65 MHz to the blue of the (3S1/2,F52)
→(3P3/2,F53) sodium transition atlL52p/kL5589 nm.

Using this scheme, we trapped approximately 105 atoms
into a cloud that had a Gaussian distribution in position w
a rms width ofsxo50.12–0.17 mm. The sample of atom
had a Gaussian distribution in momentum, with a spread
spo54.6-6\kL , corresponding to a temperature
25–45 mK. ~The accuracy of these measurements was be
than the variation in MOT size and momentum.! This con-
fined, cold distribution defined the initial conditions of th
sample of atoms before they were exposed to the interac
potential.

B. Interaction potential

A second dye laser provided the optical standing wa
that formed the interaction potential. This laser was typica
he
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tuned 5210 GHz from resonance. Different beam configur
tions were used in the experiments described here, w
acousto-optic and electro-optic modulators controlling
time-dependent amplitude and phase.

Figure 1~a! shows the configuration for the modulate
standing-wave experiment of Sec. V. An acousto-op
modulator~AOM2 in the figure! turned the interaction po
tential on and off with a 10290 % switching time of 25 ns.
The beam’s power was monitored on a photodiode~PD1!.
The light was then split into a pair of spatially filtered beam
that overlapped to form a standing wave intersecting
trapped atoms in the vacuum cell. These two beams w
considerably wider than the distribution of atoms, with typ
cal waists of 1.9 mm. An electro-optic modulator~EOM2!
shifted the phase of one of the beams, and hence the pos
of the standing wave along its axis. The magnitude of t
shift was determined by inserting the Mach-Zehnder interf
ometer indicated by the dashed lines in Fig. 1~a! and analyz-
ing the PM sidebands in the heterodyne signal on photodi
PD2. The velocity of the standing wave in the lab frame a
could be varied by introducing a differential frequency sh
between the two beams with two more acousto-optic mo
lators ~AOM3 and AOM4!. These elements provided th
control, indicated byFph(t) in Eq. ~2!, over the position—or
phase—of the standing-wave potential as a function of tim

To modulate the phase of the potential, we varied
phase of one of the two laser beams that make the stan
wave. The electro-optic modulator EOM2 in Fig. 1~a! pro-
vided this control. By applying an oscillating driv
VEOsinvmt we modulated the phase of the beam with
amplitudepVEO/Vp , and gave the phase of the standi
wave a time dependencel sinvmt, with l[2kL DL
5 1

2 pVEO/Vp .
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To calibrate the modulation indexl with the voltage ap-
plied across the EO, we performed an optical heterod
measurement, as shown by the dotted lines in Fig. 1~a!. Dur-
ing the calibration, AOM4 imparted a 40-MHz frequenc
offset in the beam that passed through it, and EOM2 add
phase modulation ofl sinvmt. The signal from photodiode
PD2 was observed on a spectrum analyzer. A beat not
40 MHz was seen, along with frequency sidebands at p
and minus integer multiples ofvm/2p51.3 MHz away from
40 MHz. These sidebands had amplitudes given by
Bessel functions of the modulation index: the amplitude
the nth-order sideband scaled withJn(l). By varying the
amplitudeVEO of the rf drive to EOM2, the frequency side
bands go to zero as the corresponding Bessel function
through a zero. By correlating the applied voltagesVEO that
led to zeros in the sidebands with the corresponding mo
lation indices, a calibration between voltage and modulat
index was acquired. Since the modulation index was subs
tially linear in the applied voltage, interpolation between t
calibrated points provided a measure of the values ofl used
in the experiments with an accuracy of better than 1%.

For the kicked rotor experiments described in Sec. IV
simpler configuration was used. In these experiments,
position of the standing wave was fixed, and its amplitu
was varied to produce the time-dependent interactions.
interaction Hamiltonian thus had the form of Eq.~2!, with
Fph(t) fixed and the time dependence imposed throu
Famp(t). The configuration for these experiments is depic
in Fig. 1~b!. The standing wave was formed here by traini
the beam directly onto the atomic sample and retroreflec
the beam with mirrorM2, effectively doubling the available
power while providing a fixed node in the standing wave
the surface of the retroreflecting mirror. The initial eleme
~AOM5! was an acousto-optic modulator that could diffra
80% of the optical power into the first-order spot. This fa
modulator, with a 10% to 90% rise time of 25 ns, provid
the amplitude modulation of the interaction beam. The n
acousto-optic modulator~AOM6! provided additional ampli-
tude control for experiments in which we carried out prelim
nary studies of the effects of amplitude noise on the dyna
ics. Photodiode PD1 monitored the temporal pulse profi
during the experiments. These profiles were digitized a
stored for later analysis. To measure the phase stability o
standing wave, a Michelson interferometer was construc
by inserting a beam splitter as shown by the dashed mark
Fig. 1~b!. This measurement indicated that the standing-w
phase at the atomic sample was stable to within a few
cent of a period for times up to 100ms.

To what extent is Eq.~1! a good representation of a so
dium atom exposed to the optical standing wave in th
experiments? The assumptions used in the derivation of
equation are appropriate for these systems. The two-l
atom model and the rotating-wave approximation are w
justified for the optical-frequency transition. Also, an ad
batic elimination of the excited-state amplitude is appropri
for detuningsdL that are large in comparison to the linewid
G and the recoil-shift frequencyv r , which are both charac
teristics of the atomic transition. Specifically, for the sodiu
D2 transitionG/2p510 MHz andv r /2p525 kHz. Our ex-
perimental detunings of several GHz clearly satisfied th
conditions. The large detuning also led to a small probabi
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of spontaneous emission during the experiments. It is a
important to note that for the sodiumD2 transition in linearly
polarized light, the light shift was the same for all themF

sublevels. As a consequence, it was not necessary to pre
the atoms in specificmF sublevels for them to experience th
same optical potentials in the experiment.

The one-dimensional nature of Eq.~2! comes from the
assumption that the laser beams have spatially uniform tr
verse profiles. In these experiments the width of the ato
sample (sxo;0.15 mm rms! during the illumination by the
standing wave was small compared to the width of the la
profile ~which had a 1/e field waist ofwo;1.9 mm!, so the
transverse variations in the potential were indeed small.
optical potential also had an uninterrupted periodic struct
over the entire spatial extent of the atomic sample. Since
standing wave had a coherence length~tens of meters! that
was large compared to the difference in pathlength taken
its two component beams (;1 m!, the periodicity of the
potential was coherent over the entire region of the ato
sample. Unlike the periodic potentials in condensed ma
systems, this realization is thus effectively free from imp
fections in the lattice periodicity as well as from dissipati
mechanisms such as phonon scattering.

C. Measurement of the atomic momentum

Our original vision of these experiments involved a
atomic beam whose transverse momentum distribu
would be affected by interactions with the standing wa
The interactions could then be characterized by observ
the transverse spatial distribution of the atomic beam so
distance after it had passed through the standing wave
very important simplification in the design of these expe
ments was the formulation of an alternative scheme for m
suring the momentum transferred to the atoms from
standing wave.

The method we developed to make this measurem
greatly simplified the data collection and obviated the ne
for an atomic beam altogether. The method is illustrated
Fig. 2. Panel~a! of this figure shows the initial condition o
a spatially confined and cooled atomic sample created by
MOT. After being exposed to the interaction potential in o
experiments, as shown in panel~b!, the atoms had a new
momentum distribution, but the duration of the interactio
was short enough that their spatial distribution remained
sentially unchanged. They were then allowed to drift in t
dark for a controlled durationtdrift of a few milliseconds, as
illustrated in panel~c!. During this time, the atoms under
went ballistic motion and their momentum distribution r
sulted in a widened spatial distribution. We then measu
the spatial distribution of the atoms. Their motion was froz
by turning on the optical trapping beams in zero magne
field to form optical molasses@8#, as shown in panel~d!.
Under these conditions of ‘‘freezing molasses’’ the atom
motion is rapidly damped, and for short times~tens of ms!
their motion is negligible in comparison to the dimensions
the sample. A charge-coupled-device~CCD! camera was
used to image the fluorescence of the atoms in this molas
The resulting image recorded the new spatial distribution
the atoms, and since we knew the time of flighttdrift we were
able to derive the atomic momentum distribution from t
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spatial distribution. The entire sequence of the experim
was computer controlled.

IV. KICKED ROTOR

The classicald-kicked rotor, or the equivalent standa
mapping, is a textbook paradigm for Hamiltonian cha
@22,7#. The Hamiltonian for the problem is given by

H~f,r,t!5
r2

2
1K cosf (

n52`

`

d~t2n!. ~7!

The evolution consists of a series of impulses, spa
equally in time, whose strengths are governed by the
motion between successive kicks. The magnitudeK of the
impulse is called the stochasticity parameter; it is this qu
tity that controls the dynamics for the system.

Using a Fourier expansion, Eq.~7! can be rewritten as

H5
r2

2
1 (

m52`

`

K cos~f2m2pt!. ~8!

The potential here is a series of pendulumlike terms, e
of which has the form of the potential in Eq.~1!. These
terms, however, are displaced in velocity bydf/dt52mp.
For small values ofK, the phase portrait of this system
similar to that of the simple pendulum, but it is period
along the momentum axis. Instead of having one island

FIG. 2. Procedure for measuring the atomic momentum dis
bution. After the reproducible initial preparation of a spatially co
fined and cooled sample of atoms~a!, the atoms were exposed to a
interaction potential~b!. To measure the effect of the interaction o
the sample’s momentum distribution, the atomic sample was t
allowed to expand freely for a controlled timetdrift ~c! that was long
in comparison to the interaction time from step~b!. After the free
expansion, the final spatial distribution was frozen in optical mol
ses~d! and imaged. The final momentum distribution was then
termined by deconvolving the initial spatial distribution from th
final spatial distribution, and by considering the timetdrift over
which the expansion occurred.
nt

s

d
e
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f

closed librational orbits, it has an infinite number of su
islands. Each of thesenonlinear resonancescorresponds to
one of the pendulumlike terms in Eq.~8!. According to the
stationary-phase condition, the phase space is describe
nonlinear resonances spaced regularly in momentum
df/dt5rm[2mp. The width of each resonance depen
on the amplitude of the corresponding potential term. In
d-kicked rotor of Eq.~8!, these amplitudes all have the un
form valueK. For sufficiently large values ofK, neighboring
resonances ‘‘overlap’’ with each other. That is, particl
starting at points in phase space between the resonance
exhibit chaotic motion. The quantum version of this proble
has also played an important role in the field of quant
chaos, and a wide range of effects has been predicted@23#.

In our realization, we have the cosine potential of t
standing wave multiplied by a train of pulses with finite am
plitude and pulse width. This system was analyzed pre
ously in the context of molecular rotation excitation@24#. To
achieve a system of the form in Eq.~7!, we fixed the phase
of our standing wave but turned its amplitude on and off in
series ofN short pulses with periodT. The optical arrange-
ment was described in Sec. III@Fig. 1~b!#. The result was an
interaction that can be described by the Hamiltonian
Eq. ~2! with Famp5(n51

N F(t2nT) andFph50:

H5
p2

2M
1Vo cos~2kLx! (

n51

N

F~ t2nT!. ~9!

Here the functionF(t) is a narrow pulse in time centered
t50 that modulates the intensity of the standing wave. T
sum in this equation represents the periodic pulsing of
standing wave: its amplitudeVo is multiplied by a value in
the range 0<F(t)<1.

The fast acousto-optic modulator@AOM5 in Fig. 1~a!#
provided the amplitude modulation of the standing wave
form the pulse train(F(t). This modulator had a 10290 %
rise and fall time of 25 ns. The computer that controlled t
experiment downloaded the desired number of pulses
pulse period to a programmable arbitrary wave form gene
tor, which in turn triggered the fast pulse generator. T
programmed profile had a constant amplitude, but becaus
signal limitations in the pulse generator and in AOM5, ea
pulse had a rounded profile. The consequences of this ro
ing are discussed below.

With the scaling introduced in Sec. II and the unit of tim
taken to beT, the period of our pulse train, the Hamiltonia
for this system becomes

H5
r2

2
1K cosf (

n51

N

f ~t2n!. ~10!

The train ofd functions in Eq.~7! has been replaced here b
a series of normalized pulsesf (t)5F(tT)/*2`

` F(tT)dt.
The scaled variablet5t/T measures time in units of th
pulse period. As described earlier,f52kLx is a measure of
an atom’s displacement along the standing-wave axis,
r5p 2kLT/M is the dimensionless momentum.

In addition to the temporal profile of the pulses, the e
perimental parameters that determine the classical evolu
of this system are contained in the stochasticity parameteK,

i-

n

-
-
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while the quantum evolution depends additionally on the

rameterk–. In terms of the physical parameters of Eq.~9!,
these two dimensionless quantities are

K[8VoaTtpv r /\, k–58v rT. ~11!

Heretp is the full width at half maximum~FWHM! duration
of each pulse, anda[*2`

` F(t)dt/tp is a shape factor tha
characterizes the integrated power for a particular pulse
file: it is the ratio of the energy in a single pulse to the ene
of a square pulse with the same amplitude and duration.
a train of square pulses,a51, while for Gaussian pulses
a5(p/4 ln 2)1/251.06. These two cases provide effecti
bounds for the experimentally realized pulses. As discus
in the following analysis, the exact shape of the pulses d
not significantly affect the experimental results if the puls
are sufficiently narrow in time.

A. Classical analysis

The classical equations of motion for the ideald-kicked
rotor can be integrated over a single impulse, resulting in
Chirikov-Taylor map or ‘‘standard map’’@22,25#. Calcula-
tions with this map show chaotic diffusion for values ofK
greater than;1 @26#. Extensive theoretical and numeric
studies have been carried out on thed-kicked rotor @23#.
These studies, however, have typically considered the i
limit of d-function pulses. It is important to consider wh
effects are introduced by the finite width and amplitude
our experimental pulses.

To assess the effects of a finite pulse-width, consider
case where the pulse profilef (t) is Gaussian with an rms
width t rms. The potential from Eq.~10! can be expanded in
a discrete Fourier series:

H5
r2

2
1 (

m52`

`

Km cos~f22mpt!, ~12!

with

Km[K exp@2 1
2 ~2mpt rms!

2#. ~13!

The nonlinear resonances are located atrm52mp. This
expansion is similar to the resonance structure of
d-kicked rotor described above@Eq. ~8!#. In Eq. ~12!, how-
ever, the widths of successive resonances decrease be
of the exponential term in the coefficientsKm . Thus the
phase portrait of this system is not periodic along the m
mentum axis@as was the case for the system of Eq.~8!#. It
does, of course, retain the spatial periodicity imposed by
periodicity of the standing wave potential.

Since the coefficientKm is the amplitude of a nonlinea
resonance centered at a velocity ofdf/dt52mp, it is an
effective stochasticity parameter for atoms with moment

p/2\kL52mp/ k–. Equation~13! indicates that the effective
stochasticity parameter experienced by an atom falls off w
increasing magnitude of the atom’s momentum. The det
of the falloff are governed by the actual pulse profile.
general, the effective stochasticity parameterKm is given by
the Fourier coefficients of the pulse profile, and can be c
culated from the experimental pulse train.
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The nonzero pulse widths thus lead to a finite number
significant resonances in the classical dynamics. The di
sion resulting from the overlapping resonances is there
restricted to a band in phase space, limited by an upper
mentum boundary and a lower momentum boundary,
shown in Fig. 3. The boundaries to this band of diffusion c
be estimated, using Eq.~13!, to find the momenta at which
the effective stochasticity parameter drops below a value
;4.

The width of the band of diffusion is experimentally co
trollable. Although the unbounded phase space correspo
ing to ideald-function pulses cannot be practically reache
the width of the band can be made arbitrarily large by d
creasing the pulse duration and increasing the well de
This can be seen as a limiting case of the result in Eq.~13!,
with K fixed andt rms→0 ~that is, under conditions of large
well depth Vo and infinitesimal pulse widthtp). Although
Eq. ~13! was derived for a Gaussian pulse profile, the w
ening of the band of diffusion is a general effect that can
achieved by decreasing the pulse duration for any pulse
file.

It is important to note that it is not necessary to have
infinitesimal pulse width to model thed-kicked rotor. In
practice, it is sufficient to choose a pulse width that ensu
both that the chaotic band is significantly wider than t
range of atomic momenta accessed in the experiment,
thatKm is approximately uniform over this range. These co
ditions can be achieved by using a sufficiently short pu
duration.

The classical phase portrait shown in Fig. 3 illustrates
bounded region of chaos that arises from the finite pu
duration under typical experimental parameters. The cen
region of momentum in this phase portrait is in very clo
correspondence with thed-kicked rotor model with K

FIG. 3. Poincare´ surface of section for the kicked rotor using
train of Gaussian pulses of widthtp /T51/15.8 ~FWHM! to simu-
late the experimental sequence. The stochasticity parameter in
calculation isK511.6. The central region of the portrait shows t
chaotic motion expected for this value of the stochasticity para
eter. Bounded regions due to the finite pulse width are also evid
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511.6. This stochasticity parameter is well beyond
threshold for global chaos.

Classically, then, the atoms are expected to diffuse in m
mentum until they reach the momentum boundary that
sults from the finite pulse width. According to a classic

model, the energy of the system̂1
2 (p/2\kL)2& grows lin-

early in time. In terms of the number of pulsesN, this energy

is ^ 1
2 (p/2\kL)2&5^ 1

2 (r/ k–)2&5K2N/4k–2.

B. Quantum predictions

The existence of manifestly quantum mechanical beha
in classically chaotic systems has been widely studied
documented over the past several years. Thed-kicked rotor
has played an especially important role in these studies
cause of its well-characterized classical limit and the simp
analytic nature of its time-evolution operator. Of particu
interest to us are two phenomena seen in the quantum
lution, dynamical localization@27# and quantum resonance
@12#.

A quantum analysis of this system starts with the Sch¨-
dinger equation@Eq. ~4!# for the pulsed modulation o
Eq. ~10!. During the time span of the experiment, this equ
tion can be written as

i k–
]C

]t
5F2 k–2

2

]2

]f2
1K cosf (

n52`

`

f ~t2n!GC. ~14!

The temporal periodicity of the pulses can be exploited,
ing Floquet’s theorem, to describe the dynamics entirely
terms of the Floquet states~the eigenstates of the single
pulse evolution operator! which have been studied exten
sively in the ideal case off (t)5d(t) @11#. An analysis of
this system by Chirikov, Izrailev, and Shepelyansky@28#
shows that this system diffuses classically only for sh
times during which the discrete nature of the Floquet sp
trum is not resolved. An analysis of that system indicates
the Floquet states of Eq.~14! are exponentially localized in
momentum. Since these states form a complete basis fo
system, the initial condition of an atom in the experime
can be expanded in a basis of Floquet states. Subseq
diffusion is limited to values of momentum covered by tho
Floquet states that overlap with the initial conditions of t
experiment. As seen for the ideal rotor, the energy of
system should grow linearly with the number of kicksN, in
agreement with the classical model, until a ‘‘quantum bre
time’’ N* . After this time, the momentum distribution ap
proaches that of the Floquet states that constituted the in
conditions, and the linear growth of energy is curtailed. T
is the phenomenon of dynamical localization. As shown
Ref. @13#, an explicit analogy can be made with the pheno
enon of Anderson localization by transforming Eq.~14! into
the form of the tight-binding model of condensed-mat
physics.

The Floquet states are typically localized with an exp

nential distribution in momentum, uC(r/ k–)u2;exp

(2ur/k–u/j), characterized by a ‘‘localization length’’j. The
momentum distribution has a 1/e half-width given by

p* /2\kL5r* / k–[j̄, where j̄ is the average localization
length of the Floquet states. A heuristic estimate@28,29# for
e
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the localization length in terms of the stochasticity parame

and the quantization scale isj̄5K2/4k–2.
In our experiments it was the rms momentum that

derived from each measured distribution, since its definit
applies as well to the prelocalized Gaussian distributions
to the exponentially localized ones. For an exponential d
tribution, this quantity is larger than the localization leng

by a factor ofA2: prms* /2\kL5A2K2/4k–2. According to the

heuristic estimate,j̄ is also a measure of the number of kic
before diffusion is limited by dynamical localization, so fo

the quantum break time we haveN* 5 j̄5K2/4k–2.
An inherent assumption in the derivation of heuristic e

timate was the lack of structure in the phase space of
system. Small vestigial islands of stability, however, do p
sist for values ofK greater than 4. This structure introduc
in the dynamics a dependence on the location of the in
conditions in phase space, which is usually characterized
fluctuations in the localization length.

It is important to consider the above two estimates of
localization length and the quantum break time when cho
ing experimental parameters. In order for a localized dis
bution to be observable,prms* must be significantly smalle
than the region enclosed by the classical boundary to di
sion. The localized momentum distribution, achieved af
the quantum break time, must also be wider than the ini
distribution. These two considerations dictate an up
bound of the duration of each kick. Other consideratio
similarly lead to constraints on the experimental parame
@20,15#.

C. Experimental results and analysis

We subjected the cooled and trapped atoms to the p
odically pulsed standing wave of Eq.~9!, and recorded the
resulting momentum distributions as was described in S
III. To study the temporal evolution of the atomic samp
under the influence of the periodic kicks, these measu
ments were repeated, starting from identical initial atom
distributions and with the well depth, pulse period, and pu
duration fixed, but with increasing numbers of kicks (N).
These successive measurements provided the mome
distributions at different times in the atomic sample’s evo
tion. Such a series of measurements is shown in Fig. 4. H
the pulse had a period ofT51.58ms, and a FWHM duration

of tp5100 ns. For these conditions,k– has a value of 2.0. The
largest uncertainty in the experimental conditions is in
well depthVo , which depends on the measurement of t
absolute power of the laser beams that make up the stan
wave and their spatial profile over the sample of atoms.
within 10%, the well depth for these data had a spatial r
value of Vo /h59.45 MHz. The pulse profile was nearl
square, leading to a stochasticity parameter ofK511.6, the
same value as for the phase portrait in Fig. 3.

The distributions clearly evolve from an initial Gaussia
at N50 to an exponentially localized distribution after a
proximatelyN58 kicks. We measured distributions out un
N550, and found no further significant change. The sm
peak on the right side of this graph is due to nonuniformit
in the detection efficiency. As discussed in Sec. III, the re
tive numbers of atoms with different momenta is measu
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by their fluorescence intensity on a CCD camera. Fac
such as spatial variations in the illuminating light and u
evenness in the chamber windows between the ato
sample and the CCD camera lead to minor limitations l
this on the resolution of the momentum measurements.

The growth of the mean kinetic energy of the atoms a
function of the number of kicks was calculated from the da
and is displayed in Fig. 5. It shows an initial diffusive grow
until the quantum break timeN* 58.4 kicks, after which
dynamical localization is observed@30#. The solid line in this
figure represents the predicted classical diffusion; the d
follow this prediction until the break time. The dashed line
the same figure is the heuristically calculated energy of
localized distribution. Though not shown here, classical a
quantum calculations both agree with the data over the
fusive regime. After the quantum break time, the class
growth would slow slightly due to the falloff inK predicted
by Eq. ~13! for nonstationary atoms. The observed distrib
tion would lead to a reduction of only 15% in the stocha
ticity parameter. Thus, the classically predicted ene
would continue to increase diffusively. The measured dis
butions, however, stop growing, as predicted by the quan
analysis.

D. Quantum resonances

Another intrinsically quantum-mechanical effect antic
pated by theoretical analyses of thed-kicked rotor is the
phenomenon of quantum resonances, which results f
appropriately-chosen values of the kicking periodT. Be-
tween kicks, the atoms undergo free evolution for a fix
duration. During a free-evolution period, a plane wave w
momentumpo accumulates a quantum phase proportiona
its energy, and evolves by a phase factor exp@2ipo

2T/2M\#
5exp@2i(po/2\kL)24v rT#. During a kick, when the atom is
exposed to the optical potential, the initial state only coup
to other plane waves with momentapo62m\kL ~with inte-
germ). This restriction to a ladder of momentum states se
rated by two photon recoils is dictated by the periodicity
the optical potential, as discussed earlier~Sec. II B!.

FIG. 4. Experimental time evolution of the momentum distrib
tion from the initial Gaussian until the exponentially localized d
tribution. N indicates the elapsed number of kicks. The break ti
is approximately eight kicks. Fringes in the freezing molasses le
small asymmetries in some of the measured momentum distr
tions, as seen here and in the inset of Fig. 5. The vertical sca
measured in arbitrary units and is linear.
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If the initial momentumpo is zero or an integer multiple
of two photon recoils—an ‘‘integer-momentum state,’’ the
particular values of the pulse periodT lead to phase factors
of unity for the free-evolution. This condition, known as
quantum resonance@12#, occurs when the pulse periodT is

chosen so that the free-evolution coefficient 4v rT(5 k–/2) is
a multiple of 2p. Quantum resonances have been stud
theoretically, and it was shown that at these values of
pulse period, the atoms are not expected to demonstrat
calization. Instead, the atoms should show a ballistic moti
in which the energy grows quadratically with time@12#. We
have scannedT from 3.3 to 50ms, and observed quantum
resonances when the free-evolution coefficient was chose
be an integer multiple ofp. The even multiples led to a
phase factor between kicks of unity; the odd multiples led
a phase factor of21 ~a flipping of sign between each kick!,
and exhibited similar behavior.

Our experimental results are shown in Fig. 6. Ten qu
tum resonances were found forT ranging between 5ms ~cor-
responding to an evolution factor ofp) and 50ms ~10p! in
steps of 5ms. Under each of these resonance conditions
atomic sample expanded to a saturated final momen
distribution—a behavior qualitatively different from the a
ticipated ballistic motion. The final distributions were als
unlike the dynamically localized distributions discussed e

e
to
u-
is

FIG. 5. Energy^(p/2\kL)2&/2 as a function of the number o
kicks ~N!. The solid dots are the experimental results. The solid l
shows the linear growth predicted by the classical theory. T
dashed line is the saturation value computed from the theore
localization lengthj. No adjustable parameters were used in det
mining the theoretical values. The inset shows an experiment
measured exponential distribution, on a logarithmic scale, tha
consistent with the theoretical prediction. Exact numerical simu
tions ~not shown! closely match the experimental data.
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3890 PRE 60C. F. BHARUCHA et al.
lier, in that they did not exhibit the hallmark exponenti
profiles. The saturated momentum distributions as a func
of T are shown in Fig. 6~a!. The narrower, nonexponentia
profiles are the resonances, between which the exponen
localized profiles are recovered. The time evolution of
distribution at one particular resonance is shown in Fig. 6~b!,
from which it is apparent that the observed distribution sa
rates after very few kicks.

Why is the observed behavior so different from the p
diction of ballistic motion? The earlier analysis of quantu
resonances@12# considered only the evolution of intege
momentum states, so the momenta were restricted to va
of p52n\kL , with integer values ofn. ~In the dimensionless

units, this restriction isr5 k–n.! This is clearly not the ap-
propriate basis in our experiments, in which the init
sample of atoms was an ensemble distributed continuous
momentum. An appropriate model for our experiments m
recognize this continuous distribution.

The following analysis proceeds from a more general c
sideration of dynamics. The time-evolution opera

over one kicking period is U5exp„2 i (n1n)2k–

/2…exp(2iK cosf/k–), where the momentum~in the dimen-

sionless units! is r5 k–(n1n) with an integer partn and a
quasimomentumnP@2 1

2 , 1
2 ). When the pulse periodT satis-

fies the condition for quantum resonances, this relation

FIG. 6. Experimental observation of quantum resonances:~a!
Occurrence as a function of the period~T! of the pulses. The surfac
plot is constructed from 150 momentum distributions measured
eachT, afterN525 kicks. This value ofN ensures that the momen
tum distributions are saturated for the entire range ofT shown. On
resonance, the profiles are nonexponential and narrower than
localized distributions that appear off resonance. Note that the
tical scale is linear.~b! Time evolution of a particular resonanc
(T510 ms!.
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duces toU5exp(2ik–nn)exp(2iK cosf/k–), where the first
term corresponds to a linear kinetic term.~Here a phase tha
depends only on the quasimomentum has been dropp!
Hence the dynamics are integrable and the evolution of
wave function across thesth kick is given by cs(f)

5e2 iK cos(f2k–n)/k–cs21(f2k–n), where we have used the fac

that exp(2ik–nn) is a space-translation operator.
We can iterate this relation to determine the behavior o

single plane-wave state. Starting from an initial stateC0(f)

with momentumro5 k–(no1no), we find that afterN kicks,
the wave function evolves to

CN~f!5expS 2 i
K

k–
(
l 50

N21

cos@f2~N2 l ! k–no# D
3ei (no1no)(f2N k–no)

5 (
n52`

`

anei (n1no)f, ~15!

with

an}Jn2noS K

k–

sinNbo

sinbo
D , ~16!

and withbo5 k–no/2. Thus the final wave function has com
ponents on a ladder of evenly spaced momentum state

k–(n1no). The amplitudesan have a dependence on th
number of elapsed kicksN through the ordinary Bessel func
tionsJn . Their periodic dependence onN causes recurrence
in time that are related to the ‘‘antiresonances’’ discuss
recently@31# in a different context.

The quantityuanu2 obtained from Eq.~16! indicates the
distribution in momentum resulting afterN kicks from an
initial plane wave with momentumro . Note that in the spe-
cial case where the initial state is an integer-momentum s
(no50), we recover the expected ballistic motion: the m

mentum distribution isuanu25Jn2no

2 (NK/ k–), with an energy

that grows quadratically with the number of elapsed kicksN.
For initial momentum states withnoÞ0, the motion is bal-
listic for a time N!1/bo , after which the wave function is
bounded in momentumr with a width of ;2K/sinbo .

The final step to comparing with the experimentally me
sured distributions is an ensemble average over the in
momentum distribution of the atomic sample,Fi(ro)

5A exp@2k–2(no1no)
2/2sro

2 #, wheresro is the initial width
of the distribution. The final momentum distribution of th
ensemble afterN kicks is then given by

F f~r!5A(
n8

exp@2 k–2~n81n!2/2sro
2 #Jn2n8

2 S K

k–

sinNb

sinb D ,

~17!

where n and n are the integer and fractional parts of th

momentumr5 k–(n1n), and whereb5 k–n/2. A compari-
son of the analytic expression for the momentum distribut
with the experimentally measured ones for the first six kic
is shown in Fig. 7. The observed evolution clearly suppo

r
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the analysis. Estimates of the temporal widths of the qu
tum resonances,}j̄21/2, are also readily obtained@32#.

Are there signatures of the ballistic motion hidden in t
experimental curves? Figure 8 shows numerical simulati
of the time evolution for three distinct situations. Figure 8~a!
considers the case where the quantum resonance condit
not satisfied. The expected exponentially localized distri
tion develops beyond the break time. The evolution show
Fig. 8~b! is at a quantum resonance, and it results in a m
mentum distribution that is considerably narrower than
localized momentum distribution of Fig. 8~a!. As shown
above, this is a consequence of the integrable evolution
the noninteger-momentum initial conditions. Figure 8~c!
considers a very narrow, near-plane-wave initial condit
for which the predicted ballistic motion is recovered. O
closer scrutiny, a ridge corresponding to the ballistic evo
tion of part of the initial conditionis clearly visible in Fig.
8~b!, though the associated signal was below the availa
resolution of the experiments. This signal would be enhan
in experiments that started with narrower initial momentu
distributions.

The observed behavior at the quantum resonances
consequence of the non-plane-wave initial conditions and
particular, of the weighted sum of evolutions for all allowe
values of the quasimomentum. In fact, this is an import
aspect of simulating the conditions of the experiment a
must be considered even in the Floquet analysis, an issu
will return to during our quantum analysis of experiments
Sec. V.

V. MODULATED STANDING WAVE

Dynamical localization is not a phenomenon unique to
d-kicked rotor, but is observable in other systems as w
Following a suggestion by Graham, Schlautmann, and Zo
@33#, we carried out experiments in which the interacti
potential had a constant amplitude, but in which the phas
the standing wave was modulated. In these experiments

FIG. 7. Evolution of the momentum distribution at a particu
resonance (T510 ms! over the first six kicks. The experimenta
points are shown in panel~a!, while the analytic expression derive
in the text is used to obtain the curves shown in panel~b!. No
adjustable parameters were used in this calculation.
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subjected our atoms to a standing wave of near-resonant
in which the nodal pattern was modulated at a frequencyvm
and with an amplitudeDL. Once again, a large detuning wa
used to eliminate the upper level dynamics of the two-lev
atom model, leading to an effective Hamiltonian given
Eq. ~2!, with Famp(t)51 andFph(t)52kL DL sinvmt:

H5
p2

2M
1Vo cos@2kL~x2DL sinvmt !#. ~18!

Although this Hamiltonian may look somewhat differe
than thed-kicked rotor, it also displays the phenomenon
dynamical localization. Indeed, our experiments with th
modulated standing wave preceded our realization of

FIG. 8. Quantum simulations of evolution of the momentu
distribution~a! away from any quantum resonance,~b! at a quantum
resonance for an initial packet with the experimental moment
width, and ~c! at resonance but with a narrow initial momentu
distribution. See the text for discussion of the ridge seen in pa
~b!.
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kicked rotor, and provided our first observations of dynam
cal localization. These experiments are further describe
this section.

A. Classical analysis

The resonance structure of the system can be expose
expanding the Hamiltonian~18! in a discrete Fourier series

H5
p2

2M
1Vo (

n52`

`

Jn~l!cos 2kL~x2nvmt !, ~19!

whereJn are ordinary Bessel functions,vm[vm/2kL is the
velocity difference between neighboring resonances, anl
52kLDL is the modulation index—the amplitude of th
phase modulation in radians.

As in the case of thed-kicked rotor, the resonances a
located at regular intervals in momentum. The amplitudes
these resonances, however, depend on a controllable ex
mental parameter: the modulation indexl. The dependence
on l allows this system to be tuned between regimes wh
the classical dynamics are integrable~for example,l50) to
those in which they are chaotic.

The classical resonances are evenly separated in mo
tum with central values ofpn5nMvm and widths ofDpn

54AMVouJn(l)u. Therefore, the resonances have subst
tial widths only for n<l, and for momenta greater tha
lMvm the phase space is characterized by essentially
evolution. For certain ranges ofl, these resonances overla
leading to a band of chaos with boundaries in moment
that are proportional tol. A sample of atoms starting with
initial conditions within this band will remain within it, con
fined to momenta in the range6Mlvm . A simple estimate
of the atomic momentum after a long time is a uniform d
tribution within these bounds@33#; such a distribution would
have an rms momentum of

prms

2\kL
5

Mlvm

A3 2\kL

5
l

A3

vm

8v r
. ~20!

The calculated rms width of the atomic momentum dis
bution as a function ofl is shown in Fig. 9. Here the modu
lation frequency wasvm/2p51.3 MHz and the well depth
was Vo /h53.1 MHz. The ergodic estimate of Eq.~20! is
denoted by the solid line. For values ofl,3, this estimate
agrees roughly with an integration of the classical Ham
ton’s equations@34# ~shown in the figure! calculated for an
interaction time of 20ms. For larger values ofl, the simu-
lation is lower than the estimate, because in only 20ms the
initial distribution ~with prms/2\kL;2.3) does not have time
to diffuse up to the limit represented by the solid line. Exce
for values ofl close to 7.0~explained below!, the longer-
duration classical simulation presented in the figure agr
with the estimate over the entire range ofl shown. The
20-ms classical simulation also shows oscillations in the d
fusion rate as a function ofl: peaks in the rms momentum
correspond to values ofl leading to large diffusion rates
while dips indicate slow diffusion. The estimated classi
boundary of Eq.~20! and the simulations shown in this fig
ure are based on the measured value ofVo , which has an
-
in

by

f
eri-

re

en-

-

ee

-

-

-

t

es

-

l

uncertainty of610%. This uncertainty stems from the me
surement of optical power in the interaction beams used
the standing wave.

To understand this variation in diffusion rates, we exa
ine the resonances in Eq.~19!. The dependence of the diffu
sion rate onl is due to oscillations inJn(l), which gives the
amplitudes of the resonances. The various resonances
and shrink as the modulation indexl is increased. For cer
tain values ofl, a resonance can be significantly diminishe
or even removed in the case wherel is a zero of one of the
Bessel functions. As shown in the computer-generated ph
portraits of Fig. 10~top panel!, this variation in the ampli-
tudes of the resonances strongly influences the dynamic
the system. In general, the phase spaces are mixed,
islands of stability surrounded by regions of chaos. Ato
from the initial distribution that are contained within an i
land remain trapped, while those in the chaotic domain
diffuse out to the boundaries. In the case of a diminish
resonance, the islands of stability from neighboring re
nances might not be destroyed by resonance overlap. Th
the case withl53.8, for whichJ1(l) has its first zero. The
final momentum spread in this case is governed largely
the surviving island due to the resonance atp050, and the
system is nearly integrable. The stability of this syste
causes the reduced diffusion shown by the dip in the cla
cal simulation of Fig. 9 atl53.8. Indeed, all of the dips in

FIG. 9. rms momentum width as a function of the modulati
amplitudel, for vm/2p51.3 MHz andVo /h53.1 MHz. Experi-
mental data are denoted by diamonds. The empty diamonds ar
an interaction time of 10ms, and the solid diamonds are for 20ms.
The straight line denotes the estimated classical boundary from
~20!. The four curves indicate numerical simulations. Two integ
tions of the classical model are shown, one for a simulation time
20 ms ~222!, and one for the long time limit that shows th
maximum diffusion in momentum~———!. The observed data lie
well below these curves for some values ofl. A 20 ms integration
of the Schro¨dinger equation~. . .! is also presented for compariso
with the corresponding experimental data. Also shown is a quan
calculation in which the system’s solution was found in terms of
Floquet states~.2.2.!.
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FIG. 10. Poincare´ surfaces of section~upper
panel!, classical momentum distributions~middle
panel!, and experimentally measured momentu
distributions with Floquet theory~bottom panel,
theory marked by lines! for runs with parameters
similar to those in Fig. 9. The vertical scales fo
the distributions are logarithmic and are mark
in decades.
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this simulation occur at values ofl that are near zeros o
Bessel functions; the dynamics of the corresponding syst
are stabilized by the diminished resonances. This stabil
tion even affects diffusion in the long-time classical simu
tion: for values ofl close to 7.0@the second zero ofJ1(l)#,
the initial conditions are trapped in a large island of stabi
at p050. For these values ofl, the diffusion is limited by
the width of the island to a region much smaller than t
given by the estimated classical boundary.

B. Quantum predictions

We performed a quantum-mechanical calculation of
expected momentum distributions by integrating the Sch¨-
dinger equation using the initial squeezed wave packet f
Eq. ~6!. A second quantum simulation was made by findi
the Floquet basis states of the system~for particular values of
l) and weighting them by the momentum distribution of t
experimental initial conditions. By taking the unit of time
be 1/vm , we have the dimensionless variablest5vmt, f
52kLx, and r5(2kL /Mvm)p. We expand the eigenstate
of our Hamiltonian in a two-dimensional Floquet state bas
$c(f,t)5einfe2 i etu(f,t)%. Hereu(f,t) reflects the peri-
odic structure of the Hamiltonian; that is,u(f12p,t)
5u(f,t12p)5u(f,t). n is the quasimomentum, ande is
the quasienergy of a basis state. Expandingu(f,t) in a Fou-
rier series, in both the space and time variables, allows
to write the basis states in the formce(f,t)
5(mncmn

e ei (n1n)fe2 i (m1e)t. The Schro¨dinger equation in

this representation is thenecmn
e 5„2m1( k–/2)(n1n)2

…cmn
e

2(k/2k–)( l 52`
` Jl(l)(cm2 l ,n21

e 1cm1 l ,n11
e ), where k

5 k–Vo /\vm and k–58v r /vm .
For eachn, the set of quasienergies and the correspond

basis states are obtained by numerically solving this Sc¨-
dinger equation. To make contact with the experiment,
needed to use appropriate initial conditions in the numer
simulations. As described earlier, the initial condition of t
atomic sample had a distribution characterized by its wi
in space (sxo;0.15 mm! and momentum (spo;4.6\kL).
The sample was therefore an ensemble of atomic states
a spatial extentsxo wide in comparison to the length sca
lL/2 of the periodic potential. Because there was thus
s
a-
-

t

e

m

,

s

g
o
e
al

h

ith

o

information about the position of the initial states up to
very large length scale, we modeled the initial sample
atoms as a statistical ensemble of momentum eigenst
The distribution was taken to be a Gaussian in momentup
according to the experimentally measured value ofspo . For
each momentum state, we made an expansion in terms o
Floquet states in order to analyze their time evolution. T
final momentum distribution was then averaged over
evolution time to determine a distributionP(p,po), wherepo
is the initial momentum. The final ensemble momentum d
tribution was found by integratingP(p,po) against the initial
distribution ofpo .

rms momentum calculations from the two quantum sim
lations are shown along with the classical calculations in F
9. Momentum distributions calculated from the Floqu
analysis are also shown in the lower panel of Fig. 10. F
some regimes of well depth and modulation frequency,
quantum simulations closely match the classical simulatio
As discussed below, however, the quantum simulations
dict exponential distributions with significantly smalle
widths in the regimes where the classical dynamics
largely chaotic.

C. Experimental results and analysis

Along with the classical and quantum simulations, Fig
shows our experimental data points~diamonds! for interac-
tion times of 10 and 20ms @34,35#. The 20-ms data match the
classical simulations well for small values ofl and for val-
ues ofl that are close to zeros of Bessel functions. For ot
values ofl, however, the experimentally measured distrib
tions are much narrower than those predicted classically
was the case in the kicked rotor experiments, the reason
this reduction in the width of the observed momentum d
tributions is dynamical localization.

In Fig. 9 the empty and solid diamonds are experimen
data for the two interaction times; the proximity of the tw
sets of data points shows that these results are close to
ration for the range ofl shown. Atl50 the system is inte-
grable, and momentum is trivially localized. Asl is in-
creased the phase space becomes chaotic, but grow
limited by the estimated classical boundary. Our measu
momentum distributions~in Fig. 10, bottom panel! are char-
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acteristically ‘‘boxlike’’ in this regime (0<l<2). This ob-
servation is consistent with the picture of a uniform diffusi
limited by the boundaries in momentum.

As l is increased beyond a critical value, the rms width
the observed momentum distributions exhibits the predic
oscillations as a function ofl. For certain ranges of the
modulation indexl, the observed rms widths deviate su
stantially from the classical prediction. These ranges co
spond to conditions of large diffusion rates—at the peaks
rms width of the classical prediction. For these values ol
the classical phase space is predominately chaotic. An
ample of the resulting dynamics is shown in Fig. 10 forl
53.0. The classically predicted distribution~middle panel! is
roughly uniform, but the experimentally observed distrib
tion is exponentially localized by dynamical localizatio
hence the rms value is reduced.

As l is increased further, the oscillations in the resona
amplitudes lead to phase portraits with large islands of
bility, as in the case ofl53.8. For these values ofl the
experimental initial conditions lie in a predominantly stab
region in the classical phase space, and the measured
mentum is close to the classical prediction.

As can be seen from Figs. 9 and 10, experimental res
for both the rms momentum as well as the momentum
tributions agreed very well with the quantum analyses.
simplify the Floquet analysis, the small spread inK propor-
tional to laser intensity variations across the ensemble
atoms was approximated by the use of a rms value ofK. The
rms momentum spread from the Floquet analysis in Fig
~dot-dashed line! and the momentum distributions in Fig. 1
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~bottom panel! show good agreement with the experime
over the entire range ofl.

The Floquet analysis once again illustrates the need
consider all values of the quasimomentan when analyzing
the experimental results. As demonstrated recently@36#, fail-
ure to do so can lead to spurious inferences@37,38#. Further,
the agreement between the plane-wave Floquet analys
distribution of minimum-uncertainty states@18# and the re-
sults using a squeezed wave packet supports our argum
in Sec. II C and validates the squeezed-wave-packet
proach.

VI. SUMMARY

This work establishes an experimental testing ground
quantum chaos, in which it should be possible to study m
aspects of this field. These experiments introduce a met
of studying one-dimensional quantum systems with virtua
ideal spatial periodicity and no noise. The experiments all
direct comparisons to theoretical predictions with no adju
able parameters, and direct control over all experimental
rameters.

Some topics for future study include noise-induced de
calization @17,39–41# and localization in two and three di
mensions@11#. Using recently developed techniques of ato
cooling and manipulation, it should be possible to prep
the atoms in a localized region of phase space. This s
preparation technique would enable a detailed study of qu
tum transport in mixed phase space. Other interesting to
to study would be tunneling from islands of stability, chao
assisted tunneling, and quantum scars@42#.
,
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