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1. – Introduction.

The hallmark of classical chaos in the motion of an ensemble of particles is diffusive
growth in momentum and position. A system of quantum particles, in contrast, was
predicted by Casati et al. to diffuse in phase space only for a limited time, following the
classical prediction [1]. The diffusion is predicted to cease after the “quantum break time”
due to quantum interference, and the momentum distribution is predicted to become
exponential. This striking effect, known as dynamical localization, has stimulated a
great deal of interest and discussion since it was first predicted. Dynamical localization
was predicted to occur in a wide range of systems, and was also shown to be closely
related to Anderson localization, a suppression of electronic conduction in a disordered
metal at low temperature.

Experimental observation of dynamical localization requires a globally chaotic (clas-
sical) phase space, because diffusion can also be restricted by residual stable islands and
by classical boundaries according to the Kolmogorov–Arnol’d–Moser (KAM) theorem.
The duration of the experiment must exceed the quantum break time, so that quantum
effects can be manifested. Finally, the system must be sufficiently isolated from the
environment that quantum interference effects can persist.

In these lectures we review our work on the motion of atoms in time-dependent
potentials. In particular, we study momentum distributions of ultra-cold atoms that are
exposed to time-dependent, one-dimensional dipole forces. As we will show, the typical
potentials are highly nonlinear, so that the classical dynamics can become chaotic. Since
dissipation can be made negligibly small in this system, quantum effects can become
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important.
The organization of the lectures is as follows. In section 2 we give a theoretical

background on atomic motion in a far-detuned dipole potential, and provide a classical
analysis of the potential in terms of nonlinear resonances. In section 3 we describe the
general experimental approach. In section 4 we introduce the δ-kicked rotor, a paradigm
for classical and quantum chaos, and describe our experimental realization, leading to
the observation of dynamical localization. Finally, in section 5, we discuss some current
and future work in this emerging field.

2. – A Two-Level Atom in a Standing-Wave Potential.

We begin our analysis by considering a two-level atom of transition frequency ω0

interacting with a standing wave of near-resonant light. If the standing wave is composed
of two counterpropagating beams, each with field amplitude E0 and wavenumber kL =
2π/λL = ωL/c, then the atom is exposed to an electric field of the form ~E(x, t) =
ŷ[E0 cos(kLx)e−iωLt + c.c.], and its Hamiltonian in the rotating-wave approximation is
given by

H(x, p, t) =
p2

2M
+ h̄ω0|e〉〈e|+

[
µE0 cos(kLx)e−iωLt|e〉〈g|+ H.c.

]
.(1)

Here |g〉 and |e〉 are the ground and excited internal states of the atom, x and p are
its center-of-mass position and momentum, M is its mass, and µ is the electric dipole
moment coupling the internal states.

Using standard techniques, we obtain two coupled Schrödinger equations for the
ground, ψg(x, t), and excited, ψe(x, t) state amplitudes

ih̄
∂ψg(x, t)

∂t
= − h̄2

2M
∂2

∂x2
ψg(x, t) +

h̄Ω
2

cos(kLx)ψe(x, t) ,(2)

ih̄
∂ψe(x, t)

∂t
= − h̄2

2M
∂2

∂x2
ψe(x, t) +

h̄Ω
2

cos(kLx)ψg(x, t) + h̄δLψe(x, t) ,(3)

where Ω/2 ≡ µE0/h̄ is the Rabi frequency of an atom interacting with just one of the
light beams. Note that spontaneous emission from the excited state is neglected; this
approximation is valid for the case of large detunings δL ≡ ωL − ω0 from the atomic
resonance. The large detuning also permits an adiabatic elimination of the excited-state
amplitude, resulting in a single equation for the ground-state amplitude

ih̄
∂ψg

∂t
= − h̄2

2M
∂2

∂x2
ψg +

h̄Ω2

4δL
cos2(kLx)ψg .(4)
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The wavefunction of the now “structureless” atom obeys a Schrödinger equation with a
one-dimensional Hamiltonian

H(x, p) =
p2

2M
+ V0 cos 2kLx .(5)

The potential has a period of one-half the optical wavelength and an amplitude V0

that is proportional to the intensity of the standing-wave and inversely proportional to
its detuning:

V0 =
h̄Ω2

8δL
=
h̄(Γ/2)2

δL

I

Isat
.(6)

Here Γ is the linewidth of the transition and µ is its dipole matrix element. I is the
intensity of each of the beams comprising the standing wave and Isat ≡ πh̄ω0Γ/3λ2

L is
the saturation intensity for the transition (Isat = 1.65 mW/cm2 for the case of cesium
atoms interacting with far-detuned, linearly polarized light). Eq. (6) was derived for a
standing wave composed of two counterpropagating beams of equal intensities. If the two
beams are not perfectly matched the potential amplitude is still given by this equation,
with I taken as the geometric mean of the two intensities.

The classical analysis of Eq. (5) is the same as for a pendulum or rigid rotor, except
that the conjugate variables here are position and momentum rather than angle and
angular momentum. To address the problem of quantum chaos, we must go beyond the
pendulum or stationary standing wave by introducing time-dependent potential. The
connection between atom optics and quantum chaos was first recognized by Graham
et al. who proposed that dynamical localization could be observed in the momentum
transfer of ultra-cold atoms in a phase-modulated standing wave of light [2]. More
generally, as shown below, quantum chaos can be studied by adding an explicit time
dependence to the one-dimensional Hamiltonian. This can be accomplished, for example,
with a time-dependent amplitude or phase of the standing wave. The electric field of the
standing wave then takes the form ~E(x, t) = ŷ[E0F1(t) cos{kL[x− F2(t)]}e−iωLt + c.c.].
The amplitude and phase modulations in our experiments are slow compared to the
parameters ω0 and δL relevant to the derivation of Eq. (5), so they change that equation
by simply modifying the amplitude and phase of the sinusoidal potential. The generic
time-dependent potential is thus

H(x, p, t) =
p2

2M
+ V0Famp(t) cos [2kLx− Fph(t)] .(7)

For simulations and theoretical analyses it is helpful to write Eq. (7) in dimensionless
units. We take xu = 1/2kL to be the basic unit of distance, so the dimensionless vari-
able φ ≡ x/xu = 2kLx is a measure of the atom’s position along the standing-wave axis.
Depending on the time dependence of the interaction, an appropriate time scale tu is cho-
sen; the variable τ ≡ t/tu is then a measure of time in this unit. The atomic momentum
is scaled accordingly into the dimensionless variable ρ ≡ p tu/Mxu = p 2kLtu/M . This
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transformation preserves the form of Hamilton’s equations with a new (dimensionless)
Hamiltonian H(φ, ρ, τ) = H(x, p, t) · t2u/Mx2

u = H · 8ωrt
2
u/h̄.

With this scaling, Eq. (7) can be written in the dimensionless form

H(φ, ρ, τ) =
ρ2

2
+ kfamp(τ ) cos [φ− fph(τ )] .(8)

The scaled potential amplitude is k ≡ V0 · 8ωrt
2
u/h̄. In these transformed variables,

the Schrödinger equation in the position representation becomes

ik̄
∂

∂τ
Ψ(φ, τ ) =

[
− k̄

2

2
∂2

∂φ2
+ kfamp(τ ) cos [φ− fph(τ )]

]
Ψ(φ, τ ) .(9)

Here the dimensionless parameter k̄ depends on the temporal scaling used in the trans-
formation

k̄ ≡ 8ωrtu .(10)

In the transformation outlined here, the commutation relation between momentum
and position becomes [φ, ρ] = ik̄. Thus k̄ is a measure of the quantum resolution in the
scaled phase space. Another general note on this transformation concerns the measure
of the atomic momentum. Since an atom interacts with a near-resonant standing wave,
its momentum can be changed by stimulated scattering of photons in the two counter-
propagating beams. If a photon is scattered from one of these beams back into the same
beam, the result is no net change in the atom’s momentum. But if the atom scatters a
photon from one of the beams into the other, the net change in its momentum is two
photon recoils. The atom can thus exchange momentum with the standing wave only in
units of 2h̄kL. In the transformed, dimensionless units, this quantity is

p

2h̄kL
=
ρ

k̄
.(11)

For a sample of atoms initially confined to a momentum distribution narrower than
one recoil, the discreteness of the momentum transfer would result in a ladder of equally
spaced momentum states. In our experiments the initial momentum distributions were
significantly wider than two recoils, so the observed final momenta had smooth distribu-
tions rather than discrete structures.

3. – Experimental Method.

The experimental study of momentum transfer in time-dependent interactions con-
sists of three main components: preparation of the initial conditions,exposure to the
interaction potential, and measurement of atomic momentum. The initial distribution
should ideally be narrow in position and momentum, and should be sufficiently dilute so
that atom-atom interactions can be neglected. The time-dependent potential should be
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Fig. 1. – Schematic diagram of the experimental setup. Two diode lasers L1 and L2 provide the
light for the MOT, and a Ti:sapphire laser L3 provides the far-detuned standing wave.

one-dimensional (for simplicity), with full control over the amplitude and phase. In ad-
dition, noise and coupling to the environment must be minimized to enable the study of
quantum effects. Finally the measurement of final momenta after the interaction should
have high sensitivity and accuracy. Using the tools of atom optics it is possible to realize
all these conditions.

The first generation of our experiments was performed with laser-cooled sodium atoms
[3, 4, 5, 6]. We describe here the second generation apparatus that uses laser-cooled
cesium atoms instead of sodium and has many advantages in terms of experimental
control and signal-to-noise. A schematic of the experiment is shown in Fig.1. The
starting point for the experiments are laser-cooled cesium atoms in a magneto-optic trap
(MOT) [7]. Two actively locked single-mode diode lasers (L1, L2) at 852 nm are used for
cooling, trapping, and detection of the cesium atoms. The main beam from L1 is double
passed through a tunable acousto-optic modulator (AOM) that provides fast control over
the intensity and detuning of the beam. During the trapping stage of the experiment, the
light from L1 is locked 15 MHz to the red of the (6S1/2, F = 4) −→ (6P3/2, F = 5) cycling
transition. This light is collimated with a waist of 1.1 cm and has a typical power of 23
mW at the chamber. The light from L1 is split into three beams that are retroreflected
through the center of the chamber in a standard six-beam MOT configuration. The
second laser, L2, prevents optical pumping into the F = 3 ground state during the
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trapping and detection stages.
After trapping and initial cooling, the intensity of L1 is reduced for 7 ms and the

detuning is increased to 55 MHz to further cool the sample. After this final cooling,
the trapping fields are turned off, while the light from L2 is left on for additional 150
µs to optically pump the atoms to the (6S1/2, F = 4) ground state. Typically, we trap
106 atoms with σx = 0.15 mm and σp/2h̄kL = 4. Once the trapping light is off, the
interaction potential is turned on. The time-dependent standing wave is provided by
a stabilized single-mode Ti:sapphire laser (L3). The light from L3 passes through an
acousto-optic modulator that controls the temporal profile of the standing wave. The
linearly polarized beam is spatially filtered, aligned with the atoms, and retroreflected
through the chamber to form a standing wave.

After the interaction with the time-dependent nonlinear potential, the atomic momen-
tum is measured using an in-situ time-of-flight technique that we developed. The atoms
expand ballistically for a controlled duration (typically 15 ms) and their motion is then
frozen by turning on optical molasses. The atomic position is recorded via fluorescence
imaging in a short (10 ms) exposure on a cooled CCD. The final spatial distribution and
the free-drift time enable the determination of the one-dimensional momentum distribu-
tion. The systematic uncertainties in the determination of the momentum distributions
include the spatial calibration of the imaging system and the ambiguity in the drift time
due to motion occurring during different interaction times, giving an overall systematic
uncertainty of ±2% in the momentum measurements.

4. – Kicked Rotor.

The classical δ-kicked rotor, or the equivalent standard mapping, is a textbook paradigm
for Hamiltonian chaos. A mechanical realization would be an arm rotating about a pivot
point. The rotation is free, except for sudden impulses that are applied periodically. The
Hamiltonian for the problem is given by

H =
ρ2

2
+K cos φ

∞∑
n=−∞

δ(τ − n) .(12)

The evolution consists of resonant-kicks that are equally spaced in time, with free motion
in between. The quantity K is called the stochasticity parameter, and is the standard
control parameter for this system. As K is increased, the size of each resonant kick
grows. Beyond a threshold value of K ≈ 1 it has been shown that phase space is globally
chaotic [8].

The quantum version of this problem has played an equally important role for the
field of quantum chaos since the pioneering work of Casati et al. [1] and Chirikov [9]. In
particular, dynamical localization was predicted to occur for the kicked rotor and detailed
scaling laws were derived. Although this model may seem unique, many physical systems
can be mapped locally onto the kicked rotor, so that it is actually a universal paradigm
system.



Experimental Study of Quantum Chaos with Cold Atoms 7

To observe dynamical localization in an experimental realization of the kicked rotor,
we turned the standing wave on and off in a series of N short pulses with period T .
This system differs from the ideal kicked rotor in two ways. The first difference is that
the conjugate variables here are position and momentum instead of angle and angular
momentum, so that strictly speaking our system consists of kicked particles. The second
is that the pulses have finite duration instead of being δ-kicks. The effect of finite pulse
duration was also considered by Blümel et al. [10] in the context of molecular rotation
excitation. The first distinction might seem problematic, because there is a natural
quantization of angular momentum, in contrast to a continuum of momentum states for
a free particle. In our system, however, the quantization of momentum is imposed by the
periodicity of the wells, so that the momentum kicks must occur in units of two recoils.
The initial distribution, on the other hand, can be continuously distributed over different
momentum states, providing averaging of diffusion and localization. The effects of finite
pulse duration are analyzed below, but we note here that if the atoms do not move
significantly compared to the spatial period during a pulse, this system is an excellent
approximation of the δ-kicked rotor.

Atomic motion in this case can be described by the Hamiltonian of Eq. (7) with
Famp =

∑N
n=1 F (t− nT ) and Fph = 0,

H =
p2

2M
+ V0 cos(2kLx)

N∑
n=1

F (t− nT ) .(13)

Here the function F (t) is a narrow pulse in time centered at t = 0 that modulates the
intensity of the standing wave. The sum in this equation represents the periodic pulsing
of the standing wave amplitude by multiplying V0 with a value in the range 0 ≤ F (t) ≤ 1.

With the scaling introduced in Section II and the unit of time taken to be T , the
period of the pulse train, the Hamiltonian for this system becomes

H =
ρ2

2
+K cos φ

N∑
n=1

f(τ − n) .(14)

The train of δ-functions in Eq. (12) has been replaced here by a series of normalized
pulses f(τ ) = F (τT )/

∫∞
−∞ F (τT )dτ . Note that the scaled variable τ = t/T measures

time in units of the pulse period. As described earlier, φ = 2kLx is a measure of an
atom’s displacement along the standing wave axis and ρ is its momentum in units of
2h̄kL/k̄.

Aside from the temporal profile of the pulses, all the experimental parameters that
determine the classical evolution of this system are combined into one quantity, the
stochasticity parameter K. As we will see, the quantum evolution depends additionally
on the parameter k̄. These two dimensionless quantities thus characterize the dynamics
of Eq. (14). In terms of the physical parameters of Eq. (13), they are

K ≡ 8V0ηTωr/h̄ ,(15)
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k̄ = 8ωrT .(16)

Here tp is the fwhm duration of each pulse, and η≡
∫∞
−∞ F (t)dt ∝ tp is the pulse integral.

Atoms with low velocities do not move significantly during the pulse, so their classical
motion can be described by a map. By integrating Hamilton’s equations of motion over
one period, we obtain the change in an atom’s displacement and momentum:

∆φ =
∫ n+1

n

dt ρ = ρ ,(17)

∆ρ =
∫ n+1

n

dt K sinφ
∑

f(τ − n) = K sinφ .

The discretization of these relations is the classical map,

φn+1 = φn + ρn+1 ,(18)

ρn+1 = ρn +K sinφn ,

that is known as the “standard” map [8]. For small values of K, the phase space of this
system shows bounded motion with regions of local chaos. Global stochasticity occurs
for values of K greater than ∼ 1, and widespread chaos appears at K > 4, leading to
unbounded motion in phase space. Correlations between kicks in the spatial variable φ
can be ignored for large values of K, so this map can be iterated to estimate the diffusion
constant. After N kicks, the expected growth in the square of the momentum is

〈(ρN−ρ0)2〉 = K2
N−1∑
n=0

〈sin2 φn〉+K2
N−1∑
n 6=n′
〈sinφn sinφn′〉(19)

∼=
K2

2
N .(20)

The diffusion in momentum is thus

〈ρ2〉 = DN, with D ≡ K2

2
.(21)

Note that this description, which follows from the discretization into the standard
map, requires the duration of the pulses to be short. To understand the effects of a finite
pulse-width, consider the case where the pulse profile f(τ ) is Gaussian with an rms width
τ0. In the limit of a large number of kicks N , the potential in Eq. (14) can be expanded
into a Fourier series:

H =
ρ2

2
+K cos φ

∞∑
m=−∞

eim2πτ e−(m2πτ0)2/2(22)

=
ρ2

2
+

∞∑
m=−∞

Km cos(φ−m2πτ )
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with

Km ≡ K exp
[
−(m2πτ0)2/2

]
.(23)

The nonlinear resonances are located (according to the stationary phase condition) at
ρ = dφ/dτ = m2π. This expansion is similar to the resonance structure of the δ-kicked
rotor, in which the Km are constant for all values of m. In Eq. (22), however, the
widths of successive resonances fall off because of the exponential term in the effective
stochasticity parameter Km. This fall-off is governed by the pulse profile; the result of
Eq. (22) was derived for the case of a Gaussian pulse shape, but in general Km is given
by the Fourier coefficients of the periodic pulse train.

The nonzero pulse widths thus lead to a finite number of significant resonances in
the classical dynamics, which in turn limits the diffusion that results from overlapping
resonances to a band in momentum. The width of this band can be made arbitrarily large
by decreasing the pulse duration and increasing the well depth, thereby approaching the
δ-function pulse result. This can be seen in the result derived above. In the limiting
case of τ0 → 0 with K fixed (infinitesimal pulse width and large well depth), we recover
the resonance structure expected for the δ-function limit in Eq. (12): Km = K. In the
experiment, the pulse width only needs to be small enough that the band of diffusion
is significantly wider than the range of final momenta and that the effective diffusion
constant Km is approximately uniform over this range.

An example of the bounded region of chaos that arises from the finite pulse duration
(tp) is illustrated in Fig. 2, which shows classical phase portraits for the δ-kicked rotor
(Fig. 2(a)) and two square-pulse cases (Fig. 2(b) and (c)). The phase portrait of Fig. 2(b)
is typical for our current cesium experiment, and the boundaries are well outside the range
of detectable atomic momenta, |p/2h̄kL| ≤ 80.

The boundary in momentum can also be understood using the concept of an impulse.
If the atomic motion is negligible while the pulse is on, the momentum transfer occurs
as an impulse, changing the momentum of the atom without significantly affecting its
position. Atoms with a sufficiently large velocity, however, can move over several periods
of the potential while the pulse is on. The impulse for these fast atoms is thus averaged
to zero, and acceleration to larger velocities is inhibited. The result is a momentum
boundary that can be pushed out by making each pulse shorter.

Classically, then, the atoms are expected to diffuse in momentum until they reach the
momentum boundary that results from the finite pulse width. Equation (21) indicates
that the energy of the system 〈12 (p/2h̄kL)2〉 thus grows linearly in time. In terms of the
number of pulses N , this energy is〈

1
2

(
p

2h̄kL

)2
〉

=
〈

1
2

(ρ
k̄

)2
〉

=
1

2k̄2

K2

2
N .(24)

This system can be expected to exhibit quantum behaviors that are very different
from those predicted classically. A quantum analysis of this system starts with the
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Fig. 2. – Classical phase portraits for the kicked rotor with K = 10.5, comparing δ-kicks (a) to
square pulses of dimensionless widths α = tp/T = 0.014 (b) and α = tp/T = 0.049 (c). Case (b)
is typical for our localization experiments. This case mimics the δ-kicked rotor for a momentum
region much larger than used in our experiment (|p/2h̄kL| ≤ 80).

Schrödinger equation, Eq. (9). For the pulsed modulation of Eq. (14), this becomes

ik̄
∂

∂τ
Ψ(φ, τ ) =

[
−k̄2

2
∂2

∂φ2
+K cos φ

∑
n

f(τ − n)

]
Ψ(φ, τ ) .(25)

The periodic time dependence of the potential implies that the orthogonal solutions to
this equation are time-dependent Floquet states. This system has been studied exten-
sively in the ideal case of f(τ ) = δ(τ ) with an infinite train of kicks (n = 0,±1,±2, ...) [1].
An analysis of this system by Chirikov et al. [9] shows that this system diffuses classi-
cally only for short times during which the discrete nature of the Floquet states is not
resolved. As shown by Fishman et al. [11], Eq. (25) can be transformed into the form of
a tight-binding model of condensed-matter physics. An analysis of that system indicates
that the Floquet states of Eq. (25) are discrete and exponentially localized in momen-
tum. Since these states form a complete basis for the system, the initial condition of
an atom in the experiments can be expanded in a basis of Floquet states. Subsequent
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diffusion is limited to values of momentum covered by those states that overlap with the
initial conditions of the experiment. If the initial conditions are significantly narrow in
momentum, the energy of the system should grow linearly with the number of kicks N ,
in agreement with the classical prediction in Eq. (24), until a “quantum break time”
N∗. After this time, the momentum distribution approaches that of the Floquet states
that constituted the initial conditions, and the linear growth of energy is curtailed. This
phenomenon is known as dynamical localization.

We now describe our experimental results. We subjected the cooled and trapped
atoms to a periodically pulsed standing wave and recorded the resulting momentum
distributions. The beam had a typical power of 470 mW at the chamber and a waist
of 1.44 mm. For all the experiments described here we detune this beam 6.1 GHz to
the red of the cycling transition, with typical fluctuations of about 100 MHz. The pulse
sequence consists of a series of 295 ns (FWHM) pulses with a rise/fall time of 70 ns
and less than 3 ns variation in the pulse duration. The period was 20 µs with less than
4 ns variation. This period corresponds to k̄ = 2.08. The number of pulses and pulse
period were computer-controlled with an arbitrary waveform generator. To study the
temporal evolution of the atomic sample under the influence of the periodic kicks, these
experiments were repeated with increasing numbers of kicks (N) with the well depth,
pulse period, and pulse duration fixed. These successive measurements provided the
momentum distributions at different times in the atomic sample’s evolution. Such a
series of measurements is shown in fig. 3. The distributions clearly evolve from an initial
Gaussian at N = 0 to an exponentially localized distribution after approximately N = 8
kicks. We have measured distributions out until N = 68 and find no further significant
change.

5. – Current and Future Directions

Our recent work has focused on the effects of noise and dissipation on dynamical
localization. To study the effects of noise, we replace the fixed kick amplitude k with a
random, step-dependent kick amplitude kn, to introduce amplitude noise in the kicks. To
induce dissipation, we add a weak, resonant interaction that will induce a small number
of spontaneous scattering events, primarily between kicks. In both cases we observe the
destruction of localization and a transition to classical (Gaussian) distributions [12]. We
are now doing a comparative study of the sensitivity of the quantum system to different
types of noise and dissipation in an effort to understand decoherence in this system.

Another direction in our group has been to study quantum transport in a regime of
classical anomalous diffusion. This occurs for certain values of the stochasticity parameter
and is associated with accelerator modes in classical phase space. In that regime we
observe large energy growth with no evidence for exponential localization [13].

The focus of this work has so far been on cases where the classical phase space is
globally chaotic. The more generic situation in nature is a mixed phase space, consisting
of islands of stability surrounded by regions of chaos. To study this regime, better
initial conditions are needed. We have developed a new method which should enable
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the preparation of a minimum-uncertainty “box” in phase space, and plan to implement
this technique in our cesium experiment. This would enable a detailed study of quantum
transport in mixed phase space.

REFERENCES

[1] Casati G., Chirikov B. V., Izrailev F. M. and Ford J., Stochastic Behaviour in
Classical and Quantum Hamiltonian Systems, in Lecture Notes in Physics, Vol. 93, edited
by G. Casati and J. Ford (Springer-Verlag, Berlin) 1979, p. 334.

[2] Graham R., Schlautmann M., and Zoller P., Phys. Rev. A, 45 (1992) R19.
[3] Moore F. L., Robinson J. C., Bharucha C., Williams P. E., and Raizen M. G.,

Phys. Rev. Lett., 73 (1994) 2974.



Experimental Study of Quantum Chaos with Cold Atoms 13

[4] Robinson J. C., Bharucha C., Moore F. L., Jahnke R., Georgakis G. A., Niu Q.,

Raizen M. G., and Sundaram B., Phys. Rev. Lett., 74 (1995) 3963.
[5] Moore F. L., Robinson J. C., Bharucha C., Sundaram B., and Raizen M. G., Phys.

Rev. Lett., 75 (1995) 4598.
[6] Raizen M. G., Advances in Atomic, Molecular, and Optical Physics, 41 (1999) 43.
[7] Chu S., Science, 253 (1991) 861.
[8] Reichl L. E., The Transition to Chaos in Conservative Classical Systems: Quantum

Manifestations (Springer-Verlag, Berlin) 1992, and references therein.
[9] Chirikov B. V., Phys. Rep., 52 (1979) 265.
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