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Supervisor: Mark G. Raizen

We experimentally study the quantum dynamics of several simple systems by observing

the center-of-mass motion of cold atoms in time-dependent optical potentials. One of the

most interesting types of quantum systems is one where the motion in the classical limit

is chaotic. Chaotic motion in such a system is inhibited through dynamical localization.

Quantum and classical motion in the system exhibit distinctly different overall behavior.

One prototypical classically chaotic system is the quantum kicked rotor, which is a system

that we can study with our experiments. We have used our setup to observe several phe-

nomena related to dynamical localization, including the dependence of the diffusion rate

on short-term correlations. A second topic of study is the effects of noise upon this sys-

tem. Dynamical localization is a coherent quantum effect that can be destroyed by the

introduction of noise, which is an interaction with the external environment. It has been

suggested that such coherence-breaking interactions may be necessary for fundamentally

quantum systems to exhibit classical dynamics. When we add high enough levels of noise

to our experiments, we have found that certain features of the system behavior become

indistinguishable from that of a classical system. Beyond the experiments with the kicked

rotor, we have studied quantum transport in mixed phase space. We report the first direct

observation of chaos-assisted tunneling, where quantum tunneling between two islands in

phase space is accelerated by a region of chaotic dynamics that separates them. These ex-

periments required the development of new methods of quantum state preparation, which
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we describe here. Finally, we have demonstrated a new method of spatially focusing atoms

that has applications in atom lithography.
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Chapter 1

Introduction

1.1 A Brief History of the Experiment

This dissertation describes a series of quantum chaos experiments performed over the course

of five years. These experiments were carried out using the tools of atom optics: cold atoms

exposed to potentials created with light.

I joined Mark Raizen’s group in the fall of 1996. At this time, several pioneering

quantum chaos experiments had already been performed in our laboratory using sodium

atoms [Robinson95b]. The sodium experiment had observed a range of interesting phenom-

ena including dynamical localization, the quantum suppression of chaotic motion [Moore94].

The natural evolution of that experiment was hampered by several technical obstacles as-

sociated with the use of sodium atoms. As it turns out, the physical and optical properties

of cesium atoms made them more suitable for the next set of quantum chaos experiments

[Klappauf99].

In January 1997, I began working on the cesium experiment setup, which was still

under construction. This was a new experiment being built up by my co-workers Bruce

Klappauf and Daniel Steck. I joined at the stage when the vacuum chamber was being

assembled. We first trapped cold cesium atoms in April, but the low number of available

cesium atoms forced us to break vacuum and it wasn’t until August that we had a fully

functional atom trap.

Our first priority on this new experiment was to reproduce the results of the sodium

experiment. In particular, we planned to use a realization of the δ-kicked rotor to observe

1



dynamical localization [Moore95]. After that, we would perturb the system to study the

destruction of dynamical localization. The effects of noise and dissipation upon this system

are particularly interesting because they give us a clear way to study quantum-classical

correspondence.

In the middle of October 1997 we were first able to observe dynamical localization,

and by the end of the month, we observed amplitude noise-induced delocalization. We

continued to study, in advancing levels of detail, the effects of different types of noise and

dissipation upon this system for two years, through the fall of 1999. Ultimately, we were able

to drive the quantum kicked-rotor system to its classical limit by adding noise [Milner00;

Steck00]. The momentum distributions that we observed in this work were also found to be

well described by a modern theory of the shape of the quantum diffusion front [Zhong01].

During this period, we also studied other phenomena in the context of the kicked

rotor. For example, we observed the behavior of this system in parameter regimes where the

effects of short-term correlations can lead to anomalous diffusion [Klappauf98a]. We also

revisited quantum resonances, which had been observed in the earlier sodium experiment

[Oskay00].

Beginning in January 2000, we turned our attention from the kicked rotor to chaos-

assisted tunneling (CAT). In order to observe CAT, it is necessary to prepare an extremely

precise and narrow initial condition at a specific location in phase space. To achieve this,

we developed and implemented a new method of quantum state preparation incorporating

stimulated-Raman velocity selection. Once this technique was developed, we were able

finally to observe CAT in January 2001 [Steck01c]. After performing a detailed study of

CAT, and how the tunneling rate varied as a function of various system parameters, we also

studied the effects of noise on this system.

Finally, we returned to the kicked rotor in the spring of 2001, but with a different

emphasis. Whereas all of our previous work with the kicked rotor system studied momentum

transport, we instead worked to observe angular (spatial) focusing of the atoms. A spatially

focused array of atoms is potentially useful in lithographic applications. This technique
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holds the promise of creating a bright source of these atoms while reducing the number of

background (non-focused) atoms compared to other methods.

To describe these experiments properly, it is necessary to cover a certain amount

of background material. This introductory chapter will describe some of the classical and

quantum systems that we study, and introduce some of our general atom-optic methodology.

We must first explore some features of classical transport to understand what is different

when we move on to quantum transport. About half of the work described in this dissertation

is in the context of experiments with the kicked rotor system. Since the kicked rotor system

is such a fine setting in which to introduce key concepts that apply to all of our research,

we will begin there. In the chapters that follow, we will describe our experiment in general,

how it has been adapted to perform the individual experiments, and what we observed in

these experiments.

1.2 Classical Motion

1.2.1 Regular motion in phase space

The experiments that we are concerned with study the one-dimensional center-of-mass (CM)

motion of atoms in an optical potential. To an excellent approximation, the external po-

tential is conservative, and the atomic sample is dilute enough that atom-atom interactions

are negligible. In this limit, we can model each atom in the experiment as an independent

and structureless particle in the potential.

Chaos is most easily defined for classical systems, so let us begin there. Consider

the behavior of a single classical particle with N degrees of freedom, vector position x and

momentum p in a conservative time independent potential. The dynamics are specified by

the Hamiltonian H(x, p), and Hamilton’s equations read

ṗi = −∂H
∂xi

, (1.1)

ẋi =
∂H
∂pi

, (1.2)

where the index i runs from 1 to N . Classical physics is deterministic, so in principle, armed



with Eqs. 1.1, 1.2 and the initial conditions (x0, p0) at (t = 0), we can calculate the full

time evolution of the system.

For certain systems there exist N independent isolating constants of motion (inte-

grals of motion), and such a system said to be integrable [Reichl92; Lichtenberg92]. For a

one-dimensional (N = 1) conservative system, we have the total energy E = H(x, p) as a

constant of the motion, and so such a system is always integrable.

A prototypical integrable system is the simple rigid pendulum. In an appropriate

set of units with angle variable x and momentum p, we can take the Hamiltonian to be

H(x, p) =
p2

2
− cosx. (1.3)

In order to visualize the dynamics, we will construct a phase space portrait. The phase

space is a 2N -dimensional plot that shows the trajectory (x(t), p(t)) that a particle with

given initial conditions (x0,p0) traces out. In the case of our 1-D system, each particle traces

out a smooth curve in the x − p plane. A pendulum phase space with 18 initial conditions

is shown in Fig. 1.1. We will use this example to illustrate some of the generic features of

phase space portraits. Our pendulum is periodic in position— we will identify the positions

x = π and x = −π with each other. Since the energy is a constant of motion, curves in the

phase space represent trajectories of equal energy, and these paths do not cross (with one

exception).

Several types of motion are possible in the rigid pendulum. First, there is the

familiar oscillatory pendulum type motion. This type of motion is known as libration, and

traces out closed curves about the stable fixed point, (p = 0, x = 0). The stable, or elliptic

fixed point represents the pendulum, at rest, hanging directly below the pivot. If a small

perturbation is applied, the pendulum will begin oscillating about the fixed point. A second

type of fixed point, the unstable, or hyperbolic fixed point, is found at (p = 0, x = ±π).

When a pendulum is at its unstable fixed point, it is inverted: at rest directly above the

pivot. Obviously, it is unstable because any perturbation will cause it to move quickly

away from this position. Trajectories with exactly enough energy to reach an unstable fixed
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Figure 1.1: Phase space portrait of the simple pendulum. This plot presents some sample
trajectories of particles moving under the influence of the pendulum Hamiltonian, Eq. 1.3.
Each curve represents the motion that results from an independent initial condition, and
is labeled by its color. Librational motion (a) traces closed curves about the stable fixed
point (b). The unstable fixed points (c) have the same energy as the separatrix (d), and
represent a stationary, inverted pendulum. Trajectories (e,f) outside the separatrix represent
continuous rotation, with p > 0 (e) and p < 0 (f).

point are said to lie along a separatrix. Since there are two possible ways to reach the

unstable fixed point (clockwise and counterclockwise motion), the separatrix consists of two

curves which intersect there. If a pendulum has more than enough energy to reach the

unstable fixed point, it will reach the inverted configuration with some nonzero momentum.

This type of motion is called rotation, because the pendulum will then continue to rotate

about its pivot without ever reaching zero momentum. The separatrix then, defines an

energy Es which separates bounded trajectories that circulate about the stable fixed point



(0 < E < Es) from those which perform complete rotations (E > Es).

1.2.2 Chaotic motion: the kicked rotor

So far, we have described motion in a time-independent, one-dimensional Hamiltonian sys-

tem, which is necessarily integrable. We will now begin to examine a Hamiltonian that has

explicit, periodic time dependence. This change is equivalent to adding an additional degree

of freedom to the system. Systems with higher dimensionality (or time dependence) need

not be integrable and we may see the emergence of chaos.

The study of chaos is the study of dynamical systems which are, in a practical sense,

unpredictable. Chaos is characterized by extreme sensitivity to initial conditions, in that

neighboring trajectories rapidly diverge from each other. This leads to a sort of “practical

indeterminism,” where the initial state of the system can never be prepared (or measured)

well enough to compute the time evolution of trajectories. Chaotic motion also tends to

exhibit ergodicity, and gradually fills up some region of phase space uniformly.

A textbook example of a chaotic system is the δ-kicked rotor. This system has been

studied in great detail, and has been one of the primary examples used to explore both

classical and quantum chaos. Furthermore, it is admirable in its simplicity; it exhibits a

wide range of phenomena, and is experimentally accessible. The kicked rotor is a rigid rotor

much like the pendulum, however, it is exposed to gravity only periodically. Between these

pulses, or “kicks,” it acts as a free rotor, and we will again assume 2π-periodicity in the

angle of the rotor. The pulses are in the form of the Dirac δ function with a given kick

strength K, and are spaced apart by unit time. The δ-kicked rotor Hamiltonian is then

H(x, p, t) =
p2

2
+ K cos x

∞∑
n=−∞

δ(t − n). (1.4)

Here we have a time-dependent, one-dimensional Hamiltonian system, and therefore

energy is no longer conserved. The dynamics of this system are completely governed by

its single parameter K, which is known as the stochasticity parameter. For K = 0, the

Hamiltonian becomes H(x, p) = p2

2 , which describes a decidedly dull integrable system. For
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K > 0, there is a seemingly limitless variety to the types of motion to be found. We can

begin to explore the motion by constructing a discrete mapping for this system.

The application of Hamilton’s equations (1.1,1.2) to the kicked rotor Hamiltonian

(1.4) yields ṗ = K sin x
∑

n δ(t−n) and ẋ = p. Our next step is to integrate these equations

over a single kicking period to determine x and p just before each kick. Let tn be the time at

which the nth kick occurs, and let (tn − ∆t) be a time just before that kick, where ∆t � 1.

Integrating ṗ over one period, we find
∫ tn+1−∆t

tn−∆t

ṗ dt =
∫ tn+1−∆t

tn−∆t

K sin x(t)
∞∑

n=−∞
δ(t − n)dt (1.5)

=⇒ p(tn+1 − ∆t) − p(tn − ∆t) = K sin x(tn) (1.6)

=⇒ pn+1 − pn = K sin xn, (1.7)

where pn and xn are the momentum and position just before nth kick. Eq. (1.7) represents

the impulse that the rotor receives from an individual kick, K sin x. Following a similar

procedure for ẋ, ∫ tn+1−∆t

tn−∆t

ẋ dt =
∫ tn

tn−∆t

p dt +
∫ tn+1−∆t

tn

p dt (1.8)

=⇒ x(tn+1 − ∆t) − x(tn − ∆t) = pn t
∣∣∣tn

tn−∆t
+ pn+1 t

∣∣∣tn+1−∆t

tn

(1.9)

=⇒ xn+1 − xn = pn∆t + (1 − ∆t)pn+1, (1.10)

and taking the limit ∆t −→ 0, we finally have

xn+1 − xn = pn+1. (1.11)

The equations (1.7,1.11) for p and x are usually written in the form

pn+1 = pn + K sin xn

xn+1 = xn + pn+1 ,
(1.12)

and form a discrete mapping that is called the standard map, or the Chirikov-Taylor map.

The standard map contains the same physics as the δ-kicked rotor Hamiltonian (Eq. 1.4),

and its simplicity lends itself to intuition and computational study. Moreover, many chaotic

systems are locally equivalent to the standard map [Chirikov79]. While the model itself is

simple, it describes many forms of complex behavior, of which we will examine a few.



To illustrate some properties of the standard map, we will construct a Poincaré

surface of section. The Poincaré section is the appropriate analogy of the phase-space

portrait for such a time-periodic system, and has many features in common. Instead of

plotting the entire trajectory of a particle, we only plot its location in the x− p plane once

per period, just before each kick. The standard-map phase space is 2π-periodic with respect

to translation in both x and p, and the surfaces of section presented here are plotted modulo

2π. As a first example, we plot the standard map for K = 0 in Fig. 1.2. In this figure we

have a stroboscopically sampled phase space portrait for the free rotor. As in the earlier

phase-space portraits, the curves do represent trajectories, however, there is not necessarily

one curve per trajectory in the surface of section. The continuous curves that emerge are

known as invariant tori and are gradually filled in densely. Generally, periodic sampling of

the phase space will reveal rational resonances between the sampling frequency and periodic

motion in the dynamical system. In the free rotor case that we are plotting, however, the

only time variation is the position x = pt. So long as the momentum of one of the initial

conditions is not accidentally rational with respect to the sampling frequency, the curves

will eventually be filled in completely.

Let us next examine the surface of section for K = 0.1, also shown in Fig. 1.2. In this

case, we see a mildly perturbed rotor. Many of the invariant curves are only “bent” slightly

away from their locations in the integrable limit. These curves are known as Kolmogorov-

Arnol’d-Moser (KAM) surfaces or tori, traceable directly to curves of constant momentum

in the K = 0 case. Beyond these smooth curves that span the entire range in position,

complete closed curves are also visible. These closed structures are sometimes referred to

as islands, and act to confine trajectories. As K increases, chaotic regions begin to appear,

and some of the KAM surfaces which serve to confine motion begin to break. The last KAM

surface spanning the entire phase space breaks at K ≈ 0.97. After that, there is no barrier

to diffusion in momentum on the scale of a phase-space cell, and we say that this is now a

globally chaotic system.

Since we are primarily interested in cases which are globally chaotic, we will next
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Figure 1.2: Standard map surfaces of section, with K = 0.0 (top) and K = 0.1 (bottom).
Each plot uses about 40 initial conditions; each color corresponds to a different initial
conditions. The K = 0.0 surface was iterated for about 300000 iterations per point. This is
the phase space of an unperturbed rigid rotor. A large number of iterations is necessary to
make the KAM tori appear continuous. The K = 0.1 surface was iterated for about 8000
iterations per point. The majority of the phase space consists of smooth KAM tori.



examine the surface of section for K = 1, shown in Fig. 1.3. This is a mixed phase space,

with both regular and chaotic regions. Regions of regular motion are easily identified by

the smooth curves that the trajectories trace out. Chaotic motion tends to ergodically

(uniformly) fill regions of phase space which are in this case bounded by islands. The

apparently random trajectories thus fill these regions up with a “fuzzy” appearance. Again,

in the surfaces of section that we present here, each color labels an initial condition. This

means that the chaotic regions, through which more than one trajectory typically wanders

also take on mixed colors, which do not occur in the regions of regular motion.

As the stochasticity parameter K is further increased, the system becomes increas-

ingly chaotic. Near K = 2, we begin to see large, connected chaotic regions that span the

entire phase space in both x and p. By K = 4, the primary resonances begin to break

up, and thereafter the system is predominantly chaotic. For K > 10, all of the structure

remaining in phase space is too small to be seen without effort. A surface of section for

K = 10 is plotted in Fig. 1.3.

Our goals in presenting these surfaces of section are to be able to differentiate

between regular and chaotic motion, and to develop some intuition for transport properties

in the different regions. As a more concrete example, let us examine a few trajectories in the

K = 1 surface of section in more detail. In Fig. 1.4, we plot clearly separated trajectories

in both regular and chaotic regions of phase space. The stable structures that are visible

are in the form of regular (KAM) orbits within island chains that consist of pendulum-like

periodic resonances. Chaotic regions tend to appear at the (broken) separatrix that joins

island chains, and indeed the chaotic region here is visible as a “fuzzy” layer that surrounds

an island chain.

How can we be certain that this motion is chaotic? In our brief discussion of chaos

thus far, we have noted two chief characteristics of chaotic motion. First, we require that the

system exhibits extreme sensitivity to initial conditions. We can quantify this by saying that

the distance (in some appropriate measure) between two neighboring trajectories increases

exponentially with time. In Figs. 1.5 and 1.6, we compare the sensitivity to initial conditions
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Figure 1.3: Standard map surfaces of section, with K = 1.0 (top) and K = 10.0 (bottom).
Each plot uses about 40 initial conditions and about 8000 iterations per point. The K = 1.0
plot shows many different types of motion. At this value of the stochasticity parameter, the
last KAM surface spanning the phase space is broken. While this phase space is therefore
considered to be globally chaotic, large, regular islands are still visible. The phase space for
K = 10.0 is in contrast nearly homogenous, when viewed at this scale.
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Figure 1.4: Three types of trajectories in the standard map with K = 1. The standard
map (Eq. 1.12) is iterated 1000 times with K = 1, for 10 closely-spaced initial conditions
in each of three neighborhoods. The three neighborhoods begin at (x, p) = (3, 3), (1.5, 1.5),
and (1.5, π), and are labeled by color as red, blue, and green, respectively. The ten initial
coordinates within each neighborhood are slightly offset in position as xi(t = 0) = 1.5 + i×
10−6, for i = 0, 1, . . . , 9. The trajectories drawn in red and green are examples of regular
motion, and fill out invariant tori that are in the form of distinct island chains with different
periods. Each individual trajectory stays close to to the others in its neighborhood. The
trajectories shown in blue exhibit chaotic motion, and fill up a region of the phase space
in a seemingly random fashion. Note that these trajectories surround a chain of stable
islands. Although each trajectory begins very close to the others, they rapidly diverge. The
randomness is not due to the spread in initial conditions: any single trajectory in the initial
neighborhood also wanders throughout the entire region.

for the regular and chaotic trajectories shown in Fig. 1.4. In the regular case that we have

chosen (Fig. 1.5) the distance between neighboring trajectories appears to grow linearly as

a function of time. In the case that we have identified as chaotic (Fig. 1.6), there is extreme

sensitivity to the initial conditions. It is not, however, possible to tell from this figure if we
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Figure 1.5: Lack of sensitivity to initial conditions for regular trajectories. The standard map
(Eq. 1.12) is iterated 1000 times with K = 1, for 10 initial conditions near (x, p) = (3, 3).
These are the same ten trajectories plotted in red in Fig. 1.4. The distances (xi − x0)
between each particle offset in position and the non-offset particle is plotted as a function of
the iteration number n, where each curve is labeled by its color. The individual trajectories
are distinguishable at all times, and drift apart in a linear fashion. Note that the vertical
(position) scale is very small compared to 2π. Since the behavior of neighboring particles
is very similar, we say that trajectories in the neighborhood do not exhibit sensitivity to
initial conditions.

have exponential sensitivity. We are not presently interested in proving that this system

exhibits chaos, but in passing, we outline what is necessary to do so. To show rigorously that

a trajectory is unstable requires the calculation of a Lyapunov exponent, which quantifies

the rate of exponential separation of neighboring trajectories. A positive exponent shows

that the trajectories continue to exponentially separate for all time. The regions of phase

space for which all trajectories are unstable is then said to be chaotic.

There is one additional feature that we expect of chaotic systems, which is that the

system should display ergodicity over some region of phase space. Although the motion that
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Figure 1.6: Sensitivity to initial conditions for chaotic trajectories. The standard map
(Eq. 1.12) is iterated 500 times with K = 1, for 10 initial conditions near (x, p) = (1.5, 1.5).
These are the same ten trajectories plotted in blue in Fig. 1.4. The distances between the
trajectories are plotted as in Fig. 1.5. The individual trajectories are not distinguishable
(on this scale) for short times, however, the paths eventually diverge wildly. Note that
we have plotted the surface of section (from which this graph is derived) modulo 2π. If
we did not perform the modulo operation, the differences between particle positions would
wander over distances very large compared to 2π over the timescales shown here. Some of
the trajectories apparently stay near to each other and display correlated motion. These
effects are suggestive of residual structure in the phase space.

we observe for the chaotic trajectory in Fig. 1.4 appears to be random, it is clearly bounded.

The motion here can be described as diffusion which is halted at several structures in phase

space. The chaotic trajectory surrounds, and does not penetrate, an island chain. The

KAM tori which form the islands are a firm barrier to classical diffusion. Besides this sharp

edge, there is also a softer barrier to diffusion in momentum, which is apparent because the

trajectory does not span (in p) the entire unit cell of phase space. A probable cause of this

is the remaining presence of cantori in the phase space, which are the remains of the broken

KAM surfaces, and tend to inhibit diffusion to various degrees. For higher values of the
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stochasticity parameter K, these types of structures become less important, and diffusion

occurs more easily.

1.2.3 Momentum diffusion in the kicked rotor

Many of the properties that we have described thus far are fairly generic, however cer-

tain quantitative properties of the kicked rotor are important for our experiments. In the

uniformly stochastic phase space of the kicked rotor for large K, we can begin to look at sta-

tistical transport properties. A particularly important property is the energy En ≡ 〈p2
n〉/2

imparted to an ensemble of kicked rotors during a sequence of n kicks. Integrating the

standard map over n kicks, we find

En =
1
2

n−1∑
m,m′=0

〈K sin xmK sin xm′ 〉. (1.13)

In the limit K −→ ∞, we expect that the motion is nearly random and kick-to-kick correla-

tions can safely be ignored. This assumption is known as the random phase approximation,

and is also referred to as the quasilinear limit. In this case, Eq. 1.13 reduces to

Enql =
K2

2

n−1∑
m=0

〈sin2 xm〉 = n
K2

4
. (1.14)

The energy growth is linear in time (number of kicks) in this limit, and we can thus define

a quasilinear diffusion constant Dql ≡ Enql/n = K2/4 . A secondary signature of diffusive

motion, which will become important later, is that the momentum distribution is charac-

terized by a Gaussian probability distribution. In experiments, we typically use the rate of

energy growth and the shape of the momentum distribution to characterize the dynamics.

The effects of correlations in the kicked rotor are very important, and it is only

in the quasilinear approximation that we can define such a simple diffusion constant. The

calculation of a more general diffusion rate D(K) = En/n requires consideration of higher

order correlations. An analytic expression for D(K) in terms of powers of Bessel functions

(to second order) was calculated to be

D(K) =
K2

2

(
1
2
− J2(K) − J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)

, (1.15)
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Figure 1.7: The diffusion rate D(K) is calculated by several methods. First, the smooth
curve shown in red is the quasilinear diffusion rate Dql = K2/4. The green curve is the
Rechester and White expression (Eq. 1.15), and oscillates about the quasilinear value. We
have also plotted, in blue, the diffusion rate calculated from a simple simulation. A set of
5 · 104 initial conditions were randomly chosen. For each of these, the standard map was
iterated 200 times for various values of the stochasticity parameter K. The numerically
determined diffusion rate follows the Rechester and White expression very well, except near
the maxima, where the simulation shows strong peaks.

by Rechester and White [Rechester80; Rechester81]. This formula is plotted along with

Dql(K) and the results of a simulation in Fig. 1.7, where we see that this expression describes

oscillations about the quasilinear diffusion rate.

Eq. 1.15 is intended to model the average, long-time diffusion, and implicitly neglects

very-long-time correlations, which at first glance seem unlikely when K is large. However,

when comparing the analytical expression to the simulation in Fig. 1.7, it is apparent that

there is disagreement at certain values of K. The simulation shows large peaks that are

not fully accounted for by the Rechester and White expression. The peaks are due to the
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presence of accelerator modes in the phase space.

Accelerator modes are small, stable structures in the phase space which tend to

rapidly increase the momentum of particles. In the standard map, the largest accelerator

modes form stable islands within a range given by

2πl < K <
√

(2πl)2 + 16, (1.16)

for integer l ≥ 1 [Chirikov79]. A particle that is trapped inside the accelerator mode hops

in momentum by 2πl, monotonically, during each iteration of the standard mapping. The

largest set of accelerator modes occurs for l = 1, just above 2π. Their location in phase

space is shown in Fig. 1.8.

The symmetry of the phase space requires that there be two accelerator modes which

accelerate particles in opposite directions. The structure of these islands is an excellent

example of the complexity of the standard map, and of one of the islands is shown in detail

in Fig. 1.9. The stability of the islands and the nature of the accelerator modes leads to

to “streaming” behavior, rather than diffusive motion for trajectories in the islands, as

illustrated in Fig. 1.10.

In the presence of true accelerator modes, the long-time diffusion rate is expected

to diverge because of the streaming behavior. The addition of a small amount of noise to

the system breaks the symmetry of the system enough that particles in streaming trajec-

tories eventually fall out of them [Karney83]. The substitution of finite-length pulses for

δ-functions in the kicked rotor system has a similar symmetry-breaking effect. In these

cases, we say that we have quasiaccelerator modes [Lichtenberg92].

Besides the direct streaming behavior in the (quasi)accelerator modes, there is an-

other mechanism by which dramatic changes in momentum occur. The border regions of

the accelerator modes are “sticky” in the sense that (otherwise) chaotic trajectories that

wander near these regions may become trapped in there and be accelerated to high momen-

tum before wandering away again [Zaslavsky97]. This type of motion is suggestive of Lévy

flights, which are rare but significant events that strongly influence the overall dynamics



Figure 1.8: This surface of section for the standard map shows the locations of the accel-
erator modes in phase space for K = 6.50. A large number of trajectories generated from
random initial conditions are plotted. The color scheme in this surface of section reflects
the instantaneous momentum of the particles, rather than the initial condition that it orig-
inated from. Particles with high velocity in the +p direction are colored yellow or green,
and particles moving quickly in the opposite direction appear as purple or blue. When this
color scheme is applied, the accelerator modes appear as brightly colored islands in a dull
brown sea of chaos. The islands straddle p = 0, mod 2π. A magnified view of one of these
accelerator modes is presented in Fig. 1.9.

[Klafter96]. Examples of this type of motion are shown in Figs. 1.10 and 1.11. The presence

of Lévy-flight behavior or quasiaccelerator modes may lead to superdiffusive energy growth.

We have also seen that it is possible for energy growth in the system to be limited by the

presence of other classical structures. Both of these cases are are examples of anomalous dif-

fusion, energy growth described by E(t) ∝ tµ, where µ �= 1 [Chirikov84]. For the relatively

short time scales that are used in our experiments, however, the assumption of diffusive

energy growth (µ = 1) is appropriate. The diffusion rate expression Eq. 1.15 provides a

practical expression for the diffusion rate in the absence of the largest accelerator modes.
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Figure 1.9: Detail of an accelerator mode in for K = 6.50. This is a magnified region of
the phase space displayed in Fig. 1.8, and shows some of the rich detail in these structures.
This accelerator mode is an asymmetric island surrounded by a chain of five islands, each of
which is surrounded by five more islands. The edges of each main island appear to be bent
around the islands that surround it. Some of the particles moving at high velocity (those
that have been accelerated, again labeled by their colors) appear in the cloud-like borders
of the various islands. The boundaries of the region shown are 0.47 · π ≤ x ≤ 0.69 · π, and
(−π/9) ≤ p ≤ (π/9).
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Figure 1.10: Illustration of momentum growth in the accelerator modes with K = 6.50.
Three closely-spaced families of initial conditions are used to illustrate the different features
of the phase space. The three families begin at (x, p) = (1.60, 0), (π, 0), and (4.4, 0), and
are labeled by color as green, red, and blue, respectively. Three initial positions within each
family are mutually offset by ∆x = 0.1. This places the “green” particles in the positively
accelerating mode, the “red” particles in the chaotic sea, and the “blue” particles in the
opposite accelerator mode. The momentum of each particle is plotted as a function of
time in the standard map. The two groups in the accelerator modes move apart neatly. In
contrast, the particles that started in the chaotic region diffuse independently. An interesting
feature of this plot is that one of the (otherwise) chaotic trajectories undergoes a long flight,
between n of about 650−875. The rate of this tremendous acceleration is clearly that of the
trajectories shown in blue, and is again suggestive of the “sticky” nature of the accelerator
modes. In fact, if we plot this particular trajectory in phase space, it spends a long time in
the cloud-like border region (Fig. 1.9) of the negative-going accelerator mode.
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Figure 1.11: Illustration of Lévy-flight trajectories. The particle momentum as a function of
time is plotted for two trajectories in the standard map with K = 6.55, for 5 ·105 iterations.
The initial coordinates were chosen as (x, p) = (0.287, 0.084), and (0.272, 0.084). The motion
alternates between diffusive, random-walk type behavior and enormous, sudden jumps in
momentum.



1.3 Quantum Chaos

Quantum transport is, in general, quite different from classical transport. In the classical

picture, we follow the instantaneous momentum and position of particle trajectories through

a phase space. Instead, let us now consider the time evolution of a state vector |ψ〉 under

the Schrödinger equation. In quantum mechanics, there is not a well-defined trajectory in

phase space, only the evolution of a probability density. What then, if any, is the quantized

analogy of a chaotic trajectory? To begin to address this question, we will examine the

kicked rotor system in quantum mechanics.

1.3.1 The quantum kicked rotor

The quantum kicked rotor is described by the same physical model as the classical one,

however, we now quantize the momentum states. The value of the momentum is constrained

to be j�, for some integer j. This confines a rotor to a “ladder” of momentum states. This

quantization has several possible origins in a physical system. For atoms in a laser field, we

may view the ladder as arising from the fact that the atom can only interact with the field

in units of whole photons. The quantization may also be taken to arise directly from the

spatially periodic nature of the potentials that we employ. An example pendulum potential

(which could be pulsed on to realize the kicked-rotor potential) is V (x) = α cos(x). This

potential is spatially periodic, since V (x + 2π) = V (x). Bloch’s theorem tells us that the

solutions ψ to the Schrödinger equation for this potential satisfy

ψ(x + 2π) = e2πikψ(x). (1.17)

Furthermore, the topology of our rotor specifies that x +2π ≡ x, and therefore ψ(x +2π) =

ψ(x). This requirement means that e2πik = 1, and so k ∈ (0,±1,±2 . . .). In physical units

where the displacement is a distance (and k is the wave number), this quantization condition

specifies the amount of momentum that may be exchanged with a particle. The momentum

ladder for an ensemble of particles (as opposed to rotors) is similarly quantized, however

each particle may have its own ladder p = p0 + j�, where 0 ≤ p0 < � is a constant for each

particle.
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The quantum kicked rotor Hamiltonian is a straightforward generalization of the

classical kicked rotor Hamiltonian (Eq. 1.4) obtained by making the substitution p → �

i
∂
∂x .

The dynamics are then given by the Schrödinger equation,

i�
∂

∂t
|ψ〉 = H|ψ〉. (1.18)

In order to analyze the behavior of this system, we would like to follow a similar procedure

to that which we used in the classical case. We begin by charting the evolution over a

single kicking period. This evolution consists of a single kick at time t = n followed by free

evolution until the time n + 1 at which the next kick would occur. We integrate over the

delta kick to find the “kicking” operator U0(K) = exp(− i
�
K cosx) and then operate with

the usual free-evolution term. These parts may be written together as the single operator

U(n + 1, n) = exp
(
− i

�

p2

2

)
exp

(
− i

�
K cosx

)
, (1.19)

so that the state vector at time t = n + 1 is given by |ψ(n + 1)〉 = U(n + 1, n)|ψ(n)〉.

Naturally, repeated application of this operator may be used to find the state vector at later

times.

The kicked rotor Hamiltonian is time-periodic and the natural basis set in terms

of Floquet states. The Floquet theorem is the temporal analog of the Bloch theorem for

spatially periodic systems. Since the Hamiltonian is time dependent, the basis states are

not energy eigenstates, but rather quasienergy states. The basis Floquet states are time-

dependent eigenfunctions of the single-kick evolution operator U ,

U(n + 1, n)|ψE〉 = exp
(
− i

�
E
)
|ψE〉, (1.20)

where the quasienergies are identified as the values E . Since the Floquet states form a

complete basis, we may expand an arbitrary initial state |ψ0〉 as

|ψ0〉 =
∑
E

AE |ψE〉, (1.21)

and the subsequent time evolution is limited to states with nonzero AE .



1.3.2 Dynamical localization

The fact that the kicked-rotor system can be described by simple mappings in both classical

and quantum physics (Eqs. 1.12 and 1.19) has made it the object of extensive numerical

study [Reichl92; Lichtenberg92]. If we compare the energy growth of classical and quantum

kicked rotors, we see something very interesting. Recall that the classical energy growth is

expected to be diffusive so that E(t) = Dt. In the simple simulations shown in Fig. 1.12, we

see that this describes the classical behavior quite well. In contrast, the quantum system

follows the classical system only for a short time, after which the diffusion is dramatically

reduced. This phenomenon is known as dynamical localization, and was first identified by

Casati, Chirikov, Izrailev, and Ford [Casati79]. It was later shown by Fishman, Grempel,

and Prange that the quantum kicked rotor problem can be formulated to resemble the

Anderson problem of quantum transport in a disordered lattice [Fishman82; Anderson58;

Altland96].

Suppose that we have motion in a perfectly ordered lattice. Then the Bloch theorem

gives us solutions (Eq. 1.17) that consist of plane waves modulated by periodic functions.

These Bloch states are special solutions for which ballistic motion through the crystal is

permitted. On the other hand, if the lattice is not exactly periodic, these solutions should

not be expected to exist. Anderson localization is a phenomenon in condensed matter physics

concerning the motion of electrons in a disordered medium. In this case, the electron wave

functions become exponentially localized in position, and the material may be viewed as an

insulator. In dynamical localization, momentum plays the role of position, and the disorder

is introduced by the (pseudorandom) dynamics, rather than by lattice defects. The Floquet

states for the kicked rotor are thus exponentially localized in momentum.

We have seen that an arbitrary initial state can be expanded in the Floquet basis

(Eq. 1.21). If the initial state is sufficiently narrow, then it must be projected into a coherent

superposition of several states. These states evolve independently and eventually dephase.

The long-time limit of the momentum distribution then becomes an incoherent sum of the

basis states that are populated, and is thus exponentially localized. For short enough times,
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Figure 1.12: Illustration of dynamical localization. The energy 〈p2/2〉 is plotted as a function
of time for classical (red) and quantum (blue) kicked rotors with K = 10. The classical rotor
evolution is given by the standard map Eq. 1.12 with 103 randomly chosen initial conditions,
and the quantum evolution is given by Eq. 1.19, with � = 1, for an ensemble of 17 minimum-
uncertainty wavepackets uniformly distributed in position.

the discrete nature of the (populated) quasienergy states cannot be resolved (by energy-time

uncertainty), and the system energy is expected to grow diffusively. After a characteristic

time, the quantum break time, the momentum distribution begins to approach its long-time

appearance and the energy of the system no longer increases.

It is apparent that the behavior in our classical and quantum kicked rotors is quite

different. In the classical system, the momentum distributions are Gaussian, and the system

energy grows linearly with time. In the quantum system, the system only evolves diffusively

for a short time. After that, the momentum distributions are exponential and the energy

does not grow at all. We may interpret the results in the following way: quantum mechanics



suppresses chaotic motion.

Although we have used one specific physical system to demonstrate these results,

both chaotic motion and dynamical localization are generic phenomena. Dynamical local-

ization arises from the time-periodic nature of the Hamiltonian, and so we should expect

similar behavior in other driven systems as well. This also provides an answer to what we

mean by “quantum chaos.” Although there is not chaos in the long-time dynamics of the

quantized version of classically chaotic system, this is precisely what we mean. “Quantum

chaos” is, for our purposes, the study of classically chaotic dynamical systems.

1.3.3 Quantum resonance

The classical kicked rotor is controlled entirely by the value of the stochasticity parameter

K. In the quantum kicked rotor, there are two parameters, K and �. Naturally, we cannot

alter one of the fundamental constants of the universe, but we can change the relative action

scale of certain experiments by wise parameter choice. For the purpose of this discussion,

we will assume that the unit of quantum action is determined by a dimensionless, scaled

Planck constant k̄. In our experiments, k̄ is usually determined by the period of the external

modulation.

Recall the single-kick time evolution operator, Eq. 1.19, which we have used to

describe the quantum kicked rotor. The operator consists of two operations, a kick and a

free evolution term described by

U = exp
(
− i

k̄

p2

2

)
. (1.22)

Suppose that our initial condition consists of a plane wave with momentum p0. During a

kick, the particle is only coupled to the other plane waves on its momentum ladder, those

with momentum p = p0 + jk̄, for integer j. If the momentum ladder is defined by p0 = 0,

then a particular choice of k̄ can lead to a free evolution term of U = ±1 for every state

on the momentum ladder. This condition is called the quantum resonance, and occurs any

time that k̄ is an integral multiple of 2π [Izrailev79]. This is similar to the Talbot effect in
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optics [Berry99]. If k̄ is an even multiple of 2π, the free-evolution factor U is unity. If k̄ is

an odd multiple of 2π, the free-evolution factor can either become unity or alternate signs

between successive kicks, if the proper momentum ladder is chosen. (It is also possible to

choose a momentum ladder that does not display such strong behavior.) In general, if k̄

is any rational multiple of 2π, some sort of quantum resonant behavior is expected. The

timescales for the observation of the general quantum resonances is expected to be much

longer than for the simplest cases, and we will not discuss them further.

When the free evolution factor U is unity, (e.g., when k̄ = 4π), the single-kick and

free evolution time evolution operator Eq. 1.19 reduces to

U(n + 1, n) = exp
(
− i

k̄
K cosx

)
, (1.23)

which we recognize as the operator U0(K) that describes the kick by itself. For a sequence

of N kicks, we apply this operator N times and have

U(n + N, n) =
(

exp(− i

k̄
K cos x)

)N

= exp
(
− i

k̄
NK cos x

)
, (1.24)

which is equivalent to a single-kick operator where the new kick strength is N · K. This

tells us that because the evolution between kicks does not affect the system (U = 1), a long

sequence of kicks “collapses” into a single strong kick. The time evolution is simply governed

by the fact that the overall kick strength grows linearly with the number of kicks. We can

illustrate this behavior by considering the effect of a δ-function pulse on a plane wave with

p0 = 0. After a single pulse, the probability of being diffracted into the momentum state

p = jk̄ is

Pj = J2
j (NK/k̄), (1.25)

where Jj(x) is an ordinary Bessel function [Martin87; Bharucha99]. The Bessel functions

Jj(x) peak when x is near j, and thus form a ballistic peak in momentum that moves out

linearly with time, as is demonstrated in Fig. 1.13. The system exhibits ballistic growth in

momentum where the energy grows quadratically in time. This acceleration is similar in

ways to motion in the accelerator modes that occur in the classical standard map. We must
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Figure 1.13: Illustration of quantum resonance. These plots show the calculated momentum
distribution for the δ-kicked rotor with a plane-wave initial condition and parameters k̄ =
4π and K = 37. Two peaks move away from p0 = 0 with nearly uniform acceleration.
The distributions shown are calculated from Eq. 1.25. The evolution of the momentum
distribution is shown as both a surface plot (left) and as a density plot (right). The intensity
scale for these plots is linear.

exercise caution in this analogy because the origins of these two phenomena are entirely

different.

A case is also possible where the free-evolution factor U is equal to −1 for a single

kick. Then, for a sequence of N kicks, the total free-evolution factor Utot = UN = (−1)N

alternates sign between successive kicks. This occurs when k̄ is an odd multiple of 2π,

for an appropriately chosen initial momentum state. When this happens, the effect of the

second kick is to “undo” the effect of the kick before it. This condition is sometimes called

a quantum antiresonance. The initial momentum state is critically important if we wish to

resolve this type of motion. In our experiments, we never have exactly a plane wave, and we

will see later that the continuous nature of our initial conditions can lead to very different

behavior. A more detailed theoretical consideration of the dynamics can be used to account

for both momentum ladders with p0 �= 0 as well as the initial momentum distribution of

the atomic sample [Bharucha99]. Independent of these considerations, atoms initially near

p = 0 will undergo ballistic motion as we have described, for k̄ = 4π. The overall behavior
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leads to momentum distributions characterized by a localized central region surrounded by

ballistic peaks, as we will see later.

The evolution of the system near the quantum resonance is quite different from both

the classical chaotic motion and the dynamical localization that we saw earlier. Although we

did not mention it earlier, it is the case that dynamical localization occurs when quantum

resonances do not: when k̄ is an irrational multiple of 2π. Both dynamical localization

and quantum resonances are purely quantum coherent effects, with no analog in classical

mechanics1 . We have already identified our time-periodic system as being closely related

to the system of electron wavefunction propagation in solids. Here, dynamical localization

(in momentum) plays the role of Anderson localization (in position). Similarly, the ballistic

motion through the momentum lattice at the quantum resonance is much like ballistic

motion for Bloch states in a crystal lattice. Since these are coherent effects, it will only be

possible to observe them in a system where the fragile quantum coherences are preserved

over a sufficiently long timescale.

1.4 Atom Optics

Atom optics is the emerging science of manipulating atomic de Broglie waves. Much of the

work in this field has been devoted to developing tools analogous to those that are used

with visible light. Mirrors [Balykin88], beam splitters [Moskowitz83], lenses [Friedburg51;

Bjorkholm78], and diffraction gratings [Martin87] for matter waves have been demonstrated.

The most common methods presently involve the manipulation of neutral atoms by optical

fields. There have also been, for example, demonstrations of diffraction through matter

gratings [Keith91], and manipulation with magnetic fields [Friedburg51; Migdall85]. An

independently evolving set of tools exists for manipulating ions [King99], which are strongly

affected by electric fields.

1There are appropriate analogies in certain wave-mechanical classical systems, such as acoustic or optical
systems. As an example, note that the kicked rotor system is much like the propagation of light through a
series of diffraction gratings.



We are, in this dissertation, concerned only with the optical manipulation of cold

neutral atoms. The many potential applications of this technology include improved atomic

clocks [Gibble93], atom interferometry [Kasevich91], a wide range of fundamental physics

experiments (such as those performed in our laboratory) [Madison98], and atom deposition

on surfaces [Timp92]. The development of laser cooling and trapping in the 1980’s led to the

creation of now-standard laser cooling techniques such as the magneto-optic trap (MOT)

[Raab87]. The MOT uses a combination of near-resonant laser light and magnetic fields to

reduce the temperature of an alkali gas sample to very low temperatures— typically 10 µK

for cesium atoms. At such low temperatures, the average momentum of the atoms is of the

same order of magnitude as the recoil momentum, the momentum that an atom acquires

by scattering a single photon. (For a cesium atom, the recoil velocity is about 3.5 mm/s.)

Once the typical atomic velocity is this low, the momentum imparted by a single

photon scattering off of the atom can become significant compared to the total atomic

momentum. It is only at these low momentum values that matter is easily manipulated by

optical forces. Any macroscopic object is heavy enough that the momentum imparted to it

by a single photon recoil is negligible.

There are, generally speaking, two types of forces that occur when atoms scatter

photons. First, there is a dissipative, incoherent scattering force that results from sponta-

neous emission. Under certain circumstances, an atom may absorb a photon, remain in the

excited state for some characteristic lifetime and decay by emitting a photon in a random

direction. We will refer to this as the spontaneous force Fsp, sometimes called radiation

pressure. Spontaneous forces are most important very close to atomic resonance, and these

are the forces that we use to trap and cool our atomic sample in the MOT. There is also a

conservative, coherent scattering force that results from the interaction of an induced dipole

moment of the atom with the electric field of light. This dipole force is used to create all of

the interaction potentials that we use for our experiments. The strength of the dipole force

is proportional to the gradient of the intensity of light. The force can be viewed to arise

from the shift in the atomic energy levels induced by the electric fields of the light, which is
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referred to as the ac Stark shift.

The optical lattices that we employ (usually) consist of one-dimensional retrore-

flected laser beams. The interference pattern in space is an intensity grating that varies

from bright to dark and bright again in half a wavelength of the light (426 nm). The gra-

dient in the electric field strength creates a spatially periodic potential that can serve as a

diffraction grating for atoms [Martin87]. The first quantum chaos experiments in this sys-

tem were proposed ten years ago by Graham, Schlautmann, and Zoller [Graham92]. They

proposed sending a beam of atoms through such a standing-wave diffraction grating that

was phase modulated in time. Intuitively, such a time-driven nonlinear quantum system

should be expected to exhibit dynamical localization. Furthermore, we might recall that

the kicked-rotor system is similar to an atom passing through a series of diffraction gratings.

Because of this, we can begin to see the origins of our experimental realization of the kicked

rotor.

1.4.1 An atom in a standing wave of light

Let us now explore the origins of the dipole force in greater detail. Although this discussion

is perhaps unnecessarily technical since it is available elsewhere, it is nonetheless important.

Besides understanding the forces well enough to calculate their values, it is also important to

know what assumptions and approximations are implicit in the formulas that we use. This

derivation was sketched out in the Graham, Schlautmann, and Zoller proposal [Graham92].

The details have iteratively been filled in by a series of dissertations from our laboratory

[Robinson95b; Bharucha97; Klappauf98c; Madison98], and are ultimately available in much

greater detail than presented here [Steck01b].

Let us begin our description by examining a two-level atom exposed to a one-

dimensional standing wave of light. The atom has ground and excited states |g〉 and |e〉

separated in energy by �ω0, where ω0 is the frequency of the atomic resonance. The light



field is described by

E(x, t) = ẑE0 cos(kLx)
(
e−iωLt + eiωLt

)
= ẑ(E+(x, t) + E−(x, t)) ,

(1.26)

where E0 is the amplitude of one of the traveling-wave electric field components. We have

separated the field into two counterrotating components, E±(x, t). The wave number and

frequency of the light are given by kL and ωL, respectively. This describes a standing wave

whose time-averaged intensity is given by

〈I(x)〉 = cε0〈E ·E〉 = cε0E
2
0(1 + cos(2kLx)). (1.27)

The total Hamiltonian for the atom in the field is given by

H = HA + HAF, (1.28)

the sum of the free-atom Hamiltonian HA and the atom-field interaction Hamiltonian HAF.

The free-atom Hamiltonian is the sum of the kinetic energy and the internal energy of the

atom:

HA =
p2

2m
+ �ω0|e〉〈e|. (1.29)

The atom-field interaction is described by

HAF = −d · E, (1.30)

where d is the atomic dipole operator. We have implicitly used the dipole approximation,

which is to assume that the electric field is constant over the extent of our wavefunction.

We can further separate the dipole operator into counterrotating components by writing

d = d+ + d−

= (a + a†)〈e|d|g〉

= (|g〉〈e| + |e〉〈g|)〈e|d|g〉 ,

(1.31)

where we atomic lowering operator is a = |g〉〈e|. We evaluate Eq. 1.30 by invoking the

rotating wave approximation (RWA), under which we average (to zero) terms that oscillate

at twice the optical frequency. We then have

HAF = d+ · (ẑE−) + d− · (ẑE+)

= 1
2�Ω(aeiωLt + a†e−iωLt) cos(kLx) ,

(1.32)
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where the maximum Rabi frequency is defined as

Ω = −2
E0

�
〈e|dz|g〉, (1.33)

and dz is the ẑ-component of the dipole operator.

We may, without loss of generality, separate the atomic internal and external degrees

of freedom. It is also convenient to transform to a frame that rotates at the laser frequency

ωL to simplify the time dependence of the system. The atomic state vector may be written

as

|ψ〉 = |ψg〉|g〉+ |ψe〉|ẽ〉, (1.34)

where |ψe〉 and |ψg〉 are center-of-mass state vectors. We have implicitly defined a slowly

varying excited state

|ẽ〉 ≡ eiωLt|e〉, (1.35)

which further necessitates defining Ẽ± ≡ e±iωLtE±, ã ≡ |g〉〈ẽ|, and so forth. Under these

transformations, the atom-field Hamiltonian (Eq. 1.32) becomes

H̃AF =
1
2

�Ω(ã + ã†) cos(kLx), (1.36)

and the free-atom Hamiltonian (Eq. 1.29) becomes

H̃A =
p2

2m
− �∆L|ẽ〉〈ẽ|. (1.37)

The new effective excited state energy is determined by ∆L = ωL − ω0, the laser detuning

from resonance. After making these substitutions, we are now ready to insert |ψ〉 from

Eq. 1.34 into the Schrödinger equation, Eq. 1.18, with Hamiltonian H = H̃A + H̃AF. This

substitution yields

i�
∂

∂t
(ψg|g〉 + ψe|ẽ〉) =

(
p2

2m
− �∆L|ẽ〉〈ẽ|+

1
2

�Ω(ã + ã†) cos(kLx))(ψg|g〉+ ψe|ẽ〉
)

.

(1.38)

By operating on the left with the internal state vectors 〈g| and 〈ẽ| successively, this can be

separated into a coupled pair of equations of motion. The equation for the ground state is

i�
∂

∂t
ψg =

p2

2m
ψg +

1
2

�Ω cos(kLx)ψe, (1.39)



and the excited state equation of motion is

i�
∂

∂t
ψe =

p2

2m
ψe +

1
2

�Ω cos(kLx)ψg − �∆Lψe. (1.40)

Usually, our experiments take place in a parameter regime where the laser is in

the general neighborhood of an atomic resonance, which is necessary for the dipole force to

be strong enough. We also require that the laser is detuned far enough that spontaneous

scattering is unlikely over the timescales of our experiments. We are after the observation

of coherent quantum effects, and so it is critically important that we avoid any incoherent

interactions such as spontaneous scattering. In the limit of large detuning where atomic ex-

citation is highly unlikely, we can simplify the equations of motion by eliminating the excited

state amplitude through an adiabatic approximation. In order to understand the dynamics,

let us compare the time and energy scales that the terms of Eq. 1.40 represent. The kinetic

energy terms correspond to several recoil energies. The recoil energy Er = �
2k2

L/2m is the

kinetic energy of an atom with one recoil (�kL) of momentum. The corresponding recoil

frequency, ωr = Er/� = �k2
L/2m is about 2π · 2.07 kHz for the cesium transition that we

use. The detuned laser field induces oscillation within the atom at the generalized Rabi

frequency, Ωg =
√

Ω2 + ∆2
L. In our experiments, the Rabi frequency Ω ranges from zero to

the order of 500 MHz, and the laser detuning ∆L is 6-40 GHz, depending on the particular

experiment so that the generalized Rabi frequency is given approximately by Ωg ≈ ∆L.

An additional important timescale is the natural decay rate of the excited state, which for

cesium is Γ = 2π · 5.2 MHz. We are attempting to solve for the center-of-mass motion,

which occurs on much slower timescales than those of the internal motion. In the adiabatic

approximation, we then assume that the internal motion damps instantaneously by taking

∂
∂t

ψe to be zero. We can then solve Eq. 1.40 for ψe to simplify Eq. 1.39, the equation for

the ground state motion. We then have an expression for the ground state amplitude,

i�
∂

∂t
ψg =

p2

2m
ψg +

1
2

�Ω cos(kLx)
(1

2
�Ω cos(kLx)ψg/(�∆L − p2

2m
)
)
. (1.41)

If we recall that �∆L � p2

2m
, we can further simplify this by to

i�
∂

∂t
ψg =

p2

2m
ψg + V0 cos(2kLx)ψg, (1.42)
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where we have redefined the zero of potential energy and defined the well depth V0 as

V0 ≡ �Ω2

8∆L

=
d2

zE
2
0

2�∆L

. (1.43)

The dynamics described by Eq. 1.42 are that of the pendulum Hamiltonian (Eq. 1.3)

substituted into the Schrödinger equation. We can interpret this to mean that our atom in

the standing wave (in an appropriate set of limits) acts as a ground-state, point particle.

The well depth is the magnitude of the ac Stark shift that creates the dipole forces. From

Eq. 1.43, we note that the strength of the dipole force is proportional to the gradient of the

intensity (I ∼ E2 ∼ Ω2) and inversely proportional to the detuning from resonance, ∆L.

An important difference from the classical pendulum is that the momentum scale

here is quantized because the dipole force arises from coherent scattering. An atom that

absorbs a photon from the left may scatter that photon to the right, in a process where it

gains no net momentum. It may also scatter the photon back to the left, picking up two

photon recoils (2�kL) of momentum in the process. In this picture we again see that the

atom can only exchange momentum in multiples of 2�kL.

Cesium is far from being a two-level atom. Our lasers are tuned near the cesium

D2 (6S1/2 −→ 6P3/2) transition at 852 nm, which defines a manifold of ground and excited

states for our purposes. There are two ground hyperfine states (Fg = 3, Fg = 4), each of

which has multiple magnetic sublevels mF . The four excited state hyperfine levels are also

multiply degenerate. (We show a term diagram for the relevant atomic structure in Fig. 2.2.)

We can simplify the relevant structure somewhat by beginning our experiment with all of

our atoms pumped into a single ground-state hyperfine level and continuing to consider

the case of linearly polarized light. If the detuning ∆L is much larger than the width of

the excited state manifold (∼ 0.5 GHz), the excited states are effectively degenerate. The

total dipole moment summed over the possible excited states becomes independent of the

magnetic sublevel, with value d = 2.2 · 10−29 C · m. A more detailed consideration that

does not assume infinite detuning also shows that a two-level approximation is valid, but

the effective dipole moment turns out to depend upon the value of mF .



1.4.2 Spontaneous scattering

We would like to work in a regime where spontaneous emission can be made negligible. One

reason for this is that we are attempting to perform “clean” experiments that involve only

conservative forces. The spontaneous force Fsp is not conservative– it tends to heat our

atomic system and break quantum coherences. We need to preserve quantum coherences

for relatively long times (up to 4 ms) in order to observe quantum effects. A second reason

is that a spontaneous scattering event can change the internal state of the atom. A cesium

atom that begins in the F = 4 hyperfine ground state can, after a spontaneous event, end

up in the F = 3 ground state. Since these two ground states are separated in energy by

∼ � · 9.2 GHz, this can significantly alter the effective laser detuning ∆L. A simplistic

estimate of the scattering rate Rsc can be derived from the excited state equation of motion,

Eq. 1.40. In the adiabatic approximation we set ∂
∂t

ψe to be zero. This yields a relation

between the ground state and excited state populations, |ψg|2 and |ψe|2. Then, if the

ground state population is close to unity, we can estimate the total scattering rate to be the

product of the spontaneous decay rate Γ and the excited state population,

Rsc = Γ|ψe|2 ≈ Γ
(

1
2

Ω
∆L

cos(kLx)
)2

→ Γ
1
8

Ω2

∆2
L

, (1.44)

after averaging over the standing wave in position. A more detailed calculation using the

optical Bloch equations [Steck01a] yields a steady-state expression

Rsc =
Γ
2

I/Isat

1 + 4(∆L/Γ)2 + (I/Isat)
, (1.45)

in terms of the saturation intensity Isat, which is defined by I/Isat = 2(Ω/Γ)2. We are most

concerned with residual spontaneous scattering that occurs when we are in a far-detuned

regime. We then note that the total spontaneous emission rate is directly proportional to

the intensity and inversely proportional to the square of the laser detuning. Recall that

the dipole-force strength only decays as 1/∆L. Because of this, we can usually tune the

laser far enough from resonance to make spontaneous emission negligible while maintaining

enough dipole force strength to do our experiments. Since cesium is not truly a two-level
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atom, precise calculation of the scattering rate requires consideration of the dipole moment

for each possible transition.

1.4.3 Scaled units for the kicked rotor

In the everyday course of laboratory work, we use modern SI units [Taylor95]. In contrast,

we have used a system of scaled dimensionless units in sections 1.2 and 1.3. This is often

useful in elucidating complex physics without dragging along more constants than is abso-

lutely necessary. Scaled units provide a language for the communication of physics that is

independent of, for example, atomic data. Frequently, the scaled units also are the natural

units of the system. Here, we will work through the choice of units that leads from our

result for atomic motion in a standing wave to our realization of the quantum kicked rotor.

Let us begin with Eq. 1.42, which is the Schrödinger equation for a system described

by the Hamiltonian

H(x, p) =
p2

2m
+ V0 cos(2kLx). (1.46)

In the kicked-rotor experiments, we modulate the amplitude of this potential by pulsing on

a series of short pulses spaced apart by time T , so that we have

H(x, p, t) =
p2

2m
+ V0 cos(2kLx)

∑
n

F (t − nT ). (1.47)

The pulse function F (t) describes a short pulse of unit amplitude and duration tp, where

tp � T . We now define a set of transformations,

x′ = 2kLx,

t′ = t/T,

p′ = pk̄/2�kL,

f(t′) = F (t)/η,

K = (k̄/�)ηTV0,

H′ = (k̄/�)TH,

(1.48)

where we have defined a pulse integral η = 1
T

∫ ∞
−∞ F (t)dt, such that η ∝ tp and

∫ ∞
−∞ f(t)dt =

1. Furthermore, we define the constant k̄ = 8ωrT , where the recoil frequency ωr = �k2
L/2m



contains all of the information about the atom. If we examine the commutation relation

[x′, p′] =
k̄

�
[x, p] = ik̄, (1.49)

we find that k̄ indeed plays the role of a scaled Planck constant that tells us the relative

action scale of the system compared to �. Note also that we have now defined the kicked

rotor stochasticity parameter K in terms of physical parameters.

We have described the scaled units as being, among other things, the natural set of

units for the given physical system. Our time unit is the most basic interval in the system,

which is the time between subsequent kicks. The position scale is also natural in the sense

that x′ is 2π-periodic. We saw earlier that the momentum of a given particle is constrained

to a ladder of spacing 2�kL. In the scaled units, this is taken into account, and momentum

is now exchanged in units of k̄.

We may use the unit transformations (1.48) to rewrite the Hamiltonian in Eq. 1.47

as

H(x, p, t) =
p2

2
+ K cos x

∑
n

f(t − n), (1.50)

after dropping the primes. We can now take the limit of δ-function pulses where tp −→ 0

and K is constant. In this case we recover the δ-kicked rotor Hamiltonian (Eq. 1.4) for a

finite number of pulses. We cannot generate an infinite train of pulses in the laboratory,

but we can generate a pulse train that is long enough to explore many regimes of dynamics.

A more troublesome problem is that we cannot actually generate δ-function pulses. The

δ-kicked rotor has been an object of intense study partly because of the computational

ease that results from the δ-function in the equations of motion. As we will see later, the

short-but-nonzero length of our pulses leads to a slight dependence of K on the momentum.

1.4.4 Quantum motion in the pendulum potential

In our discussions so far, we have described the classical pendulum potential and how it is

modulated to realize the classical kicked rotor. We have explored both the quantum and

classical dynamics of the kicked rotor system. We have also described the method that we
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use in our experiment to realize a quantum pendulum potential, which is in turn modulated

to experimentally realize the kicked rotor. Let us take now a step back and explore a few

aspects of dynamics in the quantum pendulum potential.

The Hamiltonian for the quantum pendulum in our experiment is given in physical

units by Eq. 1.46. As a first step towards analysis, let us define a set of scaled units for

the pendulum system. The scaling is very close to that of the kicked rotor system. The

most significant difference is that in the absence of periodic modulation, there is no longer

a natural time scale for the system. In this case, we may take k̄ = 1 for convenience, and

thus define the time unit Tu. The unit scalings for the pendulum are defined with

k̄ = 8ωrTu = 1,

t′ = t/Tu = 8ωrt,

x′ = 2kLx,

p′ = pk̄/2�kL = p/2�kL,

αp = V0/8ωr�,

H′ = (k̄/�)TuH = H/8ωr�,

(1.51)

so that the physical Hamiltonian (Eq. 1.46) may be written as

H(x, p) =
p2

2
+ αp cosx, (1.52)

after dropping the primes. The scaled well depth αp is the sole parameter in this system.

Note that for some of the discussions relevant to this system, we will continue to use physical

units.

An important difference between the quantum and classical dynamics of this system

is that the quantum dynamics can exhibit tunneling phenomena, as we will discuss later (in

chapter 5). One particular flavor of tunneling, Bragg scattering, occurs in the pendulum

potential and has been observed in several atom optics experiments [Martin88; Giltner95;

Kozuma99]. While we do not directly observe Bragg scattering in our experiments, it is

important for us to understand the rate of this process.

Generally speaking, Bragg scattering is a multi-photon, nonclassical process that

couples states in certain symmetric momentum classes. The most familiar example involves



scattering off of a condensed matter crystal with certain incident angles. The process arises

from the periodic nature of the potential, which we have seen also gives rise to the momentum

quantization. In our case, we consider atomic scattering off of a stationary 1D optical lattice.

In this case, atoms in an initial momentum state p = n ·�kL (for integer n) are coupled by an

integer number of two-photon transitions to the state with opposite momentum. We again

consider motion in a far-detuned regime where the atoms remain in the ground state. The

first-order Bragg process couples ground-state atoms in the two momentum states p = ±�kL

with what can be described as a two-photon stimulated Raman transition between motional

states. (We will return to discuss stimulated Raman transitions in chapter in chapter 4.)

The Rabi frequency for the first order process is given by ΩR = Ω2/8∆L, where Ω is the

maximum Rabi frequency that we described earlier in the context of the atomic internal

dynamics.

In the case of higher-order Bragg scattering, we consider the 2n photon transition

between momentum states at p = ±n · �kL. In our far-detuned regime, the excited and

intermediate states are not populated, and this complicated process may be described as a

two-level system. The expression for the nth order Bragg scattering rate has been shown to

be [Giltner95]

ΩBn =
Ωn

R

(8ωr)n−1[(n − 1)!]2
, (1.53)

by considering the detunings of the intermediate motional states. Often, this oscillation

frequency is very small for high-order Bragg scattering. In our scaled units for the pendulum,

the frequency is

Ω′
Bn

=
αn

p

[(n − 1)!]2
. (1.54)

1.5 Experimental Context

The majority of research in quantum chaos is theoretical, however several physical settings

have emerged in which to explore the quantum dynamics of nonintegrable systems. Cold

atoms in optical lattices are a relatively new entry to this field, and possess some features
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which make them advantageous over other systems. This is certainly not a complete list,

and it does not cover many of the references directly relevant to our specific experiments,

e.g., noise-induced delocalization. We will discuss these results, later, in the context of the

individual experiments.

First, mesoscopic structures created in the context of condensed matter physics

have been studied in quantum chaos experiments. These systems exhibit a wide range of

phenomena, including for example weak localization and scarring [Marcus92; Wilkinson96].

These experiments are necessarily difficult, because of the short relaxation times that occur

in any solid system. The phase coherences that are necessary to observe quantum effects

are strongly inhibited by electron-electron interactions and lattice vibration.

Another widely studied system is that of multiphoton Rydberg atom ionization,

where dynamical localization has been found to suppress chaotic motion that leads to ion-

ization [Bayfield74; Koch95]. The spectroscopic study of atoms in strong external fields has

also been a fruitful system [Main91; Delande01]. These experiments address chaotic motion

of the internal degrees of freedom– the classically chaotic limit of the electron dynamics.

This is very different from the atom optics experiments, which ultimately treat the atom

as a point particle. The use of atomic systems (Rydberg or atom-optic) for quantum chaos

experiments has a strong advantage. The system can be made to be very isolated. Dilute

samples of atoms in a high-vacuum environment can be fairly well isolated from the outside

world. A possible criticism of experiments with Rydberg electrons is that the quantum state

of the atom can be very difficult or impossible to measure; the only quantity that can be

easily measured is the ionization threshold [Delande01].

A third class of experiments investigates wave-mechanical phenomena that are anal-

ogous to quantum-mechanical systems. Wave equations similar to the Schrödinger equation

exhibit similar phenomena in their solutions, and we might well expect “wave chaos” to be

similar in meaning to “quantum chaos.” Two-dimensional microwave cavities in the shape

of billiards have demonstrated the electromagnetic analogies of many quantum-chaotic phe-

nomena. As an example, dynamical localization [Sirko00] and signatures of chaos-assisted



tunneling [Dembowski00] have been observed in this system. We have noted previously that

the kicked rotor system is similar to light passing through a series of diffraction gratings.

Dynamical localization has recently been observed in such a system [Fischer00a].

Our atom-optical system is one of the most promising for the continued study of

both quantum chaos and other transport properties. Let us review some of the key strengths

of this technology. First, we have the environmental isolation that results from using free

atoms in a dilute gas. Dissipative interactions can usually be made minor enough to permit

detailed study of quantum dynamics. Secondly, we have a wide degree of experimental

control. Our potentials are created dynamically using light gated through acousto-optic

modulators. We have a fine degree of control over the amplitude and (to a lesser degree)

the phase and frequency of the light. Many different potentials can be created in a 1-

D sinusoidal system simply by the choice of modulation. We also have a high degree of

control over the initial conditions for our experiments. The internal atomic state can be

selected by a variety of optical methods, and the overall atomic sample can typically be

prepared at a temperature of less than 1 µK. With the state preparation techniques that

we have developed for the chaos-assisted tunneling experiments, we can center cold samples

at arbitrary locations in phase space. This is another advantage over other systems, where

it may be difficult or impossible to prepare electronic states for experiments. Finally, the

momentum distribution in our system can be directly measured with a ballistic (time of

flight) measurement technique.



Chapter 2

Experimental apparatus and methods

2.1 Overview

In this chapter we introduce our experimental setup and methods. We begin by describing

a typical experiment and gradually describe the individual components that make up the

experimental apparatus. The setup has evolved substantially during the course of the work

described in this dissertation. Many of the newer cooling and state-preparation techniques

have only been in place for the last year. The apparatus and methods that are relevant to

these procedures will be described later, in the chapter on quantum state preparation. Here,

we will describe only those components of the setup that apply to all of the experiments.

Many of the components of both the newer and older parts of the setup have already

been described in detail in the dissertations of my co-workers Bruce Klappauf and Daniel

Steck [Klappauf98c; Steck01b]. We will in this chapter review the essential features of the

experiment, as well as certain parts that have not been described in detail elsewhere.

A simplified diagram that illustrates our experimental sequence is shown in Fig. 2.1.

We begin our experiment by collecting a modest sample of 106 cesium atoms in our MOT.

The atoms are collected in ultra-high vacuum from the low-velocity tail of dilute cesium gas

at room temperature. Typically, our MOT loading time is of order 5 s. After loading the

MOT, we apply additional cooling and/or state preparation sequences. For the simplest

set of experiments, this consists of detuning the laser light used in the MOT (the optical

molasses) further from resonance for several milliseconds. In later experiments, we apply a

detailed state preparation sequence at this stage.

43



Figure 2.1: Schematic representation of a typical experimental sequence. We begin by col-
lecting atoms in a standard six-beam magneto-optic trap (MOT). We then turn off this trap
and expose the atoms to the one-dimensional interaction potential. A ballistic expansion
interval is used to transform the momentum distribution into a position distribution. We
measure this distribution by “freezing” the atoms in place in optical molasses and imaging
them with a CCD camera. A similar diagram for the more complex experiments involving
quantum state preparation is shown in Fig. 4.8

After cooling and state preparation is complete, we turn off the trapping fields and

begin the experiment itself. Our one-dimensional optical lattice that creates our interaction
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potential is switched on and intensity modulated by an acousto-optic modulator. The total

interaction time in most of our experiments is less than 2 ms. During the interaction period,

atoms exchange momentum with the standing wave. The initial distribution provided by

the MOT is well localized in position and the final momentum distribution can be measured

by a time of flight technique. We allow the atoms to ballistically expand in the absence of

external fields for 15 ms. During this free drift period, the momentum distribution converts

itself into a position distribution, since the fastest atoms move the farthest from the initial

MOT position. We then “freeze” the atoms in place with optical molasses. During this

freezing period, the atoms scatter light from the optical molasses beams which we image on

a charge-coupled device (CCD) camera. We typically integrate the picture from the camera

along one axis to produce the one-dimensional momentum distribution.

Our measurement technique is destructive, so each experiment begins with a fresh

set of cold atoms in the MOT. For experiments in which we sweep the total interaction time

as one of the system parameters, each time step requires an independent experiment. Fur-

thermore, we commonly repeat an experiment many times and average the results together.

Repeated measurements are warranted either when the signal-to-noise ratio is very low (for

example in the chaos-assisted tunneling experiments), or when we wish to average over a

system parameter. In experiments where we added noise to the interaction, we averaged

over many independent realizations of the noise.

The execution of this somewhat complex sequence of events requires the cooperation

of many experimental systems. Several independent lasers are necessary to provide the light

for the atom trap and the far-detuned interaction beam. A large collection of optics and

support electronics are used to keep the lasers at the correct frequencies. The interaction

itself takes place inside a vacuum system, into which all of the laser beams must eventually

be directed. The entire experiment is controlled by a computer that automates the timing

and data collection.



2.2 The MOT and Optical Molasses

The magneto-optic trap is in some sense the heart of our experiment: it is the basic tool

that we use to gather atoms and cool them. This trap has become a common tool in many

branches of modern atomic physics, and it is now described in textbooks [Demtröder96;

Metcalf99]. As excellent references are available elsewhere, we will not review it in detail

here. The MOT works by using a combination of magnetic fields and laser light. The light is

circularly polarized in a σ+ − σ− configuration, typically detuned (at least) several natural

linewidths to the to the red of resonance, and is ideally near the saturation intensity. The

particular resonance chosen is typically a cycling transition, one where the excited state is

most likely to decay back to the ground state that it was excited from. Efficient polarization-

gradient cooling [Dalibard89] in this configuration typically leads to ultimate temperatures

several times the recoil temperature. The recoil temperature is where the average atomic

velocity is one recoil velocity. The quadrupolar magnetic fields are generated by a pair of

anti-Helmholtz coils. These coils define a magnetic-field zero, near which the atoms in the

MOT are confined.

Our implementation of the MOT is the standard six-beam geometry, where three

of the beams are formed by retroreflecting the other three orthogonal beams. The beams

intersect the magnetic field zero in the center of our interaction chamber (vacuum chamber).

All of our lasers are close to the cesium D2 (6S1/2 −→ 6P3/2) transition at 852 nm. The

specific cycling transition that we use is the 6S1/2, Fg = 4 −→ 6P3/2, Fe = 5 transition,

where Fg and Fe represent the ground and excited state hyperfine sublevels, respectively.

The cycling transition is not perfect however, and there is a 0.01% chance per spontaneous

scattering event of making an (undesired) transition to the 6S1/2, Fg = 3 ground state

instead. Once in this state, an atom no longer “sees” the cooling light, and the cooling

process ceases. Although this may seem like a slow decay, the great number of scattering

events in our trap leads to a measured trap lifetime of about 3 ms if this loss process

is allowed to occur. A standard method for eliminating this loss is to provide a way of

returning atoms to the cycling transition. In our setup, an independent laser, the repump
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Figure 2.2: Term diagram of the D2 line of the 133Cs atom. The ground-state hyperfine
splitting given here is exact because this so-called “clock transition” between the 6S1/2, Fg =
3, 4 is used as the present definition of the SI second. The excited-state splittings are taken
from [Tanner88]. (Diagram: D. Steck.)



laser, is tuned directly to the 6S1/2, Fg = 3 −→ 6P3/2, Fe = 4 resonance to recycle the

atoms. We will present additional details of these beams after introducing some of the other

optical systems. A term diagram of the cesium D2 line is shown in Fig. 2.2.

In the magneto-optic trap, it is the zero of the magnetic field that define the center

of the trap. In the absence of the fields, the optical beams (cycling and repumping) that

would otherwise form a MOT provide only a damping force without confinement. This

damping force can effectively stop atomic motion for short times. This configuration is

usually referred to as optical molasses. In a microscopic view, atoms in the optical molasses

undergo a rapid series of spontaneous emission events, where each recoil is in an effectively

random direction. This leads to three-dimensional diffusion in momentum. The competing

process of damping from the optical molasses leads to a slow overall diffusion in atomic

position. For the short times (∼ 10 ms) that we image our atoms, it is a good approximation

to say that the atoms are “frozen” in place, as we see in Fig. 2.3.

Elaborate methods have been developed for loading large numbers of atoms into a

MOT. A notable example is the Zeeman slower for an atomic beam [Phillips82]. For our

experiments, however, it has usually been sufficient to load the trap directly from back-

ground vapor in our vacuum chamber [Monroe90]. This is the case because most of our

experiments have not required particularly large numbers of atoms. For some of the more

recent experiments that involve state selection, (where the signal-to-noise ratio has been

very low), we would actually benefit from much larger initial samples.

2.3 Optical Systems

A block diagram of the major optical systems is shown in Fig. 2.5. Two laser diode systems

provide the light used in the MOT. The first of these is the molasses laser, which provides

the light that is near the cycling transition. The other is the repump laser that returns

atoms to the cycling transition. The lasers themselves will be described shortly (§2.3.1). A

third laser, an argon-pumped Ti:sapphire laser, provides the light that forms the interaction

potential. All of these optical systems (except the wavemeter) are installed on a Technical
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Figure 2.3: Characterization of freezing molasses. To collect this data, we loaded the MOT
and released the atoms for a certain ballistic expansion (free drift) time tdrift. After the drift
time, we turn on the freezing molasses and image the atomic distribution for a specified
amount of time (10 − 100 ms). We then fit a Gaussian function to the one-dimensional
position distribution to find the characteristic size σx. If the atoms are truly frozen in place
by the optical molasses, the final size that we observe should not depend upon the exposure
time. (If this is the case, then we can determine the momentum distribution from the curve.)
As it turns out, significant diffusion in the molasses only occurs for drift times larger than
about 20 ms. In most of our experiments, the total exposure time has been between 10 and
20 ms.

Manufacturing Corporation 4′ × 12′ damped optical table, which has been described by

several visitors to our laboratory as one of the most complicated optical benches in the



Figure 2.4: Photograph of a region of the optical table. In this view we are looking directly
at the vacuum chamber, which is obscured by hundreds of optical mounts. This picture
illustrates how difficult it can be to visualize the optical systems by directly looking at
them. A (more useful) block diagram of the optical systems is shown in Fig. 2.5.

world (see Fig. 2.4). The support electronics for the optics are kept below the optical

table, on a platform suspended above the table, and in equipment racks separate from

the table. This equipment includes the drivers for our many acousto-optic and electro-optic

modulators, laser power supplies, servo-locking electronics, and assorted equipment involved

in the computerized control of the experiment.

Let us first trace the beam path of the molasses laser. The beams that leave both

diode lasers have an elliptical cross section. The aspect ratio is corrected to be nearly

circular by Melles Griot anamorphic prism pairs (not shown) that are placed just after each

laser. After this prism pair, the molasses laser beam passes through two Conoptics model

713 Faraday-effect optical isolators in series. The isolators have been measured to yield 40

dB and 37 dB of isolation, respectively. This double layer of isolation is necessary because

the laser is extremely sensitive to optical feedback. Even with the two isolators, each of the

downstream retroreflectors (at the MOT) must be slightly misaligned in order to prevent
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Figure 2.5: Block diagram of the essential optical systems. Two diode lasers generate the
light that is used for trapping and cooling our cesium sample. An argon-pumped Ti:sapphire
laser creates our one-dimensional interaction potential. Polarizing beam splitter (PBS) cubes
are used to combine beams and double-pass the acousto-optic modulators (AOMs). Quarter-
wave plates are indicated by the designation λ/4. The “MOT” beams indicated here are
the combined repump and optical molasses beams. These three beams are retroreflected
through the interaction chamber along three orthogonal axes.

feedback from destabilizing the laser. About 75 mW of light is available after the isolators.

A weak cylindrical telescope at this point (not shown) is used to correct some residual



astigmatism in the beam. A small fraction (10%) of the light is then split off and directed

to an FM saturated absorption locking setup (§2.3.2). The beam is then double-passed

through a tunable acousto-optic modulator (AOM) centered at 80 MHz. This AOM is an

IntraAction Corp. model ATD-801AL2, specified to operate between 60 and 100 MHz and

is controlled via a driver from IntraAction. The laser itself is locked 195 MHz to the red of

the Fg = 4 −→ Fe = 5 cycling transition. Using the double-passed AOM, we can then vary

the output detuning between 75 MHz red and 5 MHz blue of the cycling transition. For

normal operation of the MOT, we keep the output detuning near −15 MHz (red). After

shifting the frequency, we prepare the beam to enter the interaction chamber. The beam is

spatially filtered by focusing it through a 25 µm pinhole and subsequently collimated with

a beam waist of about w0 = 11 mm. We typically have 27 mW of power immediately after

the pinhole. The beam is then split into three parts of roughly equal intensity with two 2”

diameter beamsplitters of reflectivity R = 66% and R = 50%, respectively. One of the three

components (the vertical beam) is combined with the repumping beam using a 2” polarizing

beamsplitter (PBS) cube. The beams each pass through a 1.5” diameter quarter-wave plate

to circularly polarize the light before it enters the interaction chamber. The three beams

enter the chamber in three orthogonal directions. One beam travels vertically and the other

two are at a right angle in a plane parallel to the optical table. A second set of quarter-wave

plates follows the chamber, and the beams are retroreflected through these to realize the

σ+-σ− optical molasses. The wave plates and retroreflectors are mounted on structures

attached directly to the vacuum chamber flanges.

The repump beam path is slightly simpler. After the anamorphic prism pair, the

beam passes through a single optical isolator like those used for the molasses beam. 10% of

this beam is split off to an independent saturation absorption locking setup. The repump

laser is locked 100.5 MHz to the red of the Fg = 3 −→ Fe = 4 resonance. A fixed frequency

100.5 MHz AOM, also from IntraAction, shifts the output directly onto resonance. The light

is spatially filtered and collimated to a size close to that of the molasses beams. The typical

output power is 16 mW after spatial filtering. The beam is combined with the vertical MOT
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beam and is retroreflected through the chamber.

The interaction beam is derived from the Ti:sapphire laser output beam. It is

picked off with a fast, fixed-frequency 80 MHz AOM, IntraAction model ATM-801A2-2.

This beam is spatially filtered with a 50 µm pinhole and collimated with a beam waist of

about 1.5 mm. The beam is periscoped up to the level of the chamber and retroreflected

through the chamber. In later experiments, a linear polarizer was placed after the periscope

to ensure that the polarization of the beam was as linear as possible. Unlike the diode laser

beams, the total output power available after the spatial filter varies with the power of the

Ti:sapphire laser. This power tends to have significant (∼ 50 %) variation on a timescale

of months to years, depending on many factors including the performance of its argon-ion

pump laser. Notwithstanding this, a typical (acceptable) output power is 390 mW after

the spatial filter. The interaction beam enters the chamber in the plane of the horizontal

optical molasses beams, at a 45◦ angle to them (as viewed from above). The CCD camera

is oriented perpendicularly to the standing wave so that it can best observe the atomic

distribution along the axis of the standing wave.

The part of the Ti:sapphire beam that is not picked off by the interaction beam

AOM (the 0th order component) proceeds to frequency-monitoring components (§2.3.2).

Most of the power is directed through an optical fiber to the wavemeter, which is located on

an adjacent optical table. The rest is directed into a Fabry-Perot monitor cavity, along with

some of the light from the molasses laser. This setup is used to monitor frequency drifts of

the Ti:sapphire laser relative to the molasses laser.

It is important to note that the AOMs on these three beams serve as optical switches,

in addition to their frequency shifting roles. There is typically some “leakage” of radio-

frequency (RF) power from the AOM drivers to the modulators, even when the control

signal applied to the driver input is zero. This can, in some cases, lead to leakage of

laser light into the interaction chamber when it is not intended. For the molasses beam,

which is double-passed, this is not an issue, because the small amount of leakage is strongly

attenuated by the response function of the AOM. On the repump beam, an RF switch was



placed in the AOM driver, between the frequency-synthesizing elements and the RF power

amplifier. This switch is used to provide an additional layer of attenuation when the repump

laser beam is intended to be off. It is particularly important to avoid any leakage of the

diode lasers because they are so close to resonance and consequently, very low levels of

leakage can potentially alter the internal atomic state. There is a very low level of leakage

(up to 0.1%) through the interaction beam AOM, although the exact cause of this leakage

has not been determined. (An accidental reflection is suspected.) Because the interaction

beam is much further detuned from resonance, we do not expect this to have a significant

effect.

2.3.1 Optical sources

An advantage of the particular cesium transition that we are using is the availability of diode

lasers at this wavelength. Diode lasers have the usual array of advantages and disadvantages

as compared to other laser sources. Most of the higher power devices that are available are

in the form of “broad stripe” diodes that have rather poor spatial mode quality, and may

be difficult to lock to an atomic transition. In the lower-power devices that we employ (up

to 150 mW), the overall cost of operation is expected to be low compared to that of other

types of laser systems.

The molasses laser is a distributed Bragg reflector (DBR) diode laser, SDL, Inc.

model SDL-5712-H1. A DBR laser is produced with a frequency-selective structure and

typically produces single frequency output. This laser is specified to produce 100 mW of

output power at its maximum operating current of 180 mA. The laser is mounted in a TO-3

package with integral thermoelectric cooler (TEC) and thermistor. The laser is mounted on

a passive (air-cooled) heatsink manufactured by SDL (model SDL-800). The collimating lens

is an antireflection (AR) coated 5 mm lens manufactured by Rodenstock. It was originally

mounted on a Line Tool XYZ translation stage, however this proved to exhibit gradual creep

and needed weekly adjustment. We later glued the collimating lens directly to a structure

attached to the front plate of the heatsink [Steck01b]. After gradually creeping for a few
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Figure 2.6: Photograph of the DBR diode laser. This laser provides the light that forms
the optical molasses in our experiment. The diode itself is housed in the gold-tone TO-3
package (A). The package is mounted through an adaptor plate to an air-cooled heatsink
(B). A special structure (C) is mounted to the front of the adaptor plate. This structure
holds the collimating lens tube (D) on the top of two parallel glass rods. The entire structure
is clamped to the optical table (directly below the heatsink). The housing for the repump
laser is visible in the background, as are several racks of control electronics. (Photograph:
D. Steck)

weeks, the lens position settled in, and it has not required adjustment for at least several

months. A particular disadvantage of the DBR laser that we are using is that it is no longer

manufactured by SDL.

The repump laser is a grating-stabilized diode laser in the Littrow configuration

[MacAdam92]. In this configuration, the collimated output of the laser is incident upon a

diffraction grating that reflects some of the light (the first order) back into the diode itself,

effectively forming a standing-wave laser cavity bounded by the grating and the rear facet

of the diode chip. When properly aligned, the grating is frequency-selective and encourages

the cavity to operate with a single frequency.

The laser diode is SDL model 5421-G1, which is housed in a standard 9 mm G1



Figure 2.7: Photograph of the repump laser, a Littrow configuration grating-stabilized laser.
The laser diode itself is housed in a collimation tube that is mounted in the aluminum bronze
structure. The wires that lead to the diode are visible near the center of the photograph
(A). The angle of the diffraction grating (B) is adjusted coarsely with a 1/4-80 set screw
(C). Fine control over the angle is made possible by a stack of piezoelectric discs, which the
ball-end of the set screw contacts. The fine pink and blue wires provide the high voltage
to drive the piezo stack. The lucite cover of the structure serves to keep out dust, improve
thermal stability, and reduce acoustic coupling. The beam exits the structure through a
Brewster window (not visible) on the right side of the structure (D). A solid red arrow is
used to illustrate the beam path, which is otherwise not visible. (Photograph: D. Steck)

package. This diode produces 150 mW of output power at its maximum operating current,

200 mA. The diode package is mounted in a Thorlabs LT230P-B collimation tube that

includes a 4.5 mm focal length collimating lens. This tube and the diffraction grating are

mounted in a flexure structure made of 954 aluminum bronze, an elastic material with high

thermal conductivity. A photograph of the external-cavity structure is shown in Fig. 2.7.

The flexibility of the metal itself is used to allow positioning of the grating, rather than

moving parts or common hinges. The angle that the grating makes with the diode laser

output is determined coarsely by the position of an 80-thread per inch (TPI) screw. The fine

angle adjustment is executed with a stack of three 8 mm diameter by 2.54 mm piezoelectric
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ceramic discs from American Piezo Ceramics. The stack is driven at up to 1 kV by one

channel of our Trek model 601B-4 high voltage amplifier. The grating was purchased from

Edmund Scientific and coated with a thin (500 Å) layer of gold to improve its reflectivity

at our wavelength. The Littrow condition is met with an angle of 31◦, where 67% of the

incident light goes into the 0th order output beam. The laser can be continuously tuned

(that is, without hopping in frequency) for approximately 1 GHz.

We are not actually able to operate the laser near its maximum operating current,

however, because we have had difficulty obtaining stable operation at the atomic resonance

with higher currents. This has not been a major concern because we do not need much

repumping light. (Our 16 mW at the chamber are more than sufficient.) Typically, the

laser is operated with an injection current near 100 mA, and the output of the external

cavity laser is near 40 mW. The laser structure sits on a Melcor TEC that is connected to

an aluminum plate that serves as a heat sink. A thermistor in the bronze structure provides

feedback to the temperature controller. A lucite cover helps to reduce thermal variation

and acoustic sensitivity. The general design of the external cavity laser is modeled after a

design that made its way to our lab via Konstantz, Germany. Many more details about this

laser system are available in the earlier dissertations [Klappauf98c; Steck01b].

Both diode lasers are controlled by NIST laser diode current controllers. Matching

NIST temperature controllers stabilize the temperature of the thermistors in the two diode

housings by controlling the current through the TECs. These controllers were designed and

constructed at NIST in Boulder by the group of Leo Hollberg. The units are in the nuclear

instrument module (NIM) form factor, and we operate them in a Canberra 1400 NIM crate.

We have, generally speaking, had excellent luck with these controllers. We have not (over

the course of the experiment thus far) blown out a single laser diode, which is an excellent

credit to them. We have, on the other hand, had a somewhat mysterious interruption during

longer data runs. The current controller has a tendency to suddenly switch the diode off.

During our last data run on the chaos-assisted tunneling experiment, the two diodes each

tended to shut off (on average) once per 24-hour period. Our best guess is that there is a



trigger-happy protection circuit in the current controllers, but it is better to err on the side

of safety.

For the most part, the diode lasers are turnkey systems. Their operation usually

involves an hour or so of warmup time. After that, they require a moment’s work with their

locking electronics to lock them to the proper frequencies. The optical setup for each laser

is generally speaking quite stable, and we do not adjust any part of their beam paths on a

regular basis. During long periods of operation, a common interruption is the unlocking of

one or more of the frequency-lock systems. This can be caused by acoustic noise, human-

induced vibration of the table, and/or drifts in the temperature of the laboratory over the

course of several hours.

Besides the diode lasers, we also employ an argon-pumped, home built Titanium-

sapphire (Ti:sapphire) ring laser. This laser was originally built by Patrick Morrow as a

dye laser for earlier experiments in our laboratory [Fischer93]. The laser was converted

to a Ti:sapphire laser by Bruce Klappauf and Daniel Steck, the year before I joined the

experiment. Details of the conversion, the resulting laser design, and performance are

described in the dissertations of Klappauf and Steck [Klappauf98c; Steck01b]. The laser

typically produces about 480 mW of output power in a clean gaussian beam, although

the power does again depend upon the pump laser performance. The Ti:sapphire laser is

pumped by a Coherent Innova 90 argon-ion laser. This laser is specified to produce 5 W

of multi-line continuous wave (cw) power. Depending upon the age of the tube, the laser

actually outputs between 7 and 8 W of blue-green light, which is the only visible light on

our optical table. The Ti:sapphire laser also is sensitive to the spatial mode quality of the

pump beam, which tends to degrade as the tube ages.

The Ti:sapphire is much more difficult to operate on a daily basis than the diode

lasers. We usually wait until the argon laser has been on for at least an hour before directing

the beam into the Ti:sapphire laser. This also allows time for our chiller to cool the water

that cools the Ti:sapphire crystal itself. This cooling water is recirculated through a Neslab

chiller and is kept near 11◦C, just above the point where condensation on the water tubing



59

(hoses) becomes a problem. This cooling water also cools the anti-Helmholtz coils and

the CCD camera. After the warmup/cooldown period, we let the pump beam into the

Ti:sapphire laser cavity by removing a beam block at the pump laser output. There are

(quite literally) many knobs to turn when adjusting the laser. A substantial degree of both

skill and patience is necessary to get the laser to the proper frequency at an acceptably high

output power, while also ensuring that the system is stable in frequency and in power.

2.3.2 Laser stabilization and monitoring

For those laser beams that are near to an atomic resonance, the resonances themselves

are used as frequency references. In the optical paths that we described earlier, some of

the light from both the molasses and repump lasers is split off and directed to indepen-

dent saturated absorption locking setups. Saturated-absorption spectroscopy is a means of

performing precision spectroscopy on a sample of atoms in a room-temperature vapor cell

[Pappas80; MacAdam92]. Normally, the spectrum of a room temperature gas cannot be

resolved because the thermal motion of atoms leads to Doppler broadening on the order of

0.5 GHz [Demtröder96]. This value is comparable to the entire width of the cesium excited-

state manifold (6P3/2, F = 2−5), and makes it impossible to resolve the individual spectral

lines. Saturated absorption spectroscopy uses counterpropagating beams through a vapor

cell to resolve only those atoms that are at (for example) zero-velocity, and thus simulta-

neously resonant with the beams from both sides of the cell. This type of spectroscopy is

a standard technique and yields an atomic spectrum of sufficient strength and resolution

to serve as a reference for our lasers. Peaks in the saturated absorption spectrum occur

at resonances between hyperfine states, but also at crossover resonances, located at each

midpoint between two hyperfine resonances. Each of these signals appears as a perturbation

(a “Lamb dip”) in the Doppler-broadened spectrum. In our locking schemes, we lock each

laser to the midpoint of a crossover resonance. One reason for this is that these particular

resonances are the strongest features in their respective spectra.

The repump laser’s locking setup is fairly straightforward, so we will review it first.



The locking optics were originally located right next to the laser itself, adjacent to the

interaction chamber. In order to free up some table space for the 3-D far-detuned lattice

that we installed later, the setup was eventually moved to a secondary optical breadboard

(“the second floor”) located directly above the argon-ion laser. The heart of the locking

setup is a small (75 mm long) glass vapor cell from Environmental Optical Sensors, Inc.

(EOSI) that is maintained at room temperature. Using a 3/8” thick uncoated optical flat,

we pick off two weak, parallel beams that are transmitted through the vapor cell. One of

these serves as the “probe” beam for the saturated absorption spectrum, and one serves

as a reference beam. The majority of the beam is not reflected from the optical flat, and

is directed as a “pump” beam to the other side of the vapor cell. This beam is directed

to overlap the counterpropagating probe beam in the vapor cell. The probe and reference

beams are focused onto a pair of photodiodes that operate in differential mode. The intensity

of the reference beam gives the Doppler-broadened lineshape of the vapor cell, and the probe

beam gives the raw saturated-absorption spectrum. Subtracting away the reference signal

yields an output spectrum that shows only the features of the resonances themselves.

We would like to lock the laser to the center of a resonance, and it is helpful to have

a dispersive error signal that we can use to lock the laser. We modulate the laser frequency

directly by feeding a weak modulation to the high-voltage amplifier that controls the grating

position. The modulation frequency is typically 12 kHz. We then process the subtracted

photodiode signal with an EG&G 5204 lock-in amplifier to create a dispersive error signal.

This error signal (shown in Fig. 2.8) is in return fed back to a home-built lock box that is

mounted in our NIM crate. The lock box uses proportional and integral feedback to steer

the grating position as necessary to keep the laser on resonance. The direct modulation

of the output laser frequency is generally undesirable. However, the total deviation that

the modulation induces is of order several MHz (by inspection of the modulated spectrum).

This type of dither should not cause any problems because atoms in the MOT spend nearly

all of their time in the cycling transition where they do not “see” the repump light. The

specific transition that we lock the laser to is the Fg = 3 −→ Fe = 3, 4 crossover resonance.
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Figure 2.8: Saturated absorption spectrum of the repump laser. Rather than the direct
absorption signal, we display the output of the lock-in amplifier that produces the dispersive
lineshapes that we use for locking the laser. We recorded this curve with our digitizing
oscilloscope as the laser was swept across resonance many times. This curve was averaged
over many sweeps to improve the signal to noise ratio. The range of the sweep is limited to
the Fg = 3 −→ Fe transitions, and each spectral line is labeled by the corresponding value
of Fe, or the two values of the crossover lines. In our experiment, we lock the laser to the
Fg = 3 −→ Fe = 3, 4 crossover resonance. Not coincidentally, this is the strongest feature
in the spectrum.

From Fig. 2.2, we see that the splitting between the two lines is about 201 MHz, so the

crossover resonance is close to 100.5 MHz to the red of the repumping (Fg = 3 −→ Fe = 4)

transition.

The molasses laser is locked by an FM saturated absorption setup that is consider-

ably more complicated than that used for the repump laser [Bjorklund83]. The light for the

locking setup is again picked off from the main beam immediately after the optical isolation

stage. The light, about 8 mW total, is first spatially filtered with a 75 µm pinhole. The

spatial mode is important because the modulators that we use in this setup are sensitive

to the mode quality. The light is then split into pump and probe components. The pump

portion is double-passed through a chopped 70 MHz AOM to pulse the beam and shift the
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Figure 2.9: Saturated absorption spectrum of the molasses laser. This error signal is derived
from the FM locking setup and was averaged over many sweeps to improve the signal to
noise ratio. The range of the sweep is limited to the Fg = 4 −→ Fe transitions, and each
spectral line is labeled by the corresponding value of Fe, or the two values of the crossover
lines. In our experiment, we lock the laser to the Fg = 4 −→ Fe = 4, 5 crossover resonance.

frequency up by 140 MHz. The power to the AOM is chopped with a 50 kHz square wave.

This pump beam then enters an EOSI vapor cell like that used in the repump frequency

lock. The probe beam enters from the opposite end of the vapor cell and overlaps the

pump beam. Before it enters the cell, however, it passes through a ConOptics model 350-40

electro-optic phase modulator. This modulator is driven at about 11 MHz to realize the

necessary dither in the laser frequency. The probe beam intensity is monitored after the

vapor cell with a low noise photodiode from New Focus, model 1801. The signal from the

photodiode is mixed with the 11 MHz reference signal, and this signal is in turn fed into

a Stanford Research Systems SR510 lock-in amplifier, referenced to the 50 kHz chopping

signal. Our phase-sensitive detection of the phase-modulated signal yields a dispersive line-

shape, and locking in to the chopped pump signal makes the output signal insensitive to the

Doppler-broadened background. An error signal derived from the lock-in amplifier is used
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to steer the frequency of the DBR laser, which is easily manipulated by directly changing

the injection current. A second “lock box” like that used on the repump laser contains

proportional-integral feedback loops to keep the laser on resonance.

In the locking setup, we have shifted the frequency of the pump beam by 140 MHz.

The pump and probe beam then interact with a velocity class in the vapor cell that is

Doppler-shifted by 70 MHz relative to the lab frame. (A 70 MHz shift is well within the

Doppler line width of the spectrum.) A second effect of the frequency shift is that when

the output signal is centered on a specific spectral feature, the laser itself is at a frequency

70 MHz to the red of the spectral feature. The specific feature that we lock to is the

Fg = 4 −→ Fe = 4, 5 crossover resonance which is roughly 125 MHz to the red of the cycling

(Fg = 4 −→ Fe = 5) transition. The molasses laser output is thus locked to a frequency

of 195 MHz below the cycling transition, as we had claimed earlier. Despite its complexity,

this setup does have advantages over the lock used for the repump laser. First, note that the

laser output itself is not modulated. This is important because the performance of optical

molasses and the MOT can be fairly sensitive to the detuning of the laser. Secondly, this

initial detuning allows us to have a wide frequency-tuning capability. As we have mentioned,

the molasses light is double-passed through a tunable 60− 100 MHz AOM that lets us vary

the final detuning from slightly blue of resonance to 75 MHz red. Again, since the optical

molasses laser is sensitive to the detuning, this detuning capability gives us some degree of

freedom in the behavior of the MOT.

Additional details of both diode laser locking schemes, including diagrams of the

optical and electronic systems that we have described here are presented in Klappauf’s dis-

sertation [Klappauf98c]. These systems have provided reliable operation for several years,

and the only major change since this documentation has been the relocation of the repump-

ing lock optics.

Since the beams from the Ti:sapphire laser create the interaction potentials that we

use to do the “physics” part of our experiments, the performance of these beams is critical.

We are concerned with the frequency, intensity and phase stability of our optical lattice.



Typically we operate in a regime where we are very far detuned from resonance, as compared

to the diode lasers. The typical detuning of the Ti:sapphire laser for our experiments has

been in the range of −6 to −40 GHz, where this detuning is always specified with respect to

the Fg = 4 −→ Fe = 5 cycling transition. Because of the magnitude of this detuning, it is not

presently feasible for us to directly lock the laser to one of the atomic transitions. Originally,

this laser had the capability to lock to a dispersive error signal from an Invar reference cavity

with a 1.5 GHz free spectral range (FSR) [Hänsch80]. As a practical matter, we have found

that the frequency stability was not substantially improved by actively locking. The stability

of the free-running laser is typically adequate for our purposes except for occasional “hops”

that occur simultaneously with changes in intensity. Mode hopping may be due to gradual

changes in (for example) the ambient temperature in the laboratory and tends to occur over

a period of hours or days. The laser is most stable, generally speaking, late at night and

on weekends, particularly if it has been running continuously for more than a day. These

failures tend to be one of the rate-determining factors in data collection, and cannot be

easily prevented.

The absolute frequency of the Ti:sapphire laser is coarsely determined by the

wavemeter shown in the block diagram (Fig. 2.5), which is the only optical system that is not

on the main table. The wavemeter is a NIST LM-10 Lambda Meter, which is a traveling-arm

scanning Michelson interferometer [Hall76]. It works by comparing the wavelength of our

“unknown” beam to the known wavelength of a temperature-stabilized helium-neon (HeNe)

laser. We have had to replace the tube in the reference laser at least twice, because it is the

nature of gas lasers tubes to eventually burn out. When this has happened, it has resulted

in downtime for the experiment as a whole, because we use the wavemeter on a near-hourly

basis to monitor the laser frequency. The wavemeter’s traveling arm consists of an “air car,”

a one-dimensional air-bearing translation stage, that carries a pair of cornercube reflectors.

For most of the time that we ran this experiment, we floated the air car with dry nitrogen

from a compressed gas cylinder. In the past year, however, it has run off of a compressed air

system that was installed in our laboratory by Patrick Bloom, an undergraduate research
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assistant. Each reading is made by counting the ratio of Ti:sapphire laser fringes to HeNe

laser fringes from the interferometer while the air car moves along its full range of travel.

We use a Hewlett-Packard 5334A counter to count both sets of fringes and take their ratio.

The fringe counting is gated with an averaging time of 7 s, which corresponds to the one-way

travel time of the air car. Typically, we can use this instrument to determine the output

frequency of our laser to within about 500 MHz. It is worth noting that the Ti:sapphire

beam that heads to the wavemeter is only intense enough to make a wavemeter reading

when it is not picked off by the AOM to become the interaction beam. Because of the

regular interruptions to this light during experiments and the need for averaging, we are

only able to use the wavemeter between individual data runs.

In order to determine the wavelength of the laser on a more precise scale, we employ

a scanning confocal Fabry-Perot interferometer monitor cavity [Demtröder96]. This cavity

is one of a family that I built as my first project on the experiment, back in 1997. It has

two spherical mirrors of 99% reflectivity at 852 nm, separated by their radius of curvature,

5 cm. The front (input) mirror is mounted in a kinematic stage adjustable with three New

Focus 6-80 miniature fine adjustment screws. The rear mirror is not adjustable in its angle,

but sits on a short stack of piezoelectric ceramic rings. The stack gives the rear mirror a

translational degree of freedom along its axis of symmetry that allows us to sweep the total

spacing between the mirrors. The cavity has a free spectral range of 1.5 GHz and a finesse of

about 300. Since we always operate this cavity in a scanning mode of greater than one FSR,

absolute thermal drifts are not important. However, it is best that they be minimized over

a short time scale. The cavity structure consists of a heavy brass spacer between the mirror

mounts (for thermal mass) and an anodized aluminum housing that minimizes air currents

through the structure. The structure also houses a photodiode that monitors the intensity

of light leaving the cavity. Typically, we scan this laser over roughly two free spectral ranges

using a triangle-wave with frequency on the order of 100 Hz that is amplified to high voltage

by an independent channel of the Trek amplifier.

The optical input to the monitor cavity consists of combined beams from the



Ti:sapphire laser and the molasses laser. The molasses laser is always locked to the same

frequency, 195 MHz to the red of the cycling transition. If we scan the frequency of the

Ti:sapphire laser until the two peaks on the output of the monitor cavity coincide, then

we know that the frequency difference between the two beams is an integer number of free

spectral ranges, ∆ν = n · 1.5 GHz, for some integer n. The Ti:sapphire detuning from the

cycling transition is then −195 MHz + n · 1.5 GHz. Noting that the interaction beam is

upshifted by 80 MHz by the AOM that acts as its shutter, the detuning of the interaction

beam from is then ∆L = −115 MHz + n · 1.5 GHz.

Operationally, we use the wavemeter to get the Ti:Sapphire laser to within about

1 GHz of the desired detuning. We then adjust the detuning to match up the peaks in the

monitor cavity. Once these signals have been aligned, their gradual separation is visually

monitored on an oscilloscope screen. This method has proven to be quite reliable. The

typical drifts in frequency are on the order of 100 MHz per hour, although the laser can be

more stable during long runs, as we have described.

Besides frequency stability, the intensity stability of the optical lattice is also impor-

tant. When operating properly, the rms amplitude noise on the interaction beam has been

measured to be on the order of 0.2%, with both long-time and short-time integration. In

this case, short term means over the 2 ms timescale of individual experiments, and long term

means over the course of seconds between subsequent experiments. Over the short term,

the noise turns out to be dominated by fluctuations at 2.4 kHz which are introduced by

active components in the Ti:sapphire laser itself. Over longer time scales, the total output

power tends to vary substantially more, primarily in slow drifts that we attribute to thermal

variation in the laboratory. In general, the slow drifts in power exhibit similar behavior to

the slow drifts in frequency that we have discussed earlier. Similarly, rapid hops in the laser

intensity coincide with jumps in the frequency.

We commonly monitor the power level of the Ti:sapphire laser during the course

of experiments to ensure that no substantial drifts or hops have taken place. Again, part

of the reason for this is that the frequency and intensity changes tend to be correlated.
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The computer that controls the experiment routinely monitors a photodiode that is built

into the Ti:sapphire laser. This is used to provide a simple assurance that the laser system

is functioning properly. We are, of course, concerned with the intensity variations in the

lattice when it gets to the interaction chamber. Monitoring the laser itself does not account

for possible variation in the diffraction efficiency of the AOM or minor optical misalignment

that may result in reduced transmission through the spatial filter. One of the “mirrors”

in the interaction beam path (after the spatial filter) is actually a beamsplitter with 99%

reflectivity. The light transmitted through this beamsplitter falls on a fast (50 MHz) pho-

todiode from Thorlabs. We use this detector, read out by a Tektronix TDS 524A 500 MHz

digitizing oscilloscope, to monitor the intensity of the interaction beam during the individual

experiments. For example, we have used it to digitize the pulse profile of individual “kicks”

in our kicked-rotor type experiments.

A third type of stability that we require is in the phase of the optical lattice. The

stability of the standing wave is determined by the position of the retroreflecting mirror.

This stability is critically important as we expect the quantum effects that we are studying

to be very sensitive to phase noise. The retroreflecting mirror is held in a mount that

is rigidly clamped to the vacuum chamber flange. Because of the design of the chamber

base, the mirror position is quite stable against motion along the axis of the standing wave.

The phase stability was measured using a Michelson interferometer to have typical phase

fluctuations of about 8% of the lattice period over the 2 ms time scale of these experiments.

Since the reference components of this interferometer setup are presumed to be less stable

than this mirror, this phase noise measurement is likely to be a significant overestimate.

We have worked hard to remove any potential sources of noise on the optical table. The

only moving parts on the optical table during the experimental sequence are those in the

CCD camera shutter assembly, and the shutter only begins to move after the end of the

interaction. The remaining dominant source of vibration is that of the cooling water flowing

through the argon-ion laser. The cooling water that runs through the anti-Helmholtz coils

is in mechanical contact with the chamber, however, this flow is much slower and does not
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2.3.3 Optical lattice calibration

Beyond simply ensuring that the far-detuned optical lattice properties are consistent, it is

also important to be able to determine its properties absolutely. We have already discussed

the procedures by which we determine the absolute frequency of the interaction beam.

Another critical quantity that we must determine is the intensity of the beam, which is

necessary to find the total strength of the interaction with the atoms. Generally speaking,

intensity calibration consists of knowing two things: the total power of the beam and the

Gaussian spot size.

The total power is measured with an optical power meter with a detector placed

after the spatial filter in the interaction beam. Our primary power meter is a Newport

model 1825C power/energy meter. This meter reads out the signal from a Newport model

818-SL semiconductor detector head that incorporates a 1000:1 attenuator, model 883-

SL. Both the meter and the detector head are independently calibrated by Newport. The

calibration certificates for the power meter and detector each specify an absolute uncertainty

of ±1%, although we do not actually trust them to this level of accuracy. We also have a

calibrated thermopile detector from Newport and a Coherent Fieldmaster power meter that

is also based upon a semiconductor detector. While each of these meters claims to be

accurate to within a similar range of uncertainty, they typically disagree with each other

by slightly more than this amount. We have, for the sake of consistency, generally relied

upon the measurements of the 1825C/818-SL system. Typically, this sort of absolute power

measurement overestimates the power in the interaction region by about 8%, because it does

not account for losses in the beam path after the point where the measurement takes place.

The losses include a tiny fraction at each optical surface, including residual reflection from

the interaction chamber windows.

The intensity in the interaction region is determined not only by the total power,

but also by the cross-sectional area of the beam. We have several procedures for measuring
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this area, which is quantified by a beam-waist parameter since the beam is Gaussian and

well collimated. Our most basic method of measuring the beam size consists of scanning

a knife edge transversely across the beam profile. The knife itself is a simple single-edge

razor blade that we attach to a one-dimensional translation stage with micrometer readout.

The translation stage is located just after the spatial filter, at the same location that we

measure the total power. The power that is not blocked by the knife edge is essentially a

one-dimensional integral over that part of the Gaussian profile, yielding an error function as

a function of position. Typically we step the blade across the profile in 50 µm intervals while

monitoring the “transmitted” power with the Newport power meter. A rear-panel analog

output from the power meter is in turn read out by one of our data taking computers. This

semi-automated procedure (the translation stage is advanced by hand) collects the array of

intensity values and the computer fits this array to an error function to output the beam

waist. With an independent knife-edge scanning in the other (transverse) direction, we find

the beam waist along both the horizontal and vertical axes.

A secondary method that we use to measure the spot size involves the use of a

charge-coupled device (CCD) camera. We use a kinematic stage inserted near the knife

edge setup to redirect the beam at this point. The redirected beam is heavily attenuated

and directed onto the CCD chip of a Sony XC-77 camera. Strong attenuation is necessary

because the CCD is easily saturated. The camera has a 2/3” (diagonal) CCD chip, and

was chosen primarily for its large total area, which allows most of the interaction beam to

fit on the chip. The output is a standard grayscale NTSC signal that we digitize on the

computer using a Digital Vision, Inc. ComputerEyes/RT SCSI frame grabber. The images

are imported to an analysis program that integrates the pictures along the horizontal and

vertical axes. These integrated profiles are fit directly to Gaussian functions to reveal the

spot size. This method is not without flaws, however. The CCD images always display

interference fringes that we believe arise from reflections off of the CCD chip itself and

the window that covers the chip. To some degree these fringes can be integrated out, and

the curve fits seem to be fairly robust against the fringes. A secondary problem is that
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total intensity, presumably as a result of camera saturation effects. Nonetheless, the images

from the CCD camera are very useful for making sure that the beam is close to circular in

cross-section.

The knife-edge method is precise, however it is time consuming and we can only

measure the beam on the way to the interaction chamber. The beam is retroreflected

through the chamber, so a good way to verify that the beam is properly collimated is to

verify that the beam size is the same on its way both to and from the interaction chamber.

The location where we can measure the spot size is about 2 m “upstream” in the beam

path from the interaction chamber, and the round trip optical path length from that point

through the chamber and back is about 5 m. We can insert at this point a secondary

kinematic stage that incorporates a pellicle beamsplitter to direct the beam on the way

from the interaction chamber to the CCD camera setup. The pellicle is thin enough that it

does not significantly deflect the beam on the way to the chamber, and on the way back,

it reflects some light into the CCD. Using the camera, we can then measure the ellipticity

and spot size of the beam at point effectively separated by 5 m in order to ensure that the

beam is properly collimated when it is in the interaction chamber.

It is important to note that these measurements of the total power, beam profile,

and collimation are all invasive calibration procedures– we cannot perform them during data

collection. With the total power measurements and the spot size measurements, we are

usually able to determine the total intensity in the interaction region, during an experiment

only to within about ±10%. However, in experiments where it is critical to know the absolute

intensity to higher precision, we have relied instead upon physical calibration methods where

atomic motion is sensitive to the intensity. We will come back to these methods later, but

an example calibration is to experimentally trace the D(K) curve in the kicked rotor that

we described in the introduction.

A secondary issue to determining the absolute intensity is that of keeping it constant.

We have discussed some of the issues in long and short term intensity fluctuations in the
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interaction beam. We have developed several methods of taking out the effects of both

long and short-term drifts in the Ti:Sapphire output intensity. We can, again, directly

measure the intensity of the interaction beam by using the Thorlabs photodiode after the

spatial filter. In the kicked rotor experiments we typically digitize the entire pulse train

and average them together to find the average intensity of each pulse. In cases where we

wish to measure some parameter as a function of the kicking strength K, this gives us a

number proportional to the instantaneous value of K that we can use to remove short-term

drifts from our data. In some of the most recent sets of experiments, we have implemented

a similar system to remove the effects of long term drifts (over a period of weeks) in the

laser system. In a procedure that we call the “virtual power lock” (VPL) we measure the

total available interaction beam power prior to each data run, typically several times per

hour. We then scale the control signals that control the AOM(s) that pick light off from

the Ti:Sapphire beam. Additionally, during these runs, we discarded individual data sets

in which the total power drifted by more than ±1%. Using this method, we can keep the

total interaction strength very constant despite large (up to 20%) total variations in the

Ti:Sapphire laser output power.

2.4 Interaction Chamber

All of our experiments take place in an ultra-high vacuum (UHV) system. The system can

essentially be divided into two parts: the main interaction chamber, and a support system

that is attached to it. Optical access to the chamber is critically important because of the

many beams that end up in the chamber. Magnetic field control is also very important

because a strong field is needed for the MOT and because stray fields can disrupt our

experiments in other ways. A photograph of the chamber, the magnetic field coils, and

some of the optical systems is shown in Fig. 2.10.



Figure 2.10: Photograph of the interaction chamber. The chamber itself (A) is circumscribed
by anti-Helmholtz coils above (B) and below the chamber. The loops of magnet wire are
visible as reddish-brown stripes, and it is not easy to see the lower coil. The chamber
is further surrounded by three orthogonal pairs of nearly-square Helmholtz coils (C). The
large windows of the chamber, such as the one visible between the circles (A) and (B),
provide optical access for the many laser beams that enter the chamber. One of the optical
molasses beams enters the chamber through this port after reflecting from a mirror in the
mount in the foreground (D). The barrel of the CCD camera lens (E) is barely visible in
this photograph. The camera points through the chamber at the flange covered by the red
cap, to the right of circle (F). Two valves at that end of the chamber (F) are used to seal
off the main chamber from the cesium source (not visible). The optics on the platform on
the lower right hand side of this picture are those illustrated in Fig. 4.10.

2.4.1 Vacuum system

Let us first describe the vacuum system itself. The main interaction chamber is a custom,

stainless steel 10-way cross made by HPS (a division of MKS Instruments). Eight of the

“arms” are in the horizontal plane (parallel to the plane of the optical table). Four of these

equally spaced radial arms end at 4.25” (diameter) ConFlat (CF) flanges, and alternate with

four that end at 2.75” CF flanges. The vertical arms each have a 4.25” CF flange. All but

one of these ports is sealed with a Kovar-sealed viewport. The viewports are AR coated on

both sides for less than 0.25% reflection per surface, nominally, at our wavelength. The six
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Figure 2.11: Illustration of optical access to the interaction chamber. In this cutaway view,
the optical molasses beams (red) intersect at the center of the interaction chamber, where
the atoms (yellow sphere) become trapped. These six beams enter through the six 4.25”
flange viewports. The beams are steered by mirror mounts attached directly to four rods
that are screwed into the viewports. Similar mounts (not shown) are used to hold quarter
wave plates between the mirrors and the chamber windows. The two flanges on the left and
right sides of the chamber (in this view) are those used for the interaction beam standing
wave. The port in the foreground is that which the CCD camera looks through.

larger viewports provide optical access for the MOT beams, as illustrated in Fig. 2.11. Two

of the smaller viewports (in opposition) are used for the interaction beam (as in Fig. 2.5).

The CCD camera that we use for imaging looks through the remaining window, and the

remaining flange (opposite the camera) is the interface to the rest of the vacuum system.

The interaction chamber sits on a 5/8” thick base plate that supports its weight and holds

it high enough above the table that we have optical access to the bottom.

The rest of the vacuum system is fairly simple and supports the essential goals of

keeping the residual pressure low and allowing the introduction of cesium atoms. Initially,

the vacuum system was pumped down from atmospheric pressure by a turbomolecular

vacuum pump, backed by a mechanical roughing pump. The vacuum chamber was baked

out at up to 220◦C over the course of several days to improve the ultimate pressure. After

the bakeout, our vacuum chamber was pinched off from the mechanical pumps, and we



have not broken vacuum since that time, which was in the spring of 1997. The vacuum

system incorporates a Varian 20 l/s ion pump, model 919-0236, to maintain the vacuum.

The ion current provides one measure of the vacuum pressure, and the system also includes

an HPS model 10000 5836 Bayard-Alpert type ionization vacuum gauge. We have had some

difficulty in obtaining reliable readings from the vacuum gauge, which we attribute to cesium

contamination. The ion current from the pump corresponds to a pressure of about 8 · 10−8

torr, but it appears that this may also be inaccurate for the same reason. The decay time

(lifetime) of cesium atoms in the optical molasses is of order 4 s, which suggests that the

background pressure is closer to 2 · 10−9 torr [Monroe92; Steck01b].

Cesium vapor is introduced to our chamber from a 1 g metallic sample in a glass

break-seal ampule at room temperature. The ampule is attached via a glass to metal seal to

a small CF flange. This flange is attached to the interaction chamber through two all-metal

1.5” UHV valves in series. The glass inner seal of the cesium ampule was broken during the

initial preparation of the vacuum chamber, and it was at that time necessary to heat the

ampule to about 100◦C for a few days to produce enough cesium vapor to see the MOT.

The two valves are in place so that if it should become necessary to replace or modify the

cesium source, it can be done without breaking vacuum in the main interaction chamber.

The valve closest to the main interaction chamber is always kept wide open. The other

valve is usually kept loosely shut, i.e., nominally closed but not hand tight. Once every

week or two, we let additional atoms into the interaction chamber by fully opening the

outer valve for 10 minutes or so. This increases the background pressure of cesium in the

main chamber substantially because of the high vapor pressure of cesium, 1.3 · 10−6 torr at

25◦C [Nesmeyanov63].

Our experiments are conducted with optical forces, and optical access to the cham-

ber is necessarily important. The viewport flanges each have 1/4-20 tapped holes. Four

1/2” diameter rods attached to all of the larger windows but the one below the chamber

support the wave plate and mirror mounts for for the molasses beams. The interaction

beam’s retroreflecting mirror is also attached directly to its viewport flange.
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2.4.2 Magnetic field control

Naturally, operation of a magneto-optic trap requires precise magnetic field control in ad-

dition to the optical fields that we have already described. The most important task is to

create the strong field gradients that add the trapping process to the damping that results

from optical molasses alone. The trapping fields are generated by a pair of anti-Helmholtz

coils that surround the interaction region. A secondary task is to null out residual magnetic

fields in the interaction region, which is performed with three orthogonal sets of Helmholtz

coils. Each of these sets of coils is centered about the interaction region in the center of the

main interaction chamber.

Helmholtz coils are pairs of identical current-carrying coils that have current flowing

in the same direction. Usually, they are separated in position along their axis of symmetry

by a distance that is equal to their radius. This configuration leads to an extremely uniform

magnetic field over a large region. In practice, good uniformity of the magnetic field is

obtained even if the Helmholtz condition (that the separation is equal to the radius) is

not precisely met, or if (for example) square coils are used instead of circular. So-called

“anti-Helmholtz” coils are Helmholtz pairs except that the currents in the two coils run in

opposite directions.

The anti-Helmholtz pair is mounted directly to the interaction chamber, by Lucite

clamps that are wrapped around the chamber flanges where the viewports for the vertical

MOT beams are mounted. The coils themselves are wound around a water-cooled anodized

aluminum frame. The coils are 6.2” in diameter and are wound with 202 turns of 24 gauge

magnet wire. The coils are typically run at currents near 3 A, and produce field gradients

of 11 G/cm along the (vertical) axis of the coils, and half that along the horizontal axes.

The coils dissipate 80 W of heat into the cooling water, which flows at a rate of 10 gallons

per minute through the frames.

The current through the coils is controlled by an interface box that drives the

coils with push-pull pairs of high-current operational amplifiers. This configuration allows
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the magnetic-field zero. It is also capable of shutting off the 3 A of current in around 100

µs, upon receipt of a control signal from the computer. In the course of our experiments it

is important to be able to shut off the fields quickly when we shift from gathering atoms (in

the MOT) to performing an experiment.

As it turns out, the magnetic fields decay over a much longer time scale than the

current. There is a large amount of conductive material in the chamber, the flanges, and

the aluminum coil frames, all of which contributes to eddy currents. The eddy currents

lead to a relatively slow magnetic field 1/e decay time of order 3 ms. For most of our

earlier experiments, the residual fields were simply not important because the far-detuned

interactions are not affected strongly by the fields. When we later developed more sensitive

methods of determining the magnetic fields, we learned that the residual magnetic fields in

the interaction chamber are still changing in excess of 350 ms after the current in the coils is

shut off. These fields are potentially very disruptive to our state preparation experiments,

as we will see later. The source of this longer field decay timescale has not been positively

identified, but we believe it is due to the presence of the ferromagnetic material Kovar,

which is used in the glass to metal seals on our viewports.

The current controller box also controls the three pairs of Helmholtz coils that

surround the chamber. These coils are in the shape of squares with truncated corners and

are wound around anodized aluminum frames. The pairs are nested together and have

sides of about 15” with separations of about 8”. They are wound with 44 turns of the

same wire that is in the anti-Helmholtz coils. Their field is estimated at 2 G/A, along their

individual axes of symmetry. The primary purpose of these coils is to cancel out the ambient

magnetic fields at the center of the interaction chamber. Besides the earth’s magnetic field,

there are also stray fields from our ion pump, from magnetic bases on the optical table,

and from the optical table itself, which has a ferromagnetic surface. The resulting field

is nearly vertical, with strength of about 0.8 G, and can be cancelled very well with the

Helmholtz coils. The procedures for zeroing out the fields are not obvious. Although we
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have a FW Bell Gaussmeter with Hall-effect probes, the probes cannot be inserted into the

interaction region. We must instead rely on methods that use our atoms as probes. One

method involves observing atoms drift in optical molasses. We gather atoms in the MOT

and subsequently turn off (only) the magnetic fields. Without confinement, the atoms fall

under gravity. The atomic distribution can be distorted or pushed by magnetic fields, since

they can (for example) redefine the zero towards which atoms are attracted. This procedure

is sufficient only to make sure that there are not gross remaining fields– it is not sufficient for

experiments in which we are very sensitive to the fields. Direct measurement of the Zeeman

splitting between the hyperfine sublevels is possible with methods that we discuss later.

2.5 Imaging

Aside from a few minor calibration procedures, all of the data that we take is acquired

by analyzing pictures of atomic distributions. Our camera is model number TE/CCD-

5122TK/1UV from by Princeton Instruments (now a division of Roper Scientific). The

camera is a cooled, 16-bit monochrome CCD camera, with a resolution of 512× 512 pixels.

Internally, the camera uses a TEC to cool the temperature of the CCD chip to about −30◦C,

which substantially improves the noise characteristics. The cooling water that goes to the

Ti:sapphire and the anti-Helmholtz coils also serves to remove heat from the hot side of

the TEC. The camera is controlled by a massive Princeton ST-138 interface. The ST-138

powers the camera, controls its temperature, drives the shutter, digitizes the output signals,

and provides a serial interface. The serial interface is read out by a NuBus card, which

necessitates the presence in our experiment of a computer old enough to have a NuBus

interface. (Modern interfaces are not available from Princeton.)

The shutter on the camera is mechanical, and is the only moving mechanical part

on our table. The shutter can be triggered by a TTL signal sent to the camera controller

along a BNC cable (that is, independent of the computer interface). With a flashlight and

a photodiode, we measured the time for the shutter to fully open and close to be 5 ms

and 12 ms, respectively. (The electronic signals must be delivered to the controller 15 ms
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have a well-defined imaging time and uniform sensitivity, we only perform imaging when

the camera shutter is fully open. The imaging occurs after the free-expansion time in our

experiments when we freeze the atoms in optical molasses. In practice, we begin opening

the shutter during the free-drift period, so that it is fully open when the imaging is to begin.

We then pulse on the optical molasses light to expose the CCD chip in a well-controlled

way. The shutter’s mechanical nature has also been a source of concern simply because of

the vibration that it produces. The shutter makes a sound that can be easily heard in our

noisy laboratory when either opening or closing. The vibration that the shutter transmitted

to the optical table was at one time strong enough to occasionally unlock the diode lasers.

The repump laser, particularly because of its design, exhibits sensitivity to acoustic noise

and vibrations. We constructed a mount for the camera that interleaves several layers of

aluminum mounting structures with layers of Sorbothane (a viscoelastic damping material)

that has significantly reduced vibrational coupling to the table. After a camera “click,”

there is still some signature of the vibration on the diode laser lock error signals, but the

lasers are able to maintain their lock. Again, this is not a concern because the camera click

is the very last thing in the experiment, and the laser lock signals are stable before the next

experiment begins.

The camera points at the atoms through one of the small, horizontal windows on

the main interaction chamber. The port of the interaction chamber directly opposite this

window leads to the other vacuum components, but also to a final window that is in the line

of sight of the camera. We covered this window with a piece of very black paper to provide

a dark background for imaging atoms.

The camera has a standard Nikon-type lens mount, and we use a Nikon 105 mm

f/2.8 D macro lens that reduces the image by 1:1.8 to fit on the CCD chip. We calibrate the

distance scale of the camera by first focusing the camera on atoms trapped in the MOT. We

then (without adjusting the focus or magnification) image a precision reticle distance scale,

and replace the camera. With this procedure, we are able to directly measure the number
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of pixels per millimeter.

Each individual experiment consists of a series of steps leading up to the time that

we take a picture with the camera. After the picture is taken, we download the picture

to a Power Macintosh 7100 computer that we programmed to interface with the ST-138

controller. The downloading process typically takes several seconds since the images are

rather large and the controller (and its computer) is old. If it becomes possible at some

point to load our MOT substantially faster, the camera readout time will become the rate

determining factor in experimental repetition rate. The first step in processing the signal in

the computer is to subtract a background signal. Typically we take 2 − 7 pictures of “the

dark” with the CCD camera before each data run, several times per hour. These pictures

are averaged together and the average is subtracted from every picture that we take in the

data run after that. This eliminates a lot of the irregularities that the raw images display.

The absolute gain of the camera also has a tendency to fluctuate over long periods of time,

which is important only when we care about the total fluorescence count from the integrated

atomic distribution. We have developed similar background-like methods to correct for these

fluctuations when it is necessary.

The slow readout time of the Princeton CCD camera makes it impractical to use

for everyday alignment procedures and monitoring of the MOT. For these purposes we have

a supplemental CCD camera made by Ikegami that we keep trained on the MOT as well.

The output of this camera is continuously displayed on a television monitor, and is one of

the tools that we use most for optical alignment. At this point, let us note that the trapped

atoms are, generally speaking, hard to see. Nearly all of the laser beams on the optical table

are invisible, and when the MOT glows brightly, it does so in the near infrared. We do have

several infrared viewers (Find-R-Scope, from FJW Optical Systems), but the trapped atoms

are localized in a spatial region about the size of a grain of sand and it isn’t possible to get

very close to the center of the interaction chamber. It is only with the use of our various

cameras that we can really tell what is going on in the region near the trapped atoms.



2.6 Computer Control

2.6.1 Design philosophy

It is almost impossible to imagine conducting complex experiments of this scale without

computer control of some sort. Certainly, many of the tasks could be controlled by an inter-

connected series of analog pulse generators, or possibly a very fast punched-card reader. It is

our good fortune to work in an age where desktop computers can be programmed to rapidly

execute complex sequences of events without human intervention. In our experiments, we

have taken the attitude that anything that can be automated should be. The high degree

of computer control in our setup means that most of the changes between two experiments

can be made with programming changes only. A substantial part of my contribution to the

experiment as a whole has been the design and programming of the data collection software.

There are several different ways to control an experiment, depending upon the

specific requirements. One way is to control each event as it happens in real time. The

computer can send out specific signals, in a specific order, take data from various sources,

and make changes to the experiment based upon the data that it receives. This is a common

method in many laboratories. It is not, however, practical for our experiments because the

response time of the computer may depend upon many factors. Interactive control by a

computer can lead to unpredictable and substantial delays, sometimes comparable to the

timescales of our experiments. We require a high degree of precision in the timing and

generation of many signals. Our solution has been to program a number of independently

running instruments from the computer. Each of these instruments is fully programmed

before the experimental sequence begins, and executes its program in step with a common

external clock signal.

2.6.2 Implementation

There have essentially been two generations of the data acquisition (DAQ) software and

electronics. Since they are not terribly different, we will describe both of them here. The

experiment is controlled by custom data acquisition software written in LabVIEW from
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National Instruments Corp. (NI). The LabVIEW environment has been an excellent tool

for programming, and it kept up well with our changing needs, even as the programs have

become much more complicated and extensive over time. The experiment is run on a

Macintosh platform. Originally, we used the single Power Macintosh 7100 computer to both

control the experiment and take data from the computer. In the later generation of the

DAQ setup, we have added a faster Power Macintosh G4 computer that handles all aspects

of the experiment except interfacing with the Princeton Instruments CCD camera. The two

computers communicate and exchange data over our ethernet network. Some of the data

transfer is handled directly with TCP/IP routines that are built into LabVIEW.

Most of the external instrumentation that controls the experiment is programmed

directly or indirectly over GPIB (general purpose interface bus; IEEE-488). Each data tak-

ing computer has an NI GPIB controller card: NB-DMA-2800 on the 7100, and PCI-GPIB

on the G4. When the newer computer was installed, all of the instrument programming

tasks were transferred to it. At the present time the GPIB chain includes the two com-

puters, nine arbitrary waveform generators, two digital delay generators, an oscilloscope,

two counters, and several other instruments. The timebases of these instruments, including

the waveform and delay generators, are synchronized to a 10 MHz reference signal. The

reference signal comes from an EFRATOM model LPRO rubidium (atomic) clock that is

further distributed by a Stanford Research Systems (SRS) model FS710, 7-channel 10 MHz

distribution amplifier.

The arbitrary waveform generator (AWG) is one of our most powerful tools. In

many circumstances, we need to provide complicated waveforms as a function of time to

execute the experiment. Any waveform that needs sufficient speed of execution or cannot be

expressed as a pure binary on-off switching operation has been handled by these machines.

A typical waveform might be a series of pulses with different amplitudes for a noisy kicked-

rotor experiment. We can generate the series of pulses on the computer and download an

array of amplitude versus time values to one of the AWG units. Upon receiving a digital

trigger, the AWG unit begins to output its buffer. The buffer executes in lockstep with
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that we are using, the output signal goes to the input of an IntraAction AOM driver that

controls the interaction beam intensity.

Eight of our AWG units are model DS345 from SRS. This particular model stores

up to 16, 299 points in its buffer, which it can execute at up to 40 MS/s (megasamples

per second). The amplitude of each output point is in the range ±5V, determined with

12-bit resolution. We have used these units in many applications, such as controlling the

interaction beam intensity, the MOT beam intensity, and so on. Our other AWG is a newer

unit from Agilent, model 33250A. This is a competing product to the SRS boxes, and it

can store up to 65, 535 data points and output them at up to 200 MS/s. We have used

this synthesizer to produce the longest and most complex waveforms that we have used for

state-preparation and chaos-assisted tunneling experiments.

Besides the AWG units, we also employ two model DG535 digital delay generators

from SRS. These units can each output two fully independent pulses defined by four logical

edges. Because each of the output lines can be set independently to an arbitrary analog

level, we have employed them as level generators for calibrations in addition to their role as

pulse generators.

One of the DG535 units serves as the main triggering device of the experiment

as a whole. Typically, we begin the experiment with a trigger issued by the data taking

program, called the software trigger. After this trigger, all events are handled by external

timing. The “trigger” DG535 then issues a series of triggers to the other instruments. One

trigger indicates the beginning of post-MOT cooling procedures, and another initiates the

beginning of the interaction sequence. A set of multiple triggers is important because the

buffers of the AWG units can be exhausted quickly when running at high speed. When we

run the DS345 at 10 MS/s (100 ns data point spacing), the buffer is exhausted in 1.63 ms.

It is obviously necessary to trigger that instrument exactly at the moment that we wish the

interaction to begin, so that it does not waste precious space in its buffer.
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Besides the GPIB instruments, there is one additional class of instruments that

we have used to control the experiments. Both data-taking computers have DAQ interface

boards from NI. The 7100 has a model NB-MIO-16L-9 I/O board. This board incorporates

analog and digital I/O capabilities, including analog waveform generation. It also includes

digital counters that can be used as triggers or configured as a multichannel digital pulse

generator. While the capabilities of this board are impressive and potentially very useful,

it does have a fatal flaw. The various sections of the interface cannot be synchronized or

simultaneously triggered. In our design philosophy where we do not tolerate timing errors,

this renders the board approximately useless. For the set of experiments that was based

solely on the 7100, we did end up using up to three of the counters as pulse generators. We

used them to issue the first trigger of the experiment, as well as for digital timing that was

not extremely time critical, such as switching off the anti-Helmholtz coils at the appropriate

time in the experiment. In more recent times, we have used this board primarily for the

analog input channels, which are the only ones available in our experiment. These channels

are used to check for Ti:sapphire laser power drifts during long data runs, and in many

types of calibration procedures.

In the later experiments, we have relied heavily upon a PCI-DIO-32HS digital in-

terface from NI that resides in the Power Macintosh G4. This board has 32 channels that

can be configured for input or output in a variety of modes. A particularly nice feature

of this board is that it can operate in pattern generation mode. In this mode, the board

outputs one word of data, up to four bytes, at a time. Upon receiving the proper signal, it

can then output the next word in its buffer. The board is quite fast, and in principle, the

total length of the buffer is only limited by the computer’s memory. Much like one of the

external instruments, the entire buffer for this board is written well before the experiment

begins. The buffer is triggered during the experiment by an input signal from the DG535,

and each new data point is output in step with an external clock. In testing the speed of

the various interface components, we found that the interface did not always succeed in

outputting a new data point if the sampling rate was too high. The board works reliably if



the input clock rate is less than or about 5 MHz. As it turns out, for most of the cases where

we need digital control, we do not need this much speed. We usually clock the data out at a

sample rate of 1.25 MHz. The output clock is provided by an external box that counts down

the 10 MHz reference clock signal (with a ripple counter chip) to one of several selectable

lower frequencies and outputs a TTL signal. The board itself has a high-density computer

connector that does not suit itself to experimental interfacing. We built an interface box

for the board that buffers all 32 output channels with 50 Ω output drivers and standard

BNC connectors. (A similar interface box provides buffering and connectors for the NB-

MIO board.) Currently, we are using 16 output channels of this board. The signals that

this board creates have proven surprisingly versatile. We initially used it to produce those

signals that had been handled by the NB-MIO board. Some of the channels have been used

to “gate” the RF switches that we keep in the AOM driver boxes. Recently, we have also

used these signals to control a bank of ten RF switches to switch various electronic signals

in the experiment. We have used these, for example, to control AOM drivers by switching

the input between ground and an analog output from one of the DG535 units. This sort of

versatile control has proven invaluable in controlling more complex experimental sequences.

The data taking program itself has evolved considerably. In the early experiments,

up through the time that we added the second computer, we had a separate program that

controlled each experiment. The programs have typically consisted of giant layers of nested

loops that control the instruments and collect the data. As an example, we had one program

to perform temperature measurements, and a separate program to perform kicked-rotor type

experiments with amplitude noise. There is a large amount of common ground in all of the

experiments that we conduct– most of the experiment is the same, no matter what physics

we are currently studying. With the large number of independent code bases that I was

maintaining, it eventually became extremely time consuming to fix every bug that we found

in all the different programs. There were several other problems with the initial design

of these programs as well. The basic user interface that these routines had was a “front

panel” like that of a laboratory instrument. The panel had places to input each of the
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parameters for the data run and would display relevant data plots and output parameters

as they became available. This system was functional, but very difficult to change. Adding

any single new variable or parameter to the system was an extensive chore and required

altering the visible interface of the program. This type of problem led to the creation of

a lot of “hidden variables,” parameters that were only visible in the code and not in the

output of the program. At the time that we added the second computer and the digital

interface, I took the opportunity to write the data taking program over from scratch.

Perhaps most importantly, the new program has a consistent set of interfaces. Each

possible experiment type is chosen from a single pop-up menu, and more can be added.

The differences between all of our experiments are quite minor in the scope of the program.

The various parameter sets for the different experiment types are also chosen from pop-up

panels, and it is relatively easy to manage the several hundred parameters that govern an

experiment in its entirety. There are still some hidden variables, and they do occasionally

cause trouble, but their number has been reduced. Data is output on a general interface

that is also common to all of the experiment types. Most of the analysis that we perform on

the atomic distributions is performed at the time of data collection, and the data is saved

to disk for later consideration.

2.7 An Experiment in More Detail

A timing diagram for a sample kicked-rotor experiment is shown in Fig. 2.12. This diagram

shows the typical signal assignments and sequence of events for our experiments up through

the summer of 1999, when we added the second computer to the DAQ system. The essential

sequence of events is that which we described in the overview (§2.1), and is indeed a fairly

general picture of our procedures.

The sequence actually begins before the diagram shown here, with the programming

of the GPIB instruments and the I/O board in the computer. Typically the full programming

sequence takes less than a second. For some of the more complex experiments that we will

describe later, the programming can take much longer. For example, to program the entire
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Figure 2.12: Timing diagram for a kicked-rotor experiment. This shows the signals that
control a typical experiment. For each instrument, the trigger source is indicated, and the
time at which the trigger occurs is labeled by a small “T.” The DS345 arbitrary waveform
generators each have one output, and the DG535 delay generators have four outputs labeled
by the letters A,B,C,D. The time intervals shown here are not to scale and represent very
different time scales. For example, the loading period is about 6 s, and the pumping time is
about 50 µs. A timing diagram for the more complex experiments involving quantum state
preparation is shown in Fig. 4.9

waveform memory of the Agilent 33250A takes roughly 18 s. We have, however, developed

a number of shortcuts to speed up the programming process. For example, rather than

programming every instrument before each shot of the experiment, they are all programmed

once at the beginning of a data run. Then, before subsequent shots we only reprogram those
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instruments that absolutely need to be. In special circumstances, we can use more complex

tricks to avoid long reprogramming stages. A particularly effective trick can be used when

programming the Agilent 33250A for an experiment in which we sweep the total interaction

time. Instead of programming the exact sequence to be executed before every shot, we

instead program the Agilent box once, with the full sequence for the maximum interaction

time that we are interested in. We then, before every shot of the experiment, simply step

the time (with a digital line) at which an RF switch disconnects the signal that otherwise

runs from the Agilent box to the AOM controller. Tricks like these are necessary because

the effective signal to noise ratio of our experiments is determined by the number of times

that we can execute an experiment. It is almost always worth working hard to improve the

repetition rate of the experiment.

When the instruments are programmed, they are initialized to the values that begin

the experiment. Among other things, the interaction beams are off at this time and the

signals are set so as to load the MOT. The optical molasses and repump beams are on,

at their full intensities. The detuning of the optical molasses beams is at a value that

is optimal for loading a large number of atoms into the trap, typically about −15 MHz.

The anti-Helmholtz coils are on, and the camera shutter is shut. As long as we have these

ingredients, the MOT is operational and we are gathering atoms from the background vapor.

Often it is advantageous to gather as many atoms as we can from the background vapor,

and it is fine to begin loading the MOT before the experiment is “officially” triggered. In

cases where we are concerned about the absolute fluorescence from the atoms after some

interaction, this is not acceptable, and we do not turn on the magnetic fields until a specific

trigger is issued.

The experiments are initiated by the software trigger, which is issued by the DAQ

software to the relevant timing hardware. In the case of this setup, that hardware is counter

5 on the I/O board. After a delay of 5 ms, the counter board sends the “main trigger”

signal which triggers the DG535 delay generator at GPIB address 11. Thereafter in the

experiment, this DG535 controls the timing. A secondary delay period of 5 ms begins when



the main trigger is issued, and the “official” MOT loading time begins. The MOT is loaded

for 5 − 7 s, during which the MOT approaches the long-time limit of atom number, which

we estimate to be of order 107 atoms.

After the loading phase has ended, we issue the cooling trigger and begin the cooling

phase. In these simple experiments, the cooling phase consists of a 3 ms polarization gradient

cooling interval where we detune the optical molasses light further from resonance to between

35 and 55 MHz, and decrease its intensity to (typically) 40% − 60% of that which we use

to load the MOT. The particular values have often changed depending on our particular

requirements. This procedure dramatically reduces the final temperature of our atoms.

Once this cooling phase has ended, the optical molasses light is shut off and the current

through the anti-Helmholtz coils is shut off.

Generally, it is in the period after the cooling trigger that we perform the state

preparation as well. In the simple case that we are discussing here, the only additional

state preparation is a brief stage of optical pumping. In order to ensure that all of the

atoms are in the Fg = 4 ground state, we leave the repump light on slightly longer than the

optical molasses light. An optical pumping period of 50 µs is sufficient to promote the few

remaining Fg = 3 atoms to Fg = 4.

When we have concluded these procedures, we have an atomic sample that is

ready for an experiment. The momentum spread is near Gaussian with a typical width

of σp/2�kL = 4, or about 12 µK. The distribution in position is also nearly Gaussian, with

a width of σx = 0.15 mm. The width in both p and x is roughly the same in all three

directions, however we are usually only concerned with these values as measured along the

axis of the interaction beam. The interaction trigger is then issued, which typically triggers

an arbitrary waveform generator. In our timing diagram, a DS345 produces a series of short

pulses that last for up to 1.6 ms, a value that is limited by the buffer length of the DS345.

The atoms interact with the one-dimensional standing wave, gaining a characteristic mo-

mentum distribution that we must now detect. During the interaction period, we “gate”

the interaction beam control signal on with an RF switch. A second RF switch is used to
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ensure that the repump beam is fully off during the interaction time.

A free drift period of 15 − 40 ms follows the interaction, and it is the ballistic

expansion during this time that allows us to determine the momentum distribution. During

many experiments we sweep the total interaction time. For example, we might step through

the number of kicks in a kicked-rotor experiments with interactions that last between 0 and

1.6 ms. In cases like this, there is some degree of ambiguity in the exact definition of the

free drift time. Because of this, we always define the free drift to begin at the beginning of

the interaction time. The size of the freezing molasses region that we image and the length

of our drift times limit the total momentum scale of our measurements to about ±80 · 2�kL.

At the end of the specified free-drift period, we turn on the freezing molasses to ex-

pose the CCD camera and measure the atomic distribution. The camera shutter is triggered

during the free-drift period so that it is fully open by the time that the exposure begins.

The typical exposure time is 10 ms, although we have occasionally used longer exposures.

After the end of the exposure, we begin a reset period. The reset delay allows time for the

camera shutter to close before light is reintroduced to the chamber. After this delay, the

MOT is reset for the next experiment.

After the experiment is over, the data is read out from the CCD camera and inte-

grated along the vertical axis to form a one-dimensional momentum distribution along the

direction of the standing wave. Finally, the data is plotted and the computer prepares the

instruments for the next experiment.

2.8 Temperature Measurements

One of the most important standard calibrations that we perform is the temperature mea-

surement. This is a standard diagnostic tool that we use to make sure that all of our

experimental systems are functioning properly. Furthermore, we use the temperature as

a standard number by which we evaluate the effectiveness of cooling techniques and our

understanding of the initial conditions for our experiments.



The momentum distributions that our MOT produces are described fairly well by

a classical thermal model. If we assume a Maxwell-Boltzmann distribution, the probability

P of an individual atom having kinetic energy E = p2/2m is

P (E) =
e−p2/2mkBT∫ ∞

−∞ dp′e−p′2/2mkBT
=

√
m

2πkBT
e−p2/2mkBT = Ae−p2/2σ2

p , (2.1)

where kB is the Boltzmann constant and m is the atomic mass. We have defined the

momentum variance as σ2
p ≡ mkBT , and A is effectively a normalization factor. The

procedure for the measurement is essentially the sequence that we have previously described,

when the interaction time is set to zero. The momentum distribution is determined from the

final position distribution and the drift time, assuming that the initial position distribution

is very small compared to the final distribution. When the distribution is very cold or the

drift time is short enough, this may not be a good assumption. Since the position and

momentum distributions are both (nearly) Gaussian, the total distribution is given by their

convolution which is also Gaussian. The total width in position after a drift time t is

σx(t) =
√

(σx0) 2 + (σpt/m)2 , (2.2)

where σx0 is the size of the initial position distribution. In a typical temperature measure-

ment, we measure the position distribution at eight different drift times between 15 and 40

ms. We fit the values σx(t) to the model above to determine σx0 and σp. We can then

determine the temperature by using the definition of σp. It is important to note that the

distribution is not entirely thermal. The simple Gaussian distribution that we fit to the

distribution only accounts for about 96% of the atoms. Besides this, there is a weak pedestal

with a roughly exponential distribution. This is a side effect of polarization gradient cooling,

and has been observed in other groups that use a similar setup.

A sample set of data from a temperature measurement is the 10 ms exposure time

curve from Fig. 2.3. Note that in this data, the curve (for the short detection times that

we use) is nearly linear, suggesting that the initial spatial distribution does not make a

major contribution to the final distribution. For other types of measurements, we do not

deconvolve the initial spatial distribution.
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Often, we simultaneously measure the temperature in both the vertical and hor-

izontal directions. A secondary piece of information that is yielded by the temperature

measurement is the vertical position of the atomic cloud as a function of time. If this data

matches the curve that we expect for gravitational free fall, it confirms that the atoms are

indeed under free fall, i.e., not launched by optical or magnetic forces. Furthermore, it

provides an independent verification of the spatial calibration of the imaging system.



Chapter 3

Experiments with the quantum kicked rotor

3.1 Overview

We have already introduced many of the physical phenomena that occur in the kicked

rotor system. We have also introduced our experimental setup and procedures. With this

background in place, we will now describe our first major set of experiments. First we will

address some differences between our experiment and the ideal δ-kicked rotor. The most

significant difference is the nonzero length of our pulses, and it turns out that the short pulses

in our experiment model δ-functions very well within a limited range of momentum. We

have used our kicked rotor system to observe dynamical localization, quantum resonances,

and the effects of short-term correlations on quantum dynamics. We have already seen that

there are vast differences between the behavior of quantum and classical kicked rotors and

so this is an ideal system in which to study quantum-classical correspondence. The quantum

coherences that create interference effects can be destroyed by noise or dissipation, which

we can introduce to the experiment in a controlled manner. Finally, we demonstrate that a

noise-driven quantum rotor can be driven hard enough that its behavior is indistinguishable

from classical behavior.

3.2 Finite Pulses and Dynamical Localization

When investigating the dynamics of the kicked rotor in Chapter 1, we specialized to kicks

that were described by Dirac δ-functions. This simplifies the equations of motion sub-

stantially and allows us to derive simple mappings that describe the behavior. The pulse

duration must be greater than zero in any real experiment.

92
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In most of our kicked-rotor experiments, the pulses are nearly square, with a pulse

width of tp = 300 ns. There are several reasons why we cannot make the pulses much

shorter than this. The most fundamental reason is that we are limited by the total amount

of laser power that we have. To maintain constant interaction strength, we must increase the

intensity of the interaction beam when we make the pulses shorter. A second problem derives

from the resolution of our arbitrary waveform generator and AOM system. The sequence of

pulses is controlled by an AWG such as the SRS DS345. For a typical experiment of 80 kicks

separated by T = 20 µs, the waveform memory is exhausted when the sample rate is 10

MS/s, or one point every 100 ns. An individual kick is then described by only three points

in the waveform memory, and it would be difficult to make the kicks much shorter. It is not

absolutely necessary that we use an AWG to generate the kick sequence, however it does

have many technical advantages over other methods that we have considered. Even if we

were able to generate much shorter electronic pulses, the response time of the interaction

beam AOM is still of order 20 ns. A final reason is that in the limit of extremely short

pulses, the adiabatic assumption that we invoked in the derivation of the potential is no

longer valid.

The fundamental difference between our experiment and a true δ-kicked rotor is that

an atom can move a finite distance during a finite-duration kick. If an atom is moving fast

enough, we can imagine that it would travel over an entire period of the potential during the

kick. If this happens, the net force on the atom will average to zero. An atom at this speed

does not feel any kick from the standing wave, and the effective stochasticity parameter

Keff goes to zero. We then have a momentum-dependent stochasticity parameter, and it

is reasonable to expect that it is only below a certain total momentum “boundary” that

the system approximates a δ-kicked rotor. A simple estimate of the boundary, pb, comes

from the condition of the distance travelled during the kick being equal to the period of the

potential. We then have (in physical units) pbtp/m = λ/2, or

pb/2�kL = mλ2/8π�tp. (3.1)

This simple classical model of the boundary tells us that the boundary is much higher for



cesium atoms than for sodium atoms (with the same pulse width), because of the higher mass

and transition wavelength of the cesium atom. The location of our boundary is a tremendous

advantage over the early kicked rotor experiments performed with sodium atoms, and is the

primary reason that the cesium experiment was constructed.

We have seen, from a classical argument, that there is a certain momentum at

which diffusion simply shuts off. The momentum boundary is a purely classical effect that

arises from the dynamics of the system. One reason that it is important to understand this

effect is that we wish to study dynamical localization, which is also an effect that suppresses

momentum diffusion. We must be very careful to distinguish between classical effects and

dynamical localization.

Let us now consider the finite pulse effects in more detail. We begin with the δ-

kicked rotor Hamiltonian in scaled units, H = p2

2 +K cos x
∑∞

n=−∞ δ(t−n). We can rewrite

this as the discrete Fourier series

H =
p2

2
+ K

∞∑
n=−∞

cos(x − 2πnt), (3.2)

so that the potential is equivalent to an infinite number of constant-amplitude cosine terms

moving at different velocities [Reichl92]. Each cosine term leads to a primary nonlinear

resonance at velocity p = ẋ = 2πn. From this expansion we can see that the δ-kicked rotor

system is 2π periodic not just in position, but in momentum as well. For finite-length pulses,

the Fourier transform is no longer exact and the effective value of K at each resonance m

depends upon the velocity. If we approximate our pulses to be square, the Fourier transform

of the pulse shape is a sinc function (sinc(x) ≡ sin(x)/x), and

Keff = K
sin(ptp/2)
(ptp/2)

, (3.3)

where tp is the scaled pulse width. In physical (non-scaled) units, this factor is the duty cycle

αpulse ≡ tp/T . The actual shape of our pulses is not particularly square– it is effectively a

low-passed square pulse function (see Fig. 3.12). However, it turns out that the experiment

is not highly sensitive to the pulse shape, and this model is usually sufficient. In cases
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Figure 3.1: Calculation of the effective stochasticity parameter, Keff , as given by Eq. 3.3, for
several pulse widths. For each case, Keff(p = 0) = 10.5, which means that the well depth has
been lowered for the longer pulses. The horizontal line is the result for true δ-function kicks.
Below this in successive order, are finite pulses with scaled pulse width (duty cycle) 0.014,
0.024, 0.049, and 0.099. The 0.014 case corresponds most closely to typical experimental
parameters. The curves are plotted only until their first zero.

where the exact pulse shape is important, we rely upon numerical simulations that directly

incorporate the pulse shape.

The model that we have described shows that the effective stochasticity parameter

gradually drops off with increasing momentum, when the pulse width is constant (Fig. 3.1).

If we wish to define a hard boundary in momentum, a natural choice is when Keff approaches

unity. Above this value, global diffusion is possible, and below this value stable structures

in the phase space dominate the behavior. For the values of tp = 300 ns and T = 20 µs, the



Figure 3.2: The momentum boundary in phase space. Classical surfaces of section for the
kicked rotor are presented for three kick widths, all with K = 10.5. One unit cell is shown in
position, and a wide range is shown in momentum. In the δ-kicked rotor (a), the periodicity
in momentum is exact, and the momentum scale spans many unit cells in momentum. For
pulses of finite duration, the momentum periodicity is broken. For a scaled pulse width
(duty cycle) 0.014 (b), the dynamics resemble those of the δ-function case within a bounded
region. This value of the pulse width is typical of our experiments, and the boundary occurs
well outside the region ±80 · 2�kL that we use in our experiments. For a longer pulse width
with duty cycle 0.049 (c), the boundary is much closer to zero. Note that there are regions
beyond the main boundary for which diffusive behavior is expected. These regions occur
where Keff > 1, and fill out a pattern suggestive of the sinc function (Eq. 3.2).

duty cycle is 0.015, and the boundary occurs near ±200 ·2�kL. Note that this is much larger

than the highest momentum that we can detect, which is ±80 · 2�kL. Nonetheless, there

is an appreciable falloff in Keff , which approaches a 25% reduction within the range that

we can image. We plot the phase space for the kicked system with pulses of three different

durations in Fig. 3.2.

We now come to our first experimental results. By changing the pulse width we
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α = 0.014

K = 13.1
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α = 0.024

K = 13.3
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α = 0.049

K = 13.4

Pulse width: 1975 ns
α = 0.099

K = 24

|p |/2hk   = 213b L

|p |/2hk   = 125b L

|p |/2hk   = 61b L

|p |/2hk   = 30b L

Figure 3.3: Observation of dynamical localization and the classical momentum boundary.
Atomic momentum distributions are shown for the kicked rotor after 0 kicks (heavy solid
line), 17 kicks (dotted), 34 kicks (dashed), 51 kicks (dash-dot) and 62 kicks (solid). For
cases (a-c) the well depth was scaled to keep the stochasticity parameter K nearly constant.
The intensity scale is logarithmic and is in arbitrary units. For short pulses in (a) and
(b), the system exhibits dynamical localization. For the other two cases, the behavior is
dominated by the effects of the classical boundary. Case (a) is typical of our experiments.
The indicated value of αpulse is the duty cycle for each case.



can vary the location of the boundary. When the pulse width is short enough, our system

is an excellent approximation of the δ-kicked rotor within a limited range of momentum,

and we can observe dynamical localization. The momentum distributions from one of our

experiments are shown in Fig. 3.3. Each curve in this plot represents an independent

experiment, and is the integrated, one-dimensional momentum distribution as determined

from a 15 ms free-expansion period, without deconvolving the initial spatial distribution.

The kicks were spaced apart by T = 20 µs, and the detuning of the interaction beam was 6.12

GHz to the red of the cycling transition. (This detuning was used for all of the experiments

described in this chapter.) Our initial condition for the experiments is shown as the result

after 0 kicks. This is a typical profile of atoms cooled in the MOT. About 96% of the atoms

fit into a Gaussian with width σp/2�kL = 4.4, however there is also a broad, dim pedestal

that has an exponential profile. A more detailed description of this distribution is available

elsewhere [Steck00].

We now follow the time evolution of the system for several different kick widths. Our

first kick width is near 300 ns and we are able to observe dynamical localization. During the

kick sequence the momentum distribution rapidly changes from Gaussian to exponential.

Once it has done so, the distribution essentially stops spreading. There is some residual

energy growth, however it is minor compared with the initial growth. For slightly longer

pulses, the dynamics are not affected in any visible way. When the location of the boundary

enters the region of momentum that we can detect, its presence is obvious. Diffusion occurs

out to higher momentum values where the dynamics suddenly become stable (near Keff = 1)

and diffusion halts. The boundary has a very different signature than dynamical localization,

a sharp cutoff, rather than exponential decay in diffusion. Additional details about the

classical boundary in our experiment are presented in [Klappauf99].

One word of caution is in order about the distributions displayed in Fig. 3.3. We

did not employ an active optical pumping stage in our experiments at the time that this

data was taken, and a number (that could possibly be as high as 20%) of the atoms were

actually in the Fg = 3 ground state at the beginning of the experiment. These atoms are
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effectively detuned 9.2 GHz further from resonance because of the Fg = 3, 4 ground state

splitting, and did not interact as strongly with the standing wave. These atoms tend to

remain near p = 0 and form a small bump that is especially visible for the localized cases

in the long-time limit. We did not identify this problem until after the publication of one

of our other papers, and resulted in an erratum [Klappauf98b]. A “cleaner” example of an

exponentially localized momentum distribution is visible in Fig. 3.5. The Fg = 3 ground

state population is also present in two data sets of energy evolution curves (Figs. 3.4, 3.9).

The mixed population leads to a systematic reduction in the energy of order 20%, but does

not otherwise affect the curves.

3.3 Effects of Correlations

In §1.2.3 we discussed how short-term correlations influence the overall diffusion properties

of the classical kicked-rotor system. The presence of quasiaccelerator modes, streaming

behavior and other correlation effects lead to oscillations in the diffusion rate as a function

of K.

Our system is quantum mechanical and so we expect it to exhibit diffusive mo-

tion only for short times, after which the system settles into an exponential distribution

that is characteristic of dynamical localization. It is then reasonable to expect that the

characteristic width (the localization length) of the localized distribution depends upon the

initial diffusion rate. The short-time quantum diffusion rate D0 has been predicted by She-

pelyansky to follow the classical predictions (Eq. 1.15) for D(K) when K is replaced by

[Shepelyansky87; Cohen91]

Kq ≡ K
2
k̄

sin
k̄

2
. (3.4)

The value Kq represents a quantum stochasticity parameter, and the short term quantum

diffusion rate is then approximately

Dq(K, k̄) =
K2

2

(
1
2
− J2(Kq) − J 2

1 (Kq) + J 2
2 (Kq) + J 2

3 (Kq)
)

. (3.5)

This formula then tells us that the classical oscillations in D(K) appear in the quantum



system, but their location is scaled by the value of k̄. Zeros of Eq. 3.4 occur when k̄ = 2πj,

for integer j, which we recognize as the condition for the quantum resonance (§1.3.3).

We do not have a simple model for the momentum distributions that are expected

in a regime of classical anomalous diffusion, however there has been some theoretical work in

this area. Hanson, Ott, and Antonsen have suggested that in certain regimes tunneling out

of the accelerator modes can be an important process in this system [Hanson84]. Beyond

this, it is expected that anomalous diffusion in the classical dynamics leads to fluctuations

in the localization length [Sundaram99].

We can study quantum diffusion rates in our experiments by simply stepping the

value of K. One of the best measures that we have for quantifying the diffusion rate is

the distribution energy E = 〈(p/2�kL)2〉/2, which is obtained by directly integrating the

momentum distribution. The energy figure reflects changes in the localization length and

generally quantifies the amount of momentum that has been transferred to the atomic

ensemble. We have not found it to be practical to fit the distributions directly to an

exponential lineshape, and it is particularly inappropriate in some of our cases, where the

distribution is not purely exponential. While the energy measurement is convenient, there

are some problems with it. The energy is particularly sensitive to noise in the distributions

because 〈p2〉 is most sensitive to the behavior at high momentum.

We trace out the Dq(K) curve by measuring the energy (after a constant number of

kicks) for kick sequences with different intensities. In order to confirm the quantum scaling

law (Eq. 3.4), we can repeat this measurement at different values of k̄ = 8ωrT by changing

the period between pulses. In this series of experiments, we swept the pulse period T from

10 to 60 µs, which corresponds to k̄ in the range of about 1 to 2π. We chose a sequence of 35

pulses. The pulses themselves were measured to have full width at half maximum (FWHM)

of 283 ns, with less than 3 ns variation. The typical rise/fall time of the light intensity is

near 75 ns, and this slow timescale is responsible for the effective width of our pulses, which

are nominally generated as 300 ns pulses.
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Figure 3.4: Quantum diffusion curves at various k̄. The measured energy 〈(p/2�kL)2〉/2 is
plotted as a function of the scaled stochasticity parameter Kq for seven values of k̄. We have
also plotted the Rechester and White expression for the classical diffusion constant D(K)
(vertical scale on the right). All but one of the experimental curves match up very well
with the classical expression after rescaling. The other curve, for k̄ ≈ 2π is quite different
because it is near the quantum resonance.

The results from our experiment are presented in Fig. 3.4. Here we see that the

quantum diffusion rates match up with the Rechester and White expression for D(K)

(Eq. 1.15), which serves to confirm Shepelyansky’s scaling factor (Eq. 3.4). Let us briefly

discuss some of the systematic uncertainties in these measurements. The most difficult pa-

rameter for us to calibrate in any experiment is the absolute intensity of the interaction beam

(see §2.3.3), which gives us an uncertainty of ±10% in K. As we have also seen, finite-pulse

effects lead to an effective reduction in K that is of order 25% at the edges of our detection

region (±80 · 2�kL). Beyond these effects, there is also uncertainty in the detection from

the initial spatial extent of the distribution, from the spatial calibration of the CCD camera

system, and from the ambiguity in the definition of the free drift time. Additionally for

cases with high momentum (either in the regions of classical anomalous diffusion or where

Kq > 15) the distributions tend to reach the edges of our detection region before the end of

the kicking sequence. These factors, combined with the sensitivity that the energy measure
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Figure 3.5: Effects of correlations on momentum distribution evolution. These two cases
show the dynamics with k̄ = 2.08 at the first peak and valley of the diffusion curve shown
in Fig. 3.4. The first case (a) was measured with Kq = 9.1, and corresponds to the first
true minimum of the diffusion curve. At this case, we observe exponential distributions that
confirm dynamical localization. The second measurement (b) was performed with Kq = 7.9,
near the peak of the diffusion curve. The distributions here are broader, and the distribution
is no longer quite as simple. The time steps shown are 0 kicks (light solid), 5 kicks, 10 kicks
(bold), 20 kicks, 45 kicks, and 70 kicks (heavy bold). The vertical scales are logarithmic
and are in arbitrary units.

has to high momenta may lead to systematic errors on the order of (20-30)%. Besides these

general errors in determining energies, the data shown in this plot have the residual Fg = 3

ground state population, which reduces the overall energy values but does not affect the

locations of the peaks.

Beyond simply looking at the energy values, we have also examined the momentum

distributions at the first maximum and subsequent minimum of the curve shown in Fig. 3.4.

The momentum distributions at these values of Kq are compared in Fig. 3.5. At the mini-

mum of the diffusion curve D(K), we observe that the system evolves to exhibit dynamical

localization. At the maximum, in the regime of classical anomalous diffusion, the behavior
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is qualitatively different. The distribution is no longer described by a single exponent, and

indeed it is not obvious that we should expect the system to display exponential localization.

To our knowledge, this experiment represents the first observation of the oscillations

in diffusion rate in our system. Furthermore, it is the first confirmation of the scaling factor

for the quantum kicking strength Kq. The curves in Fig. 3.4 have a well-defined dependence

on K, and in subsequent experiments we have used this feature to directly calibrate our well

depth. Additional details about this experiment are available in [Klappauf98a].

3.4 Quantum Resonances

We have preliminary experimental evidence in Fig. 3.4 that the behavior of the quantum

kicked rotor can change dramatically at certain values of k̄. In particular, the quantum

short-term diffusion rate scales along with the classical diffusion rate, except when k̄ is near

2π. As we have seen earlier (§1.3.3), a quantum resonance occurs when this condition is

met. This effect is in some sense more profound than dynamical localization– at quantum

resonances the entire interaction collapses to a single effective kick or averages to zero at

the antiresonance. When this is the case, the dynamics that would otherwise generate

localization are no longer present.

In our earlier discussion of quantum resonances from a theoretical standpoint, we

noted that the initial distribution may have a strong influence over the types of behavior that

we will see. Fig. 3.6 compares the behavior at the quantum antiresonance (k̄ = 2π) with two

different initial conditions. Here, the free evolution factor U can be 1, −1, or something far

less interesting, depending on the initial momentum state. The plane wave initial condition

(p0 = 0) shows periodic recurrences where the phase factor flips sign between successive

kicks. We also show the time evolution of a system that begins with a continuous momentum

distribution close to that of our experiment. This case evolves very differently. There is a

nearly static central region flanked by two weak ballistic peaks. It is clear from these results

that the choice of initial conditions can make a large difference in the observed dynamics.

Indeed, the primary signature of quantum resonances in the earlier sodium experiments was
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Figure 3.6: Comparison of quantum δ-kicked rotor simulations at k̄ = 2π and K = 82. Part
(a) shows a simulation with a plane wave (p0 = 0) initial condition. This case shows quantum
“antiresonance” behavior characterized by period-2 recurrences and a lack of ballistic peaks.
Part (b) shows a simulation for the same parameters, but beginning with a near-Gaussian
initial momentum distribution of width σp0/2�kL = 4. The near-Gaussian initial condition
is the result a time-of-flight measurement of the initial conditions in our setup and is similar
to that used in the experiments. In this case, ballistic peaks are visible and the overall
dynamics are more complicated. Clearly, the antiresonance behavior is a special case that
occurs for a specific momentum class. The intensity scale for the surface plots (left) is linear
while the intensity scale for the density plots (right) is logarithmic.

a static, rather than accelerating, momentum distribution [Moore95; Bharucha99]. In those

experiments, no difference was observed between the behavior of the system at k̄ = 2π and
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Figure 3.7: Momentum distribution evolution at the quantum resonance: experiment. Parts
(a-c) are near k̄ = 2π, with K = 82 and (d-f) near k̄ = 4π, with K = 184. While the density
plots (a,d) are shown with a logarithmic intensity scale, the surface plots are shown with
both logarithmic (b,e) and linear (c,f) intensity scales to highlight different features. The
top “ridge” of case (c) has a period-2 series of bumps that corresponds to antiresonance
behavior, which is not visible in (f). The vertical scales are in arbitrary units.

4π. Our experiment has an order of magnitude improvement in the signal-to-noise ratio

over the sodium experiment, and we are able to resolve some qualitative differences between

the two cases. Moreover, we can see that some part of the distribution does exhibit ballistic
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Figure 3.8: Quantum simulations of momentum distribution evolution, for the same cases
as the data shown in Fig. 3.7. The two cases are (a-c) near k̄ = 2π, with K = 82 and 600 ns
pulses and (d-f) near k̄ = 4π, with K = 184 and 295 ns square pulses. The initial condition
for both cases was a Gaussian with width σp0/2�kL = 4. The evolution of the ballistic peaks
closely matches that of the experimental data in Fig. 3.7. The remainder of the distribution
undergoes motion that is primarily not resolved in the experiment. The simulations in (a-c)
used 30 wavepackets, and those in (d-f) used 50.

motion.

Besides our initial distribution, there are several other differences between our sys-
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tem and the ideal case. If we continue to view the pulse sequence as collapsing to a single

large pulse, then the motion of atoms during the total pulse time may no longer be negligi-

ble. This leads to a momentum boundary in phase space, although the proper framework for

examining this boundary is in the context of bounded motion within a nonlinear resonance

[Robinson96]. A second complication is that our pulse period T (defined from the beginning

of one kick to the beginning of the next one) is not exactly equal to the time between kicks.

Recall that k̄ is proportional to T and it is only the factor of k̄ in the free-drift period

that creates the resonance. A consequence of these effects is that there is some subtlety in

comparing our experiments with theory based on δ-kicks. The most straightforward method

of comparison is to perform numerical quantum simulations. The finite-pulse effects can be

accounted for by directly incorporating them into simulations that take experimental pa-

rameters such as the pulse length. These simulations are used for unambiguous comparison

of theory and experiment in the remainder of this section.

The experiments themselves are very similar to those that we have already pre-

sented, where the physics that we study results from a wise set of parameter choices. A

pulse period of T = 60.5 µs gives k̄ ≈ 2π, and 121 µs corresponds to k̄ ≈ 4π. Our definition

of the stochasticity parameter tells us that K ∝ T (§1.4.3). The pulse periods used here

are quite large as compared to our standard value of 20 µs, and this allows us access to

rather high values of K with our limited laser power. The values of K that we present here

are for the “classical” stochasticity parameter, not the scaled quantum values Kq given by

Eq. 3.4. The value of Kq goes to zero in the vicinity of a quantum resonance, but the value

of K remains a useful measure of the total interaction strength. Our pulse durations for the

experiments were roughly 300 ns (for k̄ = 4π), but increased to 600 ns for the k̄ = 2π data

set to increase K.

The atomic momentum distributions from the experiment are shown in Fig. 3.7.

In this figure, we are able to resolve some component of the distribution which undergoes

ballistic motion, and some (in the antiresonance case) that displays period-2 oscillation. The

ballistic peaks are visible as the leading edge of the momentum distribution in these plots.



The peaks move rapidly into the higher momentum region where the signal to noise ratio is

lower, and eventually exit our detection region altogether. There is also some curvature in

this trajectory in momentum space which is due to the finite length of the pulses. Naturally,

this curvature is more severe in the case with 600 ns pulses. The results of the matching set of

numerical simulations is shown in Fig. 3.8. The primary difference between the experiment

and simulation is the signal to noise ratio. Despite this, the agreement is excellent.

Numerical simulations conducted in the vicinity of quantum resonances have proven

to be particularly sensitive to the chosen ensemble and grid resolution. We will describe

these simulations in some detail because high resolution is required to eliminate numerical

artifacts and ensure that the calculated distributions converge. The simulations with near-

Gaussian initial conditions (Fig. 3.6b and Fig. 3.8) were started with a distribution that

is very close to the initial condition in our experiment. An ensemble of 30 wavepackets

(50 for some of the simulations shown in Fig. 3.8) was distributed uniformly along a unit

cell in position. The momentum distribution for each packet was directly adapted from

a recent time-of-flight momentum measurement of the initial condition in our experiment.

These simulations were performed on a grid spanning the range p/2�kL = ±256. The grid

resolution was ∆p/2�kL = 1/1024 and the plots were smoothed by averaging over bins of

2�kL. For Fig. 3.8, the pulses were modelled by square pulses, and we have found that the

simulations are not highly sensitive to the exact pulse shape.

The ballistic peaks can clearly be visually resolved by looking at the distributions. It

is harder to classify them by looking at the energy evolution. In this series of experiments,

only a small fraction of the atoms are at states that undergo ballistic motion. The vast

majority of the atoms are not in one of the “interesting” momentum classes and simply do

not exhibit the usual quantum resonance behavior. Colder initial conditions will increase

the number of atoms at p0 = 0 and enable a more detailed study of these dynamics. These

experiments are not the first observation of quantum resonances, however, it is the first case

that we know of where the ballistic component has been resolved. Additional details about

this series of experiments are presented in [Oskay00]. Let us note in closing that there is
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some related ongoing work in an atom-optics experiment similar to ours. Motion near the

quantum resonance with an applied acceleration has been suggested as a possible atom-optic

element [Oberthaler99; Godun00].



3.5 Decoherence and the Effects of Noise

Coherent effects such as dynamical localization occur because of quantum interference. Nor-

mally, quantum effects can only be observed in highly isolated systems where coherent

evolution can proceed over timescales long enough that the quantum dynamics differ mea-

surably from the classical dynamics. The destruction of quantum interferences is known as

decoherence and is believed to be necessary to reconcile quantum dynamics with the clas-

sical behavior of the everyday world [Zurek85]. Macroscopic objects tend to interact with

their environment, and this interaction may be sufficient to destroy the fragile quantum

coherences.

Usually when we discuss the classical limit of a system we wish to identify some

sort of quantum-classical correspondence. That is, we expect that in some manner it should

be possible to derive the behavior of the everyday world from quantum mechanics. In some

simple models the classical limit might be obtained by examining the limit � −→ 0. As we

have seen in our experiments so far, the effective value of � can be changed by manipulating

the scale of an experiment. Mathematical license notwithstanding, it is important to point

out that as small as we can make it, � �= 0. The value of � is already infinitesimally small

when compared to the action scale of any macroscopic object. Nonetheless, simple quantum

models predict that even macroscopic objects should behave in a much less classical manner

than we observe [Zurek94]. It is precisely this problem that suggests that additional mecha-

nisms are responsible for classical motion. Such a mechanism is the introduction of noise and

dissipation by coupling the system to its environment, which acts to suppress quantum coher-

ences. Decoherence in the context of a classically chaotic system is particularly interesting

because of the vastly different behavior in the classical and quantum cases. In fact, it is rea-

sonable to ask how classical chaos could be possible since every physical system that exhibits

chaos is fundamentally (at the microscopic level) a quantum system. Quantum-classical cor-

respondence in the context of chaos is a topic of general importance in physics. As such, the

effects of noise and dissipation on the classically chaotic systems has been an active area of

theoretical research [Shepelyansky83; Ott84; Cohen91; Shiokawa95; Cohen99; Paz01].
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Although the majority of research in this field has been theoretical, there have been

several experiments that address decoherence in classically chaotic systems. Key among

these results have been experiments in the context of Rydberg atom ionization. We have

already mentioned that these experiments have been used to observe quantum localization

phenomena (§1.5). It has also been shown that the addition of noise to the periodic driving

in this system brings the ionization threshold close to that predicted by classical models

[Arndt91; Bayfield91; Sirko93]. Experiments conducted in condensed mater systems are

usually strongly coupled to their environment through (if nothing else) finite temperature

effects, which have been studied in a nonlinear system [Clarke95]. Finally, the destruc-

tion of localization by noise has been observed in the optical analogy of the kicked rotor

system [Fischer00b]. There have also been some important experiments with linear sys-

tems. One system that has the advantage of simplicity is a perturbed atom interferometer

[Chapman95; Kokorowski01], where spontaneous scattering introduces dissipation into the

system. There have been experiments with Rydberg atoms coupled to microwave cavities

[Brun96]. Trapped ions are a promising system for quantum computation and there have

been studies of the decoherence of motional Schrödinger cat states [Monroe96]. Recently a

“decoherence-free” quantum memory has been demonstrated that encodes a quantum bit

between the states of two ions, and is robust against applied noise [Kielpinski01].

One of the most important and detailed topics of study in our experiments has

been the effects of noise on quantum dynamics. The fact that our system is sufficiently

isolated to observe dynamical localization means that we can add noise and dissipation in a

controlled manner. We then hope to observe noise-induced delocalization. The clear differ-

ences between the quantum and classical dynamics in this system give us a high degree of

sensitivity. Besides being able to measure the energy growth of our system, we are able to

directly measure our momentum wavefunctions. Both of these measures give us information

about the nature of the dynamics in the system. This is an advantage over the studies

with Rydberg atoms and the condensed matter experiments, in which it is not possible to

observe the internal dynamics to such a degree. In the previous generation sodium-based



experiments in our laboratory, preliminary evidence was observed for amplitude and phase

noise-induced delocalization [Robinson95a]. These experiments were not pursued in detail

at that time because of the significant momentum-boundary effects that are present with

sodium atoms. However, it was one of our first projects with the cesium-based experiment

[Klappauf98b]. In the studies presented in this chapter we performed kicked rotor experi-

ments with two types of perturbations to the system. The first perturbation is a controlled

form of noise that is applied to the kick sequence. The other perturbation is dissipation

applied by means of spontaneous emission. There are several important issues that we wish

to address by means of these experiments. If possible, we would like to see how sensitive

the system is to different types of noise. We would also like to ask if noise is sufficient to

drive a system to its classical limit, and if so, how much noise is required.

We must be careful because the dynamics in the classical limit may not be obvious.

When we apply noise to the kicked rotor experiment, it modifies the classical dynamics

as well as the quantum dynamics, and we must take this into account. Our first series of

experiments was largely qualitative, and we did not address the correspondence issue in

detail. It is certainly not the case that there is a simple noise threshold above which a

system behaves classically. We have a complex system where classical chaos is suppressed

by quantum interferences, which are in turn destroyed by decohering processes. These

competing processes each have a characteristic time scale. Dynamical localization sets in

after the quantum break time, and phase coherences decay at a rate that depends upon the

nature of the perturbation. For weak driving where phase coherence is lost on timescales

long compared to the break time, we expect to see quantum behavior. The long-time limit of

a system with weak noise may be somewhat different from a truly isolated quantum system.

If quantum coherences are broken on a timescale comparable to the break time, there is

little hope of seeing nonclassical behavior [Cohen91; Delande01].

We introduced amplitude noise to our experiment by replacing the kick strength K

with by a step-dependent value K + δKn. The pulse intensities are uniformly and randomly

distributed in an interval centered on the zero-noise intensity level. The deviation δKn is
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then randomly chosen to be within an interval ±1
2δKp−p, where Kp−p is the peak-to-peak

deviation of the kick strength. We specify the noise intensity as the ratio Kp−p/K. This

type of noise does not substantially change the dynamics from a quantum optics point of

view, in the sense that the momentum ladder is preserved. Moreover, this type of noise is

(in principle) reversible.

To introduce spontaneous emission events, we leaked a small amount of near-

resonant light into the chamber during the kicking sequence. We did this by turning on

the molasses beams at a very low intensity while they were at their “cooling” detuning

value (39 GHz red of the cycling transition). Spontaneous emission is a dissipative pro-

cess, and the nature of the interaction is very different from the simple modulation of the

interaction potential. Spontaneous scattering can occur in any direction, and leads to mo-

mentum diffusion (recoil heating) that is not confined to the axis of the standing wave.

The momentum ladder that simplifies our analysis in other cases is broken, and the dissi-

pative interaction is necessarily irreversible. The level of this perturbation is specified by

the probability of a spontaneous scattering event per kick period (per atom). Unlike the

amplitude noise which is explicitly programmed by the computer, the spontaneous emission

rate figures that we cite are based upon the intensity and detuning of the light. The scat-

tering rates were calculated under the assumption that the molasses light is uniform with

all polarizations (so that the distribution of magnetic sublevel population is not important).

The saturation intensity in this case is Isat = 2.70 mW/cm2. We used molasses intensities

up to 246 µW/cm2 ± 20%, and the total scattering rates are therefore only determined to

this precision.

It is possible to increase the spontaneous emission rate from the standing wave by

simply detuning closer to resonance. This method was employed by Christensen’s group

[Ammann98] in an experiment to look for decoherence effects. Many of the noise sources

and deviations from an ideal two-level quantum system become more severe as the detuning

is brought closer to resonance. The effects of spontaneous emission can seriously complicate

the analysis of the system, especially considering that it can change the internal state of the



atom. Beyond this, classical boundary effects and the effects (at their parameters) of the

stochastic dipole force [Gordon80] make their results difficult to interpret [Habib98]. Our

experiment with molasses light clearly separates all noise sources inherent in the standing

wave (especially those that depend upon the detuning) from the dissipation.

For these experiments we specialized to a pulse period of T = 20 µs, so that k̄ =

2.08. The detuning was again 6.12 GHz red of resonance, and we used the same 283 ns

(FWHM) pulses that we have described earlier. We picked values of K that gave us the

best exponentially-localized momentum distributions in the zero-noise case. These cases are

near the first true minimum in the D(K) curve, at Kq ≈ 10 (see Fig. 3.5). For the amplitude

noise data presented in this section, K = 12.8, and K = 11.9 for the spontaneous emission

case. At our value of k̄, the quantum scaling of K (Eq. 3.4) leads to a shift of about 20% in

the locations of the peaks of the diffusion curve.

The effects of amplitude noise and spontaneous emission on the energy growth of

the kicked rotor are shown in Fig. 3.9. The zero-added noise cases exhibit the basic trends

that we expect for dynamical localization. The energy growth is only initially in agreement

with classical expectations, and after a short time the energy growth drops dramatically.

As we add amplitude noise or dissipation, we see these curves bend towards the classical

expectations. The amplitude noise data were averaged over four distinct realizations of

the noise (the error bars are purely statistical). In the case of spontaneous emission, it is

important to identify the role of recoil heating, which could potentially mimic the effects

of decoherence by increasing the energy of the atomic sample. To this end, we measured

the effect of turning on the optical molasses beams after the interaction sequence instead

of during it. The molasses light was introduced at the same intensity and for the same

duration as that which we used during the kick sequence. The results of this measurement

are shown as an inset to Fig. 3.9. Because we have used optical molasses, as the intensity

of the light is increased, it actually has the effect of slightly cooling the distribution. This

is clear evidence that our source of energy growth is the destruction of localization, rather

than recoil heating. As we have discussed earlier, the absolute values of the energy values
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Figure 3.9: Noise and dissipation effects on energy evolution. The energy E = 〈(p/2�kL)2〉/2
is plotted as a function of time for several levels of (a) amplitude noise and (b) spontaneous
emission. The amplitude noise levels are 0%, 25%, 50%, and 62.5%, monotonically increasing
in energy. The spontaneous emission rates are 0%, 1.2%, 5.0%, and 13% (circles, filled
triangles, open triangles, and diamonds) probability per kick period, representing intensities
up to 246 µW/cm2. The solid lines interpolating the data points are fits to a simple model
([Klappauf98b]). The other two lines are classical simulations of the δ-kicked rotor (solid)
and the square-pulse kicked rotor (dashed). The inset (b) shows the effects of exposing the
system to the near-resonant light after the sequence of kicks.

may have significant systematic errors. Furthermore, the data sets shown in Fig. 3.9 are the

last case that we show that still had the residual Fg = 3 ground state population. Again,

this leads to an overall reduction in the energy values, but does not affect the physics that

we are studying.

The momentum distribution evolution for various levels of spontaneous emission is

shown in Fig. 3.10. Without added noise, we see dynamical localization, and with increasing

noise level, the distributions increasingly depart from this. For the higher cases of sponta-
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Figure 3.10: Spontaneous emission effects on momentum distribution evolution. The four
levels of spontaneous emission shown, 0%, 1.2%, 5.3%, and 13%, are near those that the
energy growth is shown for in Fig. 3.9. The distributions for higher levels of dissipation
appear to be roughly Gaussian in character, which suggests that the dynamics are tending
towards classical.

neous emission probability, the distributions appear rather rounded and are suggestive of

the Gaussian distributions that we expect in classical dynamics.

Qualitatively, the effects of dissipation and amplitude noise on our system are not

very different. In both cases we see the destruction of localization in the energy evolution

of the system. The momentum distributions in the case of amplitude noise are qualitatively

similar to those that we see for applied dissipation. We have studied the effects of amplitude

noise on the kicked rotor system in depth, and will present these results (including the

momentum distribution evolution) in the next section (§3.6). We have also observed the

destruction of quantum effects by other types of noise that we have not studied in detail.

Phase noise, spontaneous emission from an independent far-detuned beam of light, and

timing noise in the period of the kicking sequence have each been observed to decohere
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our systems. As an example of one of these cases, the effects of timing noise are shown in

§3.7. We have not observed substantial qualitative differences between the effects of these

noise sources, however we have not conducted the detailed study that would be necessary

to compare them.

So long as we wish to study the effects of small amounts of noise, it is necessary

to identify the residual noise sources in our experiments. In describing the experiment, we

have detailed the phase and amplitude noise that are always present in our one-dimensional

standing wave. However, the most important source of noise that we have is residual sponta-

neous emission that occurs from the intense light in the standing wave. The light is detuned

6.12 GHz to the red of the cycling transition, and is on for a very small fraction of the

total interaction time. We have estimated the spontaneous scattering probability from the

standing wave to be less than or about 1% per kick. Naturally, this depends entirely upon

the intensity of the light that we are using, which is highest when we are tracing out D(K)

curves. The intensity for the noise cases that we have presented (thus far) were at about 1/3

of the maximum intensity. Note that this can still result in a 20% probability of spontaneous

emission by the end of the experiment. Nevertheless, the system is still very sensitive to

small amounts of added spontaneous emission, as we see in Fig. 3.9. Spontaneous emission

has several possible effects. Beyond the decohering effects and heating, a spontaneous scat-

tering event can result in an atom decaying to the “wrong” ground state, as we discussed

earlier (§1.4.2).

Collisions could also act as a potential source of decoherence in our experiments,

but are more unlikely. The highest density that we have operated at was for this series

of experiments, where the total atom number density was of order 1011 cm−3. Our initial

condition has a mean atomic velocity of order 10 recoil velocities. Based on the collision

cross section for cold cesium atoms [Arndt97], we estimate the maximum collision probabil-

ity to be 2%/ms. For the experiments that we will describe later with velocity selection, the

density is much lower (108 cm−3) and collisions are negligible. There are also small (neg-

ligible) perturbations to the system from the stochastic dipole force, nonuniformity of the



interaction strength due to the magnetic sublevel distribution (§1.4.1), and nonlinearities

due to higher order terms in the interaction potential. These effects are treated in detail by

Steck [Steck01b]. Each of these residual noise sources acts as a minor offset to the location

of the “zero” noise case. Furthermore, these effects collectively contribute to the residual

energy growth that our system exhibits after localization sets in. Generally speaking, we

cannot quantitatively correct for these sorts of effects. There are several systematic effects

that can be accounted for, however, as we will see shortly.

3.6 The Classical Limit

Thus far we have described some initial experiments in which we observed the effects of noise

and dissipation on the quantum kicked rotor system. The quantum dynamics are sensitive to

these sorts of perturbations and we have seen that they can destroy dynamical localization.

While the atomic momentum distributions that we have observed are suggestive of classical

dynamics, we have not established quantitative correspondence between our experiment and

a classical description of our experiment. To this end, we have performed a detailed study

of amplitude-noise effects on dynamical localization [Milner00; Steck00]. There are two

essential parts of this study: a more detailed experimental study of quantum dynamics in

the presence of amplitude noise, and a detailed classical model that we compare with the

experiment. The experiment is performed with a similar set of parameters to the amplitude

noise experiments that we have already described. The essential difference between this

and the previous data set is the larger range of both noise level and stochasticity parameter

that we present here. In this section we describe many of the complications in accurately

comparing our experiment to a computational model.

3.6.1 Amplitude noise effects on kicked rotors

Because we wish to compare our experimental results with a classical model, it is impor-

tant to understand the effects that amplitude noise has on a classical kicked rotor. The

complex structures that occur in the standard map and the effects of correlations that we
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Figure 3.11: The classical diffusion rate is plotted in the presence of increasing levels of
amplitude noise. These values of D(K) are given by Eq. 3.6, with the uniform amplitude
noise described in the text. The curve with 0% applied amplitude noise (heavy solid) is a
limiting value that matches the curves that we have encountered earlier. As the peak-to-
peak deviation of the noise is increased to 50% (dashed), 100% (dotted), and 200% noise
(dot-dash), the short-term correlations are gradually washed out by the noise.

have seen suggest that this system will be affected by the introduction of amplitude noise,

and so ultimately we must compare our experiment to a noise-driven rotor. The realization

of the amplitude noise is the same uniform distribution that we used in the preliminary

experiments. The probability distribution of kick strengths is given by P (δK) = 1/δKp−p if

|δK| ≤ 1
2δKp−p, and zero otherwise. The noise modifies the classical correlations since

the value of K for each kick is now independent. A generalization of Eq. 1.15 (from

[Rechester81]) that allows for randomly distributed kick strengths Kn = K + δKn can be

considered by averaging each kick strength with its probability. The generalized diffusion

curve in the presence of noise is

D(K) =
K2 + Var(δK)

4
+

K2

2
(
−J2(K) −J 2

1 (K) + J 2
2 (K) + J 2

3 (K)
)
, (3.6)

where Var(δK) is the variance of P (δK), which is Var(δK) = (δKp−p)2/12 for uniformly

distributed noise [Steck00]. The Bessel functions in the noiseless case have been replaced



with

Jn(K) ≡
∫ ∞

−∞
P (δK)Jn(K + δK)d(δK), (3.7)

which is much like convolving the Bessel functions with the noise probability distribution.

Diffusion curves given by Eq. 3.6 for several values of amplitude noise are shown in Fig. 3.11.

For low levels of amplitude noise, the oscillations in the diffusion curve are damped, and

the curve inches towards the quasilinear limit (which we derived from the assumption of

no correlation). For higher levels of noise, the quasilinear diffusion rate (identified here

as Dql(K) = [K2 + Var(δK)]/4) itself begins to climb noticeably. The maximum level of

amplitude noise that can be applied in our realization of amplitude noise (without going

negative) is 200%, where δKp−p = 2K, twice the mean amplitude. We note that at this

maximum value, Var(δK)/4 = K2/3. This indicates that although the noise is sufficiently

strong to destroy correlations, it does not dominate the energy growth.

The effects of amplitude noise on the quantum correlations can be treated in a sim-

ilar manner by generalizing Eq. 3.5. The resulting quantum diffusion curve with amplitude

noise is described by

D(K, k̄) =
K2 + Var(δK)

4
+

K2

2
(
−Q2(Kq) −Q 2

1 (Kq) + Q 2
2 (Kq) + Q 2

3 (Kq)
)
. (3.8)

The Bessel functions here have been replaced by

Qn(Kq) ≡
∫ ∞

−∞
P (δK)Jn(Kq + δKq)d(δK), (3.9)

where δKq is the scaled quantum kick strength deviation, δKq = δKsinc(k̄/2). The form of

these expressions is almost exactly that of the classical expressions, and we can get a good

deal of intuition about the effects of noise on quantum correlations by examining the classical

case. We then expect the quantum short-term correlations to wash out with increasing levels

of amplitude noise. The primary difference between the classical and quantum diffusion

curves is the location of the peaks, which is shifted by about 20% for k̄ = 2.08. It is then

reasonable to expect that we will not see quantum-classical correspondence for noise levels

that are low enough that we can resolve the locations of the peaks.
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3.6.2 Systematic effects and the classical model

With some conception of how the dynamics will change as we add noise, we can now begin to

consider the classical model that will be compared with our experiment. Our experiment has

several deviations from an ideal delta-kicked rotor. The most important deviations are the

nonzero length of the pulses and the shortcomings in the detection system. There are also

some other subtle issues in the total timescale of the experiment. We have already discussed

finite-pulse effects in some detail, and we have mentioned some of the systematic issues

in our detection stage. Beyond these issues, the width of our initial condition influences

the final distributions that we observe. One can imagine directly correcting the measured

distributions for some of the systematic effects in the imaging systems. However, it may

not be possible to correct for more complex problems such as the pulse width. It is much

simpler to directly incorporate each of these effects into a classical simulation that we can

compare with our experimental data. The computational cost of incorporating each of these

effects into an accurate and useful quantum simulation is high, and possibly prohibitive.

The classical Monte Carlo simulations that we will discuss here were written by

Daniel Steck, and are described elsewhere in greater detail than will be presented here.

[Steck00]. For these calculations, the trajectories of an ensemble of 2 · 105 particles were

calculated over the course of the interaction. Each particle experiences an independent se-

quence of randomly chosen kick amplitudes so that we effectively average over many possible

realizations of the noise. The initial distribution is taken directly from an experimentally

measured momentum distribution, much like in the simulations performed for the quantum

resonance experiment.

We have already seen how the effects of finite-length pulses reduces the effective

stochasticity parameter as a function of momentum (§3.2). The square pulses that we de-

scribed earlier are sufficient to predict many properties of the actual pulses that we use.

However, it is important to model the pulses as accurately as possible in order to correctly

account for motion that occurs at high momenta. We recorded the profile of a typical “kick-

ing” pulse with a fast photodiode and our digitizing oscilloscope, in the usual configuration
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Figure 3.12: The profile of a single optical pulse used in our kicked rotor experiments. The
experimental signal (dashed) was recorded by a photodiode and oscilloscope, and compares
very well to a model function (solid) that we use to describe the pulse in the classical
simulations (Eq. 3.10).

that we use to monitor the interaction beam. The profile that we have measured fits well

to an empirical model function

f(t) =
1

2ηerf

[
erf

(
(t − t1)

√
π

δt1

)
− erf

(
(t − t2)

√
π

δt2

)]
, (3.10)

which is defined in terms of the error function erf(x) ≡ 2/
√

π
∫ x

0 exp(−s2)ds. The full width

at half maximum of the pulse is t2 − t1 = 295 ns. The rise and fall times of the pulse are

δt1 = 67 ns and δt2 = 72 ns, respectively, and ηerf is a normalization constant. This pulse

function and the experimental pulse that it models are shown in Fig. 3.12. The effects of this

pulse are incorporated into the simulations by directly integrating the equations of motion

over the pulse profile.

Now we come to some of the systematic effects associated with our detection meth-

ods. The most important of these effects is the nonuniformity of the molasses beams that we

use to image the atoms. We freeze the atoms in the molasses during the imaging time, and

we have assumed thus far that the spontaneous scattering rate of each atom is independent

of its position. Unfortunately, the molasses region is formed by the intersection of several
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Gaussian beams with an intensity profile that decreases towards the edges of the beams.

The result is that atomic populations in the higher momentum regions appear to be reduced

because the atoms there do not fluoresce as brightly. The extent of the falloff was measured

by examining a momentum distribution that was known to be exponentially localized at

several drift times. This procedure is more precise than estimating the fluorescence rates

from the laser parameters. A similar drop-off in population can be applied at the detection

phase of the classical simulations. A second detection issue is the finite size of our detec-

tion region. Typically we use a 15 ms free drift period that allows us to detect atoms at

momenta within ±80 · 2�kL. Although the falloff of the molasses beam intensities becomes

worse outside this region, we are more firmly limited by the region that we image with our

CCD camera. For long time evolution, especially in cases with high levels of amplitude

noise, our detection window may truncate the momentum distribution. The most severe

effect of the window is a systematic reduction in the energy for large energy values– it is

only at high energy values that a significant population leaves our detection region.

There are several other effects that we must account for, mostly concerned with the

finite extent of the experiment in both space and time. The standing wave that the atoms

interact with has a beam waist of about 1.5 mm, which is an order of magnitude larger

than the characteristic spatial extent of the atoms collected in the MOT. However, the kick

strength that each atom experiences depends (weakly) upon its transverse spatial location in

this beam profile. The transverse distribution of the initial position and momentum values

is modeled by the (transverse) size and position of the atoms released from the MOT, as

determined by temperature measurements. During the course of the experiment (which may

last several milliseconds), the atoms fall gravitationally through the transverse profile of the

beam. All of these effects can be taken directly into account in the simulations by assigning

a time and space-dependent stochasticity parameter for each atom. The chief effect of these

complications is that the effective value of K is smeared by around 5%. This is not a

tremendous problem for us; we are clearly able to resolve features in the diffusion curve (as

in Fig. 3.4). Incidentally, this is the most important reason for maintaining a relatively large



interaction beam spot size. Christensen’s group was unable to resolve any deviation from

the quasilinear limit in the diffusion curve [Ammann98], presumably because of this very

effect. We have also introduced the ambiguity in the definition of the free drift time that

results from atomic motion during the interaction time (§2.7). It is fairly straightforward to

eliminate the ambiguity by simulating the free expansion that occurs during and after the

interaction. We might also be concerned about the initial spatial size of the distribution and

how it affects the final distribution that we measure. As we have discussed, it is not generally

practical to separate this component of the distribution except in the case of temperature

measurements (§2.8). The initial momentum distribution that is used in the simulation is

derived from a free-expansion measurement and already “includes” the initial spatial extent

of the distribution (convolved with the true momentum distribution). We then note that

the simulation implicitly accounts for the convolution with the initial spatial distribution.

A final complication of our experiments results from the behavior of our Princeton

Instruments CCD camera. As we have said, the background level and absolute gain of

this camera tend to fluctuate. We employ background subtraction to take out the largest

and slowest drifts. What remains after we subtract the background image from each camera

image is primarily the atomic distribution that we are after, but there is usually some residual

offset in the distribution. More troubling than this is the fact that the total intensity at

some points in the distribution is negative. This can occur when a pixel in the background

image is more intense than a pixel in our picture of the atoms. We integrate the pictures

along one axis to create the one dimensional momentum distribution. Usually, tens of the

points in the 1-D array (out of 510) remain negative. We could simply add a constant

to all of the values to keep them all greater than zero. This would pose a problem for

normalization and subsequent analysis of the distribution, which can be very sensitive to

this variation. The energy values are particularly sensitive to the absolute offset of the

distribution at high momentum. Rather than adding a constant, we employ a procedure

that is designed to maximize the reproducibility of our data. We average together the values

of the lowest 40 points in our distribution and consider their average value to be the “zero”
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Figure 3.13: Illustration of systematic corrections to classical simulations. The system
energy is plotted as a function of time for classical kicked rotor simulations. The system
parameters are typical of our experiments, K = 11.2 with 100% amplitude noise. First,
the noise-driven δ-kicked rotor is shown without any of the systematic effects (solid), and
appears as a straight line. As we cumulatively add in the systematic effects for typical
operating parameters, the energies at later times gradually decrease. The effects shown
here are the finite pulse duration (dashed), the molasses beam intensity profile (long dot-
dash), clipping at the edges of the detection region (dotted), motion in the transverse profile
of the interaction beam (long dashes), drift time ambiguity (dot-dash), and background-
subtraction bias (thin solid).

level of our distribution, and discard values below that threshold. For distributions with low

energies, the values that we average together are typically at the edge of the distribution

where there essentially no atoms. This provides an accurate estimate of the background level

of the camera during that particular shot. When the energy is higher and the distribution

reaches the edge of the imaging window, this procedure still helps to increase reproducibility.

However, in this case it also has the effect of negatively biasing the entire distribution. Much

like the other cases that we have discussed, this effect can be directly accounted for by using

the similar analysis methods in the case of the simulation.

We have now described a number of systematic corrections that must be considered

if we wish to understand the classical limit of our system. The factors are most significant

for higher momentum values, which we encounter at later times in the experiment and/or



when there are high levels of amplitude noise. In a classical δ-kicked rotor we expect the

energy of the system to grow linearly with time. However, the correction factors reduce both

the kicking strength and the detection efficiency at high momentum. The energy growth

in the simulation is curtailed as illustrated in Fig. 3.13. The final curve that we see in this

figure tells us the sort of momentum distribution that we expect to observe if the dynamics

are described by a classical model.

Generally in these simulations, there are no adjustable parameters. Each of the pa-

rameters that is used in the classical model is derived from measurements in our experiment.

The largest source of uncertainty in our experiments is the absolute (not relative) value of

K, which is not determined better than ±10% for this series of experiments. In some of the

simulations, the value of K was shifted slightly (within the uncertainty) for better agreement

with the experiment. The particular value of K used in each simulation is indicated in the

caption of each figure in which we show the results of one of these simulations.

3.6.3 Comparison of the experiment to the classical model

Let us now present the results of this experiment and compare them with the classical model.

We begin by examining the behavior of the diffusion rate curve D(K) in the presence of

amplitude noise. We have already considered the effects of amplitude noise on both the

quantum and classical kicked rotor (§3.6.1). We expect the short-term correlations in both

cases to be washed out by amplitude noise. The most significant difference between the

two cases is the location of the peaks, which is shifted by about 20% with our value of k̄.

We have also noted that the difference in the peak location suggests that correspondence

is not possible until the short term correlations are washed out. The diffusion curves are

traced out by data from our experiment and classical simulations in Fig. 3.14. As before,

we do not measure D(K) directly, but measure E(K) at a fixed time. For this particular

data set we measured the energy of each distribution after 35 kicks. Dynamical localization

occurs at low noise levels and reduces the typical energies that we observe. For low levels of

noise, we see that the quantum and classical dynamics are clearly separate. As we turn up
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Figure 3.14: The energy as a function of K with amplitude noise: comparison of exper-
iment (connected points) to classical simulations (dashed line). The energy is measured
after 35 kicks. For 0% amplitude noise, the classical and quantum curves both display large
oscillations, separated substantially by their location in K. As the noise level is increased,
the correlations that create the oscillations about the quasilinear diffusion rate are damped
away. At the strongest noise level shown here, the experimental curve is indistinguishable
from the classical simulation. Each point represents an average over 10 experiments with
independent realizations of noise. The values of K shown here are experimentally deter-
mined. The statistical errors in both K and energy for each point are similar to or smaller
than the size of the dots. The arrows label two values of K at which we study the dynamics
in greater detail.



the noise, we see that the energy curve approaches the classical expectation. This in itself

is not confirmation that the system is behaving classically. We must also trace the energy

evolution as a function of time. Beyond this, we must also look for correspondence between

the classical and experimental momentum distributions. We will examine the behavior of

the system in greater detail at two values of K, which are indicated by arrows in Fig. 3.14.

We now examine the effects of noise in a regime where dynamical localization would

otherwise occur. This study was conducted near the first minimum in the diffusion curve,

shown by the rightmost arrow in Fig. 3.14. We operated at K = 11.2, which is close to

the value that we used in the earlier amplitude noise data (§3.5). The evolution of the

system energy as a function of time is shown in Fig. 3.15 for various noise levels. For low

levels of noise we see the effects of dynamical localization: the energy growth of the system

is sharply lower than we would expect from classical predictions. Besides this, there are

differences between the classical and quantum short-term correlation effects. As the noise

level is increased, the energy of the corresponding classical dynamics also increases, but

this change is substantially smaller than the difference between the classical and quantum

curves at low noise levels. For higher noise levels (60% and above), the quantum evolution

is indistinguishable from the classical expectation.

We can attempt to identify the noise level at which the quantum and classical

energies diverge by plotting the energy as a function of the noise level. We compare the

experimentally determined energies to the classical simulation in Fig. 3.16. The energies

are measured after 50 kicks, and are averaged over 18 distinct realizations of noise in this

particular data set. We can now see more directly that the energy evolution matches the

classical evolution for amplitude noise levels above about 60%.

Finally, we directly examine the momentum distributions as we apply noise to the

system, shown in Fig. 3.17 for K = 11.2. This is the most direct and complete way to

compare the evolution in our experiment to classical expectations. For low levels of noise,

we find that the momentum distributions in our experiment do not agree at any stage (except

0 kicks) with the classical model. For 0% applied noise we observe clear localization. By
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Figure 3.15: The energy as a function of time with amplitude noise: comparison of exper-
iment (connected points) to classical simulations (dashed line). These experiments were
performed with K = 11.2 ± 10%. The corresponding classical simulations were performed
with K = 11.2. Each experimental point represents an average over 15 experiments, each
with an independent realization of the noise. The data for noise levels greater than 0% are
sequentially offset by 200 in energy for the purpose of clarity.
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Figure 3.16: The energy as a function of amplitude noise level: comparison of experiment
(connected points) to classical simulations (dashed line). These experiments were performed
with K = 11.2 ± 10%. The classical simulations were performed with K = 10.9. Each
experimental point represents an average over 18 experiments, each with an independent
realization of the noise. The energy in each case is measured after 50 kicks. The error
bars which represent only the statistical variation among the 18 experiments become more
visible as the amplitude noise level increases. The experiment is well described by the
classical model for higher noise levels.

the time that we have applied 40% noise, the distributions match classical predictions very

well, but only for short times. For higher noise levels, we observe that the correspondence

between the experiment and the classical model is excellent, for the entire evolution that we

are able to observe.

Let us now turn to a similar detailed study of noise in a regime of classical anomalous

diffusion. This study was conducted at the first maximum in the diffusion curve, shown by

the leftmost arrow in Fig. 3.14. The time evolution of the ensemble energies is shown in

Fig. 3.18. The time evolution of the energy is somewhat less simple than it is in the localized

case at the minimum of the diffusion curve. A possible interpretation in the low noise cases

is that the quantum system diffuses rapidly before localizing. For larger levels of noise, the

agreement between the experiment and the classical noise level is excellent. Again, these

higher noise levels seem to begin at around 60% amplitude noise.
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Figure 3.17: The momentum distribution evolution is shown for our experiment (solid)
and the classical model (dashed) for several levels of amplitude noise. These experiments
were performed with K = 11.2 ± 10%, and the classical simulations were performed with
K = 11.2. This is a regime where we expect to see dynamical localization. The data shown
here are the distributions from which the energy values shown in Fig. 3.15 were calculated.
The distributions are shown after 0, 10, 20, 40, and 80 kicks, in order of increasing width.
For 0% applied noise, the experimental distribution is clearly localized, but the classical
evolution limits to a Gaussian distribution. Again, for noise levels at or above 60%, the
experimental distributions closely match the classical simulation. We can see directly in
this figure that the width of the classical simulation does indeed grow as amplitude noise is
applied.

The energy as a function of noise level is shown in Fig. 3.19. The difference between

the zero-noise behavior (after 50 kicks) in the experiment and the classical model is more

significant here than in the localized case. The data from the experiment show a clear

threshold for matching the classical behavior. It is worth noting that the total change in

the classical energy as a function of noise is rather small and nonintuitive.

Finally, we present the momentum distribution evolution in the presence of ampli-

tude noise, with K = 8.4 in Fig. 3.20. As opposed to the measurements with higher values

of K, the classical distributions do not widen significantly as the noise level is increased.

Once again, we see that the distributions do not match up for low levels of noise, but our

experiment is described very well by a classical model for higher levels of noise.

We have seen that our experiment can be well described by a classical model for
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Figure 3.18: The energy as a function of time with amplitude noise: comparison of exper-
iment (connected points) to classical simulations (dashed line). These experiments were
performed with K = 8.4 ± 10%. The corresponding classical simulations were performed
with K = 8.7. Each experimental point represents an average over 15 experiments, each
with an independent realization of the noise. The data for noise levels greater than 0% are
sequentially offset by 200 in energy, as in Fig. 3.15.
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Figure 3.19: The energy as a function of amplitude noise level: comparison of experiment
(connected points) to classical simulations (dashed line). These experiments were performed
with K = 8.4 ± 10%. The classical simulations were performed with K = 8.4. Each
experimental point represents an average over 18 experiments, each with an independent
realization of the noise. The energy in each case is measured after 50 kicks. The error
bars which represent only the statistical variation among the 18 experiments become more
visible as the amplitude noise level increases. The ensemble energy is well described by the
classical model for higher noise levels, here above about 50%.

levels of amplitude noise above 60%. At high values of noise, this model accounts for the

sensitivity to noise, the growth of the ensemble energy as a function of time, and even

the detailed momentum distribution evolution. While it is not possible to confirm that

the dynamics are completely classical, it is fair for us to say that we do not observe any

deviation from classical physics over the timescales of our experiments.

3.7 Timing Noise

Let us now briefly consider one additional variety of noise. In the kicked rotor experi-

ments that we have described thus far, the period T between kicks is a constant. Since

the experimental kicking sequence is controlled by the computer, it is relatively easy to

change the period between subsequent kicks. Suppose that we replace the constant T with

a step-dependent period Tn = T + δTn, where δTn is a step-dependent perturbation to the

period. As in the case of the amplitude noise, we consider a uniform probability distribution
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Figure 3.20: The momentum distribution evolution is shown for our experiment (solid) and
the classical model (dashed) for several levels of amplitude noise. These experiments were
performed with K = 8.4±10%, and the classical simulations were performed with K = 8.7.
This is a regime where the corresponding classical dynamics exhibit anomalous diffusion.
The data shown here are the distributions from which the energy values shown in Fig. 3.15
were calculated. The distributions are shown after 0, 10, 20, 40, and 80 kicks, in order
of increasing width. For 0% applied noise, the experimental distribution is similar to the
broad-shouldered distribution that we have observed earlier near the peaks of the diffusion
curve (Fig. 3.5). Again, for noise levels at or above 60%, the experimental distributions
closely match the classical simulation.

P (δTn) = 1/δTp−p, if |δTn| ≤ 1
2
δTp−p, and zero otherwise. The peak-to-peak range δTp−p

is specified as a percentage of T , so that 100% noise means that a kick may be displaced

by any value in the range ±T/2. In the experiment, we would like to avoid approaching

100% noise because the pulses (of finite duration) may overlap. The system, however, is

very sensitive to timing noise, and we did not find it interesting to study noise levels higher

than 20%.

Our realization of timing noise is a cumulative one. The time that each kick occurs

is T + δTn after the previous kick, rather than simply being δTn displaced from the time

that the kick would occur if there were no timing noise. This distinction is very important

because kicks later in the sequence can potentially become very far displaced from their

original times. The amplitude noise that we studied was a noise applied only to the value

of K. In the case of timing noise, we must note that the variable T enters into both the
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Figure 3.21: Timing noise effects on energy evolution. The energy E = 〈(p/2�kL)2〉/2 is
plotted as a function of time for several levels of timing noise, near K = 8. The noise
levels are 0%, 0.5%, 1%, 2%, 3%, 10%, and 20%, monotonically increasing in energy. The
data points are collected every five kicks, and the lines connect these points to guide the
eye. Each point represents an average over 20 measurements, each with an independent
realization of the timing noise. The error bars on each point are purely statistical.

definitions of K and k̄, and the (constant) average value 〈T 〉 must be used for both of these

variables. Given this, the standard map changes under the influence of timing noise to be

pn+1 = pn + K sin xn

xn+1 = xn + (1 + εn)pn+1, ,
(3.11)

where εn ≡ δTn/T . The noise enters the equations of motion in a different manner than does

amplitude noise. One immediate effect of this is that even a small value of εn can cause large

changes to the system if p is large. Intuitively, the addition of timing noise should have a

substantial effect on the corresponding classical dynamics, since the structures in phase space

that we have studied are only visible through periodic (stroboscopic) sampling. Loosely
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Figure 3.22: Timing noise effects on on E(K) curves. The energy E = 〈(p/2�kL)2〉/2 is
plotted as a function of the stochasticity parameter K for several levels of timing noise. The
noise levels are 0%, 0.5%, 1%, 2%, 3%, 5%, 8%, 10%, and 20%, monotonically increasing in
energy (near K = 8). This data set was collected after 35 kicks, and each point represents
an average over 20 measurements, each with an independent realization of the timing noise.
The error bars on each point are purely statistical.

speaking, fairly low levels of timing noise are needed to destroy dynamical localization. The

noise that we apply is only weak in the sense that we do not approach the maximum value

of noise that could potentially be applied to the system. This is not a rigorous statement

about the sensitivity of the system to different realizations of noise. A direct comparison

would be complicated by the fact that this noise realization is cumulative, which is not the
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Figure 3.23: Energy growth as a function of timing noise level. The energy E =
〈(p/2�kL)2〉/2 is plotted as a function of the timing noise level for three levels of the stochas-
ticity parameter K. The values of K are 6.8 (blue), 7.85 (red), and 8.65 (green). This data
set was collected after 35 kicks, and each point represents an average over 20 measurements,
each with an independent realization of the timing noise. The error bars on each point are
purely statistical.

case for the amplitude noise experiments.

The experiments in timing noise were conducted after we finished our detailed study

of amplitude noise. The effects of timing noise on the kicked rotor system are qualitatively

similar to those of amplitude noise, and we chose to move on to other experiments rather

than study the effects of timing noise in more detail. Nevertheless, we did collect some

interesting data, which we will present here. At the time of these experiments we were

still developing our 3D lattice cooling techniques (§4.2), and we were not yet able to fully

null out the magnetic fields in the chamber. As a consequence of this, we were not able to

achieve long storage times in the lattice and our ultimate temperatures were near 700 nK.



(We will describe 3D lattice cooling in detail later.) The signal-to-noise ratio for these data

sets is comparatively high, as is apparent in Fig. 3.21. This is due in part to the relatively

cold initial conditions that we achieved through the lattice cooling. There is also a sense in

which the very nature of the timing noise sequence produces less jitter in the output signals

than does the amplitude noise. One way to see this is to compare the size of the statistical

error bars on the amplitude and timing noise data sets.

In Fig. 3.21 we observe the effects of timing noise on the system energy growth as

a function of time. For as little as 0.5% added timing noise, there is a significant change

in the long-time diffusion rate. The energy growth begins to saturate when we add timing

noise at about the 3% level. This is in contrast to the amplitude noise case, where we had

to make severe changes to the pulse sequence before the energy growth saturated. This

saturation phenomenon is to some degree an effect of the particular value of K that we have

chosen, in this case near K = 8. In Fig. 3.22 we present an E(K) curve where we have

added timing noise. For our value of K (in the first local minimum of the E(K) curve),

most of the energy growth occurs by the 3% noise level. Near the first local maximum of the

curve (near K = 2π), the energy growth rises and then falls as a function of the noise level,

indicating that the noise becomes strong enough to break the correlations that give rise to

that maximum. Indeed, one of the major effects of the noise is to wash out the oscillations in

the curve, just as we saw in the amplitude noise case. One additional feature of this figure is

the energy growth as a function of noise level near K = 3. At this value of K, the diffusion

rate should be given approximately by the quasilinear value because correlations do not play

a major role. Finally, in Fig. 3.23 we plot (for several values of K) curves that directly show

the energy growth as a function of the noise level. The energy of the system is universally

increased by the addition of noise. But, beyond a certain saturation point, higher levels of

timing noise can either increase or decrease the energy of the system, depending if we began

at the peak or the valley of the diffusion curve. At a certain point in the middle, the system

is not sensitive to additional noise. These results are all qualitatively similar to those that

we saw in the case of amplitude noise, but the improved signal to noise ratio and reduced
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scatter of these data sets compliments the earlier data well.



Chapter 4

Quantum state preparation

4.1 Overview

In most of the experiments that we have described thus far, the system under study has been

one that exhibits globally chaotic motion. The initial conditions that we have used for these

experiments have been fairly cold, with temperatures on the order of 10 µK. The atomic

distribution is also reasonably compact in its spatial extent with a characteristic width of

σx = 0.15 mm. These values seem rather small from a macroscopic point of view but are

actually fairly large when compared with the typical sizes of structures in phase space.

Considering that a unit cell of the kicked rotor phase space spans 2π of x and p in scaled

units (§1.4.3), we find that our distribution spans (roughly) a thousand unit cells in position

and one in momentum. For some studies of quantum dynamics, the distributions that we

can create with the MOT are simply too broad. We have already seen in the example of

the quantum resonance that the behavior of a quantum system can depend qualitatively on

the initial condition (§3.4). Besides effects of this nature, we are also interested in studying

quantum transport in mixed phase space, which consists of significant regions of both regular

and chaotic dynamics. One such system that we will introduce is the potential given by

an amplitude modulated standing wave. There are small stable islands in this system into

which we would like to “load” our initial condition. For such specialized tasks as these, we

have developed a method of quantum state preparation. The first part of the procedure

involves a three-dimensional, optical lattice that we use in a final stage of cooling after we

turn off the MOT. After this, we use velocity-sensitive stimulated Raman transitions and

subsequent manipulation in a one-dimensional standing wave to center an atomic sample

140



141

directly on the feature of phase space that we wish to study. All together, these procedures

represent the substantial changes to the experiment that we have made since the kicked

rotor experiments that have already been described. We will describe these methods in

detail in the remainder of this chapter.

4.2 Three Dimensional Lattice Cooling

The temperatures that we can easily achieve in our MOT, including the simple polariza-

tion gradient cooling (PGC) period, are not much better than 10 µK. This temperature

corresponds to a momentum width of σp/2�kL = 4. Several groups have reported lower

temperatures in their traps; ultimate temperatures of 3 µK are not uncommon [Salomon90;

Hamann98]. Typically, polarization gradient cooling works most efficiently in the total ab-

sence of magnetic fields. A common strategy is to turn off the anti-Helmholtz coils before

performing PGC with the weakened (low intensity and further detuned) optical molasses.

Although we can in principle turn off the fields for this stage of our experiment, the ex-

tremely slow magnetic field ringdown in our interaction chamber (§2.4.2) makes this im-

practical. While the ultimate temperatures that can be achieved in a MOT are good for

many purposes, it is often desirable to have lower temperatures. The most limiting factor

in the MOT temperature is reabsorption of scattered photons, a phenomenon that becomes

more severe at high densities [Sesko91; Cirac96; Castin98]. When we increase the detuning

and decrease the intensity of our molasses during the PGC cooling period we reduce the

scattering rate to further cool the sample.

Our laboratory has not made the exploration of cooling techniques a major priority.

Instead, we rely upon the results of the many groups that that have developed and continue

to pursue novel cooling methods. There are several variations on the MOT (with names

like grey or dark optical molasses) that have been developed in order to reduce rescattering

and have produced temperatures as low of 1 µK [Ketterle93; Hemmerich94; Boiron96].

Several promising techniques have been developed in the last few years for cooling atoms

(from a MOT) in far-detuned optical lattices. Generally speaking, these techniques work



because confinement in the lattice minimizes heating from rescattering [Cirac96; Wolf00].

One such method is Raman sideband cooling, which has been demonstrated in certain lattice

geometries with results close to the recoil temperature [Hamann98; Vuletić98]. One other

such method, which we employ, is to trap atoms in a three-dimensional far-detuned optical

lattice and cool them with optical molasses.

We have adopted a scheme that is very similar to one developed by David Weiss and

his group [Winoto99; Wolf00]. The essential idea is that we load the atoms from our MOT

into a three-dimensional, far off-resonance lattice (FORL). The lattice serves to confine the

atoms in space while we continue to cool them with a weak optical molasses. Polarization

gradient cooling turns out to work (at least) as well in the FORL as it does in free space,

and we can achieve very low temperatures while retaining spatial confinement. We then

adiabatically release the atoms from the 3D lattice to trade their confinement in position

for a further reduction in temperature. The typical temperatures that we can achieve with

this technique are lower than 1 µK. Beyond simply cooling the atoms, we can use this

technique to trap and store our atoms while the magnetic field decays in the interaction

chamber.

Our lattice configuration is illustrated in Fig. 4.1. Five red-detuned, linearly polar-

ized beams meet at the center of the interaction chamber. Three of the beams are in the

plane of the horizontal optical molasses beams, rotated by several degrees about the vertical

axis of the chamber from the positions of three of the molasses beams. Two of the beams

constitute a retroreflected pair, and the third beam is a traveling wave perpendicular to

these beams. These beams are vertically polarized and form a two-dimensional interference

pattern in space. The interference pattern contains many local intensity maxima in space.

In this particular configuration, the local maxima are stable against small perturbations

of the optical phases. We use red-detuned light so that the dipole force attracts atoms

to regions of higher intensity, so that the atoms are confined in many small wells. If this

lattice configuration is instead realized with blue-detuned light, the intensity maxima form

an array of repulsive barriers. We have verified experimentally that in this case the lattice
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Figure 4.1: Configuration of the 3D far-detuned optical lattice. The approximate position of
the beams is shown with respect to the optical molasses beams (a). Three of the beams are
in the same plane as the horizontal molasses beams, and the other two are aligned several
degrees from the vertical axis. Each of the lattice beams is linearly polarized, where the
polarization vectors are indicated by the small black arrows (b). The vertical beams are
detuned by 80 MHz from the horizontal beams.

inhibits motion to some degree, but does not efficiently confine the atomic sample. In the

lattice configuration originally described by Weiss’s group [DePue99], the horizontal beams

are formed by two perpendicular standing waves. An effect of this is that the lattice poten-

tial is not stable against small perturbations to the optical phases. To compensate, their

retroreflecting mirror locations are stabilized by active interferometric phase locking. There

is one possible advantage to working with blue-detuned light, if the lattice were composed of

three perpendicular standing waves. In this case, the repulsive force would eventually trap

the atoms in the regions of lowest intensity. Spontaneous emission from the lattice beams

would be minimized in this case, and it should be possible to store the atoms in the dark

parts of the lattice for a very long time.

Now let us examine the vertical beams, which are largely independent of the hori-

zontal lattice. The beams are linearly polarized and form a retroreflected pair. The axis of

the beam is offset several degrees from the vertical axis so as to not block the vertical MOT

beams. This standing wave constitutes a one-dimensional optical lattice and serves to trap



the atoms in the vertical direction, against gravity. The detuning between the horizontal

and vertical beams determines the nature of the interference pattern that is formed between

the two lattices. The frequency difference between the vertical and horizontal beams is 80

MHz, which is very large compared to the recoil frequency. Therefore, the interference pat-

tern changes much faster than the atoms can respond and so the atomic interactions with

the vertical and horizontal beams can be considered to be independent. A secondary effect

of the beam independence is that the lattice polarization is effectively linear at every point.

The vertical and horizontal optical lattices provide confinement for our atoms, but

they do not (by themselves) provide cooling. Polarization gradient cooling is possible in the

FORL so long as the ac Stark shift that the lattice beams induce is nearly independent of the

magnetic sublevel mF [Winoto99]. This condition is satisfied for our configuration because

the lattice is linearly polarized and the detuning is large compared to the width of the

excited state (hyperfine) manifold. Cooling in the lattice is particularly effective because of

several factors. First, PGC works extremely well because we are able to trap the atoms long

enough that the magnetic fields in the chamber decay away. Secondly, confinement tends

to suppress rescattering of light in the trap, as we have mentioned. We further suppress

scattering by reducing the number of atoms that are in the Fg = 4 ground state at any

given time. When we apply optical molasses light to atoms in the FORL, we turn off the

repumping laser. The molasses light at this point is tuned ∼ 40 MHz to the red of the

Fg = 4 −→ Fe = 5 cycling transition. Without any repumping light, nearly all of the atoms

end up in the Fg = 3 ground state within several milliseconds. Atoms that are in the Fg = 3

state do not “see” the molasses light. The low rate of spontaneous scattering events from

the optical lattice itself provides enough repumping to occasionally promote an atom to

the Fg = 4 state so that it will undergo many cooling events before its decay to Fg = 3.

Rescattering is unlikely because most of the atoms (at any one time) are not participating

in the cooling process. (This is much like the behavior in a dark MOT [Ketterle93].) This

particular cooling process would be enhanced by a blue-detuned lattice, because the atoms

with the largest energies would be those which are most likely to reach regions of higher
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intensity. This would selectively repump and cool the atoms with the highest energies.

Beyond simply allowing for good polarization gradient cooling, cooling in the lattice

provides one other essential feature: confinement. The temperature that the atoms reach

after cooling in the lattice is several microkelvin, comparable to the best results that have

been seen in free-space cooling. However, the atoms at this temperature are still localized

in their wells. We can now adiabatically lower the well depth by reducing the intensity

of the light slowly. In this process, called adiabatic cooling [Chen92], we trade the local

confinement in the wells of the 3D lattice for an overall reduction in the temperature of the

sample [Kastberg95]. Note that we are only sacrificing local confinement– the atomic density

averaged over a unit cell of the lattice does not decrease. This stage of the cooling gives

us a large improvement over the temperatures that can be achieved with optical molasses

alone, and typically brings our atomic sample to below 1 µK.

The 3D far-detuned lattice beams are derived from the output beam of the Ti:sapphire

laser, as shown in Fig. 4.2. The light is picked off from the output beam by an IntraAction

80 MHz fixed frequency AOM that is placed between the laser and the AOM that we use

to control the interaction beam. The pick-off AOM is controlled by an IntraAction driver

which is in turn controlled by the output of a DS345 arbitrary waveform generator. The

light that we have picked off is split by a second IntraAction 80 MHz AOM, which is left on

at all times. One third of the light that passes through this AOM is diffracted into the first

order output beam which is shifted up in frequency by 80 MHz. The other two thirds of

the light passes through undiffracted. The two output beams from this AOM are separated

and independently spatially filtered by passing each beam through a 50 µm pinhole. The

unshifted light is split into two beams of equal intensity with a waveplate and a polarizing

beamsplitter cube. These two beams are directed into the chamber to form the horizontal

beams. The upshifted light is periscoped up above the chamber to form the vertical lattice

beams. Each beam that enters the chamber passes through a final polarizing beamsplitter

cube before it enters the chamber to ensure that the polarization is as linear as possible. The

typical power of each beam is roughly 90 mW. The three beams are focused onto retrore-
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Figure 4.2: Simplified optical setup for the 3D far-detuned lattice. The light is picked off
from the Ti:sapphire laser beam (at frequency νTS) with an 80 MHz acousto-optic modulator
(AOM) that is placed between the laser and the AOM that directs light to the interaction
beam. When the lattice beam AOM is switched on, it directs light to a second 80 MHz
AOM, which splits the light into two components. One third of the light is shifted up in
frequency by an additional 80 MHz, and two thirds pass through the second AOM without a
frequency shift. The two beams are then separated and passed through independent spatial
filters (S.F.). The unshifted beam is split in half with a wave plate (λ/2) and a polarizing
beamsplitter cube (PBS), and these two beams are directed into the interaction chamber as
the horizontal lattice beams. The component of the beam that was shifted by an additional
80 MHz is used for the vertical lattice beam pair. In addition to what is shown in this
diagram, each beam is weakly focused onto its retroreflector, and passed through a final
polarizer before entering the chamber.

flecting mirrors, two on the chamber windows opposite where the horizontal beams enter,

and one below the chamber to reflect the vertical beam. In practice, we keep one of the

horizontal retroreflectors blocked for our five-beam geometry. The beams are focused onto

the retroreflectors so that each beam is the same size ( w0 = 500 µm ) on its way to and

from the retroreflector when it intersects the atomic distribution.

Let us now summarize the experimental sequence that we employ for cooling in the

far-detuned 3D lattice. We begin with a sample of atoms that are collected in the MOT,

as we have described before. The optical molasses light is at its full intensity and detuned

13 MHz red of the cycling transition. Up until the cooling trigger (§2.7) is issued, the

experimental sequence is the same as we have described previously. The first step after the
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cooling trigger is to load atoms into the three-dimensional far-detuned lattice. As in the

case without the lattices, we detune the molasses light further from resonance to about 37

MHz, and reduce the intensity to 60% of that which we use for the MOT loading phase.

The 3D FORL is turned on adiabatically so that it does not heat the sample more than

necessary. After 800 µs, the lattice reaches its full intensity. At this point the weak optical

molasses, the repump laser and the anti-Helmholtz coils are still on. These components

constitute a weak MOT which is left on for a total of 22 ms to help load atoms into the

wells of the 3D lattice. After the end of the loading period, we extinguish the repump light

and turn off the anti-Helmholtz coils. The optical molasses light is brought back to its full

intensity (100%), but the detuning remains at 37 MHz. We now begin a long period of

storing atoms in the FORL. The storage period is usually 298 ms, which means that the

FORL is on for a total of 320 ms. During the storage period the 3D FORL remains fully

bright while the optical molasses intensity is linearly decreased from 100% to 77%. The

timescale of the storage period is largely limited by magnetic field decay in the chamber.

After this long storage period, the residual magnetic fields in the chamber are no longer a

problem for our subsequent state preparation stages. It is also important to note that this

timescale is sufficiently long for the polarization gradient cooling to cool the atoms that are

trapped in the lattice. The atoms that were not loaded into the lattice initially have plenty

of time to gravitationally fall away from the trapped sample. The final stage of the lattice

cooling is the adiabatic reduction of the 3D lattice intensity. The intensity as a function of

time is lowered according to I(t) = I0(1 + t/τ )−2 [Kastberg95; DePue99], where our time

constant is τ = 30 µs. This function is truncated after 800 µs, at which point the light is

already very close to extinguished. When we earlier adiabatically turned on the lattice light,

its intensity was increased according to the reverse of this function. The beams which form

the optical molasses also constitute a three-dimensional (but near-resonant) optical lattice,

and we can slightly decrease the final temperature by adiabatically turning off the molasses

beams. These beams are turned down and extinguished with the same temporal profile, but

begin shutting off 20 µs before the FORL beams.



Aside from the total length of the storage time, which is determined by magnetic

field characteristics, the parameters that we have used are empirically determined by opti-

mizing the final temperature of the atomic sample. Aside from the temperature, it is also

important that we retain a reasonably large fraction of those atoms that we initially loaded

in the MOT. We can retain between 50% and 90% of the initial atoms for 320 ms in the

optical lattice, with 75% a typical value. The most critical parameter in lattice retention is

the alignment of the 3D lattice beams, not any of the system parameters that we have dis-

cussed. There is one additional system parameter that does critically affect the performance

of the lattice cooling: the detuning of the lattice beams.

We have found cooling in the lattice to work for detunings as low 12 GHz and at least

as high as 70 GHz (to the red of the cycling transition). The performance of the procedure

is compromised at low detunings by heating and at high detunings by low retention. The

different lattice structure with blue detuning typically results in both poor temperatures

and poor retention. We have had the best results for detunings in the range of 25 GHz -

60 GHz. In this range we achieve typical one-dimensional temperatures of 400 nK, which

correspond to σp/2�kL = 0.7. This temperature is measured along the axis of the interaction

beam. In the vertical direction, the temperature is slightly warmer, usually about 500 nK,

or σp/2�kL = 0.8. For our experiments, we are primarily concerned with the temperature

along the axis of the interaction beam. The temperature along this axis is usually optimized

at the expense of temperature in the vertical direction by changing the relative intensities of

the 3D lattice beams. The lattice cooling procedure works best, in terms of both retention

and temperature, when the lattice beams are made as intense as possible.

Our final atomic distribution after lattice cooling is a mixed state, with most of

the atoms in Fg = 3, but some in Fg = 4. In any of our experiments, it is important to

begin with the atoms in only one of these ground states. Usually, we optically pump the

atoms to the Fg = 4 state with a 100 µs pulse from the repump laser. After this procedure,

the 1D temperature is typically near 700 nK. We could also imagine simply removing all of

the atoms that were in Fg = 4 with a pulse that is resonant on the cycling transition. We



149

do in fact use a procedure similar to this as a later part of the state-preparation sequence.

Beyond this, we also employ a more complex method to pump atoms into the Fg = 4, mF = 0

magnetic sublevel, as we will see later.

4.3 Stimulated Raman Velocity Selection

4.3.1 Overview

As cold as we are able to make atoms with polarization gradient cooling, we are still limited

by the recoil temperature. In the next stage of our state-preparation sequence, we use

two-photon stimulated Raman transitions to select only a small velocity class of our atomic

sample. This technique was first demonstrated by Steven Chu and co-workers [Kasevich91],

and we will review some of the essential features here.

We begin by considering the multilevel atom depicted in Fig. 4.3. This atom has

two ground states |g1〉 and |g2〉 separated in energy by �ω21, and a manifold of closely-spaced

excited states |en〉. This structure corresponds closely to that of the cesium atom, which has

two widely separated hyperfine ground states. Let us suppose that the atom begins in the

state |g1〉. We now simultaneously expose the atoms to two counterpropagating laser fields
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Figure 4.3: This simplified term diagram shows the energy levels that are relevant to stim-
ulated Raman transitions. The two ground hyperfine states |g1〉 and |g2〉 correspond to the
Fg = 3 and Fg = 4 ground states of the cesium atom. The excited state levels |en〉 are
coupled to the ground states by two laser fields of frequency ωL1 and ωL2. These laser fields
are far detuned from the nearest optical transitions at frequencies ωeg1

and ωeg2
(Diagram:

D. Steck).



of frequency ωL1 and ωL2. These beams can induce a stimulated Raman transition to the

|g2〉 state if the frequency difference between the beams meets a resonance condition. In a

simplistic view, the resonance condition for a stationary atom is given by ωL1 − ωL2 = ω21.

As before, we operate in a far-detuned regime where the atoms are unlikely to spontaneously

scatter photons. In the two-frequency case, this means that there is a large detuning ∆i

(i = 1, 2) of each of the laser fields from the single-photon (optical) atomic resonances.

When the Raman resonance condition is met, we can view the two laser frequencies as being

resonant with a virtual excited state which is far detuned from the excited state manifold. An

atom that makes the transition to the other state acquires momentum 2�kL ≡ �kL1 + �kL2,

where kLi is the wave number of light with frequency ωLi. This is to say that besides simply

coupling the internal states with the two light fields, we also couple the momentum states

of the atom. For a moving atom, the transition is possible if the light fields are doppler

shifted such that the resonance condition is met. The momentum spread ∆p of the atoms

that are transferred to the other state is given by ∆p = mc∆ω/(ωL1 + ωL2), where ∆ω is

the linewidth of the Raman transition. The ground state lifetimes are long enough that the

linewidth of the Raman transition is in practice limited by the interaction time.

A detailed theoretical consideration of evolution in this system is presented else-

where [Moler92; Steck01b]. The analysis follows a similar procedure to that in §1.4.1, where

the system now reduces to coupled equations of motion for the two ground states. The

results take the form of a two-level system, where we can drive oscillations between the

states |p〉|g1〉 and |p+2�kL〉|g2〉. The frequency of oscillation is a Raman Rabi frequency ΩR

that is defined in analogy with the single-photon Rabi frequency Ω. The stimulated Raman

resonance condition turns out to be

∆R ≡ 4ωr

(
p + �kL

�kL

)
+ (∆L2 − ∆L1) + (ωAC2 − ωAC1) = 0 , (4.1)

where ωAC2 and ωAC2 are the ac Stark shifts of the two ground state levels. The overall

resonance condition is the sum of three parts: the doppler shifts, the simplistic resonance

condition ωL1 − ωL2 = ω21, and the ac Stark shifts of the atom in the two laser fields. This
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model does not account for changes in the value of ω21 that can be induced by external

fields. Zeeman shifts caused by the residual magnetic field are a potential problem for our

experiments for this reason.

By exposing the atoms to the Raman laser fields, we can drive Rabi oscillations for

the entire class of atoms that meet the resonance condition ∆R = 0 (4.1). Assuming that

all of the atoms begin in |p〉|g1〉, the population ρ of the state |p + 2�kL〉|g2〉 is given by

ρ(t) = sin2(1
2ΩRt). Usually we wish to drive a “π-pulse,” by leaving the beams on for a

period tπ = π/ΩR. In this case, an atom in |p〉|g1〉 makes a transition to |p + 2�kL〉|g2〉 (or

vice versa) with unity probability. The strenuous condition ∆R = 0 is not met by most of

the atoms and the population is instead given by a generalized Rabi formula,

ρ(t) =
Ω2

R

Ω2
R + ∆2

R

sin2

(
1
2

√
(Ω2

R + ∆2
R) t

)
. (4.2)

This equation implicitly assumes that ΩR is constant over the time interval (0, t), which is

the case for a square pulse. So, for a square pulse we see that the probability of making the

transition oscillates as a function of ∆R. If the pulse time is t = tπ, then the function is

a maximum at ∆R = 0, surrounded by broad oscillatory lobes that reach zero periodically.

The width of this distribution is determined by the interaction time, and varies as 1/t, where

t is the total time of the π pulse. With a longer pulse, the energy of the selected velocity

group is more clearly defined, and the size of the oscillatory structure is decreased. The

effective Raman detuning ∆R depends upon the velocity of each atom, so when we apply a

Raman pulse to the distribution it actually excites atoms within a small range of momentum.

To fully account for the time evolution of the excited state, we must consider the effect of

Eq. 4.2 on the entire atomic momentum. The result is that the excited state population

does not undergo perfect sinusoidal oscillation, but rather exhibits damped oscillation. It

is possible to reduce the side lobes by choosing a non-square pulse shape, as has been

demonstrated by Chu and co-workers [Kasevich92]. If the intensity of the pulse is chosen

with a Blackman pulse envelope, the frequency spectrum of the pulse has only very low power

components outside the central region. Despite this advantage, we decided to continue to



use square pulses in our experiment. The chief motivation for this decision is that the ac

Stark shifts change as the intensity of the pulse is modified. In order to keep a set of atoms

in resonance with the Raman transition, the frequency difference between the beams would

have to be modified as the intensity was changed. In our setup we use radio-frequency

(RF) electronics to drive the AOMs that control the stimulated Raman laser beams. These

electronics cannot perform this real-time, arbitrary frequency modulation while maintaining

high enough stability for our experiments.

Let us now describe the basic procedure that we use in our experiment to perform

velocity selection. We begin with a cold sample of atoms in the Fg = 4, mF = 0 atomic state,

obtained after cooling in the 3D lattice and optical pumping. We then use a stimulated-

Raman “tagging” pulse to promote only those atoms within a certain velocity range to the

Fg = 3, mF = 0 state. Finally, we apply resonant light on the Fg = 4 −→ Fg = 5 line

to push away all the atoms that remain in the Fg = 4 state. We now have a sample of

atoms in the Fg = 3 state with a narrow velocity distribution, which is often a desirable

initial condition for an experiment. We use a transition between two mF = 0 states because

splitting between these states is highly insensitive to Zeeman shifts. We have skipped over

some of the details here, which we will come to in due course.

One can imagine extending this state-selection procedure into a true cooling process

by selecting the atoms near zero velocity, recycling the non-selected atoms into a new ther-

mal distribution, and repeating. Stimulated Raman cooling based upon this principle has

been demonstrated [Kasevich92]. More technically, the final distribution should have zero

velocity, so the momentum class that is initially tagged must be at ±2�kL. In the process

that we have described so far, we can tag atoms from the |p = 2�kL〉|Fg = 4〉 state into the

|p = 0〉|Fg = 3〉 state. We can reverse the direction of momentum transfer by reversing the

sign of ωL1−ωL2, so that we couple the states |p = −2�kL〉|Fg = 4〉 and |p = 0〉|Fg = 3〉. We

can then, by changing the frequency of (say) ωL1, drive π-pulses that move atoms from both

positive and negative momentum classes towards zero. The recycling procedure would have

to involve the use of resonant light to redistribute the velocity distribution of the Fg = 4
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atoms. Implementation of stimulated Raman cooling is made difficult by several factors.

The most important of these is the extreme sensitivity that the system has to the effects of

external magnetic fields. The residual magnetic fields in our interaction chamber are signif-

icant enough (typically at least 20 mG) that we do not expect Raman cooling to work, at

least in its standard implementations. Originally, we planned to perform a slightly modified

version of Raman cooling in our experiment, and our optical setup has the capability of

switching the detuning of the light. Once we had the capability of velocity-selective tag-

ging, we briefly attempted several variations on the cooling technique. Although we did not

pursue any of these tests in detail (in the interest of time), we were not able to exceed the

performance of simple tagging alone. The chief disadvantage of performing only the single

velocity selective tagging is that we end up “throwing away” most of our distribution. In the

chaos-assisted tunneling experiments, we usually ended up performing the experiments with

about 0.1% of the atoms that were initially gathered in the MOT. With such a small atomic

distribution to work with, we often needed to average experiments together to increase the

signal to noise ratio.

4.3.2 Experimental setup for velocity selection

We now come to the experimental setup that is used to generate the Raman laser fields.

A simplified overview of the optical components of this system is shown in Fig. 4.4. The

Raman beams are derived from the same far-detuned Ti:sapphire laser that we use to form

the interaction beam and the 3D far-detuned lattice. The output beam of the Ti:sapphire

laser is multiplexed by a series of acousto-optic modulators. We have already seen (Fig. 4.2)

that the beam passes through the 3D lattice control AOM and the interaction beam control

AOM. An IntraAction 40 MHz AOM follows these two, and is used to control the intensity

of the Raman beams. The initial frequency of the Raman light, the carrier frequency νc is

a fixed 40 MHz above the Ti:sapphire laser frequency, νc = νTS +40 MHz. The Ti:sapphire

laser is kept at a known frequency νTS by using the wavemeter and monitor cavity described

in §2.3.2.
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Figure 4.4: Simplified optical setup for stimulated Raman transitions. The light is picked
off from the Ti:sapphire laser beam (at frequency νTS with a 40 MHz AOM that is placed
between the AOM that directs light to the interaction beam and the wavemeter. When
the pick-off AOM is switched on, it directs light at the carrier frequency νc = νTS + 40
MHz to a variable beamsplitter. Half of the light passes through a 9.28 GHz EOM and is
spatially filtered before entering the chamber. The other half of the light is double passed
through one of two tunable 44 MHz AOMs before being spatially filtered and entering the
chamber opposite the beam from the EOM. Both beams pass through quarter-wave plates
(λ/4) just before the chamber so that the beams become circularly polarized. In an optional
setup selected by the use of kinematic stages (indicated by a dotted box) the light from the
EOM arm of the setup is coupled with the light from the AOM arm with a non-polarizing
beamsplitter cube (BS).

The light for the Raman beams is first split into two equal components with a

variable beamsplitter consisting of a half-wave plate (λ/2) and a polarizing beamsplitter

cube. Each half begins with a total power in the neighborhood of 200 mW. The first half of

the light travels through a New Focus model 4851 9.28 GHz electro-optic phase modulator

(EOM). This modulator is driven by a stable 9.28 GHz source that we will describe later, and



155

serves to put sidebands at ±9.28 GHz on the beam. We measured the degree of modulation

by looking at this spectrum with a monitor cavity identical to the one that we use to monitor

the main Ti:sapphire beam. In this measurement, we found that the EOM converts roughly

7% of the carrier into each sideband. The aperture on the EOM is very small (1 × 2 mm),

so the beam is weakly focused through the EOM with a 400 mm (focal length) lens. An

identical lens after the EOM recollimates the beam, and it is then spatially filtered with a

40 µm pinhole. The EOM transmits roughly 90% of the light that enters it– the losses are

presumably due to clipping at the input and output apertures. This clipping also distorts

the beam somewhat and after spatially filtering, we typically have an output power near

150 mW.

The other half of the Raman light, which does not pass through the EOM, is

directed to a matched pair of tunable 40 MHz acousto-optic modulators from IntraAction.

The AOMs are driven near 43.5 MHz by a stable RF setup that we will describe later. They

are arranged in series as shown in Fig. 4.4. Both AOMs are double-passed, the first on the

+1 order, and the second on the −1 order. Only one of the AOMs is on at a given time,

so that the output frequency of the double-pass setup is at the single frequency νc ± 87

MHz. To improve the maximum efficiency of the setup, the beams are weakly focused as

they pass through the AOMs, initially with a 400 mm lens. Both retroreflecting mirrors are

99% reflectivity spherical mirrors with a 50 cm radius of curvature, and are mounted on

1D translation stages to allow adjustment of the focus. The two double-pass setups use the

same polarizing beamsplitter cube, and the output of the setups is finally spatially filtered

with a 35 µm pinhole. In all of the experiments described in this dissertation, we used only

the double-pass setup that shifts up the frequency of the light. Typically, the double-pass

setup is only about 45% efficient, and we end up with 75 mW of light after the spatial filter.

After the spatial filters, the beams from the EOM and AOM arms of the optical

setup enter the chamber from windows opposite each other and are made to counterpropa-

gate by carefully aligning the beam paths. The beams both have a waist of about 2 mm, and

they are aligned very close to the path of the standing wave that provides the interaction



potential. The angle between the Raman beams and the interaction beam is about 1◦ in

the horizontal plane. The small angle between the beams ensures that our velocity selection

is with respect to the axis that we actually care about, that of the interaction beam. The

Raman beams need to be circularly-polarized for the mF = 0 −→ mF = 0 transition, so the

two Raman beams each pass through a final polarizer and a zero-order quarter-wave plate

just before each beam enters the interaction chamber.

In the stimulated Raman transitions that we have described so far, the beams are

counterpropagating and this is the source of the velocity dependence in the Raman resonance

condition. If we instead switch to a copropagating scheme, the resonance condition can in

principle be met simultaneously for atoms in every velocity class. In this case, the resonance

condition is met if the proper frequency difference between the beams is chosen to account

for any level shifts. In our optical setup, we can insert a mirror and beamsplitter to overlap

the light from the EOM with the light from the AOM. In this case, the beams with two

frequency components reach the atoms from the same side. Since we are then insensitive

to the velocity class, this configuration makes it much easier for us to evaluate the ac Stark

shift and shifts due to residual magnetic fields.

We have introduced the means by which we generate some of the frequencies on the
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Figure 4.5: Levels and frequencies for stimulated Raman tagging. The cases shown are
where the AOM double pass setups use the +1 order (a) and (b) where they use the −1
order (Diagram: D. Steck).
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Raman beams. Let us now relate those frequencies to the energy levels in the cesium atom.

An energy level diagram with the experimental frequency values is shown in Fig. 4.5. The

beam which passes through the EOM has frequency components at νc and νc ± 9.28 GHz.

The beam which is derived from the AOM arm of the setup is entirely at either νc +87 MHz

or νc − 87 MHz. The ground state hyperfine splitting �ω21 = (E(Fg = 4) − E(Fg = 3))

of the cesium atom gives the frequency ω21 of the clock transition, with the well known

value 2π · 9.192 631 770 GHz. The difference between this value and the 9.28 GHz drive

is 87.368 230 MHz, which we obtain by driving the AOMs at 43.684 115 MHz. The actual

resonance condition is of course subject to doppler, ac Stark, and Zeeman shifts. For these

reasons, we actually send a signal at the modified frequency 43.684 115 MHz +δ, and the

light is shifted by 87.368 230 MHz + 2δ. We can also use the sideband at νc − 9.28 GHz

to achieve the resonance condition, using the other double-pass setup, with νc − 87.368 230

MHz. These two realizations reverse the sign of the frequency difference, and therefore the

direction of the momentum kick that is associated with the Raman transition. Although

we only use one sideband of the light from the EOM, the other sideband and the carrier

frequency are not important (except for the possibility of spontaneous emission). The carrier

does form a standing wave with the light from the AOM at νc ± 87 MHz. Note however,

that 87 MHz is extremely large compared to the recoil frequency, and this standing wave

moves at a high enough velocity that it can safely be ignored.

The stability of the frequency difference between the relevant components of the

stimulated Raman beams is critical for several reasons. First off, in Eq. 4.1 we see that if

the frequency difference between the two beams is ∆R = 4ωr, then we are resonant with

a momentum class moving at �kL. Recall that the recoil frequency is ωr = 2π · 2.0663

kHz. This means that if we wish to select a given velocity group, we must have stability

much better than several kilohertz. A much more stringent requirement is imposed by the

narrow width of the velocity group that we wish to select. We are interested in selecting a

subrecoil sample of atoms– one with a width of as low as ∼ �kL/20. In order to do this,

we need to have frequency stability much better than ωr/20 ≈ 100 Hz. This stability must



be maintained over the total length of time that is required for velocity selection. We can

estimate the π-pulse time that will produce this velocity selection by setting ∆E∆t = �/2,

with ∆E = �ωr/20. The pulse time is then ∆t = 10/ωr ∼ 800µs. The actual width selected

by an 800µs pulse is a slightly larger 0.06�kL, because of the shape of the distribution

selected by a square pulse.

All of the laser light that constitutes the stimulated Raman beams is derived from

the same Ti:sapphire laser. This is important because short-term fluctuations in the laser

frequency are common to each frequency component of the light and therefore cancel out in

the difference between any two. Beyond this, it is important to make sure that the signals

used to drive the EOM and the AOMs are very stable. The timebase of our signal generators

are all referenced to the same EFRATOM rubidium clock that we use to stabilize our other

instruments. The rubidium clock outputs a stable 10 MHz reference signal.

The 9.28 GHz signal for the EOM is generated by a Delphi Components Inc. di-

electric resonant oscillator (DRO). This DRO takes as its input a 40 MHz signal (obtained

by doubling the 10 MHz reference signal twice), and produces an output signal that is an

exact frequency multiple of the input. The 9.28 GHz signal is isolated by Sierra Microwave

Technology model SMC-8010 circulator which ensures that any backreflection is directed to

a 50 Ω power terminator rather than into the DRO output. After the circulator, the 9.28

GHz signal is amplified with a QuinStar Technology Inc. model CPA09092535-1 solid state

amplifier. This amplifier is specified to give 25 dB of gain, up to a maximum of 35 dBm, at

9.28 GHz, although its performance may actually be slightly below this level. The amplifier

dissipates a large amount of heat in operation and is sensitive to temperature. For these

reasons, it is mounted to a massive heat sink from an old oscilloscope, and the heat sink is

cooled with the assistance of two standard computer fans. The high-power output signal

from the amplifier is transmitted to the EOM through a 1 m SMA cable constructed of

Times Microwave Systems LMR-400 cable. LMR-400 is a flexible cable in the RG-8 form

factor and has relatively low loss in our frequency range.

The signal to drive the AOMs is generated by a slightly more complex setup. Beyond
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simply needing stability, we also need to be able to tune the output frequency. We begin

with a 150 MHz signal generated by one of two synthesized waveform generators, a Fluke

model 6080A/AN synthesizer or an Hewlett-Packard model 8662A synthesizer. These can

be used with their FM analog inputs to sweep the output frequency over some small range.

For the HP, the range is ±25 kHz, and the Fluke can sweep over ±1 MHz. The wide sweep

range of the Fluke has made it very useful for both looking for the first signal after changes to

our system and for certain types of calibrations. The Fluke has the significant problem that

its output frequency tends to slowly drift as a function of time in a not-obviously-bounded

manner, and we have observed deviations on the order of 1 kHz. While this is not a problem

for sweeps on the order of 1 MHz, it does prohibit using the synthesizer for any “important”

applications, including velocity selection. For more critical applications that do not require

wide sweeping ability, we have used the HP synthesizer. When the HP’s FM input was

enabled, it too has the problem of slow drifts. However these drifts are of order 100 Hz, and

do not pose as much of a problem for us. For our experiments that involve velocity selection,

we avoid the drifts entirely by turning off the FM input and the letting the computer directly

program the desired output frequency over the GPIB interface. In this case, the stability of

the HP synthesizer’s output is stable to within our ability to measure it, less than 1 Hz/day.

The signal is usually not at exactly 150 MHz— it is this signal that we change in order to

change the velocity class that we interact with. We double this signal to obtain a signal that

is close to 300 MHz. The original purpose for this doubling was to increase the effective

range of our FM sweeps to be as high as ±2 MHz, although we rarely actually need this.

This 300 MHz signal is then mixed with a signal near 343.7 MHz and low-pass filtered to

obtain an output signal near 43.7 MHz. The 343.7 MHz signal is produced by a WaveTek

model 2047 synthesizer and is kept at a constant frequency during data runs. The exact

value is sometimes changed to recenter the stimulated Raman resonance condition within

the sweep range of the 150 MHz signal– a change that corresponds to compensating for the

ac Stark shift or residual net motion of the atomic sample. The 43.7 MHz signal is amplified

and sent to one of two IntraAction model PA-4 power amplifiers. These amplifiers drive the



two double-passed acousto-optic modulators in the stimulated Raman setup. Depending on

which of the two amplifiers has the input signal at a given time, the AOM arm of our setup

will shift the frequency of the light either up or down by 87 MHz.

4.3.3 Optical pumping and pushing

The state-selection procedure that we have described requires the use of resonant light to

select the initial state and to remove atoms that have not been tagged. As previously

described, we begin with lattice-cooled atoms in a mixture of the Fg = 3, 4 ground states.

The most simple form of the optical pumping is the application of repumping light alone.

This transfers the entire population to the Fg = 4 state, in a mixture of magnetic sublevels.

For our velocity selection to be insensitive to magnetic fields, we rely upon a stimulated

Raman transition between the Fg = 4, mF = 0 and Fg = 3, mF = 0 states. This procedure

greatly reduces the complexity of the problem, as we specialize to a single transition out of

the 15 possible.

Let us now summarize the optical pumping procedure that we use to accumulate

atoms in the Fg = 4, mF = 0 state. We expose the atoms to linearly polarized light that is

resonant with the cesium Fg = 4 −→ Fe = 4 transition. The dipole matrix element for the

Fg = 4, mF = 0 −→ Fe = 4, mF = 0 transition is zero. The Fg = 4, mF = 0 state is then

a “dark” state in that atoms in this state are not affected by the resonant light. Atoms

that did not begin in this state then accumulate there after several spontaneous emission

cycles. This pumping light enters the interaction chamber from the top as an independent

beam. We prevent atoms from accumulating in the Fg = 3 state by turning the repumping

laser light on during the optical pumping. Besides this, we use a magnetic bias field of

1.5 G along the polarization axis of the optical pumping beam, which is along the axis of

the interaction beam. The bias field is much stronger than any other residual and possibly

fluctuating magnetic fields that may be present in the interaction region, and defines a clear

quantization axis for optical pumping and stimulated Raman processes. We realize the bias

field by turning on an increased current in two of the Helmholtz coils that are usually used
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to null out ambient fields. The optical pumping sequence can be performed after the atoms

are released from the 3D lattice, but we have found it equally acceptable to perform the

procedure during the last moments that the 3D lattice is still on. The 3D lattice intensity

is gradually decreased and is truncated after 800 µs. Typically, the optical pumping light is

turned on 66 µs before the end of this shutoff period, and is left on for 50 µs. The repumping

light is turned on at the same time, but stays on until the 3D lattice truncation, because it

is extremely important that no atoms remain in the Fg = 3 state after the end of this stage.

The magnetic bias field is turned on 200 µs before the optical pumping light so that the

field has time to ramp up to its full value and stabilize. We can pump at least 95% of our

lattice-cooled atoms into the Fg = 4, mF = 0 state, but we are using a process based upon

spontaneous emission, and there is significant heating associated with this process. After full

optical pumping, the temperature of the distribution is about 3 µK (σp/2�kL = 1.9). In our

tagging process which follows the pumping, we only select very cold atoms that are in the

Fg = 4, mF = 0 state. The optical pumping process serves to increase the number of atoms

that we tag by collecting atoms in all 17 ground states of the cesium atom into the state

that we select from. However, the heating associated with our pumping procedure reduces

the number of atoms that we can tag because it reduces the number of atoms at the low

velocities that we wish to tag. As it turns out, we gain much more from our pumping than

we lose to heating, and pumping to Fg = 4, mF = 0 significantly increases our brightness

relative to operating with repump-only optical pumping.

One of our most important calibration procedures is the alignment of the magnetic

fields that we use in our experiment. There are two parts to this, nulling out the ambient

fields, and aligning the bias field that we use for optical pumping. For the case of nulling out

the magnetic fields, we perform a series of individual experiments and attempt to minimize

the total width of the Zeeman-split Raman spectrum. The procedure is very similar to how

we perform our usual experiments using stimulated-Raman transitions. In each experiment,

we pump the atoms into the Fg = 4 states with repump-only optical pumping. We then tag a

set of atoms to the Fg = 3 state, push away the remaining Fg = 4 atoms, and count the total



number of atoms by imaging with the CCD and adding up the total fluorescence. We repeat

this procedure many times (typically 50 per scan) with a new Raman detuning frequency

at each point in the scan. After the scan is complete, we see a peak in the spectrum for

each of the Zeeman-split Raman transitions. We then make a minor manual adjustment

to the settings on the Helmholtz coil current controller and repeat the scan. We continue

this procedure until the total width of the Zeeman-broadened spectrum indicates that the

residual fields are of order 20 mG, which is about as well as we can cancel the fields out.

The fields tend to drift slowly as a function of time, and we generally do not need the field

to be much better than 100 mG, so long as we are using the bias field in our experiments.

Frequently, we conduct this type of measurement with wide sweeps of the detuning, for

which we use the Fluke synthesizer in the drive electronics for the Raman AOMs. To

assist the accuracy of the coarse sweeps, we commonly chirp the Raman detuning over a

frequency interval equivalent to the frequency step size. Furthermore, we commonly use the

copropagating setup for these calibrations so that we interact with atoms in a wider velocity

range. The procedure for aligning the bias field is very similar to the one that we use to

zero the fields. We again scan the frequency difference of the Raman beams, but we include

the full optical pumping sequence in each experiment, rather than just the repump-only

optical pumping. This involves turning on the magnetic bias field, and leaving it on while

we tag the atoms to Fg = 3. With the bias field on, each of the Zeeman sublevels is clearly

separated in the scan. Using this procedure, we can determine the relative populations of

the Fg = 4 magnetic sublevels. We then adjust the bias field orientation by optimizing the

fraction of atoms that are pumped into the Fg = 4, mF = 0 state.

We now come to the process of removing the unwanted Fg = 4 atoms after tagging.

We use an independent beam that is resonant with the cesium Fg = 4 −→ Fe = 5 cycling

transition to push away these atoms. This beam enters the interaction chamber with the

Raman beam that travels through the 9.28 GHz EOM. The beams are combined with a

polarizing beamsplitter close to the chamber, and both beams pass through the quarter-

wave plate before entering the chamber. The pushing beam is then circularly polarized and
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travels along the quantization axis of the magnetic field. The pushing beam passes through

a 25.4 mm focal length lens just before entering the chamber, and rapidly diverges while it

is in the chamber, travelling another 50 cm or so before actually hitting the atoms. This

ensures that the beam covers all of the atoms uniformly. Besides this, we need very little of

this light to perform the pushing. The light in a cycling transition is particularly efficient

because it is circularly polarized along the quantization axis: this light only couples mF to

m′
F = mF + 1. We then expect that the atoms eventually fall into the Fg = 4, mF = 4 −→

Fe = 5, mF = 5 cycling transition, from which there is no (dipole allowed) escape. We use

a very-low intensity pushing pulse to minimize the probability of excitation to one any of

the other excited states. To perform the pushing itself, we turn on the pushing light at an

very low intensity for a fairly long time, typically 800 µs. We calibrate the pushing pulse

by altering the intensity and the duration of the pulse while monitoring the atoms that

are left behind. We can accelerate nearly the entire set of Fg = 4 atoms to a momentum

of over 100 · 2�kL, which is outside the region that we detect with our ballistic-expansion

technique. By using a long CCD exposure time of 100 ms we can detect that about 0.3% of

the atoms are typically left behind. These atoms form a broad background in the momentum

distribution that is usually ignorable.

The optical setup for the pumping and pushing beams is shown in Fig. 4.6. These

two beams are created by manipulating the output light of the DBR diode laser, which

is otherwise used to generate the optical molasses light for the MOT. The output of this

laser is kept at 195 MHz below the Fg = 4 −→ Fe = 5 cycling transition. The light

for the optical molasses is switched and tuned by a double-passed tunable 80 − 100 MHz

AOM. The zero-order light that is not deflected by this AOM is passed to an AOM that

operates at the fixed frequency of 56 MHz. This AOM downshifts the frequency of the beam

to 251 MHz below the cycling transition, which places the output on resonance with the

Fg = 4 −→ Fe = 4 transition (See Fig. 2.2). This is the light that we use for optical pumping

to the Fg = 4, mF = 0 state. Finally, the zero-order output from this AOM is double-passed

through a fixed-frequency 97.5 MHz AOM which produces output at the frequency of the



λ/4

Molasses Laser
(DBR Diode) PBS

To saturated absorption
lock and monitor cavity

AOM

Optical molasses
light

AOM AOM

λ/4
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Optical pumping light

60-100 MHz

56 MHz 97.5 MHz

Figure 4.6: Optical setup for the optical pumping and push-away beams. These beams are
derived from the DBR diode laser that provides the optical molasses light. The zero-order
output of the double-passed optical molasses AOM is directed first to a 56 MHz AOM that
is used for optical pumping to the Fg = 4, mF = 0 state. The zero-order output of this
AOM is double-passed through an AOM at 97.5 MHz to provide the light that is used to
push away Fg = 4 atoms in the state selection process.

cycling transition. This beam is used to push away the remaining Fg = 4 atoms at the

appropriate stage of the state preparation process. Both the pumping and pushing beams

are spatially filtered (not shown) before being directed to the chamber.

4.4 State Preparation by Atomic Sliding Motion

The lattice cooling and subsequent stimulated Raman velocity selection allow us to prepare

atoms within a narrow range of momentum. However, the atoms that we have tagged are

nearly uniform in position, over the scale of one well of our interaction beam. If we wish

to study local structures in phase space, we would like to begin with a distribution that is

localized (compact) in both position and momentum. The relevant phase space is realized

by modulating the same standing wave that we used in the kicked rotor experiments. The

exact form of the modulation is not terribly important at the moment, it is enough to note

that the spatial periodicity of the potential is again half the wavelength of the light. Besides

localizing a sample in phase space, we would like to be able to translate the sample to center

it at places in phase space other than x = 0, p = 0.

We have developed a series of manipulations that we can use to achieve these goals,
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2.  Turn on 1D standing wave
      adiabatically

p

p

x

p

x

1.  Begin with Raman-prepared
      (subrecoil) atoms

x

p

x

3.  Sudden shift of standing-
      wave phase

4.  Free evolution of atoms in
      optical lattice

Figure 4.7: Illustration of the state preparation by atomic sliding motion (SPASM) sequence,
showing the localization and translation of an atomic sample in a representative x−p phase
space (Diagram: D. Steck).

illustrated in Fig. 4.7. This procedure is a modification of an earlier conception that we

described in [Klappauf99]. The initial condition for this sequence is the result of the Raman



1. Load MOT

2. Lattice
Cooling

4. Raman Tagging

6. State Preparation

9. Imaging

8. Free Drift

7. Interaction

5. Push-away

3. Optical pumping

Figure 4.8: Schematic representation of the experimental sequence for experiments with
state preparation. This diagram shows the major steps in the experiment and the associated
optical processes. Note that the repumping beam is not depicted in this figure, although it
is on during the MOT loading, optical pumping, and imaging stages.

velocity selection, with subrecoil momentum width and uniform in position across the phase

space. We then load the atoms into the same 1D standing wave that we use to form the

interaction potential. We turn on this light on adiabatically, using the same functional form

and time constant that we use to adiabatically deepen the 3D FORL. In the interest of

minimizing the total time of our state preparation sequence, the total time of deepening the

1D lattice is 300 µs instead of 800 µs. As the well is deepened, the atoms localize spatially
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in the bottom of the wells. This localization can only occur at the expense of the spread in

momentum, which can only change in units of 2�kL. Because the initial momentum spread of

the distribution is much smaller than this interval, these discrete momentum steps are visible

as stripes in the momentum in Fig. 4.7. We can gather some idea of the dynamics from

considering the band structure of the optical lattice. The initial atomic distribution in p is

much smaller than the unit cell of our lattice in momentum space, which spans (−�kL, �kL).

(We can see the size of the unit cell intuitively by noting that a first-order Bragg transition

couples p = ±�kL.) The narrow momentum distribution is thus adiabatically loaded into

the lowest energy band of the optical lattice. For deep potentials with many bound states

(like the ones that we use), the lowest band closely approximates the harmonic oscillator

ground state. We then expect that the distribution in the standing wave wells is very close

to the ground state of the harmonic oscillator, which is a minimum-uncertainty Gaussian

wave packet. More technically, this argument only applies to the outline of the wavepacket.

Within this outline, there is additional confinement into the narrow slices that we have

described. The extremely narrow width of these slices in momentum implies that there is a

high degree of uncertainty in position, spread over many wells of the standing wave.

The procedure that we have described thus far has produced a near-minimum un-

certainty wave packet centered at the bottom of the well in position and centered at zero

in momentum. Our next task is to translate this wave packet to other locations in the

phase space. We begin the next stage by rapidly translating the phase of the 1D lattice by

about one quarter of a lattice period. (We will describe the phase control system shortly,

in §4.4.1.) Since the potential is shifted, the free evolution of the atomic distribution lets it

“slide” down the potential towards zero, acquiring momentum as it does so. This process is

well described by a macroscopic analogy: imagine that we place a stone in the bottom of a

smooth bowl. If we suddenly shift the position of the bowl, the stone will slide down towards

the center of the bowl. In the experiment, we can jerk the phase of the light and then watch

the atoms oscillate back and forth in the potential. At the moment when the atoms reach

their maximum velocity, we know that they have returned to the minimum of the potential
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Figure 4.9: Simplified timing diagram for experiments involving state preparation.
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at x = 0. If we turn off the potential at this point, we succeed in translating the initial

wavepacket in momentum. The total boost in momentum that we achieve by this procedure

is determined primarily by the well depth of the lattice during this period. Since we have

already placed the distribution at some nonzero momentum, it is also straightforward to

place the atomic distribution at any position in phase space. In this case, we simply allow

a free drift period to relocate the atomic distribution in position. A slight disadvantage

of this procedure is that the individual momentum slices within the wavepacket move at

different velocities and tend to separate during the drift time. A second complication with

these procedures is that the sinusoidal wells of our standing wave introduce anharmonicity

to the problem. However, simulations of the state preparation procedure suggest that the

distortion introduced into the outline of the final states is not severe. Despite the distor-

tion, the internal “ladder” of momentum states (that we initially selected with the Raman

tagging) is preserved because the interactions with the 1D lattice are coherent dipole force

interactions.

We have now described a procedure for localizing the atomic position in both posi-

tion and momentum, and subsequently centering that distribution at arbitrary locations in

phase space. We have named this procedure “State Preparation by Atomic Sliding Motion,”

or “SPASM” for short. In our data runs, we begin the experiment itself immediately after

the SPASM sequence, usually simply by changing the type of modulation that is applied to

the standing wave.

The SPASM sequence itself is only a means of preparing an initial state in phase

space. In order to be able to apply this method, we must begin with an extremely cold sample

which is in our case generated by the lattice cooling and stimulated Raman velocity selection.

After the state preparation is complete, we create the interaction potential and detect the

final momentum distribution by ballistic expansion as we have described previously. The

overall sequence of these experiments is illustrated in Fig. 4.8. Naturally, the computer-

control sequence for this sequence is much more complicated than it was for the kicked

rotor experiments. A timing diagram for experiments with the state-preparation sequence



is shown in Fig. 4.9.

4.4.1 Optical phase control

In the experiments with the kicked rotor that we have described previously, the phase of the

interaction beam was determined by the position of the retroreflecting mirror. This mirror

was rigidly fixed to the vacuum chamber window flange for stability. In the experiments

utilizing the SPASM sequence and in the squeezing experiments that we will come to later

(Chapter 6), we need to be able to control the phase of the interaction beam. We control

the phase of the light by placing an electro-optic phase modulator between the interaction

chamber and the retroreflecting mirror.

The optical setup for the phase control is shown in Fig. 4.10. We have removed

the retroreflector that was previously attached to the interaction chamber and added a

vibration-isolated optical breadboard platform near the edge of the interaction chamber.

The platform is an irregularly shaped sandwich of two layers of 1/2” aluminum jig plate

around a layer of 1/2” soft Sorbothane, a viscoelastic damping material. The top surface

of the platform is about 2” below the interaction beam axis. The interaction beam crosses

through the chamber before crossing to this platform. On the platform, it is weakly focused

by a 300 mm focal length lens onto a retroreflecting mirror. Because the lens is positioned

so as to focus the light onto the mirror itself, the lens serves to recollimate the beam before

it reenters the interaction chamber. Between the lens and the mirror is a Conoptics, Inc.

model 360-40 lithium tantalate electro-optic phase modulator. The lens serves to reduce

the size of the beam so that it is not clipped while it passes through the EOM, which has

a 2.7 mm (square) clear aperture. The EOM is nearly coaxial with the interaction beam,

however it is tilted off of the beam axis by a couple of degrees so that any reflection off of

the EOM surfaces is not in the direction of our atomic sample.

The phase modulator is driven by a Conoptics model 302 driver, which provides a

bias of ±400 V. We have measured the phase of our standing wave to be shifted by a full

period when the EOM control voltage is shifted by 250 V. Although we can in principle
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Raman beam periscope

RR EOM
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Helmholtz coil form

Interaction
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λ/4

Figure 4.10: Phase control setup for the interaction beam. The interaction beam first
enters the opposite end of the interaction chamber (not shown). The beam (red) then is
focused by a lens through the EOM and is reflected back into the interaction chamber by the
retroreflecting mirror (RR). Both the EOM and lens sit on translation stages (TS). For the
simpler kicked rotor experiments, we clamped the retroreflecting mirror mount to mounting
rods attached directly to the chamber. The EOM and associated optics sit on an irregularly
shaped vibration-isolated platform (shaded) next to the chamber. One of the Helmholtz
coil mounting forms (a vertical field coil) is shown to illustrate how close to the chamber
this platform approaches. The pointed end of the platform is above the corner of the main
optical table. One arm of the stimulated Raman beam path is shown (blue) for reference
here. The beams are nearly overlapped and some of the optics have had to be cut in half to
allow beam clearance. The final quarter-wave plate (λ/4) in the Raman beam path is in a
special mount that allows the other beam to pass very close to the edge of the waveplate.

arrange for phase shifts of over several lattice wells, we have not actually used the EOM

to shift the phase more than a single well. In an earlier conception of the state prepara-

tion sequence, we imagined ratcheting the phase of the lattice instead of placing the atomic



sample at a nonzero velocity in the laboratory frame. In this scheme, we would sweep the

phase uniformly over some period of time and ratchet the phase back to zero at some point

when the (amplitude modulated) interaction potential happened to be zero. Ultimately,

this scheme turned out to be less than ideal because of the response time of the EOM. A

significant problem for common electro-optic materials (for our wavelength) is that they ex-

hibit piezoelectric resonances. These mechanical resonances can be excited by the frequency

components of a sudden shift that we apply to the phase. The original EOM that we tested

in this location was a Conoptics 350-40 modulator, which has a KD*P (deuterated KDP)

crystal. The resonances for this modulator were very severe, and we had significant diffi-

culty changing the phase quickly. The resonances in our lithium tantalate modulator are

less severe, but still present. In order to measure the changes in phase, we can temporarily
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Figure 4.11: Phase step response of the interaction beam EOM. A small Michelson interfer-
ometer was constructed on the EOM platform to measure the phase of the interaction beam
as we shifted the control voltage applied to the modulator. Besides the initial transient,
there are small oscillations in the phase that are visible for as long as 50 µs after the phase
slew begins.
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construct a tiny Michelson interferometer on the platform that supports the EOM. A sam-

ple phase measurement from the interferometer is shown in Fig. 4.11. The majority of the

phase step is completed within 1 µs, however there is also relaxation on a longer time scale

and the phase does not completely stop slewing for about 10 µs. Besides the slewing, we

can see oscillations at the frequency of the piezoelectric resonance, which is near 150 kHz

for our modulator. The maximum amplitude of these oscillations is typically of order 1%

of the total phase shift. Our SPASM sequence usually involves a period of about 6-10 µs of

sliding in the standing wave after we suddenly shift the phase. It is important to note that

in this sequence, atomic motion does occur while the phase is still changing. Furthermore,

there are still minor perturbations to the phase of the standing wave that occur after we

have completed our state preparation sequence. We performed simple tests by extending

the total state preparation time to allow the oscillations to damp out, however, we were not

able to observe any change to the subsequent dynamics. We interpret this to mean that

after the first 6-10 µs, the phase is approximately constant.



Chapter 5

Chaos-assisted tunneling

5.1 Overview

We have described a state-preparation sequence that allows us to place an atomic distribu-

tion at a specific location in phase space. The motivation for these atomic gymnastics is to

enable a study of quantum transport in mixed phase space, which we will present in this

chapter.

One of the most important quantum mechanical phenomena is tunneling, which we

may define loosely as any process through which a particle appears in a region of phase space

where it is not classically allowed. (When considering what is “classically allowed,” note

that we are neglecting the classical wave-mechanical analogies of our quantum systems.) The

most familiar form of tunneling is transmission through an energetic barrier that classical

trajectories cannot pass through. Usually we picture the barrier as a classically inaccessible

region of space where the potential energy is greater than the total energy of the particle.

An energy barrier is not the only way in which to confine classical trajectories.

In some cases, the system dynamics alone can be sufficient to confine trajectories. When

examining the phase space structure of the kicked rotor system, it is obvious that the physics

of even simple (i.e., simply defined) classical systems can exhibit many types of motion. In

some regimes, some or all trajectories are confined to invariant curves (KAM tori). In

classical dynamics, a particle on such a trajectory is confined to stay there for all time.

Perhaps a more useful example occurs in the phase space of the simple pendulum

(Fig. 1.1). Consider two (noninteracting) particles rotating in this potential with equal

174
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energy E > Es, that is, particles with energy above the separatrix. Let the particles have

momenta p1(t) > 0 and p2(t) < 0, so that they are rotating in opposite directions. Suppose

that at time t = 0, the particle positions are x1 = x2 = 0. We now have a set of two particles

that follow mirror-image trajectories that can be viewed as time-reversed versions of each

other. There is no energy barrier in space– in fact, at certain times, the particles occupy

the exact same spatial location. And yet, classical transport between these two invariant

curves is forbidden. The barrier in this system is implicit in the system dynamics. Tunneling

across such a barrier is known as dynamical tunneling [Davis81], and is the focus of our

study in this chapter. Dynamical tunneling is a general effect, and occurs in many systems

where discrete symmetries lead to related but isolated regions of phase space [Chirikov95].

The particular example of dynamical tunneling in a pendulum potential is simply Bragg

scattering (§1.4.4).

A slightly more complex situation occurs when we consider dynamics in a system

with mixed phase space. We have seen that within certain parameter regimes, the kicked

rotor system has large regions of both stable and chaotic motion. In some cases, there

are two symmetry-related stable islands that are separated by a chaotic sea. In this case,

semiclassical quantization can show that there are quantum states localized upon the stable

islands [Tomsovic94].

Let us neglect for a moment the influence of the chaotic region. The system con-

sisting of the two islands is much like the common example of a double-well potential that

is used to illustrate tunneling across an energy barrier. The two stable islands constitute

wells that can each confine classical trajectories. The quantum dynamics also allow a state

to be localized upon the island in the corresponding classical phase space. The symmetry

of the system dictates that the eigenstates of the system are not localized in one well or the

other, but are symmetric and antisymmetric combinations of the wavefunctions localized

in one of the two islands. The antisymmetric state has a slightly higher energy than the

symmetric state (by ∆E), with the result that these eigenstates dephase and rephase in

time. A quantum state that is localized on one of the two islands is then a linear com-



bination of the two eigenstates. As the eigenstates evolve with respect to each other, the

state that began on one island oscillates to the opposite island and back. The tunneling

frequency is ωT = ∆E/�. This is the essential mechanism for tunneling between these two

states, whether tunneling across an energetic or dynamical barrier. There are two poten-

tial signatures of this process. First, the (quasi)energy spectrum of the system exhibits a

closely-spaced pair (a doublet) of values because the symmetric and antisymmetric states

are not degenerate. This is an indirect method of observing tunneling; it is more satisfying

if we can directly observe quantum transport by measuring the relevant reversal in position

or momentum.

In general, we cannot neglect the influence of chaotic phase space between regions of

stability. The complex dynamics in this region lead to possibly irregular quantum states that

are localized in this region. These states can overlap with the states that are centered upon

the islands of stability and complicate the tunneling process. We can use a semiclassical

picture to gain some intuition about the behavior in this case. If the tunneling splitting

∆E is large, it might be easier to tunnel with a multi-step process. We can imagine an

atom that is in one of the stable islands can easily tunnel over a small barrier into the

chaotic region. Phase space exploration in the chaotic region proceeds rapidly, and visiting

the neighborhood of the opposite island may occur rapidly. Once near the other island, the

atom can then easily tunnel out of the chaotic region. The behavior of this system can also

be described directly in terms of the interaction of a “chaotic” quantum state (one that is

localized in the chaotic region) with the two states that occur in the simple tunneling case

[Bohigas93; Tomsovic94]. Often there is more than one chaotic state, and in the case that

none of them is dominant, the influence of additional states must be considered. Tunneling

in this system can occur much more rapidly than would be expected without the chaotic

region [Lin90]. This enhancement of the tunneling rate has come to be known as chaos-

assisted tunneling (CAT) [Bohigas93]. Under small changes in the system parameters, the

exact behavior in the chaotic regions may change dramatically. In general, the tunneling

splitting (and hence the tunneling rate) tends to fluctuate rapidly as a function of system
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parameters [Tomsovic94; Mouchet01].

There have not been many experiments that directly address chaos-assisted tun-

neling. In the introduction, we noted that a microwave billiards experiment (which is an

electromagnetic analogy to a corresponding quantum system) had been used to observe

signatures of CAT [Dembowski00]. This experiment observed spectroscopic features (split-

tings) that show increased tunneling rates in phase space areas that border chaotic regions.

Experiments to observe CAT in the context of atom optics have been recently proposed

and discussed [Mouchet01; Hug01]. An atom optics experiment similar to ours has recently

(i.e., simultaneously with our results) been used to observe dynamical tunneling between

stable islands in phase space [Hensinger01]. Note however that dynamical tunneling is not

necessarily chaos-assisted, and we must be careful to separate these two concepts. Bragg

scattering off of an optical-lattice “grating” is another example of dynamical tunneling that

has been observed in atom optics experiments [Martin88; Giltner95; Kozuma99]. Most re-

cently, our experiments have provided clear evidence of chaos-assisted tunneling [Steck01c],

which we will describe in this chapter.

We will next introduce the model that we use in our experiment to study chaos-

assisted tunneling. The experiment itself requires the state preparation sequence that we

have already described, but is otherwise straightforward. The signature of tunneling in our

experiment is a reversal of momentum– we begin with atoms at some positive momentum

in the lab frame and watch as they flip direction. We are interested in coherent tunneling

oscillations between the two islands, and the signature of this behavior is very clear in the

experiment. We have performed several tests to verify that tunneling only occurs if certain

symmetries are met, as we will see. In addition to these experiments, we have studied the

dependence of the tunneling rate on system parameters. Finally, amplitude noise applied

to this system can destroy the fragile quantum coherences that allow the tunneling signal.



5.2 Experimental Considerations

5.2.1 Amplitude-modulated pendulum system

The kicked rotor is one of many general models that potentially exhibit chaos-assisted trans-

port. However, it is not a simple system– it is often characterized by interleaved rows of

island chains and chaotic regions. It is potentially difficult to identify a set of isolated,

symmetry-related islands that lend themselves to the study of CAT. In our experiment, we

have studied a slightly different model, the amplitude-modulated pendulum where the phase

space is simpler.

These experiments are performed with the same 1D standing wave that we use

to form the interaction potential in the kicked-rotor experiments. The chief difference is

the form of the amplitude modulation. Rather than turning on the beam in brief pulses,

we modulate the intensity of the beam sinusoidally as I(t) = I0 cos2(πt/T ), where T is the

period of the modulation. When we modulate the light, the quantum pendulum Hamiltonian

(Eq. 1.46) can be written in physical units as

H(x, p) =
p2

2m
− 2V0 cos2 (πt/T ) cos(2kLx). (5.1)

The quantities here are defined as earlier, and we have shifted the zero of potential energy

and the location of x = 0. The time-averaged limit of this system is simply the unmodulated

pendulum. This is a time-periodic system where the basis states are Floquet states, as in

the case of the kicked rotor.

In analogy with §1.4.3 we can simplify the analysis of the system by writing down

the Hamiltonian in an appropriate set of scaled units. Let us now define the scaled units

for this system as

x′ = 2kLx,

t′ = t/T,

p′ = pk̄/2�kL,

α = (k̄/�)TV0,

H′ = (k̄/�)TH,

(5.2)
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where the scaled Planck constant is again identified as k̄ = 8ωrT . We now rewrite Eq. 5.1

in terms of the scaled units, and drop the primes to find the dimensionless Hamiltonian

H(x, p, t) =
p2

2
− 2α cos2 (πt) cosx. (5.3)

The scaled well depth α acts much like the stochasticity parameter in the kicked-rotor system

and specifies the classical dynamics completely.

Surfaces of section for this system are shown with several values of α in Fig. 5.1.

This system has three primary resonances, which we may see by rewriting the Hamiltonian

as

H =
p2

2
− α cosx − α

2
(cos(x + 2πt) + cos(x − 2πt)). (5.4)

The potential is then equivalent to the sum of three superimposed pendulum potentials,

one at zero velocity, and two moving in opposite directions with velocity ±2π. For low (but

nonzero) values of α, the system has three clear resonances that are centered at x = 0,

p = 0,±2π. As we turn up the strength of the potential, the regions where the resonances

overlap break down into layers of chaos. The stable islands centered at the locations of the

resonances survive over a wide range of α.

The two islands that are centered at nonzero momentum comprise the symmetry-

related pair that we use to study tunneling. In the experiment, we place atoms in one of the

two islands and observe tunneling to the opposite one. These islands are (for some values

of α) connected by a wide chaotic region, and so we expect chaos-assisted tunneling to play

a role in certain parameter regimes. The island at p = 0 is not coupled by symmetry to the

outer islands, and does not play a substantial role in the tunneling process. For the values

of α where most of our experiments are conducted (near α = 10) the center island is barely

visible.

5.2.2 Symmetry requirements

As we have stressed, tunneling is facilitated by symmetry. The most important symmetry

is with respect to reflection across p = 0. This is equivalent to a time-reversal symmetry of



α = 0.4 α = 4.0

α = 10.4 α = 13.6

Figure 5.1: Surfaces of section for the driven pendulum with various α. The dynamics of
this system are given by Eq. 5.3. The values of α are 0.4 (upper left), 4.0 (upper right), 10.4
(lower left) and 13.6 (lower right). The system exhibits three primary resonances, one at
p = 0, and two centered at opposite momentum values. As the value of α is increased, the
system becomes more chaotic. The resonance at p = 0 is not visible at the higher values of α
shown here, but does become visible again if it is increased further. Most of our experiments
were performed near α = 10, where two clear islands are visible. These surfaces of section
show the phase space as sampled every two modulation periods. (Surfaces of section by D.
Steck.)

the system [Casati94]. Even minor deviations from this symmetry are expected to inhibit

tunneling [Chirikov95; Tomsovic98]. A basic requirement to observe CAT is that the atoms

are actually loaded into one of the relevant islands. Besides giving us a well-defined initial
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condition, this ensures that the mirror-image section of phase space has the same regular

structure. A secondary requirement for symmetry is imposed by the quantum nature of the

system. As we seen in §1.4.1, atoms in our experiment only exchange momentum with the

interaction beam in units of 2�kL (k̄ in scaled units). A consequence of this is that atoms

are only coupled to their symmetric reflections across p = 0 if their momentum is an integer

multiple of �kL (k̄/2). Suppose that an atom has momentum p = 4k̄. The mirror-image

momentum state has momentum p = −4k̄, and these two states are coupled by an integer

number (8) of two-photon hops. If the initial momentum were instead p = 4k̄ + ε, then the

symmetric reflection is at p = −4k̄− ε. The momentum difference between these two states

is 8k̄ + 2ε, so the two states are not coupled by the standing wave unless ε is an integer

multiple of k̄/2. In order to have true symmetry in this system, we must therefore meet the

very stringent requirement of populating only “integer” momentum states. This is the same

symmetry requirement that must be met for Bragg scattering (§1.4.4). In order to observe

chaos-assisted tunneling, we must also load the atoms into the proper island in phase space.

This means that we must be careful to pick a parameter regime where the classical island

includes a momentum value that is on the proper momentum ladder. These requirements of

placing atoms with arbitrarily narrow momentum at a very specific location in phase space

necessitate the use of our entire state preparation sequence.

5.2.3 CAT Experiments

The experimental setup and sequence for these experiments is that which we have described

in great detail while describing the state preparation sequence (§4.4). Most of our experi-

ments have been conducted with a well depth chosen such that α is near 10. As we have

seen in Fig. 5.1, this is a value where the phase space has two clear islands. For most of the

experiments here, the modulation period T was chosen to be 20 µs, which yields a scaled

Plank constant k̄ = 2.08. For a few experiments, we used a 10 µs modulation period so

that k̄ = 1.04. We used our state preparation sequence with an 800 µs Raman tagging

pulse to prepare a compact initial condition and center it upon the location of the island.

The momentum ladder defined by the Raman pulse must be carefully chosen so that the



atoms have the proper reflection symmetry. In practice, we pick the momentum ladder by

loading atoms into the island and scanning the tagging frequency (which defines the mo-

mentum ladder) over a small range until we see atoms tunneling. An illustration of our

initial conditions is shown in Fig. 5.2.

Let us review some of the parameters that were used in these experiments and in

their state-preparation stages. For the experiments with k̄ = 2.08, the island location for

α = 10.5 was slightly above 4 · 2�kL. In order to place atoms near the island, we used the

SPASM sequence with a 6 µs “sliding” period to accelerate atoms. The well depth for the

Figure 5.2: The phase space for a typical CAT experiment, as given by Eq. 5.3 with α = 10.5.
Also shown is an illustration of our initial conditions (for k̄ = 2.08), visible here as narrow
red stripes near the upper island. The “striped” structure of the initial condition is much
like the schematic representation in Fig. 4.7. (Figure: D. Steck)
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sliding period was picked so that the final momentum distribution was peaked at 4.1 · 2�kL,

with a width of σp/2�kL = 1.1. In a second data set at k̄ = 2.08, we swept the value of α

over a wide range and introduced amplitude noise into the system. For these cases, we used

a deeper well depth for the state preparation and accelerated the distribution to 4.2 · 2�kL

with a 4.5 µs sliding period. The final width of the distribution envelope was σp/2�kL = 1.7

in this case. For the experiments with k̄ = 1.04, we used a very deep lattice to accelerate

the atoms to 8.2 · 2�kL, with a width σp/2�kL = 2.1. For this value of k̄, the islands appear

near 8 · 2�kL.

For most of the data that we present, the atomic distribution was sampled every

two modulation periods, which corresponds to the sampling for the phase space portraits

in Fig. 5.1. For a few of the cases (shown in §5.3.5), we sampled at a much faster rate to

observe the dynamics more closely.

In each of the experiments we measured the momentum distribution after some

interaction time. In many cases, we see a substantial number of atoms tunnel to the mo-

mentum opposite that which they began with. In the data shown here, we usually reduce

the momentum distribution to the single parameter 〈p〉, the average momentum value. Al-

though our initial momentum for the experiments is often centered near (say) 4.1 · 2�kL, the

value of 〈p〉 may appear substantially lower. Much as in the determination of the absolute

ensemble energy of an atomic distribution (See §3.6.2), it is not practical to compensate for

most of the systematic factors that affect this value. It is still a good measure of the degree

of tunneling, however, so long as we pay attention to oscillations in the value of 〈p〉, as only

tunneling processes will affect 〈p〉 in an oscillatory manner.

Finally, we have noted that in the state preparation sequence, we end up tagging

a very small number of the initial atoms. Nearly all of the data presented in this chapter

have been averaged over many individual experiments to improve the signal to noise ratio.



Figure 5.3: Observation of chaos-assisted tunneling oscillations. Momentum distributions
are measured at 40 µs intervals (twice the modulation period) for atoms that are initially
loaded into the island near p = 4 · 2�kL. A substantial fraction of the atoms coherently
tunnel to and from the island at opposite momentum. This data corresponds to the ini-
tial conditions and phase space shown in Fig. 5.2. Each slice of this data represents 20
measurements that were averaged together to improve the signal-to-noise ratio.
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Figure 5.4: Individual momentum distributions corresponding to the first four highlighted
distributions from Fig. 5.3. These distributions are averaged over 100 iterations of the
experiment to increase the signal-to-noise ratio.
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Figure 5.5: Observation of CAT oscillations with k̄ = 1.04 and α = 11.2. The modulation
period for this data set is 10 µs (to realize k̄ = 1.04), so the data are sampled every 20 µs.
These data are averaged over 10 iterations of the experiment.

5.3 Data and Results

5.3.1 Observation of tunneling

The first chaos-assisted tunneling data from our experiments are shown in Fig. 5.3. This

data was taken with α = 10 ± 5%, k̄ = 2.08, and corresponds to the initial conditions and

phase space of Fig. 5.2. In this data, about half of the initial distribution is observed to

tunnel to the opposite momentum. Four oscillations are observed in this data. Initially, we

believed that the damping could be an effect of decoherence in the system. Some of the later

data that we have taken shows that we can observe tunneling for a much longer time than

is visible here– it is most likely that the loss in contrast here is the result of beating between

two tunneling frequencies. Several individual momentum distributions that correspond to

this data are shown in Fig. 5.4. Again, about half of the atoms apparently tunnel across

p = 0. We believe that the reason that more atoms do not tunnel is the residual width of

our momentum distribution.

We have not at this point proven that these oscillations are in fact chaos-assisted



tunneling oscillations. Even the simple reversal of momentum that we observe could poten-

tially be explained by other mechanisms, especially considering that we are not observing all

of the motion, but rather a stroboscopically sampled portion of it. Classical dynamics, such

as motion in the pendulum inside the separatrix, can periodically reverse the momentum

of an atomic sample. If some of the initial condition were just outside the separatrix, it

would remain at positive momentum. While this is a plausible scenario, there are many

signs that this is not the case in our experiment. The amplitude-modulated potential that

our experiment employs is well defined, as is the initial condition. Shortly, we will verify the

structure of the classical phase space by showing that tunneling only occurs when the atoms

are placed directly on the island. We can demonstrate the quantum nature of the system

and prove that this is in fact dynamical tunneling, by showing that the system is highly

sensitive to the exact momentum state that is chosen. Showing that we have chaos-assisted

tunneling is not as simple. There are several key observations, each of which is consistent

only with chaos-assisted processes. Most importantly, the tunneling that we observe occurs

on a timescale very fast compared to that which would be expected in a fully integrable

system. There is also supporting evidence in the tunneling rate as a function of system

parameters, and in the details of the motion from one island to the other.

An example of chaos-assisted tunneling in a different regime is shown in Fig. 5.5.

Here, we observe tunneling with k̄ = 1.04 and α = 11.2. As we have stated, the initial

condition for this data is near p = 8 ·2�kL, and so the tunneling is a 32-photon transition. A

similar fraction of the atoms tunnel in this case, which is presumably limited by the residual

width of the momentum distribution. In practice, it is quite difficult for us to change the

value of k̄ because the new momentum scale requires that we recalibrate the full SPASM

sequence.

5.3.2 Sensitivity to island overlap

When we described the state preparation sequence, we mentioned that we can translate our

initial wavepacket to locations other than x = 0 simply by allowing a free drift period before
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0.0 µs drift 3.8 µs drift

7.6 µs drift 15.1 µs drift

Figure 5.6: Initial conditions at other locations in phase space. Schematic representation
of our initial conditions in phase space for experiments in which we displace the initial
conditions spatially by allowing free drift before the experiment begins. The drift times
that are shown here correspond to the data shown in Fig. 5.7. An ellipse drawn around the
outline of the distribution is meant to guide the eye. (Figure: D. Steck)

we turn on the interaction potential. This works because the initial condition that we have

generated has a nonzero net velocity. The results of the free-drift procedure are illustrated

in Fig. 5.6, where we see the initial condition at other locations in phase space. In the

cases shown here, we allowed the distribution to drift across 1/4 of a lattice period, 1/2 of

a lattice period, and over a full lattice period. The time for the peak of the distribution to

drift across an entire lattice period is about 15 µs.
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Figure 5.7: Sensitivity of tunneling signal to the initial spatial location of the atomic dis-
tribution. The average momentum 〈p〉 is measured as a function of time for α = 10.5 and
k̄ = 2.08 for several displacements in x. These displacements are controlled by the drift time
after the state preparation sequence and are illustrated in Fig. 5.6. The four cases shown
here are without drift (filled circles), 3.8 µs drift time (squares), 7.6 µs drift time (triangles),
and 15.1 µs drift time (open circles). The case without drift corresponds to the data shown
in Fig. 5.3. These data represent averages over 20 individual experiments.

The data for these different drift times is shown in Fig. 5.7. If we displace the initial

condition by 1/4 of a lattice period, the tunneling is significantly inhibited, but still visible.

The slices of the wavepacket that we have drawn show the 50% contours of the atomic

distribution– in the 1/4 period drift case, there is still significant overlap with the island.

If we allow the atoms to drift across 1/2 of the lattice period, they are as far away from

the stable island as they can get. The average momentum 〈p〉 in this case does not reveal

any tunneling. The initial condition appears to be in a regime where the motion is regular,

much like the motion above the separatrix in the unmodulated pendulum potential. It is

likely that tunneling in this case could be observed, but it probably would not be a form of

chaos-assisted tunneling. For a 15.1 µs drift time, the atoms drift across a full lattice period

and are again centered upon the island of stability. In this case we again observe tunneling

oscillations, although their magnitude is decreased, presumably because of the distortion of
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the wave packet.

The purpose of these tests is partially to verify the classical dynamics of the system.

If there were some other transport mechanism that would bring atoms to p < 0, we would

expect to see it whether or not the initial distribution were centered on the island. Beyond

this simplistic test, the chaos-assisted tunneling mechanism that we have described requires

projecting our initial distribution into a state that is localized upon the island of stability.

The fact that tunneling is suppressed when we are not initially on the stable island confirms

that the tunneling process that we observe is between the islands.

5.3.3 Sensitivity to velocity class

As we have discussed, the requirements for true symmetry in our system are very strin-

gent. In order for atoms to be coupled to their symmetric reflections across p = 0, they

must essentially comprise a plane wave with a specific, half-integer momentum. Our initial

conditions for experiments with k̄ = 2.08 are peaked near p = 4 · 2�kL, so that the most
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Figure 5.8: Sensitivity of CAT to changes in momentum ladder, for α = 10.5 and k̄ = 2.08.
In these cases, we selected velocity groups that were centered at p = 0 (circles), p = 0.05·2�kL

(squares), and p = 0.12 · 2�kL (triangles). Even modest changes in this initial velocity class
(compared to �kL) are sufficient to suppress tunneling.



populated integer momentum state is at 4 · 2�kL. In the experiment we have been able to

observe tunneling if the initial momentum is instead 3 or 3.5 double recoils. This is a coarse

statement about where on the momentum ladder we are operating, rather than a statement

about how the momentum ladder is defined. In this sense, coarse (half-integer) displace-

ments in momentum have the effect of moving the initial condition off of the island. As

with the displacements in position, we expect that the tunneling signal will be attenuated

if the initial condition does not overlap with the island.

Rather than the coarse position of our distribution, we are now concerned with

the exact position and residual width of the momentum slices within the distribution. The

momentum class that is tagged depends upon the detuning between the relevant frequency
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Figure 5.9: Sensitivity of CAT to width of momentum slices in the distribution, for α = 10.5
and k̄ = 2.08. Our most common momentum slice was derived from an 800 µs stimulated
Raman tagging pulse (circles), which produces a momentum width (HWHM) of 0.03 · 2�kL.
A slightly wider initial momentum width is generated by a 400 µs pulse, yielding a HWHM
of 0.06 · 2�kL (squares). A 200 µs pulse selects an initial width (HWHM) of 0.12 · 2�kL

(triangles). Also shown is a case where we did not apply any tagging pulse at all, but
merely employed the 3D lattice cooling (heavy solid line). In this case, the distribution has
a HWHM 0.8 · 2�kL. These data are averaged over 20 (800 µs tag), 10 (400 µs tag), and 5
(200 µs tag) iterations for the tagged cases. The lattice-cooled curve is the data for a single
sweep of the experiment and is not averaged.
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components of the stimulated Raman beams. Usually, we select this detuning such that

the tagged atoms are at p = 0, so that we may see a large tunneling signal. This initial

momentum is the value immediately after tagging, which defines the momentum ladder for

the initial condition for the experiment. If we vary this detuning, we can select a momentum

ladder that is no longer centered at p = 0. This effectively breaks the symmetry of the

system, and we expect it to inhibit tunneling.

We have experimentally studied the effects of choosing different momentum ladders,

and the data are shown in Fig. 5.8. A shift in the location of the momentum ladder by 0.12 ·

2�kL is enough to nearly suppress the tunneling altogether. This is a very small displacement

when compared with the 2�kL spacing of the stripes in the momentum distribution, or as

compared to the average initial momentum. For a displacement of 0.05 · 2�kL, the tunneling

Figure 5.10: CAT experiment without Raman velocity selection. We repeated the experi-
ment that was shown in Fig. 5.3, except that we used lattice cooling alone without a Raman
velocity selection stage. Only a small fraction of the distribution appears near the opposite
island, and coherent oscillations (the signature of tunneling in this system) are not observed.



signal is only slightly attenuated. Not coincidentally, this displacement is similar to the

initial width of the distribution. This data was taken with 800 µs velocity selection pulses

so that the tagged atoms have a momentum width (HWHM) of 0.03 · 2�kL.

Our next task is to examine the sensitivity to the remaining momentum width of

our momentum slices. It is not practical in our experiments to perform tagging pulses

that are much longer than the 800 µs pulses that we use. This places a limit upon how

narrow our momentum slices can be. While we cannot further decrease the width of our

momentum slices, we can easily increase the width. Shorter Raman tagging pulses result in

wider momentum slices. The result of this is that proportionately fewer of the atoms in the

distribution are on the correct momentum ladder to exhibit tunneling. The contrast of the

tunneling signal is then expected to decrease as a wider velocity class is selected. Data from

our experiment showing this dependence appear in Fig. 5.9. Also shown in this figure is the

signal that we get if we simply use 3D lattice cooling, without a stimulated Raman tag. The

initial distribution in this case is still localized in the correct region of phase space, but the

momentum distribution is no longer composed of stripes, and the outline of the wavepacket

is also enlarged. In this case, the atoms that tunnel represent a very small fraction of the

overall sample, as we can tell from the momentum distributions shown in Fig. 5.10. This is

sufficient to show that chaos-assisted tunneling in this system cannot be observed without

a subrecoil initial distribution. The residual width of our initial distribution turns out to be

enough to explain the incomplete tunneling that we see in our experiment. More complete

tunneling could be achieved with a colder yet initial condition such as an atomic Bose-

Einstein condensate (BEC). A sodium BEC was used to observe more complete tunneling

in another group’s dynamical tunneling experiments [Hensinger01].

5.3.4 Comparison with pendulum

We have asserted that tunneling in our system occurs more rapidly than would be expected

from a simple two-state tunneling process. If we simply time-average our potential we

instead realize a simple pendulum, which is our prototypical integrable system. Our initial
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conditions in the pendulum phase space are illustrated in Fig. 5.11, for an average well

depth corresponding to that of modulated experiments with α = 10.5 and k̄ = 2.08. Our

initial condition is (almost entirely) above the separatrix and therefore constrained to remain

above p = 0 by the classical dynamics. The dominant transport mechanism to p < 0 in

this system is then high order Bragg scattering. The symmetry requirements for Bragg

scattering are the same as those for chaos-assisted tunneling, so we know that we have

met the general requirements for Bragg scattering to occur. Bragg scattering is a form of

Figure 5.11: Initial conditions in the corresponding pendulum phase space. This figure
depicts the pendulum phase space that is realized by averaging (over time) the amplitude-
modulated pendulum potential that is represented in Fig. 5.2. In the experiment that this
represents, we begin with the same initial conditions that we use to observe CAT, which are
shown here. The momentum axis for this particular phase space is calibrated in the scaled
units of the quantum pendulum.



dynamical tunneling that can occur in the absence of any chaotic region of phase space, and

provides a basis for studying the effects of the chaotic region of phase space.

When we place atoms in the corresponding static pendulum potential, we do not

observe any tunneling. The data from the experiment are shown in Fig. 5.12, where motion in

the modulated and unmodulated pendulum potentials are compared. Our initial conditions

are near 4 · 2�kL, so the relevant tunneling process in the static pendulum case is 8th order

Bragg scattering. For our parameters, the expected Bragg period is roughly 1 s, and so we

do expect to see this process over the timescale of our experiments. The typical period of

our CAT oscillations in this regime (where k̄ = 2.08) is 400 µs, several orders of magnitude

faster than the Bragg process. We have also seen in Fig. 5.5 that we can observe oscillations

when k̄ = 1.04. In this case, our initial momentum state is near p = 8 · 2�kL, so the

tunneling is occurring across the 32-photon gap of p = ±8 · 2�kL. This tunneling occurs

in our experiments with a period of about 200 µs. We did not explicitly verify that the

unmodulated system does not display tunneling, but the corresponding 16th order Bragg

0

1

2

3

0 400 800 1200 1600

time (µs)

p 
/2

h—k
L

〈 
 〉

Figure 5.12: Comparison of chaos-assisted tunneling oscillations (circles) to motion in the
corresponding quantum pendulum potential (squares). The CAT experiment was conducted
with α = 10.5 and k̄ = 2.08. In the unmodulated pendulum case, we used the time-averaged
intensity of this potential. These data are averaged over 20 iterations per point.
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scattering is expected to have a period of about 20 years.

It is slightly unfair to compare our results directly with Bragg scattering from

an unmodulated pendulum potential, because we are neglecting the possibility that the

modulation enhances the probability of direct tunneling between the two islands of stability.

This is as opposed to tunneling enhanced by interaction with additional (chaotic) states.

The Bragg system is much like a driven two-level atomic system. In such a system, the

time dependence of the driving field can enhance the transition probability [Allen87]. The

enhancement factor for the k̄ = 2.08 case is about 50, and for k̄ = 1.04 it is about 9000

[Steck01b]. These enhancement factors are still far below what would be required to explain

our experimental results, and thus provide supporting evidence for chaos-assisted tunneling.

5.3.5 High temporal resolution data

The data that we have presented thus far have been sampled once after every two modulation

periods. This sampling is convenient for many reasons, most particularly because the islands

in phase space are stationary when sampled at this period. Furthermore, stroboscopic

sampling allows us to save a great deal of time in the experiment when we observe long-

time dynamics. The continuous dynamics of the system are also interesting, and can be

studied by sampling the data at much shorter intervals. As we will see, the dynamics on

shorter time scales can reveal behavior that further indicates the presence of chaos-assisted

tunneling mechanisms.

When we plot (stroboscopically) the phase space of our amplitude modulated pen-

dulum at phases of the modulation other than zero, we can see what happens to the islands

over the course of a single modulation period. Phase space portraits sampled at other phases

of the modulation are shown in Fig. 5.13, for our typical case of α = 10.5. These phase

space portraits are technically Poincaré surfaces of section, which are two-dimensional slices

of a three-dimensional phase space. In the sections through the phase space at other times,

we see that the classical islands rotate through the phase space, moving out in momentum

as they avoid the remnants of the (no longer visible) central island. We have previously
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Figure 5.13: Classical space portraits at different phases of the modulation. These surfaces of
section are sampled stroboscopically with the phase offsets indicated here for the amplitude-
modulated pendulum with α = 10.5. The islands move towards the momentum axis, but
do not cross it. The continuous behavior of classical particles trapped in the upper island
is shown in Fig. 5.14.

considered only the sampling at zero phase offset, where the islands are at their maximum

distance from the momentum axis. When we sample the phase halfway through the mod-

ulation period, the islands have moved closer to the momentum axis (which they do not

cross).

As a minor diversion, note that the surface of section with a sampling phase offset

of T/2 is the same as if we had modulated the system as sin2(t), without a detection phase

offset. Along the lines of the tests in §5.3.2, we verified experimentally that we can observe
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Figure 5.14: Motion of the classical island in momentum space. In this classical simulation,
an ensemble of particles was loaded into the island of stability that has positive momentum.
The motion of these particles is traced as the sampling phase is changed. The momentum
of the particles trapped in the island changes to reflect the island location. Note that these
trajectories vary in momentum, but are confined to positive momentum. For this simulation,
α = 10.5, and the motion of the island corresponds to the phase space portraits shown in
Fig. 5.13.

CAT when the amplitude is modulated as sin2(t). In this case, the islands appear centered

at x = ±π, at a slightly lower momentum than for the cos2(t) case. We loaded the atoms

into this island by beginning at a lower initial momentum (near p = 3 · 2�kL), and allowed

a free drift period so that they drifted halfway across the phase space to be centered on the

islands. The tunneling oscillations for this system were nearly as clean as in our standard

cos2(t) experiments.

When we load atoms into an island in this system, it is important to realize that the

position of this island does vary in time. This is not an arbitrary artifact of the sampling

time, but rather is an effect of the system dynamics. In order to see this directly, we can
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Figure 5.15: High temporal resolution tunneling, k̄ = 2.08, α = 7.7. This data set shows
the momentum distribution in our experiment over the time scale of the first chaos-assisted
tunneling oscillation. The momentum distributions are sampled every 2 µs, which is ten
times per modulation period. The classical motion of the islands is visible as an oscillation
that repeats after each modulation period. These distributions represent averages over 10
individual experiments.

monitor the phase-space location of particles in the island as the sampling phase is changed.

In Fig. 5.14 we show the momentum of particles trapped in the island as the sampling

phase is changed, corresponding to momentum changes on timescales below that of the

modulation.

It is also possible to directly observe these oscillations in our experiment. In

Fig. 5.15, Fig. 5.16, and Fig. 5.17, we present measurements of the atomic momentum

distribution where the distribution is sampled at a rate of 10 times per modulation period.

These data are collected over a total time representing one full tunneling period, rather

than over many tunneling oscillations. The data in these figures show motion at several

time scales. First, there is the timescale of the tunneling, of which we can see one complete

oscillation during each scan which is 20 modulation periods long. The motion of the classical
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Figure 5.16: High temporal resolution tunneling, k̄ = 2.08, α = 11.2. This data set shows
the momentum distribution in our experiment over the time scale of the first chaos-assisted
tunneling oscillation. The momentum distributions are sampled every 2 µs, which is ten
times per modulation period. The classical motion of the islands is visible as an oscillation
that repeats after each modulation period. These distributions represent averages over 10
individual experiments.

islands is cyclic with the same period of the modulation. This motion is most clearly visible

in the first couple of modulation periods, before a significant amount of tunneling occurs.

After some tunneling has occurred and an appreciable population is visible in the island at

negative momentum, it is possible to see these atoms oscillate in the opposite islands.

A secondary feature that we can see in this data is the momentary appearance of

atomic population in the wide region between the two islands. Atoms appear to tunnel to

the opposite island gradually, passing through the chaotic region but not building up there.

This sort of behavior is an independent signature of chaos-assisted tunneling, as it directly

suggests that the tunneling is made possible by the interaction with states localized in the

chaotic region [Tomsovic94].



� ���
���

��

���	 ��
�

�
��
�
��
�

Figure 5.17: High temporal resolution tunneling, k̄ = 1.04, α = 10.5. This data set shows
the momentum distribution in our experiment over the time scale of the first chaos-assisted
tunneling oscillation. The momentum distributions are sampled every 1 µs, which is ten
times per modulation period. The classical motion of the islands is visible as an oscillation
that repeats after each modulation period. These distributions represent averages over 10
individual experiments. Note that the signal to noise ratio for this data is much lower than
for the data at k̄ = 2.08, because we are imaging a much larger spatial region to measure
the wider momentum distribution. The coarse horizontal stripes visible on this data are an
artifact of the measurement system, usually hidden by larger signal levels.

5.3.6 Sensitivity to well depth

We have already seen several signatures in our experiment that indicate the presence of

chaos-assisted tunneling. One additional signature that we expect is a sensitivity to the

parameters of the system. The parameter that we can easily sweep is the value of α, which

is controlled by the laser intensity during the interaction phase of the experiment. (We

can also change the value of k̄, but it is not practical to sweep this parameter.) In direct

(two-state) tunneling between the islands, we would expect the tunneling rate to increase

as a function of α. However, in chaos-assisted tunneling there is no universal parameter

dependence.



201

�
��� ����

��		

	


�
�


��
��

Figure 5.18: CAT sensitivity to α, k̄ = 2.08. The value of 〈p〉 is plotted as a function of time
for a range of α values that includes the region where we see strong tunneling oscillations.
The average momentum 〈p〉 is indicated by color, where lighter colors correspond to higher
values of 〈p〉. Each point in this data set is an average over 5 individual experiments.

We have measured the average momentum 〈p〉 as a function of time for a wide range

of α for k̄ = 2.08, as shown in Fig. 5.18. A tunneling signal is visible (as an oscillation in

〈p〉) only within the range α ≈ (7 − 14). The classical phase space portraits in Fig. 5.1 can

explain part of this range. At the upper end of this range, the outer islands in phase space

destabilize and tunneling is inhibited. At the lower end of the range, there is not such an

obvious change in the classical dynamics. Although the central island does become larger
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Figure 5.19: CAT oscillations with α = 8.0, k̄ = 2.08. This data is one slice from Fig. 5.18.
In this data set we can see coherent oscillation for the entire timescale of the experiment.
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Figure 5.20: CAT oscillations with α = 9.7, k̄ = 2.08. This data is one slice from Fig. 5.18.
At this value of α, there are two tunneling frequencies that beat against each other, pro-
ducing the structure that we see here.

as α is decreased, it does not divide the phase space until α is much lower. A possibility

is that the tunneling rate abruptly becomes much lower than we are able to observe in the
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Figure 5.21: Tunneling rate as a function of α, k̄ = 2.08. These tunneling periods were
numerically extracted from the data shown in Fig. 5.18. For α in the range 8.9 to 10.3, the
tunneling rate is fitted to two independent frequencies. The points of zero frequency are
points where the fitting procedure fails when there is not a clear oscillation frequency.

experiment. It is apparent that at least one of the conditions that enable chaos-assisted

tunneling is abruptly broken at some value of α.

There are several other features to note in the data shown in Fig. 5.18. First, notice

that at certain values of α, the oscillations remain coherent for at least the 3.6 ms length of

the experiment. The data for of these cases (α = 8.0) is shown for clarity in Fig. 5.19. At

some other values of α, there is more than one frequency involved in the tunneling process.

We can see this directly in the 〈p〉 curve for α = 9.7, presented in Fig. 5.20. In this data,

we can see two tunneling frequencies beating against each other. The tunneling rates for

the entire data set are shown in Fig. 5.21, where it is apparent that the second tunneling

frequency is only visible in a much smaller range of α. The main oscillation frequency that

is visible in this plot exhibits a decreasing trend as α is increased, which is clear evidence

that the tunneling mechanism is not direct tunneling. Within the range of tunneling, we do

not see any rapid changes in the tunneling rate as a function of α. If there were very rapid

changes, it is likely that we would not see them because of systematic effects that cause



minor averaging over the value of α. These effects are analogous to those that we discussed

in the context of the kicked rotor that lead to averaging over the stochasticity parameter

K.

For k̄ = 1.04, tunneling occurs over a more narrow range of α, as we see in Fig. 5.22.

The tunneling rates for this data set are presented in Fig. 5.23. From these plots, there is

no significant overall trend in the tunneling rate. There may be some significant changes in
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Figure 5.22: CAT sensitivity to α, k̄ = 1.04. The value of 〈p〉 is plotted as a function of time
for a range of α values that includes the region where we see strong tunneling oscillations.
The average momentum 〈p〉 is indicated by color, where lighter colors correspond to higher
values of 〈p〉. Each point in this data set is an average over 10 individual experiments.
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the tunneling rate at the edges of the tunneling range, but our experiment does not have

enough resolution to resolve these fluctuations. It is worth noting that the step size in the

sweeps of α was chosen to be close to that of the stability of α over a data run, which is

about ±1%. A more detailed study of these dynamics might then be facilitated by a more

stable laser system.
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Figure 5.23: Tunneling rate as a function of α, k̄ = 1.04. These tunneling periods were
numerically extracted from the data shown in Fig. 5.18. The points of zero frequency are
points where the fitting procedure fails when there is not a clear oscillation frequency.



5.3.7 Sensitivity to amplitude noise

Earlier, we studied the effects of amplitude noise on the kicked rotor system and found that

for sufficiently strong noise, we could drive the system to the classical limit. The kicked rotor

is a particularly interesting system in which to study correspondence because the classical

and quantum limits are characterized by easily distinguishable behavior. In that system, the

amplitude noise destroys the fragile quantum coherences that cause dynamical localization.

Chaos-assisted tunneling is also an effect of quantum coherence and therefore we expect it

to also be susceptible to the effects of noise [Grossmann93].
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Figure 5.24: Modulated pendulum intensity profile with and without amplitude noise. We
measured the intensity of the interaction beam for the latter part of the SPASM sequence
and the first part of the interaction time, where the optical lattice is modulated as cos2(t). In
the first part of these curves, we see the interaction beam intensity steadily increasing. This
is the end portion of the adiabatic deepening of the lattice that we use to load atoms into
the standing wave wells. Once the lattice is fully bright, we hold the intensity constant and
shift the phase so that the atoms accelerate in the lattice. After this acceleration phase, we
begin the interaction phase of the experiment. The period of the modulation is 10 µs, which
is what we use to obtain k̄ = 1.04 in the experiment. The two cases shown here represent
zero added amplitude noise (dashed) and 15.7% RMS deviation amplitude noise (solid).
The instantaneous deviation of the noise is proportional to the instantaneous amplitude of
the non-noisy case.
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We added amplitude noise to our modulated pendulum system by replacing the

Hamiltonian Eq. 5.3 with

H =
p2

2
− 2α[1 + γ(t)] cos2(πt) cos(x) . (5.5)

The instantaneous noise factor γ(t) randomly fluctuates about zero with a symmetric distri-

bution. This distribution is generated digitally on the computer that programs the arbitrary

waveform generator that controls the interaction beam. We begin with a Gaussian white

noise sample at 10 MHz. This signal is then sent through a digital Chebyshev low-pass filter

to remove high frequency components on the noise. For the k̄ = 2.08 case, the filter cutoff

frequency was 500 kHz, and for k̄ = 1.04 the cutoff frequency was 1 MHz. The filtering

removed most of the large deviations in the noise signal. In some cases with strong noise,

the instantaneous intensity of the light had to be clipped at the output range of the laser

(most of the clipping occurs at zero intensity– our laser cannot go negative). Clipping was

only significant for our strongest noise case, “62%” noise. For this system, we specify the
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Figure 5.25: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2
and k̄ = 2.08. The RMS noise levels are 0% (circles), 15.7% (squares), 31% (diamonds), and
63% (triangles). The tunneling is only completely suppressed at the 63% level, and thus is
substantially less sensitive than in the k̄ = 1.04 case in Fig. 5.26. The data are averaged
over 10 realizations of noise, and are sampled every 2 modulation periods.



level of amplitude noise by the RMS noise level 〈γ2(t)〉1/2, which is determined after the

filtering procedure. An example of the intensity profile corresponding to Eq. 5.5 is shown

for one particular realization of noise in Fig. 5.24.

The original purpose of the filtering procedure was to facilitate comparison with

measurements of phase noise effects. Unfortunately, the piezoelectric resonances in our

electro-optic phase modulator have made it impossible to study even such a bandwidth-

limited realization of phase noise. Nevertheless, the low pass filter is useful because it

keeps the amplitude noise changes within the bandwidth of the AOM that modulates the

interaction beam. If we did not low-pass the noise signal in a controlled way, it would be

smoothed by the electronic and optical systems in ways that might significantly affect the

effective noise level.

The effects of amplitude noise on our tunneling signals for k̄ = 2.08 are shown in

Fig. 5.25. For this data set, α = 11.2. When we do not apply any amplitude noise to
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Figure 5.26: Effects of applied amplitude noise on the tunneling oscillations for α = 11.2
and k̄ = 1.04. The RMS noise levels are 0% (circles), 7.9% (squares), 15.7% (diamonds),
and 31% (triangles). The tunneling is completely suppressed at the 31% level, and thus
is more sensitive than in the k̄ = 2.08 case in Fig. 5.25. The data are averaged over 10
realizations of noise, and are sampled every 2 modulation periods.
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the system, we see oscillations in the value of 〈p〉 as we have seen before. For even small

amounts of added noise, the value of 〈p〉 begins to relax towards zero at longer times. This

effect is partly due to the way that the noise affects the classical dynamics of the modulated

pendulum system. We expect the noise to cause diffusion in momentum that can bump

particles out of the classical islands. After this happens, tunneling is not expected to be

significant as the particles diffuse throughout the chaotic region of phase space. As the noise

level is increased, the range of time over which we can observe tunneling decreases. For the

noisiest case in this data set, we do not observe even one tunneling oscillation.

We have also studied the effects of noise at k̄ = 1.04, shown in 5.26. This data was

also taken with α = 11.2, so that it may be compared directly to Fig. 5.25. As before, the

signal to noise ratio is lower for k̄ ≈ 1, and the tunneling signals are a bit weaker, even

without added noise. In general, the system is much more sensitive to the effects of added

noise than it was in the k̄ = 2.08 case. Roughly half as much noise is required to completely

inhibit tunneling for the lower value of k̄. This is reasonable because when we lower the

effective value of the Planck constant the system tends towards classicality, where we are

more sensitive to decoherence.



Chapter 6

Spatial focusing in the kicked rotor system

6.1 Overview

In all of the experiments that we have discussed thus far, we have studied momentum

transfer to an atomic momentum distribution. In this chapter we describe our final set

of experiments, where we instead study the evolution of the atomic position distribution.

For various applications it is potentially useful to focus the atoms into a narrow region

of space. Averbukh and Arvieu have recently proposed a new focusing method that is

based upon an aperiodic kicked rotor potential [Averbukh01]. The primary context of their

proposal is the rotational alignment of molecules in strong laser fields, which may also be

described as a quantum rotor [Friedrich95]. However, the results are general and apply to

any strongly driven quantum rotor. It should be possible to observe this effect by making

simple modifications to our earlier kicked-rotor setup, and indeed we have recently observed

the effect in our experiments.

Our experiments are conducted in the context of atom lithography, which is an

emerging subfield of atom optics. Atom lithography is an atom-optic analogy to traditional

optical lithography. Atoms incident on a surface are either directly or indirectly used to

create structures on the surface. The indirect methods are the closest analogies of light

lithography. In one realization, the energy released by the impact of metastable atoms is

used to expose a resist layer on the substrate [Berggren95]. Fine structures in the position

distribution of the incident atoms could in principle be created in the atomic distribution by

selective optical pumping of atoms at certain locations [Chu96]. We are concerned with a

direct method of atom lithography, where nanostructures are “grown” with the atoms that

210
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are deposited onto the substrate. The tools of atom optics allow us to manipulate atomic

center of mass motion with high precision in many ways. We can use upon the surface.

Atom lithography is an applied science and as such its goals are the development

and improvement of certain technologies. One successful technique in direct deposition has

been to focus the atoms with a standing wave of light. The dipole force on the atoms

can act as a weak cylindrical lens that focuses atoms into an array of lines on a substrate

[Timp92], as illustrated in Fig. 6.1. In the simplest realization, the lines are deposited with

the periodicity of the standing wave, half a wavelength of the light. The feature size can

typically be made much smaller than this spacing, producing features at the scale of tens

of nanometers. This compares favorably with optical lithography techniques, which can

produce features of order 100 nm. The spacing of the features can exhibit great regularity

over macroscopic distances because it is defined by the regularity of the standing wave. An

array deposited in this manner has several potential applications. The great uniformity

of the structure can be exploited to form a precision distance scale with high resolution.

The spacing of the features is determined by the wavelength of the light, which can be

determined to high precision by using modern optical frequency metrology [Diddams00].

Such a scale may prove to be a useful secondary length standard. We can also imagine the

array structure as a building block that may be translated to build complex microscopic

structures. The inherently parallel nature of the system naturally lends itself to producing

either large periodic structures or massive arrays of smaller devices.

Many of the experiments that have been performed to advance work in atom optics

have been performed with hydrogen-like (alkali metal) atoms. Laser cooling and trapping

techniques for these atoms are relatively simple compared with those of other types. How-

ever, these are not the sort of atoms that are useful for building nanostructures. Atomic

focusing has also been demonstrated with certain technologically “useful” atoms such as

chromium [McClelland93] and aluminum [McGowan95]. These metals are suitable for use

in nanofabrication because of their conductivity, their adhesion to surfaces and low surface

mobility, as well as their stability against exposure to air. Let us also note that the ability



Figure 6.1: Atom deposition with an atomic beam and a standing-wave lens.

to trap and cool a given species is not a prerequisite for atomic focusing. Many atomic

species that are difficult to trap can be easily manipulated through the use of dipole forces.

High atomic flux is a practical necessary for the construction of nanostructures over any

macroscopic area. This can be easily achieved with a thermal atomic beam source, even for

species that are not easily manipulated with laser cooling techniques. In the experiments

that we will describe here, we continue to use cesium atoms. The results of this preliminary

work can easily be applied for use with other elements.

Some progress has already been made towards the construction of more complex

structures. A two-dimensional array of dots has been constructed with perpendicular

standing-wave lens arrays [Gupta95]. The feature size of chromium lines has been made

as small as 28 nm [Anderson99]. The distance between features can be made lower by using

specialized lattice configurations [Gupta96] or Talbot-effect rephasing [Nowak97]. An array

of chromium lines has served as a mask for the deposition of magnetic nanowires made of

iron [Tulchinsky98]. A two-dimensional grid of magnetic dots created in this manner could

potentially serve as a high-density magnetic storage device.

Focusing has also been demonstrated with a standing wave derived from a pulsed

laser [Mützel00]. The description of this system is complicated by the fact that the adiabatic
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approximation that was used to derive the strength of the dipole potential breaks down for

very short pulses. On the other hand, pulsed lasers are available at wavelengths and powers

that are sometimes difficult to obtain with continuous-wave (cw) lasers. This experiment

was conducted in a regime where each atom was exposed to many (50) pulses on the way

to the substrate, so that atomic motion in the standing wave was essentially the same as in

the cw case.

While direct atomic lithography has been successful in many regards, there are

several remaining problems. Besides the peaks, a broad background of atoms is typically

deposited on the surface. In order to see the origins of these complications, let us consider

the focusing process in slightly more detail. To be concrete, suppose that we have red-

detuned light so that the atoms are focused towards the regions of maximum intensity.

The potential can be approximated to be locally harmonic, with oscillation period THO. A

perfectly collimated and monoenergetic sample of atoms in the harmonic oscillator potential

will focus after a time THO/4. The final width of the distribution as it hits the surface is

typically “diffraction limited” by the size of the ground state wavefunction in the harmonic

potential. Unfortunately, the potential is not harmonic, and the initial sample is neither

perfectly collimated nor monoenergetic. The sinusoidal nature of the potential leads to

a spherical aberration that contributes to the background and the velocity spread of the

distribution can lead to severe chromatic aberration. The transverse velocity spread of the

incident beam (before the optical lattices) can be minimized by first cooling the beam with

transverse (2D) optical molasses. The velocity spread of an atomic beam is typically low in

the co-moving frame. An additional concern is that spontaneous emission events induced

by the standing wave can lead to diffusion in momentum (and position to a lesser degree).

Generally, this can be made negligible by an appropriate detuning choice. Besides effects

that lead to the broad background, there are also sources of distortion that we must be

concerned about. The stability of the substrate and the retroreflecting mirror must be

maintained over the course of the deposition sequence. Because many experiments have

used a standing wave that directly overlaps the substrate, the diffraction of the standing



wave off of the edge of the substrate can have significant effects [Anderson99].

Residual background effects pose a substantial problem for applications of these

nanofabricated arrays. One solution has been to etch away a layer of the surface. This

has been demonstrated with chromium atoms deposited on a silicon substrate to realize an

array of nanowires [McClelland98]. Etching is very sensitive to the thickness of the layer

that is being etched and it is not necessarily the case that the atomic beam is uniform

over the entire region of deposition. If the substrate is etched enough to remove all of

the background, the final feature width may not end up being particularly uniform. The

etching process itself is not completely uniform, and may make this effect worse. Besides

simple nonuniformities, the etching process tends to remove the silicon substrate that the

chromium wires rest upon. In the most severe case, this can lead to the wire completely

detaching from the substrate. In order to avoid these problems, we would like to minimize

the amount of etching that is needed. The most natural way to do this is to develop new

atom focusing methods that suppress the background.

The focusing mechanism that we have described so far is essentially that of coherent

motion in a harmonic potential. The atoms tend to pass through the potential rather quickly,

as they are moving towards the substrate at thermal velocities. If we were to begin with cold

atoms instead of a thermal beam, the atoms can interact with the standing wave for a much

longer period of time. Much as we loaded atoms into the standing wave for the SPASM

sequence, it should then be possible to adiabatically focus the atoms into the potential

minima [Khaykovich00]. In this regime, certain aberrations may become less severe and

the background may be suppressed relative to the focusing that results from the coherent

evolution alone. A combination of adiabatic and coherent focusing methods may also reduce

the background from a thermal beam source. It is not yet clear if experiments will prove

this to be an effective means of dealing with the background problem.

The proposal by Averbukh and Arvieu is a new approach to focusing that has the

promise of reducing the background between the features. Let us suppose that an atomic

beam that passes through a series of standing waves on the way towards the surface. We may
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view this as a generalization of the process illustrated in Fig. 6.1. As the atoms pass through

each standing wave, they momentarily experience the dipole potential of the standing wave.

The time-dependent potential that the atoms experience is equivalent to that of a single

kick in our kicked-rotor experiments. In view of this, we can test out our procedure “in

place” by exposing atoms to a time-dependent series of pulses after being released from the

MOT. We can further simplify the experiment by detecting the atomic focusing by some

means other than depositing them on a substrate. These simplifications are adequate for a

proof-of-principle experiment, but a more detailed study will necessitate actually focusing

a beam onto a substrate. For such a study, the beam could be derived from a cold atomic

source, in which case the overall procedure would be very close to that of our experiments.

Let us now come to the focusing method itself. With a single kick, the focusing

is not very different from the coherent focusing that has been demonstrated in previous

experiments. The potential is again to some degree harmonic and gives each atom a kick in

momentum towards the potential minimum at x = 0. Some time later at time Tf the atoms

reach their focus. This not a terribly sharp focus because it is affected by the aberrations

that we have previously described. It turns out that if we wait slightly longer than this

simple focusing time, the atoms that were not otherwise efficiently focused continue to

move towards the potential minimum. The result is that the maximum compression of the

position distribution occurs at time Tc, which is slightly after Tf . Exactly what we mean

by “compression” here is a technical matter, but we can define some figure of merit fc that

describes how localized in position the distribution is. The time Tc is the time at which the

compression figure of merit is optimized. If we apply a second kick at time Tc, we can further

increase the spatial compression. With a series of several appropriately spaced kicks, we

should be able to achieve high spatial compression while suppressing the background. The

time scale for compression after each subsequent kick decreases monotonically as the typical

velocity of the distribution increases. Ultimately, the compression that can be achieved in

our experiments is limited by the finite (nonzero) duration of the pulses that we use. We

employ a series of kicks of constant duration and amplitude that become closer to each



other in time. During each kick, the atoms are exposed briefly to the one-dimensional

optical lattice. The average intensity of the lattice increases gradually in time as the time

between kicks becomes shorter. We then note that in some sense, this is similar to the idea

of adiabatic focusing.

6.2 The Aperiodic Kicked Rotor

A more formal description of the experiment begins with the Hamiltonian for the aperiodic

kicked rotor system. The Hamiltonian for the periodically kicked rotor is given by Eq. 1.47.

We now relax the condition that the kicks are equally spaced in time. The Hamiltonian is

then given by

H(x, p, t) =
p2

2m
+ V0 cos(2kLx)

∑
n

F (t − tn), (6.1)

where the kicks occur at times {tn}. As in the case of motion in the pendulum potential

(§1.4.4), there is not a natural time scale for motion in this system in the absence of external

driving. We can then pick a set of scaled units for this system where we choose k̄ = 1 for

the sake of convenience. That choice fixes the time unit of the system to be Tu = 1/8ωr.

The remaining transformations are in parallel with those that we used for the periodic

kicked rotor (§1.4.3). We define the pulse integral as η = 8ωr

∫ ∞
−∞ F (t)dt, such that η is

proportional to the pulse width tp. Furthermore we take

x′ = 2kLx,

t′ = t/Tu = 8ωrt,

p′ = pk̄/2�kL = p/2�kL,

f(t′) = F (t)/η,

K = (k̄/�)ηTuV0 = (η/8ωr�)V0,

H′ = (k̄/�)TuH = H/8ωr�,

(6.2)

and then drop the primes. Under these transformations Eq. 6.1 becomes

H(x, p, t) =
p2

2
+ K cosx

∑
n

f(t − tn), (6.3)

where we identify K as the stochasticity parameter. In the limit where the pulse time goes

to zero at constant K, we recover a generalized version of the of δ-kicked rotor. As in the
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case of the periodically kicked rotor, we can integrate the classical equations of motion over

one kicking period to obtain
pn+1 = pn + K sin xn

xn+1 = xn + ∆tnpn+1 ,
(6.4)

a variation of the standard map. In writing down the mapping, we have defined ∆tn ≡

tn+1 − tn to be the time between subsequent kicks.

The focusing time after a single kick is Tf = 1/K, for atoms close to the potential

minimum. In order to determine the time of maximum compression, we must define a

suitable figure of merit. One possible measure is the orientation factor fc = 〈cos x〉+1, where

we are averaging over the entire atomic distribution. For a distribution that is completely

uniform across a period of the standing wave, fc = 1. If the distribution is completely

localized at the potential minimum, we would have fc = 0. The exact choice of the figure of

merit is not important, so long as it is one that properly quantifies the degree of compression.

We can imagine that fc and some other appropriate figure of merit might be minimized

at times very slightly offset from each other. The next kick in the sequence would then

occur at slightly different times with the two measures, and it is likely that one of the two

sequences would more efficiently focus the atoms. While it is not obvious that any particular

figure of merit is optimal, the variations are presumably small and can be made up with

a few additional kicks. The time Tc of maximum compression occurs after Tf , and we can

further distinguish the two by noting that the Tf is the time when the position distribution is

maximally peaked, but the distribution is more compressed overall at time Tc. A comparison

of these features is illustrated with simulations in Fig. 6.2.

The long-time behavior after a single kick is not a matter of great importance be-

cause we kick the distribution at the first minimum of fc. Nevertheless, there are some

important features in the longer time dynamics that affect the procedures that ultimately

affect the simulations that we employ. As we have discussed in other contexts, one fun-

damental difference between our system and a true quantum rotor is that there is more

than one possible momentum ladder in our experiment. This has serious implications for

the observation of some purely quantum phenomena including quantum resonances (§1.3.3)



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

scaled time

f  
 , 

-(
I  

   
  -

 I 
   

   
)

c
m

ax
m

in

Figure 6.2: Calculation of atomic focusing after a single kick. These curves are the result of
a simple quantum simulation for a single δ-function kick of strength K = 5. We first plot
the total amplitude contrast of the atomic spatial distribution (blue, dashed). This function
is the position distribution contrast −1 · (Max(I(x))−Min(I(x))), where I(x) is the atomic
position distribution (intensity). We have normalized the contrast figure to the amplitude
of the other curve for ease of comparison. This contrast functional is minimized when the
atomic position distribution is most sharply peaked. For a fully harmonic potential we
would expect the focusing time Tf to be 1/K = 0.20, but it turns out that the focusing
time here is closer to 0.26. We also plot fc = 1 + 〈cosx〉 (red, solid). This functional is
minimized at Tc ≈ 0.357, when fc ≈ 0.442. The most important feature to note here is that
this minimum occurs at a substantially later time than the minimum in the other curve.
The initial condition for the simulations is close to that of our experiments which use a
lattice-cooled distribution. The distribution is Gaussian in momentum with width σp = 0.8
and is uniform in position over the scale of the standing wave.

and dynamical tunneling (§5.2.2). In the present case, the oscillations in fc repeat with

period 4π for the case of a momentum ladder centered at p = 0, which has symmetry under

momentum reversal. For the case of a continuous set of momentum ladders, the behavior

up until time t = π is indistinguishable from the single-rotor case, but it ceases to display
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Figure 6.3: Comparison of particle and rotor behavior after one kick. In the case of a true
quantum rotor (dashed) where there is only one momentum ladder, the value of fc undergoes
oscillations that repeat with period t = 4π. If we instead begin with particles distributed
across a set of momentum ladders (solid), the long-time oscillations are not observed. These
simulations are conducted with K = 5 and δ-function kicks. The difference between the
two cases is that the momentum grid for the rotor case has unit spacing, while the other
case has 32 divisions within the unit. The behavior of the two cases does not deviate until
well after the first minimum of fc, which justifies the use of the coarse grid in the other
simulations presented here.

oscillations after this time. This is illustrated in Fig. 6.3. Since we are interested in the

dynamics at shorter times than this (when the two cases agree), it is usually sufficient for us

to perform simulations assuming a single momentum ladder. As a side note, Averbukh and

Arvieu suggested that it might be possible to wait a full quantum resonance period before

applying a kick at the subsequent minimum of fc. This is not by any means necessary, but

under certain circumstances it might make aspects of the experiment easier. For the reasons

that we have just described, waiting for this period is not feasible unless the initial condi-

tion has a single momentum ladder. Although for our CAT experiments we used stimulated

Raman velocity selection, this is a rather inefficient way to select a momentum ladder. A
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Figure 6.4: Calculation of atomic focusing after a multiple kicks: fc. This simulation shows
the evolution fc (solid), as calculated in Fig. 6.2. Again we have K = 5 and we are assuming
that the kicks are δ-functions. Instead of simply tracking the evolution after a single kick,
we now apply a new kick each time that fc reaches a local minimum (circles). We follow
the evolution of fc for the first 30 kicks. As the kick sequence proceeds, the kicks become
closer together. Eventually, the circles that mark the kick times overlap. If we suppose that
the finite duration of the kick were represented by the width of the circles, it becomes clear
that the pulse width may become a limiting factor in the experiment.

better method would be to begin the experiment with an “atom laser” beam derived from

a BEC, which would be extremely cold in the transverse directions. Unfortunately, atom

lasers are not yet available with any technologically useful atomic species.

It is with the application of additional kicks that the background becomes efficiently

suppressed. Each subsequent kick is applied at the time Tc that minimizes the orientation

factor fc, a time ∆tn after the previous kick. When we follow this procedure, the value of

fc decreases steadily with additional kicks. We illustrate this behavior with simulations in

Figs. 6.4, 6.5 and 6.6. Only a few kicks are necessary to substantially reduce the overall
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Figure 6.5: Calculation of atomic focusing after a multiple kicks: position distribution
evolution. This simulation shows the evolution the position distribution just after each
kick for the simulation shown in Fig. 6.4. The position distribution is represented by the
color, where the most intense regions appear white. The leftmost slice (after zero kicks) is
completely uniform, representing the initial condition. The horizontal axis represents the
kick number, not the time– it is important to note that the time between kicks is much
shorter for the later distributions. While the distribution becomes more compressed as the
background is suppressed, it retains complex structures that result from repeated diffraction
off of the standing wave. Some of the individual distributions from this figure are shown in
Fig. 6.6.

background. As additional kicks are applied, the remaining width of the distribution grad-

ually decreases. The position distribution is not smooth, but is composed of sharp maxima

that are reminiscent of caustics encountered in rainbow scattering [Averbukh01]. Although

the time between kicks and the corresponding changes in fc are erratic for the first few kicks,

the behavior becomes smooth on a longer time scale. For true δ-function pulses, there is no

clear limit to this process.
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Figure 6.6: Calculation of atomic focusing after multiple kicks: individual distributions.
Several of the individual position-space distributions from Fig. 6.5 are shown here in detail.
The distribution is shown in (a) after 0 kicks (green dashed), 1 kick (blue), 2 kicks (red),
and 4 kicks (black). In (b) the distribution is shown after 5 kicks (green dashed), 10 kicks
(blue), 15 kicks (red), and 20 kicks (black). The most important feature that we can see in
this plot is that the background becomes suppressed after only a few kicks.
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For pulses of finite duration, we can expect that the process will break down when

the pulse duration interferes with the free evolution that is necessary between subsequent

kicks. One partial solution is to wait one quantum resonance period (plus the desired time

between kicks) before applying the next kick. As we have mentioned, this is generally not a

practical solution. We must also be concerned about atomic motion during the kick itself.

During each kick the optical lattice has a well depth given by α = K/tp, supposing that

the pulses are square. We can then estimate the best focusing that we can obtain with

pulses of duration tp. We are interested in the behavior of a highly localized wave packet

that is located near the potential minimum of the lattice. In this regime the potential is

approximately harmonic and the smallest distribution that we can expect is the minimum-

uncertainty ground state for this well depth. The ground state is Gaussian, with width

σ2
x = 1/2

√
α = 1

2

√
tp/K. For a Gaussian distribution with this width, the orientation is

given approximately by fc = 1
4

√
tp/K. This is an asymptotic expression, and we have

implied that the state is one of minimum uncertainty, which we would not expect from the

multiply peaked position distributions that we have seen thus far. In general it is necessary

to perform numerical simulations in order to determine the limiting values. Simulations

confirm that this analytic estimate for fc is indeed a lower bound.

6.3 Experimental Methods

The procedures and data acquisition sequences for our atomic focusing experiments have

a high degree of overlap with the other experiments that we have described. The overall

sequence is very close to that which we described in Chapter 2. Beyond this, we apply

the 3D lattice cooling sequence (§4.2) to further reduce the initial momentum spread of

the atomic distribution. These experiments were performed after the development of the

state preparation procedures, but we did not utilize any of the more advanced techniques

here. One detail that we should note at this point is that the electro-optic phase modulator

(EOM) is still placed before the retroreflector on the interaction beam. This allows us to

shift the phase of the standing wave, which is important for some of our detection methods



as we will see shortly.

The most important change from the earlier experiments is that we are now inter-

ested in the position distribution rather than the momentum distribution. It is relatively

easy for us to measure the momentum, since a simple ballistic expansion procedure converts

the momentum distribution into a macroscopic position distribution that we can image.

There is not an obvious and simple method for us to determine the shape or size of the

position distribution on the scale of one period of the standing wave. Our strategy then is

to develop some means of extracting information about the microscopic position distribution

through one of the quantities that we can measure. We will now describe several poten-

tial methods for measuring the microscopic position distribution. After developing these

methods, we will describe some of our calibration procedures and the overall experimental

sequence for these experiments.

6.3.1 Near-resonant detection

A standard technique that has been used to determine the average position of atoms with

respect to a standing-wave axis is to induce fluorescence with the standing wave. The rate

of spontaneous emission events depends sensitively upon the intensity of the light, which

has well defined maxima and minima for a standing wave. It is often possible to interact

only with atoms in a relatively small spatial region. By changing the phase of the standing

wave, the region of interest can be swept across an entire period of the standing wave to

map out the distribution. This is an example of a “virtual slit” [Chu96] detection method.

Two possible variations are (a) to count the fluorescence directly or (b) to promote atoms

at specific locations to a different internal state.

For either of these methods, we first optically pump our cold cesium atoms into

the Fg = 4 ground state. We then apply the focusing-kick sequence to the atoms using a

standing wave directed along the x-axis. (Generally speaking, we try to work in a regime

where the far-detuned standing wave does not substantially affect the internal state of the

atomic sample.) We next expose the atoms to a brief pulse of light from a standing wave
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(along the same axis) that is sufficiently near resonance to induce spontaneous emission.

Each spontaneous emission results in fluorescence that can be directly observed and also

has some probability of moving the atom to the other (Fg = 3) ground state. These two

processes are most likely to occur at the antinodes of the standing wave, where the light is

most intense, and unlikely to occur at the nodes. We can then change the relative position of

this wave and the atomic sample by applying a single phase shift to the standing wave after

the kicking sequence but before the detection pulse. By performing repeated measurements

at different phases, we then determine the relative atomic population at different positions

along the x-axis. As in other cases, the detection pulse must be short enough that the atoms

do not have time to move (on the length scale of the standing wave period) during the pulse.

Both the direct and indirect methods are reasonable approaches, however it is not

practical for us to directly count the fluorescence at this time. We do not presently have

a high-sensitivity device such as a photomultiplier tube or an avalanche photodiode (APD)

to detect fluorescence from the MOT, although we are in the process of adding an APD

system to our setup. Furthermore, it does not appear to be feasible to use our CCD camera

to measure such a small amount of fluorescence.

The second near-resonant method is somewhat similar to the stimulated Raman

tagging technique (§4.3) that we have used in other contexts. However, we are now interested

in tagging a set of atoms at a specific position, rather than momentum. We again begin with

cold atoms in the Fg = 4 ground state. After the kicking sequence, we again apply a pulse

of near-resonant light at some specified phase. Only the atoms that undergo spontaneous

emission events are transferred to the Fg = 3 state. We then push away all of the atoms

that remain in the Fg = 4 ground state (§4.3.3). We then image the remaining atoms

using our standard freezing molasses technique to count the number of Fg = 3 atoms. The

number of atoms transferred to this state describes the overlap between the atomic position

distribution and the standing wave intensity profile at the given detection phase.

We attempted to apply this spatial tagging method in our experiment, but without

success. Our first efforts used a near-resonant standing wave derived from the MOT mo-



lasses beams. The beam was the resonant Fg = 4 → Fe = 4 beam that we use elsewhere in

our experiment for optically pumping atoms to the Fg = 4, mF = 0 state prior to stimu-

lated Raman tagging. We combined this light with the interaction beam shortly before the

chamber by using a polarizing beamsplitter cube. The measurements that we made with

this setup were extremely noisy. A simple first test of a detection method is to see if it can

give an acceptable “zero” signal. In this context, the zero signal results from the detection

procedure without the focusing-kick sequence, where we expect to see a uniform spatial

distribution. As it turns out, the noise level was larger than the average signal level of this

supposedly straight line. One possible cause is the linewidth of the DBR laser (from which

this beam is derived), which can affect the spontaneous emission rate in unpredictable ways.

We also tried detuning the beam several megahertz off of resonance by driving the AOM

controlling that beam at a different frequency, but it did not solve the problem.

It is also possible to induce spontaneous emission events by using the interaction

beam itself as a source of quasi-resonant light. One advantage of this method is that there

is no frequency difference between the kicking and detection beams, so the absolute phase

shift between the two beams is easily determined. In the case that spontaneous emission is

induced by the Fg = 4 → Fe = 4 beam, the 18 GHz or so of frequency difference between

the two beams leads to a phase shift of order 30λ over the 0.5 m (or so) distance between

the retroreflecting mirror and the atoms. Another advantage is the simplicity of the setup–

it is not necessary to introduce any additional beams into the chamber. On the other hand,

if we wish to actually induce an appreciable number of spontaneous emission events, it is

necessary that we detune in closer to resonance. Our implementation of lattice cooling has

not been found to work at detunings closer than 12 GHz red of resonance. At 12 GHz, we

did not see a substantial population in the Fg = 3 state, so we tried detuning in closer,

where we could not use lattice cooling. Although we tried detunings as low as 1.5 GHz, we

were not able to obtain a zero-signal measurement that was substantially less noisy than

that obtained with the Fg = 4 → Fe = 4 beam.
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6.3.2 Asymmetric kicking measurements

In the absence of reliable methods for determining the position distribution with near-

resonant light, we were forced to develop non-resonant methods for determining the spatial

distribution. The simplest non-resonant detection method that we have employed involves a

single standing-wave δ kick that we use to probe the microscopic spatial distribution of the

atoms. At a variable time after the end of the squeezing-kick sequence, we apply a single,

strong pulse. We used the same retroreflected beam that delivers the focusing kicks, but at

80% of the available laser intensity for 600 ns. As with the resonant detection methods, we

apply a phase shift between the end of the focusing-kick sequence and the beginning of the

detection pulse. Because of the nonzero response time of the EOM that we use to shift the

phase, the phase shift (in all cases) begins 1 µs before the detection pulse begins.

The detection pulse transfers a different amount of momentum to the atoms de-

pending on their position with respect to the standing wave. An atom that is at the node

or antinode of the detection beam does not feel any force from the standing wave, whereas

one directly between them will be kicked strongly to one side or the other (depending on

the phase of the standing wave). Now, if we consider an atomic distribution that is strongly

localized in position, we expect to see the same behavior: a strong dependence of the final

momentum distribution on the phase of the detection pulse. In contrast, if the momentum

distribution is uniform on the scale of a standing-wave period, the final distribution will

be independent of the detection phase. In practice, this gives us a way to measure how

localized the distribution is in position. If we kick the atoms with a standing wave with

several different phase shifts, a spatially localized distribution acquires an average positive

or negative momentum depending on the phase. The contrast ∆p in 〈p〉, which we define as

∆p ≡ 〈p〉− − 〈p〉+, is thus a useful figure of merit for the degree of phase-space localization.

The value 〈p〉+ is the expectation value of p when we kick the distribution with a phase

shift of π/2 and 〈p〉− is the value when we shift the phase by 3π/2 (or −π/2). Note that the

sign of ∆p reverses along with the direction that the atoms are kicked by the standing wave.

In the case that we do not apply a phase shift, we typically observe two cleanly separated
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Figure 6.7: Effects of finite detection pulse duration. These curves are similar to those
that appear in Fig. 6.2, and show the evolution of the position distribution functionals fc

(dashed) and fp (solid) after a single 300 ns focusing kick where K = 3.2. The value of fp is
that which we would expect with the detection pulse duration (600 ns) and kicking strength
(Kdet = 7.33) that we use in the experiment. In the limit that the pulse width tp goes to
zero, this curve converges to fc. The minimum of the fp curve appears slightly before that
of fc. However, when fp is minimized, fc is also very close to its minimum. As we have
mentioned, the overall focusing procedure is not very sensitive to the particular choice of
the figure of merit. The amplitude of the two measures is not exactly the same, but they
are very close.

peaks that appear at about ±5 · 2�kL after the detection pulse and free drift time. With

a phase shift of π/2, a fully localized distribution will entirely be kicked to about 5 · 2�kL.

We then expect the contrast figure to be of order ∆p = 10 · 2�kL, for an optimally localized

distribution and zero for a uniform distribution. It is practical for us to use the figure of

merit fp ≡ 1 − (1/2Kdet)∆p, where Kdet is the strength of the detection pulse.

Let us consider the effects of this measurement in slightly more detail. Suppose

that we begin with an initial distribution described by the state vector |ψ0〉. Often it is
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convenient to work with the corresponding position-space wave function ψ0(x) = 〈x|ψ0〉.

The single detection pulse in our experiment is approximately a δ-function kick, which we

can describe with a quantum mechanical operator (§1.3.1). After the kick, the wave function

is given by

ψ(x) = U0(K, φ)ψ0(x) = exp
(
− i

�
K cos(x + φ)

)
ψ0(x), (6.5)

where U0(K, φ) is a single kick operator with strength K and phase φ. After the kick, we

measure the average momentum with two initial phases to find

∆p =
〈U0(K,−π/2)ψ0|p|U0(K,−π/2)ψ0〉 − 〈U0(K, π/2)ψ0|p|U0(K, π/2)ψ0〉.

(6.6)

We can now calculate 〈p〉s = 〈ψs|p|ψs〉 = 〈U0(K, s · π/2)ψ0|p|U0(K, s · π/2)ψ0〉, where s is

one of either ±1. We find that

〈p〉s =
∫

ψ∗
s(x)

�

i

∂

∂x
ψs(x)dx

=
∫

ψ∗
0(x) exp

(
iK

�
cos(x +

sπ

2
)
)

�

i

∂

∂x
exp

(
− iK

�
cos(x +

sπ

2
)
)

ψ0(x)dx

=
∫

ψ∗
0(x)U0(−K, sπ/2)U0(K, sπ/2)

�

i

(
∂

∂x
+

(
iK

�

)
s cos(x)

)
ψ0(x)dx

=
∫

ψ∗
0(x)

(
�

i

∂

∂x
+ sK cos(x)

)
ψ0(x)dx

= 〈p〉 + sK〈cos x〉,

(6.7)

where 〈p〉 = 〈ψ0|p|ψ0〉 is the average momentum of the initial (unkicked) state. Finally we

obtain a value for the total momentum contrast,

∆p = 〈p〉− − 〈p〉+ = −2K〈cos x〉. (6.8)

This result determines our definition of the function fp = 1− (1/2K)∆p, which turns out to

be an equivalent measure to fc when K = Kdet is the strength of the detection pulse. This

measurement technique is subject to many of the systematic effects that we encountered

in the context of the earlier kicked rotor experiments (§3.6.2). The final extent of the

distribution in position is slightly broadened by the initial spatial extent of the MOT. More

importantly, the nonzero duration of the detection pulse leads to a slight reduction in the

effective value of K for the pulse. The mechanism for the reduction is atomic motion in



the optical lattice during the pulse. A more severe consequence is that the time that the

function is minimized can change, as illustrated in Fig. 6.7. We have used these momentum-

contrast measurements in our experiments to calibrate the time between subsequent kicks,

so this can affect the cumulative efficiency of our focusing procedure. As before, the most

appropriate method of accounting for these effects is to directly incorporate the pulse width

into simple quantum simulations. The systematic effects can be minimized by using pulses

that are as strong and brief as possible.

6.3.3 Pendulum oscillation measurements

A second non-resonant detection method is to observe the behavior of the wave packet after

it is projected into a pendulum phase space. After the final kick, we allow the system to

evolve until the time when the maximum squeezing occurs, as determined by the momentum-

contrast measurements. This is the point in time when the next kick would occur if there

were to be additional focusing kicks. At that time, we project the distribution into the

pendulum phase space at a specified amplitude for a specified amount of time. After this

period of motion in the lattice, we measure the momentum distribution in the usual way.

We repeat this procedure many times to trace out the two-dimensional parameter space of

well depth and time. At each value of the well depth we observe the time evolution of the

momentum distribution. The sampling rate in time is high enough that we can observe

the atomic wave packet oscillating repeatedly in the potential. We can imagine that if the

initial atomic wave packet were closely matched to the ground state of the optical lattice,

we would project atoms mostly into that state. The potential is approximately harmonic, so

the ground state is a minimum-uncertainty Gaussian stationary state. By changing the well

depth, we can change the phase-space aspect ratio of this state. Optimally, we would like to

see some value of the well depth at which the amplitude of the oscillations is minimized. This

would indicate that we have maximized the overlap between our focused distribution and the

harmonic-oscillator ground state. The width of the ground state is given by σ2
x = 1/2

√
α, so

that as long as we know α, we have a direct means of measuring the spatial size of the wave

packet. Beyond simply measuring the feature size, we can hope to get some indication of
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the residual background with this measurement. If most of the atoms are projected into the

ground state at some well depth, any oscillations are likely to be dominated by the residual

background of unfocused atoms.

It is necessary to define some figure of merit that quantifies the amplitude of the

oscillations. One possibility is to fit each momentum distribution to a Gaussian function

and to extract the width. Unfortunately, the distributions are not necessarily Gaussian in

nature and this fitting procedure fails. A more natural measure is the ensemble energy

E = 〈p2〉/2 =
∫ ∞
−∞ p2/2f(p)dp, where f(p) is the momentum probability distribution. As

we have discussed in the context of earlier kicked rotor experiments, we cannot determine

the energy with great accuracy or precision. This is because the energy is weighted heavily

by the behavior at large momentum values, where the signal to noise ratio is the lowest and

the nonlinearities in the detection system become important. Great computational effort

may be required to directly account for these issues, especially when the system is not fully

described by classical dynamics. A measure of the width of the distribution that is less

sensitive to the behavior at high momentum values is the Süßmann measure [Süssmann97],

brought to our attention by Prof. Schleich [Schleich01]. The Süßmann measure is defined as

δSp =
1

〈f(p)〉 =
1∫ ∞

−∞ f2(p)dp
, (6.9)

the inverse of the area under the square of the distribution function. This function empha-

sizes the distribution in the region where it is the most intense and the signal to noise ratio

is the highest, near p = 0. As a result, the evolution of δSp is typically a smooth curve that

is much less noisy than the energy measurements. One nice feature of the Süßmann measure

is that it is a rather general functional that can tell us the width of distributions of different

shapes. In the experiment, the value of δSp is computed at each step in the time evolution.

We would then like to determine the amplitude of the oscillations by examining the δSp(t)

curve. Since this curve is not necessarily a simple function of time, it is not practical to fit

it to find the amplitude of oscillation. However, the standard deviation σS of δSp(t) is a

practical measure of the amplitude.



6.3.4 Free expansion measurements

The measurement procedures that we have described so far are ones that measure quan-

tities related to the atomic position distribution. It is also possible that the momentum

distribution could be of interest. We expect heating to result from the sequence of kicks,

and it is useful to characterize exactly how much heating there is. Furthermore, we wish to

fully understand the pendulum oscillation measurements. For this, it is useful to have some

idea of the shape of the momentum distribution. The momentum distribution for these

experiments can be measured in the usual way, by performing a temperature measurement

after the kicking sequence. No additional “detection pulse” is necessary in this case.

A variation on this method can be used to provide an additional measurement of

the position distribution. After the kicking sequence, we project the distribution into the

pendulum potential as we did in the pendulum oscillation measurements. In this case, we

pick the deepest well depth that is available, so that the potential most closely approximates

that of a harmonic oscillator. Furthermore, we only allow the atoms to evolve in the lattice

for THO/4, one quarter of the harmonic oscillator period. This evolution in the potential

converts the atomic position distribution into a momentum distribution, and the momentum

distribution into a position distribution. If we perform a temperature measurement after

this detection pulse, we have an additional determination of the position distribution.

It is important to point out that the anharmonicity of pendulum potential can

still have significant effects, as illustrated in Figs. 6.8 and 6.9. In these figures we study

classical evolution in the pendulum potential with both a Monte Carlo simulation and an

analytic solution. In both cases, we begin with a distribution that is comparatively narrow

in momentum and delocalized in position. After a time THO/4, we plot the momentum

distribution. The final distribution shows peaks at the edges with a width that is determined

by the initial width of the momentum distribution. If the potential were purely harmonic,

we would not expect to see these peaks. If the initial condition is a delta function, the

momentum distribution exhibits singularities at the peaks. For any finite distribution width

the peaks will be finite. Likewise, the finite extent of a quantum wave packet is sufficient
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Figure 6.8: Pendulum Rotation: classical Monte Carlo simulations. In (a) we follow the
motion of 104 particles through the phase space. The pendulum well depth is αp = 106.
The sample of particles (red) is uniformly distributed in position and has momentum width
σp = 0.8. After time THO/4, the distribution (blue) has rotated significantly in the phase
space. The central part of the distribution (where the distribution is most harmonic) has
rotated by 90 degrees. Part (b) shows histograms of the momentum distributions in part (a).
These two curves are normalized such that the maximum intensity of the initial distribution
(red) is unity.

to replace the singularities with a sharply peaked wave function. We can also convolve this

distribution with a Gaussian function that represents the initial momentum width of the
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Figure 6.9: Pendulum Rotation: classical analytic solution. The classical equations of
motion for the pendulum yield a solution in terms of Jacobi elliptic functions, which is
plotted here (a) for a distribution that begins (red) with p = δ(0), uniformly distributed in
x. After evolving for time THO/4, the distribution (blue) follows a curve like that shown
in Fig. 6.8. The final momentum probability distribution (b) is difficult to plot accurately
because it is so sharply peaked— it is apparent from the curve in part (a) that these peaks
are singularities. The distribution is plotted with a large number (103) of momentum bins.

distribution to produce a curve very similar to that which results from the Monte Carlo

simulation. The resulting rainbow function is the final momentum distribution that we
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expect when the initial distribution is uniform in position. In the experiment then, we

wish to examine the total momentum distribution after a quarter-period of oscillation in

the pendulum potential. If there is a component of the distribution that is described by

the rainbow function, then the amplitude of that component is proportional to the residual

(uniform) background of the distribution.

6.3.5 Well depth calibration

In many other contexts, we have noted that it can be difficult to calibrate the absolute

well depth of our optical lattice. In the earlier generation of kicked-rotor experiments,

we used the locations of the peaks in the D(K) curve to perform the absolute calibration

(§3.3). It turns out that we cannot perform this particular calibration here because we

do not have enough laser power to observe multiple peaks at the larger detuning that we

are using for these experiments. For the chaos-assisted tunneling experiments, we placed a

minimum-uncertainty wavepacket into the pendulum potential and observed the oscillations

to calibrate the well depth. This is practical in that case because the atoms all move in

a bunch together through the phase space. It is relatively easy to extract the frequency

of oscillation. When our only state preparation is lattice cooling, this initial state is wide

enough that oscillation in the well is no longer a simple problem. Furthermore, the state

preparation procedures work best at higher detunings, and it is not practical to use those

methods to calibrate our well depth for this experiment.

We can always use our setup to generate a simple potential, where the dynamics

depend upon the lattice well depth. If the overall system is simple enough, we can hope to

computationally model the dynamics and fit the data to find the well depth. Such a tractable

problem in the context of these experiments is the momentum contrast measurement after

a single focusing kick. When performing the experiments we define the instantaneous laser

intensity to a fixed reference point that we refer to as the available laser intensity. The

purpose of the calibration procedures is to find the absolute value of this intensity, which

is not initially known. In these measurements we exposed the atoms to a 300 ns focusing



kick, at 10%, 25%, or 75% of the available laser intensity. This is followed by some time

delay and then a 600 ns detection pulse at 80% intensity. The pulse widths and their

relative intensities are well known. By incorporating these parameters into the simulation

we can reproduce the curves that are given by the experiment, and iteratively refine the

scaling factor that determines the absolute well depth. The simulations account for the

finite duration of the pulses, and only simulate the system up until time t = π so that the

system is effectively described by a single momentum ladder. The result of these simulations

determines the 100% intensity level during the focusing kicks to correspond to K = 4.26

±4%. The uncertainty is the purely statistical error associated with the fitting procedure,

and does not account for any of the other factors in determining K. During the data runs we

constrained the laser power to stay within ±2.5% using the VPL system (§2.3.3). Beyond

the drifts associated with time variation of the lattice intensity, we must be concerned with

other mechanisms that broaden the value of K. As in our previous experiments with the

kicked rotor, the finite pulse duration leads to a reduction in the effective value of K as a

function of momentum (§3.2). This particular effect is accounted for by the finite pulses used

in the simulation. Most of the other systematic effects are not accounted for, for example

the spread in the effective value of K due to the transverse profile of the interaction beam.

A conservative estimate of the maximum kick strength is K = 4.26 ±10%. Based upon this

calibration and the known area of the detection pulse, we have determined the detection

pulse kicking strength to be Kdet = 7.33 ±10%.

6.3.6 Experimental sequence

As we have discussed, these experiments are very similar to the earlier kicked rotor experi-

ments, with the exceptions of the lattice cooling and the detection methods. The Ti:sapphire

laser that generates both the 3D lattice cooling beams and the interaction being was detuned

18 GHz to the red of the cycling transition for all of the experiments described here. Gener-

ally speaking, the signal-to-noise ratio of these experiments is fairly high because our initial

distribution is fairly cold and the lattice-cooled distribution contains a fairly large number

of atoms, especially compared to those experiments with the stimulated-Raman velocity
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selection. We begin each data set with two background images on the CCD camera.

We begin by loading the MOT for 5 s. The maximum number of atoms, based

upon atomic fluorescence counting with the CCD camera is estimated to be 106. We use

3D lattice cooling with the same parameters (except for the Ti:sapphire laser detuning) as

we described earlier (§4.2). The typical temperature after lattice cooling (without optical

pumping) is roughly 500 nK. This temperature is slightly higher than it was in the earlier

case because of the difference in detuning. Typical residual magnetic fields at the end of

lattice turn-off time are of order 70 mG and do not change substantially during the course

of the experiments. We next perform optical pumping to Fg = 4 state by turning on the

repumping light for 50 µs. The typical temperature after lattice cooling and full optical

pumping sequence is roughly 625 nK, corresponding to σp = 1.8 �kL. Without lattice

cooling, the final temperature is roughly 18 µK, corresponding to σp = 9.5 �kL.

The kick sequence consists of a series of 300 ns pulses of constant amplitude. The

overall pulse sequence may last as long as 50 µs. In general, the pulse sequence is not

periodic. After the focusing kicks, we begin the detection sequence with one of the methods

that we have described. The essential methods are the momentum contrast, the pendulum

oscillations, and the free expansion measurements. In the case of the momentum contrast

method, we wait some (variable) amount of time between the end of the kicking sequence

and the detection pulse. In order to ensure even response of the EOM that shifts the phase

of the interaction beam, the EOM begins shifting the phase of the light to the desired phase

at a time 1 µs before the beginning of the detection pulse. For the other detection methods,

there is no phase shift or delay time required. The ballistic expansion period is 25 ms, and

the CCD exposure time in the freezing molasses is 15 ms.

6.4 Data and Results

The focusing procedure employs a series of kicks of constant amplitude that gradually be-

come closer in time. The limiting factor for how close the pulses can come is the response

time of the EOM, for which a constant 1 µs of slew time is allowed. This limitation is
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Figure 6.10: Experimentally measured time evolution of the momentum contrast figure of
merit, fp after 1, 2, 4, 6, 8, and 10 kicks at K = 0.42. The time (horizontal) axis is calibrated
in microseconds.

specific to the momentum-contrast detection method that we use. If we used some other

detection method, it would be possible to let the pulses come much closer together. An

optimal kicking sequence with finite pulses would proceed until the focusing parameter fc

saturates to its minimum value for the given pulse width. Intuitively, we might expect

this saturation to occur when the time between subsequent pulses becomes comparable the

duration of the pulses. However, the slew time in the momentum-contrast measurement is

much longer than the pulse duration and so it becomes the limiting factor. The number

of kicks that is required to reduce the focusing time to less than 1 µs depends upon the

strength of the kicks. We studied focusing in this system with the same three amplitude

values that we used for the well depth calibration, 10%, 25%, and 75% of the available laser

intensity. These values correspond to K of 0.43, 1.06, and 3.20, respectively.

For each of value of K, we optimized a kicking sequence such that we performed
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Figure 6.11: Experimentally measured time evolution of the momentum contrast figure of
merit, fp after one and three kicks at K = 1.06. The time (horizontal) axis is calibrated in
microseconds.
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Figure 6.12: Experimentally measured time evolution of the momentum contrast figure of
merit, fp after one and two kicks at K = 3.2. The time (horizontal) axis is calibrated in
microseconds.

as many kicks as possible such that the time between subsequent kicks was at least 1 µs.

The sequences were optimized empirically, by using the momentum contrast measurements.

After each kick, we performed this measurement at a range of times, and placed the next kick

at the time of optimal compression as measured by fp. The results of these measurements

are shown in Figs. 6.10, 6.11, and 6.12. For the case of K = 0.43, ten kicks occurred before



the kick spacing approached 1 µs. The spacings between the kicks were 10.0 µs, 6.9 µs, 4.7

µs, 3.9 µs, 3.0 µs, 2.2 µs, 2.1 µs, 1.8 µs, and 1.7 µs. While conducting the experiments it

appeared that the overall sequence was fairly sensitive to small fluctuations in the system

parameters (e.g., laser power and frequency). These parameters can alter the optimization

time after each kick in the sequence, so it is not surprising that a long sequence exhibits this

sensitivity. In Fig. 6.10 it is clear that with each subsequent kick, the minimum value of fp

monotonically decreases. For K = 1.06, it was only possible to apply three kicks before the

compression time approached 1 µs. The kick spacings for this case were 9.4 µs and 3.9 µs.

The third kicking strength was K = 3.2. In this case, the longest sequence consisted of two

kicks, separated by 4.5 µs

The values of fp that we have measured are not spectacular– they are well below

those that we expect from simple simulations. Such a simulation, for a single kick with

K = 3.2, is shown in Fig. 6.7. The minimum of the predicted fp curve is approximately

0.47. However, the value from our experiment is closer to 0.71. As in many of our other

experiments, it is difficult to quantitatively measure many of the values that are extracted

from the distributions. We can achieve great precision when measuring at what value

of a system parameter the dynamics of the system change. However, we cannot in the

cases of measuring the system energy 〈p2〉 or the average momentum 〈p〉. There are several

contributing reasons for this. First, these measurements weight the distribution most highly

at high momentum values, where the signal is the noisiest. More importantly, there are

nonuniformities in our detection system that tend to decrease the apparent signal when

parts of the distribution enter higher momentum regions (see §3.6.2). These effects tend to

move the apparent value of 〈p〉 towards zero in any measurement, moving fp closer to unity.

The magnitude of this effect is doubled because we are looking at the difference between

two average momentum values with opposite sign. These effects may well be enough to

account for the difference between our measurements and what we might expect from the

simple simulations. Using only the locations of the peaks of the distributions results in

a slightly less biased measurement, but this is only appropriate when the distribution is
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Figure 6.13: Pendulum oscillation measurements, K = 3.2. We project the distribution
into the pendulum potential and allow the distribution to evolve for a total of 27.2 µs,
in 35 steps. At each time step we measure the momentum distribution and compute the
Süßmann measure δSp, which is plotted here as the vertical (color) variable. Brighter colors
correspond to higher values of δSp. The time evolution is measured independently at several
values of the well depth αp to trace out the 2D parameter space. This set of measurements
is executed with zero, one and two focusing kicks. We are looking for a decrease in the
amplitude of the oscillations at some well depth. It is difficult to discern these changes
directly from this type of data. These changes are visible in the standard deviation σS of
each time evolution sequence, as shown in Fig. 6.16.

already well focused. We should note from simulations that the shape of the f(t) curve

is very sensitive to the exact value of K. It is very interesting that the shape (but not

amplitude) of the theoretical and experimental curves shown respectively in Figs. 6.7 and

6.12 matches up. This strengthens the claim that the discrepancy is due to biases in the

detection system. Despite the discrepancy in the absolute value, the momentum contrast

measurements provide us with a mechanism for observing the gradual increase of the spatial

focusing. Furthermore, these measurements provide a practical mechanism for optimizing

the time between kicks.

The next major class of data is the pendulum oscillation measurement. The purpose

of this data is to provide an independent verification that spatial compression has occurred.

As opposed to the fp data where we try to extract quantitative information with analysis

of the distributions, in this case we are looking for a particular value of a parameter (the

well depth) where the oscillation amplitude is minimized. We begin by tracing out the two-

dimensional parameter space of the evolution time and the well depth. At each point in the
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Figure 6.14: Pendulum oscillation measurements, K = 0.43. We project the distribution
into the pendulum potential at a given well depth and allow the distribution to evolve for
102 µs in 35 time steps. At each time step the Süßmann measure δSp is determined from
the momentum distribution. The standard deviation σS of the δSp(t) is plotted here as
a function of the well depth αp. This procedure is repeated after 0, 2, 4, 6, 8, and 10
kick focusing sequences. In each case, the measurement begins at the time that the next
kick would occur, if there were to be additional kicks in the sequence. As the number of
kicks increases, the degree of spatial focusing increases. This is visible as a reduction in the
amplitude of oscillations, characterized by σS . For the last case (after 10 µs), the dip in σS

is rather broad and spans the entire range of αp that we are sweeping over.

measurement we compute the Süßmann measure δSp of the momentum distribution. An

example set of data taken with this procedure is shown in Fig. 6.13. From these plots, we

can see that there are oscillations in δSp at every well depth, with a frequency that depends

upon the well depth. Visual inspection of these plots is not sufficient to determine where the

amplitude of the oscillations is minimized, so we calculate the standard deviation of δSp(t)

and plot this as a function of the well depth. The results of these measurements are shown

in Figs. 6.14, 6.15, and 6.16. For most of the cases with multiple kicks, we can see a clear

minimum in the σS(α) curve.
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Figure 6.15: Pendulum oscillation measurements, K = 1.06. We project the distribution
into the pendulum potential as in Fig. 6.14 and plot σS of δSp(t) as a function of the well
depth αp. The procedure is repeated without any focusing kicks, with one kick, and with
three kicks. The total evolution time at each point on this plot is 85 µs. After three kicks,
the minimum occurs at αp = 3.3.
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Figure 6.16: Pendulum oscillation measurements, K = 3.2. We project the distribution
into the pendulum potential as in Fig. 6.14 and plot σS of δSp(t) as a function of the well
depth αp. The procedure is repeated without any focusing kicks, with one kick, and with
two kicks. The total evolution time at each point on this plot is 27.2 µs. The data shown
in this plot is the same as that shown in Fig. 6.13. Note that the vertical scale for the cases
with kicks is enlarged relative to the case without any kicks. After one kick, the minimum
occurs at αp = 8.25, after two kicks, the minimum occurs at αp = 15.5.

The most interesting cases are those where the focusing is strongest. Let us consider

two of these cases, at K = 1.06 after three kicks, and at K = 3.2 with two kicks. For

K = 1.06 with three kicks, the minimum of σS(α) is fitted to occur at αp = 3.3. The

width of the corresponding lattice ground state is then σx =
√

1/2
√

α = 0.53. In physical

units (x = x′λ/4π), this corresponds to a width of about 35 nm. For K = 3.2 and two

kicks, the minimum occurs at αp = 15.5, corresponding to a width of about 24 nm. This

value is comparable to the best feature sizes that have been demonstrated with other atom
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Figure 6.17: Pendulum rotation measurements, K = 1.06. The two curves show the results
of the measurement procedure after 1 kick (blue) and 3 kicks (red). The peaks on the edges
of the distribution correspond to the uniform component of the position distribution. The
size of this contribution is reduced by additional kicks.

lithography techniques. It is important to recall that our experiments are limited by the

response time of the EOM, which is not a fundamental limitation of this technique. Besides

the width of the features, we are also very interested to know how much of the distribution

is contained in the unfocused background. From the various simulations in this chapter,

it is apparent that more than just two or three kicks are required to produce substantial

suppression of the background. We can see the size of the background by looking at the

amplitude of residual oscillations when σS(α) is minimized. The lowest value of in our

experiments is σS = 0.66, which occurs for K = 1.06 with three kicks.

Finally, we come to the results from the free expansion measurements. Let us first

consider the results from the simple temperature measurements after one focusing kick. We
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Figure 6.18: Pendulum rotation measurements, K = 0.43. The two curves show the re-
sults of the measurement procedure after 1 kick (green) 5 kicks (blue) and 10 kicks (red).
Again, it is apparent that additional kicks serve to reduce the uniform portion of the spatial
distribution.

measured the temperature after a single focusing kick in the usual way. For one kick at

K = 0.43 or K = 1.06, the final temperature was about 800 nK or 1.5 µK, respectively. For

one kick at K = 3.2, the final temperature was measured to be 7.3 µK, although this not

meaningful because the strongly kicked distribution is not thermal. For a strong enough

single kick, the final momentum distribution is dominated by K〈cos x〉 (as in Eq. 6.7) rather

than any thermal component. We can also attempt to visualize the position distribution

directly by allowing the atoms to evolve for 1/4 of the harmonic oscillator period of a deep

lattice. We have performed this measurement for kick sequences of different lengths for the

two weaker kick strengths. (For the case with K = 3.2, the kick sequence is very short and

we did not perform the rotation measurement.) The distributions that are produced by this

method, shown in Figs. 6.17 and 6.18, are suggestive of those that appear in Fig. 6.5. There



is a slight asymmetry in the momentum distributions that is probably due to nonuniformities

in the detection system. It is also possible that a small but nonzero initial velocity of the

atomic distribution could lead to contribute to this effect.

We have fitted the data in Figs. 6.17 and 6.18 to determine the relative amplitudes

of the central Gaussian portion and the side-peak portion that corresponds to the uniform

component of the atomic distribution. For consistency of the fitting procedure, the momen-

tum distributions were first symmetrized by averaging each distribution with its symmetric

reflection about p = 0. A Gaussian curve was fit locally to the distributions near the p = 0

and separately near p = ±18, where the uniform component of the distribution is peaked.

From these two fits, we determine the peak height of these two parts of the curve. For the

case of K = 1.06, after one kick, the peaks from the uniform component have an amplitude

that is 59% of the central peak. After two kicks, the side peaks have an amplitude that is

30% of the central peak. For the kick sequence with K = 0.43, the relative uniform peak

height was determined to be 83%, 57%, and 45% after 1, 5, and 10 kicks. In both cases, it

is clear that the relative size of the uniform component is decreasing. It may be possible

to combine the results of this measurement with the results of the pendulum oscillation

measurements to determine the absolute magnitude of the residual background, which we

hope to accomplish for a future publication. Part of the difficulty with this analysis is that

the height of the peaks depends sensitively upon the width of the distribution, as we saw in

Figs. 6.8 and 6.9.

In summary, we have observed the spatial compression of an atomic distribution by

a new technique. The degree of focusing is comparable to the best that has been observed

in other laboratories by focusing atoms with a single standing wave of light. In our case,

the repeated application of pulses leads to increased focusing of the distribution, at the

expense of heating. But beyond this simple focusing, we have preliminary indications of

suppression of the uniform background that has been a problem for other atom lithography

techniques. To achieve the best possible background suppression requires a sequence of

kicks that continues until the kicks are nearly overlapping. The EOM response time in our
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system is a more fundamental limitation and we do not expect to be able to observe a high

degree of background suppression in our setup. However, this is only a limitation of our

detection system and should not be a limitation for applications of this technology. It should

be straightforward to implement this focusing method in an experimental setup that can

directly deposit the atoms onto a substrate.
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[Dembowski00] C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, and

A. Richter, “First Experimental Evidence for Chaos-Assisted Tunneling in a Microwave

Annular Billiard,” Phys. Rev. Lett. 84, 867 (2000).
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