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Dynamical localization of ultracold sodium atoms
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We report a study of atomic motion in time-dependent optical potentials. We measure momentum transfer in
parameter regimes for which the classical dynamics are chaotic, and observe the quantum suppression of chaos
by dynamical localization. The high degree of control over the experimental parameters enables detailed
comparisons with theoretical predictions, and opens new avenues for investigating quantum chaos.
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[. INTRODUCTION of dynamical localization11], which is an important mecha-

The past few years have seen a resurgence in the use nism for the quantum suppression of classical chaotic dy-
classical mechanics in the description of strongly perturbechamics. Though initially predicted in a simple time-
and strongly coupled quantum systems in atomic physicslependent paradigm system called #hkicked rotor, it has
[1,2], where the traditional perturbative treatment of thebeen since shown to be a universal effect in a class of
Schralinger equation breaks down. In particular, recent addynamical systemfl2]. In brief, the chaotic evolution of a
vances in classical nonlinear dynamics and chaos have hathssical ensemble of particles results in a diffusive growth
important applications in the description of the photoabsorpof energy. Under certain conditions, however, the quantum
tion spectrum of Rydberg atoms in strong magnetic fieldddlynamics follows this growth only for a limited time, called
[3], the microwave ionization of highly excited hydrogen the break time, after which it saturates. At this point, the
atoms[4], and the excitation of doubly excited states of he-particles also assume a distinctive exponential probability
lium atoms[5]. These examples, together with recent workdistribution in momentum(in the one-dimensional case
on mesoscopic systerh8], explore classical-quantum corre- This numerically observed effect has also been shown to be
spondence in situations that exhibits chaos in the classicalosely related to Anderson localization, which describes a
limit, an area of study referred to as “quantum chad3T. metal-insulator transition at low temperatufés,14.

Parallel developments in laser cooling and trapping tech- This paper describes our work on the interaction of an
nigues have led in recent years to spectacular advances in tbesemble of cold atoms with two particular time-dependent
manipulation and control of atomic motidB]. At the ultra-  optical potentials. Both optical potentials were created by the
cold temperatures that are now attainable, the wave nature afteraction of the atoms with a standing wave of light. The
atoms becomes important. These advances have led to tfiest interaction was a direct realization of the paradigm
development of the new field of atom optifg]. Until re-  kicked system. By contrast, the second was a continuous-
cently, the primary focus in atom optics has been the develtime interaction, which nonetheless exhibited the same phe-
opment of optical elements such as atomic mirrors, beamomenon of dynamical localization. Together, these experi-
splitters, and lenses for atomic de Broglie waves. Our workments and the accompanying analysis have provided a
has emphasized the regime of time-dependent potentials, amdntrolled context for the study of dynamical localization
hence of dynamics, in atom optics. In particular, we studyand quantum chad40].
momentum distributions of ultracold atoms exposed to time- This paper starts with this introduction, and continues in
dependent, one-dimensional, optical dipole forces that ar8ec. Il with a background description of the interaction be-
typically highly nonlinear. Thus the classical motion can be-tween the cooled atoms and the standing wave in our experi-
come chaotic. As dissipation may be made negligibly smaliment, and of the simulations used to model the interaction.
in this system, quantum-mechanical effects can become inBSection Ill proceeds with a detailed description of our ex-
portant. Our work has established that these features togethperimental realization of this system, including the method
make atom optics a simple and controlled setting for theby which we cooled the atomic sample to create the initial
experimental study of quantum chadd®]. conditions for the interaction, the system for making the

A particular focus for our discussions is the phenomenorstanding wave that imposed the interaction potential, and the

techniques for measuring the final momentum distribution of
the atomic sample after the interaction. Section IV presents
*Present address: Conley, Rose and Tayon, P.C., 816 Congreli®e experiments that realized the kicked rotor, and Sec. V

Ave., Suite 320, Austin, TX 78701. concerns the experiments in which the atomic sample was
TPresent address: KLA-Tencor, 1701 Directors Blvd., Suite 1000exposed to a continuous phase-modulated standing wave.
Austin, TX 78744. These two sections each present a classical analysis of the
*present address: NOAA/CMDL, NGand Halocompounds Divi-  system, and describe how the quantum predictions differ
sion, 325 Broadway, Boulder, CO 80303. from this analysis. In addition, Sec. IV presents our obser-
8present address: Department of Mathematics, CSI-CUNY, Stateviations and analyses of quantum resonances. The work is

Island, NY 10314. summarized in Sec. VI.
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II. BACKGROUND: A TWO-LEVEL ATOM IN A of our optical modulatojsand millisecondgthe duration of
STANDING-WAVE POTENTIAL the experiments The amplitude and phase modulations

were therefore slow compared to the parametgysand &,

relevant to the derivation of Eql), so they change that

Consider a two-level atom of transition frequensy in-  equation by simply modifying the amplitude and phase of the
teracting with a standing wave of near-resonant light. If thesinusoidal potential. The generic time-dependent potential
standing wave is composed of two counterpropagating linthus has the form
early polarized beams, each with field amplituélé/ and 5
wave numbgkL_z ZzT/ALz wL/C: then the atom is subjected H(x,p,t)= ;—M+V0Fam,{t)00$2kLX— Fa®] (2
to an electric fieldE(x,t) = 2E,y cosf X)cos(,t), wherex
andp are the center-of-mass position and momentum of the
atom.

If the laser light is tuned far from atomic resonance, it can
be showr{ 15,14 that the center-of-mass motion of the atom
in the standing-wave field can be described by a one
dimensional Schinger equation for a point particle, with a
Hamiltonian given by

A. Physical model

The parametric dependence of this system becomes clear
on switching to dimensionless variables of time=(t/t,),
displacement along the standing wawg= 2k, x), and the
atomic momentum g=p 2k, t,/M). In these scalings, the
quantityt,, is an appropriate time scale chosen with regard to
the time dependence of the interaction. These transforma-
tions, together with an energy scale defined #y¢,p,7)

p? = H(x,p,t)8wrtﬁ/ﬁ, lead to the dimensionless Hamiltonian
H(x,p,t)=m+v0 cos X, X. (1) ,

p
P, 7)== +kf —f . 3
HereM represents the mass of the atom. The potential has a Hd.p.1)=7 amd 7)C04 ¢ Fpr(7)] @

period of one-half the optical wavelength, and an amplitude
V, that is proportional to the intensity of the standing waveThe scaled potential amplitude herekis:V,8w,t{/#i, and
and inversely proportional to its detuning,V, fampandf,, represent the amplitude and phase controls im-
=2#(T/2)?1/ 8| ¢, Wherel is the linewidth of the transi- posed on the optical standing wave. The recoil-shift fre-
tion andl is the intensity(irradiance of each of the beams in quencyw, =%k /2M is a characteristic of the atomic transi-
the standing wave, the detuning is given By=w, —w,, tion. In these transformed variables, the Sdimger
andl ¢,= 7 w,I'/3\? is the saturation intensity for the tran- equation in the position representation becomes

sition. For theD, transition in sodium atoms, the saturation

intensity has a value df,,=6 mWi/cnt. In the case where ikillf( y=| k_z a—2+kf )
the two constituent beams of the standing wave are not per- ar 6 7)= 2 2 amil 7
: . o
fectly matched] represents the geometric mean of their two
intensities.
The Hamiltonian in Eq.(1) is readily recognized as the xcog p—Fou(7)]| V(7). (4)
simple pendulum or rotor, except that the conjugate variables

are now position and momentum rather than the usual angle ) ] o

and angular momentum. This distinction becomes relevanthe dimensionless quantization scafe results from the
for some quantum applications, as described in Sec. Iv Fommutation relation between momentum and position
and in Ref.[17]. The pendulum equation is an important [ ¢,p]=iK, and is given byk=8w,t,.

starting point in the study of nonlinear dynamics, and the As with the classical analyses of this system, the quantum
optical system represented by E({) is a valuable realiza- analysis is similar to that of a pendulum. In the quantum

tion of this one-dimensional paradigm. picture, however, it is important to note a distinction between
our system and a pendulum. As noted earlier, the conjugate
B. Time-dependent interaction variables for this system are position and momentum rather

Equation (1) illustrated th lizati ¢ ¢ . than angle and angular momentum. The distinction is one of
guation (1) illustrate € realization of a SyStem N 5.6 than nomenclature. The basis states for a pendulum

which the atomic motion is analogous to the behavior of g, .« the spatial boundary conditigin( ¢+ 27) =" (). In

penq[ulurr:k.]We ct:gn lextplo(ljt_the contr?l avar:I'abIe n the.e;(pe”'contrast, the basis states for an atom in the optical potential
ment on the optical standing wave to achieve more interest= . "« 1ore general Bloch conditiod,(é+ 2)

ing systems. By adding a time dependence to the laser inten- 27 (), wherew indicates the quasimomentum of the
sity, we can vary the amplitude of the potential as afunctiorbasis stalte A quantum description of the atom’s dynamics
of time. Also, by differentially shifting the optical phases must therei‘ore consider the general case where the eigen-
frequencies of the beams that compose the standing Wave ioc have different values of quasimomentum.

m?tk?at%e\z/sirzyéfng%seﬁgtriq:r:svexgltgezs tiaflfcmtﬁtelzonelce)igirgeﬁel Another general note on this transformation concerns the
) ' - %easure of the atomic momentum. Since an atom interacts
of the standing wave takes the formE(x,t)  with a near-resonant standing wave, its momentum can be
=yEF(t)cogk [x—F,(t)]}cos(w, t), whereF(t) andF,(t) changed by stimulated scattering of photons in the two coun-
represent the controls applied to the amplitude and phasegrpropagating beams. If a photon is scattered from one of
respectively, of the optical standing wave. The time scaleshese beams back into the same beam, the result is no net
for these controls ranged betweer25 ns(the response time change in the atom’s momentum. But if the atom scatters a
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photon from one of the beams into the other, the net changen distribution and summing the final probability distribu-
in its momentum is two photon recoils. The atom can thugions.
exchange momentum with the standing wave only in units of In our space-time integration of the Sctinger equation,

2hk =2 recoils=6 cm/s< M. This quantization of momen- the initial state is a “squeezed” Gaussian wave packet
tum exchange can also be seen by considering the effect of

the optical potential on an 'atomic pla}n? wave with momen- d>(¢)=(2wa(2ﬁ)l’4exq—A(¢— &) +ip(p—d)IK],
tum p, . Because of the optical potential’s spatial periodicity, (6)
it couples the plane wave only to an evenly spaced “ladder”
of plane waves with momentp,*2n#k, . Thus the ex-
change of momentum is restricted to multiples @fk2 .

. ; . s =(1- . Th ave packet has cen-
Since the atomic momentum is naturally measured in th|§NhereA (1=2i0y, /K)/4oy IS wave p

unit of momentum transfer, we use the quantufik, troid_(mear) values of position and momentum given by
when describing measured momenta in this paper. In thand p. Its variances(ré, cr,z), and o,,=((¢—®)(p—p)
o%02=(kI2)?+05,. With this wave packet, the initial
widths in ¢ andp may be independently specified by adjust-
ing the anticommutatos ,, to maintain the uncertainty con-
dition. In our simulations we chose the momentum wiath

to match the measured initial value in the experiment, and set
the spatial widtho, to be large with respect to a period of

P _r

©)

For a sample of atoms initially confined to a momentum
distribution narrower than one recoil, the discreteness of th . . . o
momentum transfer would result in a final momentum distri—ﬁqetséandéng. wave (& in th.eTg ‘.Jt.”'?? Altgict)_ugh 'Ft;]S clear |
bution characterized by evenly spaced peaks, with the peal@"’l q.(6) is a Very special initial condition with Specia
located on the ladder of coupled momentum states. In Ou(l‘,oherence pr_opertles, S|mule_1t|ons using this wave packet
experiments, the initial momentum distributions were signifi-29rée well with the observations from our experiments to
cantly wider than two recoils o,/ k ~2.3), so the ob- observe dynamical localization. This agreement will be seen

served final momenta had smooth distributions rather thal! our analyses of quantum resonan¢gec. IV D). As will
discrete structures. be shown by our simulations of the modulated standing-

wave systen{Sec. V Q, there is also very close agreement
between our squeezed-wave-packet analysis and results ob-
tained using plane-wave and coherent-state superpositions.
A careful characterization of the experimental conditionsThe agreement among these calculations and with the experi-
is necessary for a detailed comparison with theoretical premental observations indicates that the dynamics of localiza-
dictions, both analytical and numerical. This motivation tion is not sensitive to the form of the initial condition. In
leads naturally to the question of what initial state should b%ome sense, this is not surprising_ The classical chaotic dy-
Used in the quantum Simu|ati0nS to mOde| the |n|t|al SampIQ]amiCS |eads to a randomization Of phase in the quantum
of atoms used in the experiment. The choice is motivated byyolution (readily seen from an analogy with Anderson lo-
several factors. _ calization[13]). This randomization destroys any special co-
Our initial atomic sample was prepared in a magnetoherences present in the initial condition; thus any coherence
optic trap that cooled the sodium atoms to a distribution that, the final distribution is a result purely of the dynamics. A
was Gaussian in momentum and position. Although the wavgetajled analysis of the more complicated issue of mixed

functions for individual atoms in the sample were notyersys pure state evolution in the context of these experi-
known, theensemblef atoms had a well-characterized dis- ments will be presented elsewhéd).

tribution. As described below in Sec. lll, the rms momentum
width of the distribution was roughly 44, (or, in scaled
units, o,~2.3), and its spatial width was large in compari-
son to the period of the standing wave. It should be noted
that the atoms in the atomic sample are essentially noninter- The experimental study of momentum transfer in time-
acting, and so the observed effects are essentially singlelependent interactions consists of three important compo-
particle effects. Thus a wave packet evolving according taents: the initial conditions, the interaction potential, and the
the Schrdinger equation would be a natural choice to de-measurement of atomic momentum. The initial distribution
scribe the behavior of the atomic sample. In our choice of thédeally should be narrow in position and momentum, and
initial wave packet, we considered that the initial sample ofshould be sufficiently dilute so that atom-atom interactions
atoms was directly measured to have a Gaussian distributiocen be neglected. The time-dependent potential should be
in momentum. The spatial and momentum widths of the disene dimensional, for simplicity, with full control over the
tribution are unrelated, precluding the use of a singleamplitude and phase. In addition, noise and dissipation must
minimum-uncertainty wave packet, although a superpositiofe minimized to enable the study of quantum effects. Finally,
of minimum-uncertainty packe{d 8] can be used. Also, as the measurement of final momenta after the interaction
illustrated by the analysis of the quantum resonances in Seshould be highly sensitive and accurate. It is possible to re-
IV D, the calculation can be performed by time-evolving analize all these conditions using the techniques of laser cool-
ensemble of initial plane-wave states weighted by the Gaussag and trapping. This section describes the apparatus and

C. Simulations

IIl. EXPERIMENTAL METHOD
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techniques used in our experiments. Further details on theined 5-10 GHz from resonance. Different beam configura-

realization of these experiments can be found in R&f). tions were used in the experiments described here, with
N N acousto-optic and electro-optic modulators controlling the
A. Initial conditions time-dependent amplitude and phase.

Our initial conditions were a sample of ultracold sodium _ Figure 1a) shows the configuration for the modulated
atoms that were trapped and laser-cooled in a magneto-optRianding-wave experiment of Sec. V. An acousto-optic
trap (MOT) [8,21]. The atoms were contained in a quartz Modulator(AOM2 in the figurg turned the interaction po-
ultrahigh-vacuum cell at room temperature. The trap wagéntial on and off with a 1690 % switching time of 25 ns.
formed with three pairs of counterpropagating, circularly po-1he beam’s power was monitored on a photodi¢e®1).
larized laser beams with diameters of roughly 2 cm. Thesd € light was then split into a pair of spatially filtered beams
beams intersected in the center of the glass cell, togethdfi@t overlapped to form a standing wave intersecting the

: - : ; . trapped atoms in the vacuum cell. These two beams were
with a magnetic field gradient provided by current-carrying . . N X .
wires arranged in an anti-Helmholtz configuration. Thisconsmerably wider than the distribution of atoms, with typi-

o" -0~ configuration is standard, and is used in many Iabo-Ca! waists of 1.9 mm. An electro-optic modulat@OM2) "
ratories. A dye laser supplied the MOT beams. The laser wa%h'fted the phase of one of the beams, and hence the position

locked by saturated-absorption FM spectroscopy to a fre9f the standing wave along its axis. The magnitude of this

shift was determined by inserting the Mach-Zehnder interfer-

quency 65_ MHz _to the _blue Of_ the %’Z'F 2) ometer indicated by the dashed lines in Figp)-and analyz-
—(3P3»,F=3) sodium transition at;, =27x/k, =589 nm. . . . . .

. . : ing the PM sidebands in the heterodyne signal on photodiode

Using this scheme, we trapped approximately afbms . . .

. " PR . ... PD2. The velocity of the standing wave in the lab frame also
into a cloud that had a Gaussian distribution in position W|thCOLIId be varied by introducing a differential frequency shift
a rms width ofo,,=0.12-0.17 mm. The sample of atoms y 9 N y

) L . etween the two beams with two more acousto-optic modu-
had_a Gaussian distribution in momentum, with a spread OF;tors (AOM3 and AOM4. These elements provided the
0po=4.6-6hk_, corresponding to a temperature of

control, indicated byF,(t) in Eq. (2), over the position—or
25-45 uK. (The accuracy of these measurements was better o P i ) .
than the variation in MOT size and momentiirfihis con- phase—of the standing-wave potential as a function of time.

fined, cold distribution defined the initial conditions of the _, | _modulate the phase of the potential, we varied the

sample of atoms before they were exposed to the interactio%hase of one of the two laser beams that make the standing
poteﬁtial y P wave. The electro-optic modulator EOM2 in Figial pro-

vided this control. By applying an oscillating drive
VeoSinw,t we modulated the phase of the beam with an
amplitude mVgo/V,, and gave the phase of the standing

A second dye laser provided the optical standing wavevave a time dependence sinwyt, with N=2k AL
that formed the interaction potential. This laser was typically=3 7Veo/V,, .

B. Interaction potential
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To calibrate the modulation index with the voltage ap- of spontaneous emission during the experiments. It is also
plied across the EO, we performed an optical heterodynémportant to note that for the sodiuby, transition in linearly
measurement, as shown by the dotted lines in Fig. Dur-  polarized light, the light shift was the same for all thg
ing the calibration, AOM4 imparted a 40-MHz frequency sublevels. As a consequence, it was not necessary to prepare
offset in the beam that passed through it, and EOM2 added the atoms in specifimg sublevels for them to experience the
phase modulation ok sinw,t. The signal from photodiode same optical potentials in the experiment.

PD2 was observed on a spectrum analyzer. A beat note at The one-dimensional nature of E(R) comes from the
40 MHz was seen, along with frequency sidebands at pluassumption that the laser beams have spatially uniform trans-
and minus integer multiples @, /27=1.3 MHz away from  verse profiles. In these experiments the width of the atomic
40 MHz. These sidebands had amplitudes given by th&ample ¢,,~0.15 mm rm$ during the illumination by the
Bessel functions of the modulation index: the amplitude Ofstanding wave was small compared to the width of the laser
the nth-order sideband scaled with,(\). By varying the  profile (which had a ¥ field waist ofw,~1.9 mm, so the
amplitudeVeo of the rf drive to EOM2, the frequency side- ransyerse variations in the potential were indeed small. The

bands go to zero as the corresponding Bessel functions ggyica| potential also had an uninterrupted periodic structure
through a zero. By correlating the applied voltades, that ey the entire spatial extent of the atomic sample. Since the

led to zeros in the sidebands with the corresponding mOduétanding wave had a coherence lengtins of metersthat

!atlon indices, a callbratlon between vqltage and modulat|or\1Nas large compared to the difference in pathlength taken by
index was acquired. Since the modulation index was substan-

tially linear in the applied voltage, interpolation between the'tS two component beams~(1 m), the periodicity of the

calibrated points brovided a measure of the values oed potential was coherent over the entire region of the atomic
in the expeprimentps with an accuracy of better than 1%. sample. Unlike the periodic potentials in condensed matter

systems, this realization is thus effectively free from imper-

. For the k'erd rotor experiments described in _Sec. V. Fections in the lattice periodicity as well as from dissipation
simpler configuration was used. In these experiments, the

position of the standing wave was fixed, and its amplitudemGChamSmS such as phonon scattering.
was varied to produce the time-dependent interactions. The
interaction Hamiltonian thus had the form of E@), with
Fpn(t) fixed and the time dependence imposed through Our original vision of these experiments involved an
Famdt). The configuration for these experiments is depictecatomic beam whose transverse momentum distribution
in Fig. 1(b). The standing wave was formed here by trainingwould be affected by interactions with the standing wave.
the beam directly onto the atomic sample and retroreflectinghe interactions could then be characterized by observing
the beam with mirroM 2, effectively doubling the available the transverse spatial distribution of the atomic beam some
power while providing a fixed node in the standing wave atdistance after it had passed through the standing wave. A
the surface of the retroreflecting mirror. The initial elementvery important simplification in the design of these experi-
(AOM5) was an acousto-optic modulator that could diffractments was the formulation of an alternative scheme for mea-
80% of the optical power into the first-order spot. This fastsuring the momentum transferred to the atoms from the
modulator, with a 10% to 90% rise time of 25 ns, providedstanding wave.
the amplitude modulation of the interaction beam. The next The method we developed to make this measurement
acousto-optic modulatdAOM6) provided additional ampli- greatly simplified the data collection and obviated the need
tude control for experiments in which we carried out prelimi- for an atomic beam altogether. The method is illustrated in
nary studies of the effects of amplitude noise on the dynamFig. 2. Panela) of this figure shows the initial condition of
ics. Photodiode PD1 monitored the temporal pulse profilea spatially confined and cooled atomic sample created by the
during the experiments. These profiles were digitized andOT. After being exposed to the interaction potential in our
stored for later analysis. To measure the phase stability of thexperiments, as shown in pangd), the atoms had a new
standing wave, a Michelson interferometer was constructechomentum distribution, but the duration of the interactions
by inserting a beam splitter as shown by the dashed marks was short enough that their spatial distribution remained es-
Fig. 1(b). This measurement indicated that the standing-wavaentially unchanged. They were then allowed to drift in the
phase at the atomic sample was stable to within a few perark for a controlled duratioty,; of a few milliseconds, as
cent of a period for times up to 10@s. illustrated in panelc). During this time, the atoms under-
To what extent is Eq(1) a good representation of a so- went ballistic motion and their momentum distribution re-
dium atom exposed to the optical standing wave in thesaulted in a widened spatial distribution. We then measured
experiments? The assumptions used in the derivation of thithe spatial distribution of the atoms. Their motion was frozen
equation are appropriate for these systems. The two-levddy turning on the optical trapping beams in zero magnetic
atom model and the rotating-wave approximation are welfield to form optical molassef8], as shown in pane(d).
justified for the optical-frequency transition. Also, an adia-Under these conditions of “freezing molasses” the atoms’
batic elimination of the excited-state amplitude is appropriatemotion is rapidly damped, and for short tim@gsns of m$
for detuningss, that are large in comparison to the linewidth their motion is negligible in comparison to the dimensions of
I' and the recoil-shift frequency, , which are both charac- the sample. A charge-coupled-devi€ECD) camera was
teristics of the atomic transition. Specifically, for the sodiumused to image the fluorescence of the atoms in this molasses.
D, transition'/27=10 MHz andw,/27m=25 kHz. Our ex-  The resulting image recorded the new spatial distribution of
perimental detunings of several GHz clearly satisfied theséhe atoms, and since we knew the time of flight we were
conditions. The large detuning also led to a small probabilityable to derive the atomic momentum distribution from the

C. Measurement of the atomic momentum
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closed librational orbits, it has an infinite number of such
islands. Each of theseonlinear resonancesorresponds to
one of the pendulumlike terms in E@8). According to the
sodium stationary-phase condition, the phase space is described by
atoms nonlinear resonances spaced regularly in momentum at
d¢/d7=p,,=2mm. The width of each resonance depends
gradient on the amplitude of the corresponding potential term. In the
o-kicked rotor of Eq.(8), these amplitudes all have the uni-
form valueK. For sufficiently large values df, neighboring
resonances “overlap” with each other. That is, particles
starting at points in phase space between the resonances will
exhibit chaotic motion. The quantum version of this problem
has also played an important role in the field of quantum
chaos, and a wide range of effects has been predje@d

In our realization, we have the cosine potential of the
standing wave multiplied by a train of pulses with finite am-
plitude and pulse width. This system was analyzed previ-
ously in the context of molecular rotation excitatid@¥]. To
achieve a system of the form in E¢7), we fixed the phase
of our standing wave but turned its amplitude on and off in a
series ofN short pulses with period. The optical arrange-
‘ment was described in Sec. [Fig. 1(b)]. The result was an

“cooling & trapping

beams
(a) vacuum ___, 88

chamber

(b)

(©)

Y
N
0.

(d)

FIG. 2. Procedure for measuring the atomic momentum distri
putlon. After the reproducible initial preparation of a spatially con- interaction that can be described by the Hamiltonian of
fined and cooled sample of atort@, the atoms were exposed to an Eq. (2) with F,..— SN F(t—nT) andF=0:
interaction potentialb). To measure the effect of the interaction on a. amp— “n=1 ph™— ™~
the sample’s momentum distribution, the atomic sample was then ) N
allowed to expand freely for a controlled timhg;, () that was long _ p_ .
in comparison to the interaction time from stéyp. After the free H= 2M +Vo COS(Zk'-X)nZl F(t=nT). ©
expansion, the final spatial distribution was frozen in optical molas-

ses(d) and imaged. The final momentum distribution was then de-Here the functiorF (t) is a narrow pulse in time centered at
termined by deconvolving the initial spatial distribution from the ; _ 5 ihat modulates the intensity of the standing wave. The
final spatial distribution, and by considering the timgy Over o, i this equation represents the periodic pulsing of the
which the expansion occurred. standing wave: its amplitud¥, is multiplied by a value in
e range &F(t)<1.
The fast acousto-optic modulatpAOMS5 in Fig. 1(a)]
provided the amplitude modulation of the standing wave to
form the pulse trair2F(t). This modulator had a 1090 %

IV. KICKED ROTOR rise and fall time of 25 ns. The computer that controlled the
The classicals-kicked rotor, or the equivalent standard €xperiment downloaded the desired number of pulses and

mapping, is a textbook paradigm for Hamiltonian chaosPulse period to a programmable arbitrary wave form genera-

spatial distribution. The entire sequence of the experimentth
was computer controlled.

[22,7]. The Hamiltonian for the problem is given by tor, which in turn triggered the fast pulse generator. The
programmed profile had a constant amplitude, but because of

p? * signal limitations in the pulse generator and in AOM5, each
H(d,p,7)= > +K cos¢n2w o(t—n). (7) pulse had a rounded profile. The consequences of this round-

ing are discussed below.

The evolution consists of a series of impulses, spaceg With the scaling introduced in Sec. Il and the unit of time

equally in time, whose strengths are governed by the fre
motion between successive kicks. The magnitidef the

aken to beT, the period of our pulse train, the Hamiltonian
or this system becomes

impulse is called the stochasticity parameter; it is this quan- 5 N
tity that controls the dynamics for the system. _P + _
Using a Fourier expansion, Eq7) can be rewritten as " 2 K cos¢n§l f(r=n). (10
2 * . . .
Th o f Eq.(7) h | h
= p_+ K cog é—m2r), ® e train of§ functions in Eq.(7) has been replaced here by

2 = a series of normalized pulsd€7)=F(7T)/f”_ F(7T)dr.
The scaled variable-=t/T measures time in units of the

The potential here is a series of pendulumlike terms, eacpulse period. As described earlieb= 2k, x is a measure of
of which has the form of the potential in E¢l). These an atom’s displacement along the standing-wave axis, and
terms, however, are displaced in velocity é/d7=2mar. p=p 2k, T/M is the dimensionless momentum.
For small values oK, the phase portrait of this system is  In addition to the temporal profile of the pulses, the ex-
similar to that of the simple pendulum, but it is periodic perimental parameters that determine the classical evolution
along the momentum axis. Instead of having one island obf this system are contained in the stochasticity paramé&ter
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while the quantum evolution depends additionally on the pa-

rameterk. In terms of the physical parameters of HS),
these two dimensionless quantities are

K=8V,oaTt o/, K=8w,T. (11
Heret,, is the full width at half maximun{FWHM) duration
of each pulse, and= [~ _F(t)dt/t, is a shape factor that
characterizes the integrated power for a particular pulse pro-&
file: it is the ratio of the energy in a single pulse to the energy P>
of a square pulse with the same amplitude and duration. For
a train of square pulsesy=1, while for Gaussian pulses,
a=(ml4In2)*?=1.06. These two cases provide effective
bounds for the experimentally realized pulses. As discussed
in the following analysis, the exact shape of the pulses does
not significantly affect the experimental results if the pulses
are sufficiently narrow in time.

=

A. Classical analysis

The CIassi_0aI equations of motion. for the id@kif?ke‘?' FIG. 3. Poincaresurface of section for the kicked rotor using a
rotor can be integrated over a single impulse, resulting in thg iy of Gaussian pulses of widtly/T=1/15.8 (FWHM) to simu-

Chirikov-Taylor map or “standard map(22,25. Calcula-
tions with this map show chaotic diffusion for values Kf
greater than~1 [26]. Extensive theoretical and numerical
studies have been carried out on theicked rotor[23].

late the experimental sequence. The stochasticity parameter in this
calculation isKk =11.6. The central region of the portrait shows the
chaotic motion expected for this value of the stochasticity param-
eter. Bounded regions due to the finite pulse width are also evident.

These studies, however, have typically considered the ideal

limit of &-function pulses. It is important to consider what

The nonzero pulse widths thus lead to a finite number of

effects are introduced by the finite width and amplitude ofsjgnificant resonances in the classical dynamics. The diffu-

our experimental pulses.

sion resulting from the overlapping resonances is therefore

To assess the effects of a finite pulse-width, consider th@astricted to a band in phase space, limited by an upper mo-
case where the pulse profif¢7) is Gaussian with an rms mentum boundary and a lower momentum boundary, as
width 7ms. The potential from Eq(10) can be expanded in  shown in Fig. 3. The boundaries to this band of diffusion can
a discrete Fourier series: be estimated, using Eq13), to find the momenta at which
the effective stochasticity parameter drops below a value of

5 ©
_P ~4,
T 2 +m;w Kincos($—2mm7), (12 The width of the band of diffusion is experimentally con-
trollable. Although the unbounded phase space correspond-
with ing to ideal §-function pulses cannot be practically reached,
the width of the band can be made arbitrarily large by de-
Km=K exd — 3(2mm7mg?]. (13)  creasing the pulse duration and increasing the well depth.

] ) This can be seen as a limiting case of the result in @8),
The nonlinear resonances are locateg@t2mm. This  \ith K fixed andr,,c—0 (that is, under conditions of large

exp_ansion is simila_lr to the resonance structure of thggq depthV, and infinitesimal pulse width,). Although
o-kicked rotor described aboj&g. (8)]. In Eq. (12, how-  £q (13) was derived for a Gaussian pulse profile, the wid-
ever, the widths of successive resonances decrease beca\éﬁ;ng of the band of diffusion is a general effect that can be

of the exponential term in the coefficients,. Thus the  4chieved by decreasing the pulse duration for any pulse pro-
phase portrait of this system is not periodic along the mogjje.

mentum axigas was the case for the system of Eg)]. It It is important to note that it is not necessary to have an
does, of course, retain the spatial periodicity imposed by théfinitesimal pulse width to model thé-kicked rotor. In
periodicity of the standing wave potential. _ practice, it is sufficient to choose a pulse width that ensures
Since the coefficienK, is the amplitude of a nonlinear poth that the chaotic band is significantly wider than the
resonance centered at a velocity dp/dr=2mm, itis an  range of atomic momenta accessed in the experiment, and
effective stochasticity parameter for atoms with momentuMatK . is approximately uniform over this range. These con-
p/2fik, =2ma/ K. Equation(13) indicates that the effective ditions can be achieved by using a sufficiently short pulse
stochasticity parameter experienced by an atom falls off withduration.
increasing magnitude of the atom’s momentum. The details The classical phase portrait shown in Fig. 3 illustrates the
of the falloff are governed by the actual pulse profile. Inbounded region of chaos that arises from the finite pulse
general, the effective stochasticity parameé€eris given by  duration under typical experimental parameters. The central
the Fourier coefficients of the pulse profile, and can be calregion of momentum in this phase portrait is in very close
culated from the experimental pulse train. correspondence with thes-kicked rotor model withK
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=11.6. This stochasticity parameter is well beyond thethe localization length in terms of the stochasticity parameter
threshold for global chaos. _ _ and the quantization scale = K?/4k?2,

Classically, then, the atoms are expected to diffuse in mo- |4 our experiments it was the rms momentum that we
mentum until they reach the momentum boundary that regerived from each measured distribution, since its definition
sults from the finite pulse width. According to a classical gpplies as well to the prelocalized Gaussian distributions as
model, the energy of the syste(g(p/2k, )?) grows lin-  to the exponentially localized ones. For an exponential dis-
early in time. In terms of the number of pulddsthis energy tribution, this quantity is larger than the localization length

is (3(p/2hk )?)=(3(p/Kk)%)=K2N/4R?, by a factor of2: pf,J2fik = 2K?/4k?. According to the
heuristic estimates is also a measure of the number of kicks
B. Quantum predictions before diffusion is limited by dynamical localization, so for

The existence of manifestly quantum mechanical behaviothe quantum break time we hat = £=K?/4k?.
in classically chaotic systems has been widely studied and An inherent assumption in the derivation of heuristic es-
documented over the past several years. Fhécked rotor timate was the lack of structure in the phase space of the
has played an especially important role in these studies b&ystem. Small vestigial islands of stability, however, do per-
cause of its well-characterized classical limit and the simpleSist for values oK greater than 4. This structure introduces
analytic nature of its time-evolution operator. Of particularin the dynamics a dependence on the location of the initial
interest to us are two phenomena seen in the quantum evéonditions in phase space, which is usually characterized by
lution, dynamical localizatioi27] and quantum resonances fluctuations in the localization length.
[12]. It is important to consider the above two estimates of the
A quantum analysis of this system starts with the Sehrolocalization length and the quantum break time when choos-
dinger equation[Eq. (4)] for the pulsed modulation of ing experimental parameters. In order for a localized distri-
Eq. (10). During the time span of the experiment, this equa-bution to be observableyy,,s must be significantly smaller
tion can be written as than the region enclosed by the classical boundary to diffu-
sion. The localized momentum distribution, achieved after
9V | —Kk? 9 the quantum break time, must also be wider than the initial
K——=— FJF K cose Z f(r—n)|¥. (14  distribution. These two considerations dictate an upper
¢ e bound of the duration of each kick. Other considerations

The temporal periodicity of the pulses can be exploited, us_similarly lead to constraints on the experimental parameters

ing Floquet's theorem, to describe the dynamics entirely ir{20,13.
terms of the Floquet stateshe eigenstates of the single-
pulse evolution operatprwhich have been studied exten- C. Experimental results and analysis

sively in the ideal case of(7)=&(7) [11]. An analysis of . .
X - . We subjected the cooled and trapped atoms to the peri-
this system by Chirikov, Izrailev, and Shepelyansias] odically pulsed standing wave of E@9), and recorded the

thOWS th_at thls.system _d|ffuses classically only for Shortresulting momentum distributions as was described in Sec.
times during which the discrete nature of the Floquet spec;,

trum is not resolved. An analysis of that system indicates th It”' To study the temporal evolution of the atomic sample
: y Y . N3 nder the influence of the periodic kicks, these measure-
the Floquet states of Eq14) are exponentially localized in

momentum. Since these states form a complete basis for tqjm‘cfents were repeated, starting from identical initial atomic

N - ; ; stributions and with the well depth, pulse period, and pulse
system, the initial condition of an atom in the experlmentsd ration fixed, but with increasing numbers of kicks)(
can be expanded in a basis of Floquet states. Subsequ ' 9

diffusion is limited to values of momentum covered by those .. <o successive measurements provided the momentum
. S ed by distributions at different times in the atomic sample’s evolu-
Floquet states that overlap with the initial conditions of the

experiment. As seen for the ideal rotor. the enerav of th tion. Such a series of measurements is shown in Fig. 4. Here
P ‘ . . ' Ty Ghe pulse had a period df=1.58 us, and a FWHM duration
system should grow linearly with the number of kidKksin

agreement with the classical model, until a “quantum breakof t,=100 ns. For these conditioris,has a value of 2.0. The
time” N*. After this time, the momentum distribution ap- !argest uncertainty in the experimental conditions is in the
proaches that of the Floquet states that constituted the initig¥ell depthV,, which depends on the measurement of the
conditions, and the linear growth of energy is curtailed. Thisabsolute power of the laser beams that make up the standing
is the phenomenon of dynamical localization. As shown invave and their spatial profile over the sample of atoms. To
Ref.[13], an explicit analogy can be made with the phenom_WIthln 10%, the well depth for these data had a spatial rms
enon of Anderson localization by transforming Ed4) into ~ value of V,/h=9.45 MHz. The pulse profile was nearly
the form of the tight-binding model of condensed-mattersquare, leading to a stochasticity parameteKef11.6, the
physics. same value as for the phase portrait in Fig. 3.

The Floquet states are typically localized with an expo- The distributions clearly evolve from an initial Gaussian
nential distribution in  momentum, | W (p/K)|2~exp at N=0 to an exponentially localized distribution after ap-

i B o proximatelyN= 8 kicks. We measured distributions out until
(—lp/R|1§), characterized by a “localization lengthf. The  N—50, and found no further significant change. The small

momentum distribution has a el/half-width given by  heak on the right side of this graph is due to nonuniformities
p*/2hk =p*Ik=¢, where ¢ is the average localization in the detection efficiency. As discussed in Sec. lll, the rela-
length of the Floguet states. A heuristic estim&8,29 for  tive numbers of atoms with different momenta is measured

[’
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FIG. 4. Experimental time evolution of the momentum distribu- .
tion from the initial Gaussian until the exponentially localized dis- w0l . * 1000 1
tribution. N indicates the elapsed number of kicks. The break time i
is approximately eight kicks. Fringes in the freezing molasses led to i . >, 100
small asymmetries in some of the measured momentum distribu- 30 - H 'z ]
tions, as seen here and in the inset of Fig. 5. The vertical scale is [ ‘QE)
measured in arbitrary units and is linear. oL /o = 10 ]
. . - F e
by their fluorescence intensity on a CCD camera. Factors 10 L Y50 25 0 25 50 A
such as spatial variations in the illuminating light and un- i p/2tik.
evenness in the chamber windows between the atomic 0 . . ! !
sample and the CCD camera lead to minor limitations like 0 5 10 15 20 25
this on the resolution of the momentum measurements. N

The growth of the mean kinetic energy of the atoms as a
function of the number of kicks was calculated from the data, FIG. 5. Energy((p/2/ik )?)/2 as a function of the number of
and is displayed in Fig. 5. It shows an initial diffusive growth Kicks (N). The solid dots are the experimental results. The solid line
until the quantum break timé&l* =8.4 kicks, after which shows the linear growth predicted by the classical theory. The

dynamical localization is observé80]. The solid line in this dashed line is the saturation value computed from the theoretical
. . . . - localization lengthé. No adjustable parameters were used in deter-
figure represents the predicted classical diffusion; the data

. . . . ._ . ’mining the theoretical values. The inset shows an experimentally
follow this prediction until the break time. The dashed line in measured exponential distribution, on a logarithmic scale, that is

the same figure is the heuristically calculated energy of th@gngistent with the theoretical prediction. Exact numerical simula-
|Ocal|zed dISUIbUtIOI’l Though not ShOWI’l hel’e, CIaSS'Cal anqions (not ShOWl) Close|y match the experimenta| data.

guantum calculations both agree with the data over the dif-
fusive regime. After the quantum break time, the classical If the initial momentump, is zero or an integer multiple
growth would slow slightly due to the falloff it predicted ~ Of two photon recoils—an “integer-momentum state,” then
by Eq. (13) for nonstationary atoms. The observed distribu-Particular values of the pulse periddiead to phase factors
tion would lead to a reduction of only 15% in the stochas-Of unity for the free-evolution. This condition, known as a
ticity parameter. Thus, the classically predicted energylua@ntum resonandd?], occurs when the pulse periddis
would continue to increase diffusively. The measured districhosen so that the free-evolution coefficiewrt, (= K/2) is
butions, however, stop growing, as predicted by the quantura multiple of 27. Quantum resonances have been studied
analysis. theoretically, and it was shown that at these values of the
pulse period, the atoms are not expected to demonstrate lo-
calization. Instead, the atoms should show a ballistic motion,
o _ ~in which the energy grows quadratically with tii2]. We
Another IntI‘InSIcally quantum'mechan|cal effect antici- have Scanned' from 3.3 to SOMS, and observed quantum
pated by theoretical analyses of tidekicked rotor is the resonances when the free-evolution coefficient was chosen to
phenomenon of quantum resonances, which results fromje an integer multiple ofr. The even multiples led to a
appropriately-chosen values of the kicking period Be-  phase factor between kicks of unity; the odd multiples led to
tween kicks, the atoms undergo free evolution for a fixeda phase factor of-1 (a flipping of sign between each kigk
duration. During a free-evolution period, a plane wave withand exhibited similar behavior.
momentump, accumulates a quantum phase proportional to  Qur experimental results are shown in Fig. 6. Ten quan-
its energy, and evolves by a phase factor[exp;T/2M%]  tum resonances were found ferranging between &s (cor-
=exf —i(p/2%ik )?4w,T]. During a kick, when the atom is responding to an evolution factor af) and 50us (107) in
exposed to the optical potential, the initial state only couplesteps of s. Under each of these resonance conditions the
to other plane waves with momenpg+2m#k, (with inte-  atomic sample expanded to a saturated final momentum
germ). This restriction to a ladder of momentum states sepaselistribution—a behavior qualitatively different from the an-
rated by two photon recoils is dictated by the periodicity ofticipated ballistic motion. The final distributions were also
the optical potential, as discussed ear(igec. Il B. unlike the dynamically localized distributions discussed ear-

D. Quantum resonances
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(a) duces toU = exp(—iknv)exp(—iK cos#/k), where the first
term corresponds to a linear kinetic terthlere a phase that
depends only on the quasimomentum has been dropped.
Hence the dynamics are integrable and the evolution of the
wave function across thesth kick is given by ()

=g IKcos—RIky,  (h—Kv), where we have used the fact

that expt-iknv) is a space-translation operator.
We can iterate this relation to determine the behavior of a
single plane-wave state. Starting from an initial stéttg ¢)

with momentump,=K(n,+ v,), we find that afteiN kicks,
the wave function evolves to

Intensity

K N—-1
(b) ‘I,N(Qb):eXF( _IE 2 Coi(ﬁ_(N_l)kvo])

I=0

@l (No+ 7o) (6= NKw)

Intensity

oo

= 2 a,e (" vo)? (15
n=-—o
TR with
N A ~ g / - == =— = =1 .
S . 5 sinNg, 16)
TN o sing, |

FIG. 6. Experimental observation of quantum resonan¢as:

Occm_Jrrence as a function of the perigd of the _puls_es. The surface and with 8,= K /2. Thus the final wave function has com-
plot is constructed from 150 momentum distributions measured, for onents on a ladder of evenly spaced momentum states at
eachT, afterN =25 kicks. This value oN ensures that the momen- P y sp

tum distributions are saturated for the entire rang@ shown. On  K(n+v,). The amplitudesa, have a dependence on the
resonance, the profiles are nonexponential and narrower than tigimber of elapsed kickid through the ordinary Bessel func-
localized distributions that appear off resonance. Note that the vetionsJ, . Their periodic dependence dhcauses recurrences
tical scale is linear(b) Time evolution of a particular resonance in time that are related to the “antiresonances” discussed
(T=10 us). recently[31] in a different context.

The quantity|a,|? obtained from Eq.(16) indicates the
lier, in that they did not exhibit the hallmark exponential distribution in momentum resulting aftéM kicks from an
profiles. The saturated momentum distributions as a functioimitial plane wave with momenturp, . Note that in the spe-
of T are shown in Fig. @. The narrower, nonexponential cial case where the initial state is an integer-momentum state
profiles are the resonances, between which the exponential(yy,=0), we recover the expected ballistic motion: the mo-

localized profiles are recovered. The time evolution of theqentum distribution i$an|2:J2 (NK/K), with an energy
n—ny ’

distribution at one particular resonance is shown in Fig),6 . .
from which it is apparent that the observed distribution satu-that grows quadratically with thg number of elapseq kidks
For initial momentum states with,+# 0, the motion is bal-

rates after very few kicks. listic ime N<1/ f hich th f L
Why is the observed behavior so different from the pre- Istic for a timeN<1/5,, arter whic the wave unction is
bounded in momentum with a width of ~2K/sing,.

diction of ballistic motion? The earlier analysis of quantum _ . . ;
The final step to comparing with the experimentally mea-

resonance$12] considered only the evolution of integer- TR ; L
momentum states, so the momenta were restricted to valuégred distributions is an ensemble average over the initial
momentum distribution of the atomic samplé&;(p,)

of p=2n7k, , with integer values of. (In the dimensionless
=Aexd —R¥(n,+v,)%202%,], whereo,, is the initial width

units, this restriction iss=1%kn.) This is clearly not the ap- . Ve : N
propriate basis in oj? expe)riments in w%ich the inFi)tiaI of the distribution. The final momentum distribution of the

sample of atoms was an ensemble distributed continuously iinSeémble afteN kicks is then given by

momentum. An appropriate model for our experiments must K sinNg

recognize this continuous distribution. Fi(p)=A>, exd—Kk3(n'+ 1,)2/2020]32_ J ,
The following analysis proceeds from a more general con- ns poTl g sing

sideration of dynamics. The time-evolution operator 17

. . . . _ . 2
over one kicking period is U=exp(—i(n+»)°K  \yheren and v are the integer and fractional parts of the
12)exp(—iK cos¢/R), where the momentuniin the dimen- momentump=Kk(n+ »), and whereB=Rv/2. A compari-
sionless unitsis p=%k(n+v) with an integer parh and a  son of the analytic expression for the momentum distribution
quasimomenturny e[ —3,3). When the pulse perio@ satis-  with the experimentally measured ones for the first six kicks
fies the condition for quantum resonances, this relation reis shown in Fig. 7. The observed evolution clearly supports
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FIG. 7. Evolution of the momentum distribution at a particular
resonance T=10 us) over the first six kicks. The experimental
points are shown in pané&), while the analytic expression derived
in the text is used to obtain the curves shown in paibel No
adjustable parameters were used in this calculation.

Intensity

the analysis. Estimates of the temporal widths of the quan-

tum resonancess ¢ Y2, are also readily obtaind@®2].

Are there signatures of the ballistic motion hidden in the
experimental curves? Figure 8 shows numerical simulations
of the time evolution for three distinct situations. Figuke)8
considers the case where the quantum resonance condition is
not satisfied. The expected exponentially localized distribu-
tion develops beyond the break time. The evolution shown in
Fig. 8b) is at a quantum resonance, and it results in a mo-
mentum distribution that is considerably narrower than the
localized momentum distribution of Fig.(@. As shown
above, this is a consequence of the integrable evolution for
the noninteger-momentum initial conditions. Figuréc)8
considers a very narrow, near-plane-wave initial condition
for which the predicted ballistic motion is recovered. On
closer scrutiny, a ridge corresponding to the ballistic evolu-
tion of part of the initial conditionis clearly visible in Fig.
8(b), though the associated signal was below the available £ g Quantum simulations of evolution of the momentum
resolution of the experiments. This signal would be enhancegisripution(a) away from any quantum resonanés), at a quantum
in experiments that started with narrower initial momentumesonance for an initial packet with the experimental momentum
distributions. width, and(c) at resonance but with a narrow initial momentum

The observed behavior at the quantum resonances is distribution. See the text for discussion of the ridge seen in panel
consequence of the non-plane-wave initial conditions and, inb).
particular, of the weighted sum of evolutions for all allowed
values of the quasimomentum. In fact, this is an importantubjected our atoms to a standing wave of near-resonant light
aspect of simulating the conditions of the experiment andn which the nodal pattern was modulated at a frequangy
must be considered even in the Floquet analysis, an issue vggid with an amplitud& L. Once again, a large detuning was
will return to during our quantum analysis of experiments inused to eliminate the upper level dynamics of the two-level-

Intensity

Sec. V. atom model, leading to an effective Hamiltonian given by
Ed. (2), with Fndt) =1 andF(t) =2k AL sinw,i:
V. MODULATED STANDING WAVE pz
Dynamical localization is not a phenomenon unique to the H=2m Ve cog 2k (x—AL sinwpt)]. (18)

S-kicked rotor, but is observable in other systems as well.

Following a suggestion by Graham, Schlautmann, and ZolleAlthough this Hamiltonian may look somewhat different
[33], we carried out experiments in which the interactionthan thes-kicked rotor, it also displays the phenomenon of
potential had a constant amplitude, but in which the phase alynamical localization. Indeed, our experiments with this
the standing wave was modulated. In these experiments, waodulated standing wave preceded our realization of the
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kicked rotor, and provided our first observations of dynami-
cal localization. These experiments are further described in
this section.

A. Classical analysis

The resonance structure of the system can be exposed by
expanding the HamiltoniafiL8) in a discrete Fourier series,

2 o0
H=2F)_M+VOE Ja(N)cos K (Xx—nvt), (19
n=—ow

whereJ, are ordinary Bessel functions,,= /2K, is the
velocity difference between neighboring resonances, Xand
=2k AL is the modulation index—the amplitude of the

S ) 21 1
phase modulation in radians.
As in the case of theS-kicked rotor, the resonances are
located at regular intervals in momentum. The amplitudes of 0 ‘ ‘ : ' ' ‘
. 0 1 2 3 4 5 6 7
these resonances, however, depend on a controllable experi-
mental parameter: the modulation index The dependence A

on A allows this system to be tuned between regimes where
the classical dynamics are integrabier exampleA=0) 10, i i) for w,/2r=1.3 MHz andV, /h=3.1 MHz. Experi-

tho_l‘f'ﬁ in |Wh|(.;h 'l[hey are chaofic. | di mental data are denoted by diamonds. The empty diamonds are for
€ classical resonances are evenly sep_arate IN MOMELY interaction time of 1Qes, and the solid diamonds are for 28.
tum with central values op,=nMv,, and widths ofAp,

The straight line denotes the estimated classical boundary from Eq.
=4JMV,|J,(\)|. Therefore, the resonances have substancq). The four curves indicate numerical simulations. Two integra-
tial widths only for n<\, and for momenta greater than tions of the classical model are shown, one for a simulation time of
AMv, the phase space is characterized by essentially frego us (———), and one for the long time limit that shows the
evolution. For certain ranges a&f, these resonances overlap, maximum diffusion in momenturti———). The observed data lie
leading to a band of chaos with boundaries in momentunwell below these curves for some valueshofA 20 us integration
that are proportional td.. A sample of atoms starting with of the Schrdinger equatior(. . .) is also presented for comparison
initial conditions within this band will remain within it, con- with the corresponding experimental data. Also shown is a quantum
fined to momenta in the rangeMA\v,,. A simple estimate calculation in which the system’s solution was found in terms of its
of the atomic momentum after a long time is a uniform dis-Floquet stateg.—.—.).
tribution within these boundsS3]; such a distribution would
have an rms momentum of uncertainty of=10%. This uncertainty stems from the mea-
surement of optical power in the interaction beams used in
the standing wave.
s = =—=5 . (20 To understand this variation in diffusion rates, we exam-
2hk, \/§2ﬁkL V3 8o ine the resonances in E@19). The dependence of the diffu-
sion rate on\ is due to oscillations id,(\), which gives the

The calculated rms width of the atomic momentum distri-amplitudes of the resonances. The various resonances grow
bution as a function ok is shown in Fig. 9. Here the modu- and shrink as the modulation indexis increased. For cer-
lation frequency wasw,/27=1.3 MHz and the well depth tain values of\, a resonance can be significantly diminished,
was V,/h=3.1 MHz. The ergodic estimate of Eq20) is  or even removed in the case wherés a zero of one of the
denoted by the solid line. For values ©& 3, this estimate Bessel functions. As shown in the computer-generated phase
agrees roughly with an integration of the classical Hamil-portraits of Fig. 10(top pane), this variation in the ampli-
ton’s equationg34] (shown in the figurgcalculated for an  tudes of the resonances strongly influences the dynamics of
interaction time of 2Qus. For larger values of, the simu-  the system. In general, the phase spaces are mixed, with
lation is lower than the estimate, because in onlyu20the islands of stability surrounded by regions of chaos. Atoms
initial distribution (with p,,d27k, ~2.3) does not have time from the initial distribution that are contained within an is-
to diffuse up to the limit represented by the solid line. Exceptland remain trapped, while those in the chaotic domain can
for values of\ close to 7.0(explained below the longer- diffuse out to the boundaries. In the case of a diminished
duration classical simulation presented in the figure agreesesonance, the islands of stability from neighboring reso-
with the estimate over the entire range Xfshown. The nances might not be destroyed by resonance overlap. This is
20-us classical simulation also shows oscillations in the dif-the case withn = 3.8, for whichJ;(\) has its first zero. The
fusion rate as a function of: peaks in the rms momentum final momentum spread in this case is governed largely by
correspond to values of leading to large diffusion rates, the surviving island due to the resonancepgt0, and the
while dips indicate slow diffusion. The estimated classicalsystem is nearly integrable. The stability of this system
boundary of Eq.(20) and the simulations shown in this fig- causes the reduced diffusion shown by the dip in the classi-
ure are based on the measured valué/gf which has an cal simulation of Fig. 9 ah =3.8. Indeed, all of the dips in

FIG. 9. rms momentum width as a function of the modulation

Prms MAV, _ N on
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FIG. 10. Poincaresurfaces of sectioupper
pane), classical momentum distributiorisriddle
T 1 A B I pane), and experimentally measured momentum
- - - distributions with Floquet theorybottom panel,
theory marked by linesfor runs with parameters
similar to those in Fig. 9. The vertical scales for
ol 1 11d 1 R e the distributions are logarithmic and are marked

' ' ' ' ' in decades.

log,o[f(P)]

L | L L L
0 6 —20 0 20 -20 0 20 20 0
P(2hk,) P(2hk,) P(2hk,) P(2hk,)

Lo 3
-20

this simulation occur at values of that are near zeros of information about the position of the initial states up to a
Bessel functions; the dynamics of the corresponding systemgery large length scale, we modeled the initial sample of
are stabilized by the diminished resonances. This stabilizaatoms as a statistical ensemble of momentum eigenstates.
tion even affects diffusion in the long-time classical simula-The distribution was taken to be a Gaussian in momemium
tion: for values ofx close to 7.(the second zero af;(A)],  according to the experimentally measured value gf. For

the initial conditions are trapped in a large island of stabilityeach momentum state, we made an expansion in terms of the
atpo=0. For these values of, the diffusion is limited by  Floquet states in order to analyze their time evolution. The
the width of the island to a region much smaller than thatiina] momentum distribution was then averaged over the

given by the estimated classical boundary. evolution time to determine a distributié®(p,p,), wherep,
is the initial momentum. The final ensemble momentum dis-
B. Quantum predictions tribution was found by integratinB(p,p,) against the initial

We performed a quantum-mechanical calculation of thediStribUtion ofpo .
P q rms momentum calculations from the two quantum simu-

expected momentum distributions by integrating the SChrOIations are shown along with the classical calculations in Fig.

dinger equation using the |n|t.|al sqgeezed wave pack_et fro . Momentum distributions calculated from the Floquet
Eq. (6). A second quantum simulation was made by finding

the Floquet basis states of the systéan particular values of analysis are also shown in the lower panel of Fig. 10. For

o s some regimes of well depth and modulation frequency, the
M) anq welghtlln_g. them b_y_ the momentum d's”'t.’“t'or? of thequantum simulations closely match the classical simulations.
experimental initial conditions. By taking the unit of time to

. . . As discussed below, however, the quantum simulations pre-
be lw,, we have the dimensionless variables wt, ¢ d P

. dict exponential distributions with significantly smaller
=2k x, and p=(2k /Mwmy)p. We expand the eigenstates | ¢ in the regimes where the classical dynamics are
of our Hamiltonian in a two-dimensional Floguet state ba5|31ar Iv chaoti

C ivéa-ier - gely chaotic.
{p(p,7)=€""%e'“"u(¢,7)}. Hereu( ¢, 7) reflects the peri-
odic structure of the Hamiltonian; that isy(¢+2m,7)
=u(¢,7+2m)=u(¢,7). v is the quasimomentum, ardis
the quasienergy of a basis state. Expandifg, r) in a Fou- Along with the classical and quantum simulations, Fig. 9
rier series, in both the space and time variables, allows ushows our experimental data poir{iamonds for interac-
to write the basis states in the formy . (¢,7)  tiontimes of 10 and 2@s[34,35. The 20us data match the
=3 o ("% (M 97 The Schrdinger equation in  classical simulations well for small values ®fand for val-

; Lo e _ 2y,€ ues of\ that are close to zeros of Bessel functions. For other
this represxentatlon 'S t?emm” ( . e+ (K12)(n+ )¢y values of\, however, the experimentally measured distribu-
—(K2R)Z - (M) (Wit n-1F ¥meine), Where K tions are much narrower than those predicted classically. As
=kV,y/lho, andk=8w,/wy,. was the case in the kicked rotor experiments, the reason for

For eachv, the set of quasienergies and the correspondinghis reduction in the width of the observed momentum dis-
basis states are obtained by numerically solving this Schraributions is dynamical localization.
dinger equation. To make contact with the experiment, we In Fig. 9 the empty and solid diamonds are experimental
needed to use appropriate initial conditions in the numericatlata for the two interaction times; the proximity of the two
simulations. As described earlier, the initial condition of thesets of data points shows that these results are close to satu-
atomic sample had a distribution characterized by its widthration for the range ok shown. AtA =0 the system is inte-
in space @,~0.15 mm and momentum dp,~4.61Ky). grable, and momentum is trivially localized. As is in-
The sample was therefore an ensemble of atomic states witlreased the phase space becomes chaotic, but growth is
a spatial extentr,, wide in comparison to the length scale limited by the estimated classical boundary. Our measured
N\ /2 of the periodic potential. Because there was thus nanomentum distributiongin Fig. 10, bottom pang¢lare char-

C. Experimental results and analysis
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acteristically “boxlike” in this regime (BsA<2). This ob-  (bottom panél show good agreement with the experiment
servation is consistent with the picture of a uniform diffusionover the entire range of.
limited by the boundaries in momentum. The Floquet analysis once again illustrates the need to
As \ is increased beyond a critical value, the rms width ofconsider all values of the quasimomentavhen analyzing
the observed momentum distributions exhibits the predicteéhe experimental results. As demonstrated recd8; fail-
oscillations as a function ok. For certain ranges of the ure to do so can lead to spurious inferen®%38. Further,
modulation index\, the observed rms widths deviate sub- the agreement between the plane-wave Floquet analysis, a
stantially from the classical prediction. These ranges corrediStribution of minimum-uncertainty stat¢a8] and the re-
spond to conditions of large diffusion rates—at the peaks irpUltS USiNg a squeezed wave packet supports our arguments
rms width of the classical prediction. For these valuea of ™ Sec. lIC and validates the squeezed-wave-packet ap-
the classical phase space is predominately chaotic. An e)p_roach.
ample of the resulting dynamics is shown in Fig. 10 for
=3.0. The classically predicted distributiomiddle panelis VI SUMMARY
roughly uniform, but the experimentally observed distribu-  This work establishes an experimental testing ground for
tion is exponentially localized by dynamical localization; quantum chaos, in which it should be possible to study many
hence the rms value is reduced. aspects of this field. These experiments introduce a method
As \ is increased further, the oscillations in the resonancef studying one-dimensional quantum systems with virtually
amplitudes lead to phase portraits with large islands of staideal spatial periodicity and no noise. The experiments allow
bility, as in the case oh=23.8. For these values of the direct comparisons to theoretical predictions with no adjust-
experimental initial conditions lie in a predominantly stableable parameters, and direct control over all experimental pa-
region in the classical phase space, and the measured m@ameters.
mentum is close to the classical prediction. Some topics for future study include noise-induced delo-
As can be seen from Figs. 9 and 10, experimental resultsalization[17,39—41 and localization in two and three di-
for both the rms momentum as well as the momentum dismensiong11]. Using recently developed techniques of atom
tributions agreed very well with the quantum analyses. Tacooling and manipulation, it should be possible to prepare
simplify the Floquet analysis, the small spreadkipropor-  the atoms in a localized region of phase space. This state
tional to laser intensity variations across the ensemble opreparation technique would enable a detailed study of quan-
atoms was approximated by the use of a rms valu€.dfhe  tum transport in mixed phase space. Other interesting topics
rms momentum spread from the Floquet analysis in Fig. 9o study would be tunneling from islands of stability, chaos-
(dot-dashed lineand the momentum distributions in Fig. 10 assisted tunneling, and quantum sdar3|.
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