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This dissertation details our experiments of measuring the mass of op-

tically trapped microspheres and suspended diaphragms using their Brownian

motion.

The optically trapped microsphere is immersed in air and two differ-

ent mass measurement methods are investigated based on fluctuations about

thermal equilibrium. The first method is based on spectral analysis, which

allows us to determine the relevant experimental parameters and also serves

as a calibration step for the second method. The second method is based on

the equipartition theorem and allows for rapid mass measurement.

A new method for measuring the effective mass of suspended diaphragms

is presented by combining laser Doppler vibrometry and Brownian motion

power spectral density analysis. By analyzing the relation between the fun-

damental resonant frequencies, the mode shape and the total mass of the
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diaphragm can be determined without the need for prior knowledge of its me-

chanical properties. This technique provides a precise and efficient method

for evaluating the mass of suspended diaphragms for real-life applications in

a time-dependent way.
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Chapter 1

Introduction

Brownian motion refers to the random motion of microscopic objects

suspended in a fluid. It was named after Robert Brown who first reported

the observation of the irregular and persistent motion of pollen grains im-

mersed in water through a microscope [1]. In 1905, Einstein gave a theoretical

explanation that the Brownian motion is caused by the thermal motion of

the molecules in the fluid and predicted that the average displacement of the

particle x̄ is proportional to the square root of time t as [2]

x̄ ≡
√〈

[x(t)− x(0)]2
〉
=

√
2Dt . (1.1)

Here D = kBT/γ is the diffusion constant, where kB is the Boltzmann con-

stant, T is the temperature and γ = 6πηR is the Stokes friction coefficient

for a sphere with radius R. Marian von Smoluchowski independently derived

Eq. (1.1) from a different perspective in 1906 [3]. In 1908, Paul Langevin ap-

plied Newton’s second law to solve the Brownian motion of the particle [4] and

derived what is now known as the Langevin equation. Shortly after in 1909,

Jean Perrin conducted experiments verifying Einstein’s theory of Brownian

motion [5], which provided experimental evidence for the existence of atoms

and molecules and allowed for the measurement of Avogadro’s number.
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At long time scales, the particle’s Brownian motion can be explained

very well by Eq. (1.1). This regime is called the diffusive regime where the

trajectories of the Brownian particles are continuous everywhere but not dif-

ferentiable anywhere [6]. Since velocity is defined as the time derivative of the

displacement, Brownian particles therefore do not have well-defined velocities

in the diffusive regime. However, the average velocity over time t can still

be expressed as v̄ = x/t =
√

2D/t according to Eq. (1.1), which diverges to

infinity as t goes to zero.

In 1907, Einstein developed the theory to address this divergence prob-

lem by considering the instantaneous velocity of Brownian particles at short

time scales where the motion of the Brownian particle is ballistic and domi-

nated by its inertia [7]. However, Einstein predicted that it would be impos-

sible to measure the instantaneous velocity of a Brownian particle due to the

rapid exchange of thermal energy between the particle and the fluid resulting

in small displacements of the particle over short time scales. After more than

a century since Einstein’s prediction of the instantaneous velocity, our group

successfully measured the instantaneous velocity of optically trapped Brown-

ian microspheres both in air [8] and liquid [9] after achieving sub-nanometer

spatial resolutions and microsecond temporal resolutions.

The previous research from our group provides the necessary founda-

tion for us to develop two approaches for accurately weighing a microsphere

that is optically trapped and at thermal equilibrium in air. The first method

is based on spectral analysis, which allows us to simultaneously determine the
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relevant experimental parameters and also serves as a calibration step for the

second method. The second method relies on the equipartition theorem and

enables rapid mass measurement of the microsphere. Both of these methods

are described in detail in Chapter 4.

After calibrating our system using the method described in Chapter

4, we can use the optically trapped microsphere as a high-bandwidth acous-

tic detector, as detailed in Reference [10]. This is a step towards develop-

ing a quantum-limited acoustic detector, which has potential applications

in detecting the Bragg peak in proton therapy for cancer treatment [11–13]

and in detecting acoustic waves in bubble chambers used for dark matter

searches [14–16]. Currently our optical tweezer setup is large and not portable;

therefore, we are also researching applications of suspended two-dimensional

(2D) diaphragm technology to create a more portable acoustic detector.

The study of suspended 2D diaphragm dynamics has been a grow-

ing area of research in the past decade. The micro-sized suspended thin di-

aphragms have been shown to have fundamental resonant frequencies in the

MHz regime [17], leading to a low thermal noise floor and a wide detection

bandwidth. Additionally, suspended 2D diaphragms feature a high aspect ra-

tio and an extremely small mass due to their ultra-thin profile, yielding a high

sensitivity transducer. In many cases, the Brownian motion of the suspended

diaphragm is used as a tool to calibrate the system, known as thermomechan-

ical calibration [18, 19]. This calibration method requires knowledge of the

effective mass of the diaphragm, which depends on the total mass and the

3



resonant mode shape of the diaphragm [18].

The most intuitive way to measure the total mass of the suspended

diaphragm is to use its dimensions in the 2D plane, thickness and density

to directly calculate the total mass. Scanning electron microscopy (SEM)

can accurately measure the planar dimensions of the diaphragm, whereas the

thickness can be determined via an atomic force microscope (AFM), Raman

spectrum, etc [19]. However, the suspended 2D material’s ultra-thinness makes

it very sensitive to contamination, which can affect the thickness, density and

other mechanical properties of the diaphragm [20,21].

The resonant mode shapes of the suspended diaphragm are also very

important properties for analysis. Not only do they determine the ratio be-

tween the effective mass and the total mass of the diaphragm [18], they are

also related to the calibration of the measurement. For example, when using

a focused laser beam to detect the out-of-plane motion of the suspended di-

aphragm, the readout signal is a weighted average of the deflection over the

size of the focal spot of the laser beam. When the out-of-plane motion of the

suspended diaphragm is primarily determined by either the surface tension or

the bending rigidity of the diaphragm alone, there are analytical solutions of

the resonant mode shapes [18, 22]. However, no analytic expressions of the

mode shapes can be found in the intermediate region where both the surface

tension and the bending rigidity need to be included [23]. In Chapter 5, we

(independently) develop a method that uses the measured first fundamental

frequency to numerically solve the mode shapes of a suspended circular di-

4



aphragm with known dimensions, thickness and mechanical properties related

to the bending rigidity but an unknown surface tension. Other numerical so-

lutions from different approaches are presented in References [24, 25]. The

downside of these methods is that they require physical and mechanical prop-

erties of the diaphragm that are susceptible to change due to contamination

of the diaphragm [20].

In this dissertation we demonstrate a weighing method to first measure

the effective mass of a suspended diaphragm with laser Doppler vibrometry

that directly reads out the displacement signal. Using a spectral method simi-

lar to that used to weigh the optically trapped microsphere, the effective mass

can be extracted. We then demonstrate a method that uses the first two reso-

nant frequencies to numerically determine the resonant mode shape as well as

the effective mass of the diaphragm. This method does not require the knowl-

edge of physical and mechanical properties that are affected by contamination.

Thus, it provides a possible means of studying suspended diaphragms in the

ambient environments. This weighing experiment is covered in Chapter 6.

This dissertation is organized as follows: In Chapter 2, the fundamental

theories of Brownian motion of optically trapped microspheres are reviewed,

which include the theories of Brownian motion and the principles of optical

tweezers. In Chapter 3, we cover the experimental setup used to trap and

detect the short-time Brownian motion of silica microspheres. This includes

the optical setup, the procedure to align the dual-beam optical tweezer, the

apparatus to launch silica microspheres and the detection system. Chapter 4
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details published experimental results of weighing an optically trapped silica

microsphere in thermal equilibrium with air via two different methods, which

are based on spectral analysis and the equipartition theorem, respectively. In

Chapter 5, we shift focus from single microspheres to suspended diaphragms

and present a theory for the Brownian motion of these structures. A theoretical

derivation of the transverse motion of the diaphragm that takes into account

both its bending rigidity and surface tension, under the assumption that the

diaphragm is free of contamination, is presented. In Chapter 6, we describe an

experiment to measure the Brownian motion of graphene diaphragms. This in-

cludes the setup of the experiment and the method we use to extract the mass

of the diaphragm from multiple resonant frequencies resulting from its Brown-

ian motion. In Chapter 7, we discuss our efforts to develop a high-bandwidth,

quantum-limited acoustic detector. This includes the development of a high-

power balanced photodetector for use in optical trapping experiments and the

study of the Brownian motion of graphene diaphragms in ambient air. We

also propose a design for a portable acoustic detector based on a heterodyne

fiber interferometer with a graphene membrane.
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Chapter 2

Theoretical Background

In this chapter we will provide an overview of the fundamental theories

related to the experimental work covered in later chapters. First, the theories

of the Brownian motion of a single spherical particle will be discussed. In

Section 2.1.1 we introduce the Langevin equation that describes the Brown-

ian motion of a single free particle in a viscous fluid [4, 26, 27]. Following the

method developed by George E. Uhlenbeck and Leonard S. Ornstein in Ref-

erence [27], the fluctuation-dissipation theorem is derived from the Langevin

equation. We introduce a general method to study Brownian motion in Sec-

tion 2.1.2, which is based on the Kubo-Green formula [28–30] and the Wiener-

Khinchin theorem [31]. This method is then applied to specific examples in

Section 2.1.3, including a free particle and a trapped particle, to demonstrate

its use in solving specific Brownian motion problems and to also derive the

statistical tools to analyze Brownian motion.

Following the discussion of the theories of Brownian motion, we will

dive into the principle of optical tweezers. Optical tweezers utilize the ra-

diation pressure of focused light to manipulate microscopic objects, allowing

us to trap microscopic particles in a fluid and study their Brownian motion.

The principle of optical tweezers will be introduced with a combination of an
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intuitive image, theoretical analysis and numerical results in different regimes

which are determined by the size of the particle and the wavelength of the

laser.

2.1 Theories of Brownian motion

In this section, we will introduce the theories and analytic techniques to

study the Brownian motion of a particle in a viscous fluid (with low Reynolds

number) at thermal equilibrium. For simplicity and consistency with our ex-

perimental system, we only focus on the Brownian motion of a particle in

one-dimension here but the results can be easily extended to higher dimen-

sions.

2.1.1 Langevin equation

The dynamics of a free Brownian particle with mass m in a viscous

fluid can be described by the Langevin equation [4, 26,27]

mẍ(t) + γẋ(t) = Fth(t) , (2.1)

where x(t) is the position of the particle at time t. The drag force is Fdrag =

−γẋ(t) where γ is the Stokes friction coefficient. If the particle is a sphere with

radius R and the fluid has a viscosity η, then the Stokes friction coefficient can

be expressed as γ = 6πηR. The thermal force is expressed as Fth(t) = ϵζ(t)

where ζ(t) represents a normalized Gaussian white noise (GWN) with a zero-

mean
〈
ζ(t)

〉
= 0 and a δ-correlated property

〈
ζ(t)ζ(t′)

〉
= δ(t − t′). The
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brackets
〈
·
〉
denote ensemble averages over the realizations of ζ. Since the

auto-correlation function of a random process ξ(t) is defined as

Cξξ(t, t
′) ≡

〈
ξ(t)ξ(t′)

〉
, (2.2)

the δ-correlation property of GWN can be re-written as Cζζ(t, t
′) = δ(t − t′)

or Cζζ(τ) = δ(τ) where τ = t− t′.

The statistics of the Brownian motion of a particle depend on a very

important concept called the mean-squared displacement (MSD), which mea-

sures how much the position of the particle deviates from the starting point

after time t. The MSD is defined as

MSD(t) ≡
〈
[x(t)− x(0)]2

〉
. (2.3)

Based on the definition of the auto-correlation function above, the relation

between the MSD and the auto-correlation function of a stationary process is

MSD(t) = 2 (Cxx(0)− Cxx(t)) . (2.4)

If the initial condition of the particle is x(0) = x0 and v(0) = v0 at

time t = 0, where x0 and v0 represent the initial position and velocity of the

Brownian particle, respectively, we can obtain the velocity of the Brownian

particle at time t by integrating Eq. (2.1) over time:

v(t) = v0e
− γ

m
t +

ϵ

m
e−

γ
m
t

∫ t

0

ζ(t′)e
γ
m
t′dt′ . (2.5)

Averaging over the ensemble of particles and using properties of ζ(t) mentioned

above, we can write the mean of the velocity as simple expression

〈
v(t)

〉
= v0e

− γ
m
t . (2.6)
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So, the averaged variance of the velocity of at time t is then [27]

σ2
v(t) =

〈(
v(t)−

〈
v(t)

〉)2〉
=

ϵ2

2mγ

(
1− e−

2γ
m

t
)
. (2.7)

We can easily see that when t → ∞,
〈
v(t)

〉
→ 0 and σ2

v(t) → ϵ2/2mγ. Based

on equipartition theorem, we have

ϵ2

2mγ
=

kBT

m
. (2.8)

Upon rearranging we can get

ϵ =
√

2kBTγ . (2.9)

This equation above links that magnitude of the thermal force to the dissipa-

tion, which is known as the fluctuation-dissipation theorem.

2.1.2 A general approach to study Brownian motion

In this subsection, we will introduce a general and organized approach

to study Brownian motion. This approach will provide a standard procedure

useful for the analysis of the Brownian motion of particles.

2.1.2.1 Kubo-Green formula

Before introducing the Kubo-Green formula, let’s first consider a linear

time-invariant (LTI) system taking an input Xi(t) and giving an output Yi(t).

The linearity of the system implies that an input signal a1X1(t)+a2X2(t) will

yield an output signal a1Y1(t) + a2Y2(t) when a1 and a2 are constants. The

time-invariance of the system means that Y (t + τ) is the output when the

10



input signal is X(t+ τ) for any τ , which implies that the output of the system

for a given input signal doesn’t depend on the time.

The output signal Y (t) of the LTI system can be written as the convo-

lution of the input signal X(t) and an impulse response h(t),

Y (t) =

∫ ∞

−∞
h(t− τ)X(τ)dτ . (2.10)

We can see from the equation above that when the input signal is a delta

function δ(t), the output signal will be equal to h(t), which means h(t) captures

the system’s reponse to a impulse signal. Using the convolution theorem that

states convolution in the time domain becomes multiplication in the frequency

domain, we can express the output signal in the frequency domain as

Ỹ (ω) = h̃(ω)X̃(ω) , (2.11)

where X̃(ω), Ỹ (ω) and h̃(ω) are the Fourier transforms of the input signal, out-

put signal and impulse response, respectively. Since the cross auto-correlation

between X(t) and Y (t) is

CXY (t, t
′) =

〈
X(t)Y (t′)

〉
=

∫ ∞

−∞
h(t′ − τ)

〈
X(t)X(τ)

〉
dτ

=

∫ ∞

−∞
h(t′ − τ)CXX(t, τ)dτ =

∫ ∞

−∞
h(α)CXX(t, t

′ − α)dα ,

(2.12)

we can obtain the auto-correlation of Y (t) as

CY Y (t, t
′) =

〈
Y (t)Y (t′)

〉
=

∫ ∞

−∞
h(t− τ)

〈
X(τ)Y (t′)

〉
dτ

=

∫ ∞

−∞
h(t− τ)CXY (τ, t

′)dτ =

∫ ∞

−∞
h(β)CXY (t− β, t′)dβ .

(2.13)
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When X(t) is a stationary process and we let τ = t′ − t, we have

CXY (τ) =

∫ ∞

−∞
h(α)CXX(τ − α)dα = (h ∗ CXX)(τ) , (2.14)

CY Y (τ) =

∫ ∞

−∞
h(β)CXY (τ + β)dβ

=

∫ ∞

−∞
h(−α)CXY (τ − α)dα = h(−τ) ∗ CXX(τ) .

(2.15)

Combining the equations above, we can write

CY Y (t) = h(−t) ∗ h(t) ∗ CXX(t). (2.16)

This is a very useful equation that relates the auto-correlation function of the

output signal to the auto-correlation function of the input signal under the

assumption that the input is a stationary process. This will be used in the

Section 2.1.2.2 when talking about the Wiener-Khinchin theorem.

As mentioned in Section 2.1.1, the Brownian motion of a particle is

described by the Langevin equation [27], which is linear stochastic differential

equation. Therefore, we have a LTI system that can be described with the

formalism developed above.

The second important concept to mention before introducing the Kubo-

Green formula is the definition of admittance as

Y(ω) ≡ ṽ(ω)

F̃ (ω)
, (2.17)

where ṽ(ω) and F̃ (ω) are the Fourier transforms of the velocity of and force

exerted on the particle, respectively.

With the background knowledge established, the Kubo-Green formula
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can be introduced now. The Kubo-Green formula [28–30] connects the admit-

tance to the velocity auto-correlation function Cvv(t) in a equilibrium system

as

Y(ω) =
1

kBT

∫ ∞

0

eiωtCvv(t)dt . (2.18)

Because Cvv(t) is real at any time t, we see that

Y∗(ω) = Y(−ω) . (2.19)

2.1.2.2 The Wiener-Khinchin theorem

Stochastic processes can be analyzed with an important statistical tool

known as the power spectral density (PSD), which is defined as [31]

Sξξ(ω) ≡ lim
T→∞

1

T

∣∣∣∣∣

∫ T/2

−T/2

dt eiωt ξ(t)

∣∣∣∣∣

2

(2.20)

for a process ξ(t). For a stationary random process ξ(t), the Wiener-Khinchin

theorem [31] states that the PSD and the auto-correlation function form a

Fourier transform pair, that is

Sξξ(ω) =

∫ ∞

−∞
eiωtCξξ(t) dt , (2.21)

Cξξ(t) =
1

2π

∫ ∞

−∞
e−iωtSξξ(ω) dω . (2.22)

Therefore we can write that the PSD of the velocity of the particle as

Svv(ω) =

∫ ∞

−∞
eiωtCvv(t) dt. (2.23)

Based on the property of the auto-correlation function that Cv(−t) = Cv(t),

the properties of the admittance Eq. (2.19) and the Kubo-Green formula Eq.
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(2.18), we can write the PSD of the velocity as

Svv(ω) = 2kBTℜ[Y(ω)] , (2.24)

where ℜ[Y(ω)] represents the real part of Y(ω). Plugging Eq. (2.24) into Eq.

(2.22), we can express the velocity auto-correlation function as

Cvv(t) =
kBT

π

∫ ∞

−∞
e−iωtℜ[Y(ω)] dω . (2.25)

In order to obtain the PSD of the position of the particle, let’s take

the Fourier transform of Eq. (2.16) and use the definition that the PSD is

the Fourier transform of the auto-correlation function. We see that in a LTI

system when the input X(t) is a stationary process, the PSD of the output

signal Y (t) can be written as

SY Y (ω) = h̃∗(ω)h̃(ω)SXX(ω) = |h(ω)|2SXX(ω) . (2.26)

This is a useful property of LTI systems when the input signal is stationary

and will also be used in Chapter 5 when deriving the PSD of a suspended

diaphragm due to their Brownian motion. Since v(t) = ẋ(t), it is easy to show

after a Fourier transform that ṽ(ω) = −iωx̃(ω). Using the relation of the PSD

of the output signal and the PSD of the input signal, we can get

Svv(ω) = ω2Sxx(ω) . (2.27)

Therefore, the position PSD is

Sxx(ω) =
Svv(ω)

ω2
=

2kBT ℜ[Y(ω)]
ω2

(2.28)
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and the position auto-correlation function is

Cxx(t) =
kBT

π

∫ ∞

−∞
e−iωtℜ[Y(ω)]

ω2
dω . (2.29)

From Eq. (2.27), we can also write the relation between the auto-correlation

function of the velocity and position as

Cvv(t) =
1

2π

∫ ∞

−∞
e−iωtω2Sxx(ω) dω = − d2

dt2
Cxx(t). (2.30)

The Wiener-Khinchin theorem can additionally be applied to connect

the PSD to the variance, which is also helpful to analyze Brownian motion.

For a stationary random process ξ(t), the variance can be written as

σ2
ξ =

〈
(ξ(t)−

〈
ξ(t)

〉
)2
〉
=
〈
ξ2(t)

〉
−
〈
ξ(t)

〉2
= Cξξ(0)−

〈
ξ(t)

〉2
. (2.31)

When the mean of the process is zero, we have σ2
ξ = Cξξ(0). Using the Wiener-

Khinchin theorem, the relation between the variance and PSD can be expressed

as

σ2
ξ =

1

2π

∫ ∞

−∞
Sξξ(ω) dω. (2.32)

2.1.3 Examples

In this section we will apply the formalism introduced earlier in this

chapter to analyze the Brownian motion of two scenarios: a free Brownian

particle and a trapped Brownian particle. In both examples we will derive

the PSD of position and velocity, the auto-correlation function of position and

velocity and the MSD.
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2.1.3.1 A free Brownian particle

As mentioned in the first section of this chapter, the Brownian motion

a free particle in the air can be described by a Langevin equation Eq. (2.1).

If we substitute v(t) for ẋ(t) in the equation, Eq. (2.1) becomes

mv̇(t) + γv(t) = Fth(t) . (2.33)

Taking Fourier transform of this equation, we can rewrite it as

−iωmṽ(ω) + γṽ(ω) = Fth(ω) . (2.34)

So, the corresponding admittance is

Y(ω) =
1

γ − iωm
. (2.35)

Using Eq. (2.24), we can express the velocity PSD as

Svv(ω) =
2kBTγ

γ2 +m2ω2
. (2.36)

Applying the relation between the position PSD and the corresponding velocity

PSD, which is Eq. (2.27), we can get the position PSD as

Sxx(ω) =
2kBTγ

γ2ω2 +m2ω4
. (2.37)

Taking the reverse Fourier transform of the velocity PSD, the auto-correlation

function of the velocity can be written as

Cvv(t) =
kBT

m
e−|t|/τp , (2.38)
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where τp ≡ m/γ is so called momentum relaxation time. Integrating the above

equation twice, the position auto-correlation function is obtained to be

Cxx(t) = −kBT

m

(
τ 2p e

−t/τp + At+B
)
when t ≥ 0 , (2.39)

Cxx(t) = −kBT

m

(
τ 2p e

t/τp + A′t+B′) when t ≤ 0 . (2.40)

Since Cxx is continuous, we can get B′ = B. For a stationary process, we

also have Cxx(t) = Cxx(−t); therefore, Ċxx(t) = −Ċxx(−t), which means that

Ċxx(t) is an odd function and requires Ċxx(0) = 0. The other constants are

then solved to be A = −A′ = τp. Using the derived relations, the position

auto-correlation function is finally

Cxx(t) = −kBT

m

(
τ 2p e

−|t|/τp + τp|t|+B
)
. (2.41)

So, the MSD of the particle for t ≥ 0 is

MSD(t) =
2kBT

m

[
τpt− τ 2p

(
1− e−t/τp

)]
. (2.42)

From the equation above, we can see that at the long time scales where t ≫ τp,

the MSD reduces to

MSD(t) = 2Dt , (2.43)

where D = kBT/γ, which follows Einstein’s prediction in 1905 [2]. At short

time scales when t ≪ τp, the MSD simplifies as

MSD(t) =
kBT

m
t2 , (2.44)
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which describes the Brownian motion in the ballistic regime where Einstein

predicted the existence of the instantaneous velocity. For a Brownian parti-

cle at thermal equilibrium, the velocity distribution can be described by the

Maxwell-Boltzmann distribution as

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
. (2.45)

2.1.3.2 A trapped Brownian particle

In order to study the Brownian motion, especially in the ballistic regime

of the particle, we use a technique called an optical tweezer to trap the particle

in practice. The principle of the optical tweezer will be covered in Section 2.2.

The optically trapped particle experiences an additional trapping force beyond

the thermal force and the Stokes drag force that influences the Brownian mo-

tion. Assuming that the particle only wiggles around the center of the optical

trap and the displacements are small, the trap can be modeled as a harmonic

trap with a trapping force that’s propotional to the displacement from the cen-

ter of the trap, Ftrap = −κx(t), where κ is called trapping strength. Therefore,

the Langevin equation that describes the trapped particle with this additional

force is

mẍ(t) + γẋ(t) + κx(t) = Fth(t). (2.46)

This is equation essentially describes a thermally driven damped harmonic

oscillator with an oscillation frequency ω1 =
√

ω2
0 − (2τp)−2 where ω0 ≡

√
κ/m

is the undamped angular frequency. The system is under-damped when ω0 >
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(2τp)
−2, critically-damped when ω0 = (2τp)

−2 and over-damped when ω0 <

Γ0/2. If we replace the ẋ(t) with v(t) in the equation and then take a Fourier

transform, the equation can be rewritten as

−iωmṽ(ω) + γṽ(ω) +
κṽ(ω)

−iω
= Fth(ω). (2.47)

Therefore, the admittance is

Y(ω) =
1

γ − iωm+ iκ/ω
. (2.48)

Using Eq. (2.24), the velocity and position PSD are found to be

Svv(ω) =
2kBTγω

2

(mω2 − κ)2 + γ2ω2
, (2.49)

Sxx(ω) =
2kBTγ

(mω2 − κ)2 + γ2ω2
. (2.50)

Taking the reverse Fourier transform, we can obtain the velocity and position

auto-correlation functions when the system is under-damped to be

Cvv =
kBT

m

(
cosω1t−

sinω1t

2ω1τp

)
e−t/2τp , (2.51)

Cxx =
kBT

κ

(
cosω1t+

sinω1t

2ω1τp

)
e−t/2τp . (2.52)

The theoretical results of Cvv and Cxx for a silica microsphere with a radius

of 1.5 µm at thermal equilibrium with ambient air at a temperature of 300 K

at atmospheric pressure are shown in Figure 2.1 and Figure 2.2, respectively.

So the MSD of the particle is

MSD(t) =
2kBT

κ

[
1− e−t/2τp

(
cosω1t+

sinω1t

2ω1τp

)]
. (2.53)
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Figure 2.1: Velocity auto-correlation function of a trapped Brownian particle
with different trapping strengths.
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Figure 2.2: Normalized position auto-correlation function of a trapped Brown-
ian particle with different trapping strengths. It is normalized to the variance
of the position of the Brownian particle.
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Figure 2.3: Mean squared displacement of a trapped Brownian particle with
different trapping strengths.

The theoretical result of the MSD under the same condition as mentioned

above is shown in Figure 2.3.

Another approach to analyze the Brownian motion without using the

concept of admittance is to directly take the Fourier transform of Eq. (2.46)

x̃(ω) = h̃(ω)F̃th(ω) , (2.54)

where h̃(ω) is

h̃(ω) =
1

m(ω2
0 − ω2) + iγω

. (2.55)

Using Eq. (2.26), we can write the position PSD as

Sxx(ω) = |h̃(ω)|2Sth(ω) =
1

m2(ω2 − ω2
0)

2 + γ2ω2
Sth(ω) . (2.56)

As mentioned before, the auto-correlation function of Fth(t) is a δ-function

with a strength ϵ2. Since the PSD of Fth is the Fourier transform of the
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corresponding auto-correlation function, we can express the PSD of Fth as

Sth(ω) = ϵ2. Therefore, we can get the position PSD as

Sxx(ω) =
ϵ2

m2(ω2 − ω2
0)

2 + γ2ω2
, (2.57)

Based on Eq. (2.32) which provides a way to calculate the variance of a signal

from the PSD, we can obtain the variance of the position signal as

σ2
x =

1

2π

∫ ∞

−∞
Sxx(ω) dω =

ϵ2

2mω2
0γ

. (2.58)

Using the equipartition theorem

1

2
mω2

0σ
2
x =

1

2
kBT , (2.59)

we can get ϵ2 = 2kBTγ, which is the same as what was derived in the first

subsection about Langevin equation. Therefore, the position PSD can be

written as

Sxx(ω) =
2kBTγ

m2(ω2 − ω2
0)

2 + γ2ω2
, (2.60)

which is the same as Eq. (2.50). Since the PSD is an even function of ω, we

often will limit the range of ω from 0 to +∞ in practice and use two times the

PSD as so called one-sided PSD. So the one-sided Sth(ω) and Sxx(ω) can be

written as

Sth(ω) = 4kBTγ , (2.61)

Sxx(ω) =
4kBTγ

m2(ω2 − ω2
0)

2 + γ2ω2
. (2.62)

The corresponding one-sided velocity PSD is

Svv(ω) =
4kBTγω

2

(mω2 − κ)2 + γ2ω2
. (2.63)
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Figure 2.4: Position power spectral density of a trapped Brownian particle
with different trapping strengths.
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Figure 2.5: Velocity power spectral density of a trapped Brownian particle
with different trapping strengths.
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The theoretical results of the postion and velocity PSD under the same con-

ditions mentioned above are shown in Figure 2.4 and Figure 2.5.

2.2 Principle of optical tweezers

Optical trapping utilizes radiation pressure which was deduced by James

C. Maxwell using his theory of electromagnetism in 1873 [32]. The first experi-

mental measurements of radiation pressure were reported by Pyotr N. Lebedev

in 1901 [33] and by Ernest F. Nichols and Gordon F. Hull in the same year [34].

With the invention of laser in 1960 [35], it became possible to focus the light

with high spatial and time coherence to a micro-sized spot and permit the

generation of large radiation pressures. Suppose a laser beam with a power

of P = 1.5W and a wavelength of 1064 nm is directed to and totally reflected

off of a silica spherical microsphere with a diameter of 1 µm. The laser would

exert a force of F = 2P/c ≈ 10 nN1 on the microsphere, which is 106 times

larger in comparison to the gravitational force experienced by the microsphere

(around 1× 10−14N).

In 1970, Arthur Ashkin reported the acceleration and trapping of a

micro-sized particle using the force of the radiation pressure from a focused

laser beam [36]. After further development Ashkin and his colleagues in 1986

reported the first experimental realization of optical trapping of dielectric par-

ticles from 10 µm down to 25 nm in water by a single focused laser beam [37].

This is what now is known as an optical tweezer.

1c is the speed of light
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The optical force the particle experiences in an optical tweezer can be

decomposed into two types of forces: the (conservative) gradient force and the

(non-conservative) scattering force. The gradient force arises from the gradi-

ent of the intensity profile of the laser beam. It is a restoring force that points

in the direction of the gradient of the intensity and attracts the particle to the

center of the beam. The scattering force, on the other hand, results from the

momentum transfer from the photons to the particle as they are scattered or

reflected by the particle. It points in the direction of laser propagation and

sometimes causes the position of the particle trapped in a optical tweezer to

shift downstream from the focus of the laser beam.

The optical force in an optical tweezer can be divided into three regimes,

depending on the size of the particleD and the wavelength of the laser λ. These

three regimes are the ray optics regime [38] (D ≫ λ), Rayleigh regime [39]

(D ≪ λ) and Lorentz-Mie regime [40] (D ∼ λ). In the following sections, we

will first provide an intuitive explanation of the principle of the optical tweezer

in the ray optics regime followed by a theoretical derivation of the optical force

in the Rayleigh regime. Finally, a numerical calculation in the intermediate

regime will be shown using Lorentz-Mie theory.

2.2.1 Ray optics regime

Ray optics is a useful approximation of light when the size of an object

D is much larger than the wavelength of the laser λ. In this regime, the wave

properties, such as diffraction and interference, of the light are ignored and
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the propagation of the light is modeled in terms of rays.

To illustrate the idea of optical trapping, let us first explain the gradient

force, which is caused by photons refracted in the particle with the ray optics

approximation. Figure 2.6 shows a qualitative view of an optically trapped

spherical particle in the ray optics regime ignoring the surface reflection from

the particle. At equilibrium, the particle is located at the focus of the laser

beam as shown in Figure 2.6 (middle). When the particle shifts away from

the focus in a direction that is perpendicular to the axis of the laser beam

as shown in Figure 2.6 (left), the outward directed beams are refracted along

the same direction leading to a restoring force that pulls the particle back to

the focus. When the particle moves away from the focus along the direction

of laser propagation as shown in Figure 2.6 (right), the outward laser beam

becomes more convergent. This causes the photons’ momentum component

along the propagation axis to increase thus leading to a restoring force that

pulls the particle back towards the focus. The behavior is similar when the

particle moves axially against the direction of the propagation of the laser. To

summarize, the focused laser beam generates a restoring force that acts on the

particle in three dimensions, which is directed towards the center of the trap

and works to keep the particle trapped at the focus.

Next, we can consider the effect the scattering force adds to the

discussion above and study its effect on trapping the particle with the focused

laser beam. The scattering force originates from the surface reflection of the

laser from the particle and pushes the particle in the direction of propagation
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Figure 2.6: The optical force on a trapped spherical particle in the ray optics
regime. The dark red arrows mark the direction the particle moves. The blue
arrows mark the direction of the restoring force. (left) The particle moves
laterally away from the focus. (middle) The equilibrium position with no
net force. (right) The particle moves away from the focus in the direction
downstream of the axis. Image courtesy of Tongcang Li.

of the laser beam [38]. In the case described above, the scattering force would

cause the particle to move away from the focus of the laser beam in the same

direction as the beam is traveling. Therefore, the gradient force in the axial

direction must be larger than the scattering force to form a stable trap for the

particle. A common way to increase the gradient force is to use an objective

with a high numerical aperture (NA), which will be shown quantitatively in

Section 2.2.3.

2.2.2 Rayleigh regime

When the size of the particle D is much smaller in comparison to the

wavelength of the laser λ, analytical expressions can be derived for the scat-

tering and gradient forces exerted by the laser beam on the particle [37, 39].
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Below the result of Reference [39] is summarized for the case that a particle

with radius R and refractive index np is struck by a linearly polarized Gaus-

sian beam propagating in the ẑ direction with power P , mode TEM00 and a

beam waist w0 at the focus located at the origin. Both the particle and the

laser beam are present in a medium with refractive index nf . The intensity

distribution is

I(r⃗) =
2P

πw2(z)
e−2(x2+y2)/w2(z) , (2.64)

where w(z) is the radius of the beam at a distance z from the waist, given by

w(z) = w0

√
1 +

(
z

zR

)2

. (2.65)

Here the zR ≡ πw2
0/λ is the Rayleigh length and λ = λ0/nf is the laser’s

wavelength in the medium with λ0 being the laser’s wavelength in the vacuum.

The scattering force the laser exerts on the particle is

F⃗scat(r⃗) = ẑ
128π5R6

3cλ4
0

(
m2 − 1

m2 + 2

)2

n2
fI(r⃗), (2.66)

where m ≡ np/nf is the relative refractive index defined as the ratio between

the refractive index of the particle and the surrounding medium. The gradient

force applied on the particle is then

F⃗grad(r⃗) =
2πnfR

3

c

(
m2 − 1

m2 + 2

)
∇I(r⃗) , (2.67)

which creates a trapping potential

V (r⃗) = −2πnfR
3

c

(
m2 − 1

m2 + 2

)
I(r⃗) . (2.68)
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The net optical force the particle experiences is the sum of the scat-

tering and gradient forces. As mentioned above, the axial gradient force must

be larger than the scattering force to form a stable trap. Given the equations

above, we can discuss the effect some parameters of the particle or medium

have on forming a stable trap. Focusing first on the radius R of the particle,

we see that the scattering force increases faster than the gradient force for

larger radii because the scattering force is proportional to R6 (Eq. (2.66)),

whereas the gradient force is proportional to R3 (Eq. (2.67)). So it is more

difficult to ensure a larger axial gradient force when the particle is bigger. In

contrast, Eq. (2.68) shows that the trapping potential scales as R3 but the

average kinetic energy of the particle2 is independent of the particle size, so it

is also difficult to trap the particle stably if the particle is too small.

According to Eq. (2.66) and Eq. (2.67), both the scattering and gra-

dient forces depend on the factor (m2 − 1)/(m2 + 2) which increases as m

becomes larger. Given the gradient force is linearly proportional to this factor

while the scattering force scales quadratically to this factor, this implies that

the scattering force grows more rapidly for m > 1. As a result it is more chal-

lenging to trap a particle when there’s a large mismatch between the index of

refraction of the particle and the medium [41]. For example, it is harder to

trap the same silica particle in air than in water when all other conditions are

the same, which is also one of the reasons a dual-beam configuration of the

2The average kinetic energy of the particle is kBT/2 in one direction according to the
equipartition theorem.
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Figure 2.7: The optical force on a silica microsphere with a diameter of 3 µm
in air along the axial direction. The force is exerted by a single focusing laser
with a total power of 100 mW.

optical tweezer is used in our experiment to trap silica microspheres in air.

The details of the setup will be discussed in Chapter 3.

2.2.3 Lorentz-Mie regime

In our experiment, the particles trapped have a range of radii of around

1.5 µm to 2.5 µm that are close to the wavelength of the laser (1064 nm). Par-

ticles of this size fall under the Lorentz-Mie regime [40] given the wavelength

of the laser. In this case, the optical force can be calculated through the

Lorentz-Mie theory, but due to the complexity of the theory, we will only

show the numerical results obtained by the computational toolbox developed

in Reference [40]. Here we present some simulation results of the optical force

exerted on a silica microsphere with a diameter of 3 µm in air with 100 mW of

laser power at different NAs using the Optical Tweezers Toolbox in Matlab.
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Figure 2.8: The optical force on a silica microsphere with a diameter of 3 µm
in air in the radial direction. The force is exerting by a single focusing laser
with a total power of 100 mW.

Here we assume there is only one focusing laser beam propagating along the

ẑ direction.

The optical force along the axial direction is presented in Figure 2.7.

To establish a stable trap, the minimum optical force must be negative to

ensure that there is a restoring force in both directions axially. Therefore,

a high NA is essential to trap a silica microsphere in air with only a single

focusing laser beam as it ensures that the gradient force of the beam is greater

than the scattering force acting in the axial direction. The optical force in

the radial direction, shown in Figure 2.8, behaves more symmetrically as the

scattering force only affects the axial direction and causes a bias towards the

laser propagation.
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Chapter 3

Experiment Setup

In this section we will cover the experiment setup used to study the

short-time Brownian motion of an optically trapped silica microsphere in air.

In order to trap a microsphere in air, a dual-beam optical trap is needed.

In Section 3.1 we first cover the optics setup of this dual-beam optical trap.

Specifically, we discuss the procedure to align the propagating and counter-

propagating beams in the dual-beam trap. In Section 3.2 we explain how silica

microspheres are launched into the trap. Finally, in Section 3.3 the detection

system is discussed, including the split-beam detection method and the data

acquisition system.

3.1 Optical tweezer setup and alignment

In order to trap a microsphere in air, the most straightforward way is to

attempt to use a single-beam optical trap. However, due to the large refractive

index mismatch between air and silica, trapping in air is quite challenging as

described in Chapter 2 as a result of the enhanced scattering force. According

to the simulation in Section 2.2.3, a high NA microscope objective is required

for a single-beam optical trap. The first experimental demonstration used an
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objective with an NA of 0.95 to trap a 5 µm diameter glass sphere in a single-

beam optical trap with a laser power of 40 mW [42]. While possible, a high

NA objective has two specific drawbacks: a short working distance and a high

cost. Therefore, we chose a dual-beam configuration for our optical trap since

it has a lower NA requirement and provides a longer working distance. These

benefits come at the cost of requiring careful alignment of the two counter-

propagating beams. In principal, the two laser beams should be exactly in

line with each other and focused at the same point. Misalignment will cause

the trapped microsphere to experience non-conservative forces that can do net

work on it [43, 44] and fall outside the formalism developed in Chapter 2. In

this section, we first describe the optics setup before discussing the alignment of

the dual-beam optical trap with the pinhole alignment method we developed.

3.1.1 Optical setup

Figure 3.1 shows a simplified schematic of the optics setup. We use

an Innolite Mephisto laser that outputs continuous 1064 nm laser light for the

trapping and detection laser beams. The Mephisto is based on a monolithic

Nd:YAG crystal in a Non-Planar Ring Oscillator (NPRO) configuration. It has

a maximum power output of 1.5W, a beam divergence angle (half angle) of

2.3mrad and a rms intensity noise less than 0.03% from 10Hz to 2MHz. If the

“Noise Eater” mode is set to be active, intensity noise centered around 600 kHz

to 700 kHz will disappear compared to when the laser is free running. Output

power can be adjusted by tuning the injection current. However, in practice
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Figure 3.1: The simplified schematic of the optical setup. The solid red lines
represent the 1064 nm laser from the Mephisto which is used for trapping and
detection. The solid pink line marks the HeNe laser (633 nm) used for imaging
the trapped microsphere. The split-beam detection system is depicted at the
bottom right of the image.
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we usually fix the injection current and instead adjust the power downstream

by tuning a half-wave plate (HWP) next to the laser so that power passing

through the polarizing beam splitter (PBS) can be changed. After the laser

exits the PBS, a telescope expands the size of the beam. In order to improve

the beam quality, a pinhole with a diameter 10 µm is inserted at the focus of

the two lenses in the telescope to form a spatial filter that removes the higher

order modes in the laser beam.

The laser beam is then split into two beams with the second pair of

a half-wave plate and a PBS. The s-polarized beam is reflected by the PBS

and serves as what we call the forward beam and the p-polarized beam passes

through the PBS and serves as the backward beam. The backward beam passes

through an acousto-optic modulator (AOM) (IntraAction Corp ATM-801A6

AOM driven by ME-802 modulator driver) to introduce an 80MHz frequency

difference between the forward beam and diffracted first order backward beam.

Ensuring that the polarizations of the forward and backward beams are per-

pendicular to each other in addition to the 80MHz frequency difference helps

us avoid possible interference in the dual-beam trap. Two-mirror configura-

tions are placed in front of both the forward and backward beams to help

align them with the aspheric lenses (Thorlabs C330TMD-C) that form the

dual-beam trap. By walking the two mirrors, we can control the position and

orientation of both the forward and backward beams. The details about the

procedure used to align the dual-beam trap will be covered later in this sec-

tion. In order to monitor the power of the forward beam, a small percentage
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of the forward beam is reflected by a beam sampler and measured by a photo-

diode (PF). For the backward beam a similar method is used to monitor the

total power via a photodiode (PB). Power of the backward beam that passes

through the dual-beam tweezer is also measured by a photodiode (PB’). After

the forward beam passes through the dual-beam optical trap, it is collected

for detection via a balanced photo-detector that will be covered Section 3.3 in

this chapter.

We also use a 633 nm HeNe laser with an output power around 4mW

for imaging the microsphere trapped in the dual-beam optical tweezer. The

imaging beam is aligned to merge with the forward beam via a two-mirror

configuration. One of the mirrors used in the two-mirror configuration for the

forward beam is selected to be a dichroic mirror, which allows the imaging

laser to be transmitted and aligned with forward beam. Finally, a CMOS

camera (Thorlabs DCC1545M) is mounted on the side of the dual-beam trap

to collect the light scattered by the trapped microsphere.

3.1.2 Pinhole alignment

As mentioned at the beginning of Section 3.1, the dual-beam optical

tweezer requires a high degree of alignment. In this section we cover the proce-

dure used in our lab to align the dual-beam optical trap. Micro-sized pinholes

play a crucial role in the alignment procedure.

The setup of the dual-beam optical tweezer during the alignment pro-

cess can be found in Figure 3.2. Both aspheric lenses (Thorlabs E09RMS) that
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Figure 3.2: The setup of the dual-beam optical tweezer during the alignment
process with a pinhole placed between two aspheric lenses. Image courtesy of
Logan Hillberry.

form the dual-beam trap are installed in flexure stage mounts from Thorlabs

(Thorlabs HCS013). The lens that focuses the forward beam is attached to

a custom aluminum block that fixes the orientation and position of the lens.

The other lens that focuses the backward beam is mounted on a 3-axis trans-

lation stage (Thorlabs MBT616D). A thin alignment pinhole can be inserted

between the two aspheric lenses via a second 3-axis translation stage (Thorlabs

NanoMax 300).

Aligning the dual-beam optical tweezer is mainly composed of three

steps. First, the two mirrors prior to the fixed aspheric lens are adjusted

to align the forward beam along the optical axis of the lens by focusing the

37



forward beam without installing the backward beam’s focusing lens and the

pinhole. A beam profiler (Thorlabs BP109-UV) is placed after the aspheric

lens to image the forward beam. When translating the beam profiler along the

beamline away from the focus of the forward beam, the alignment is consid-

ered optimal if we observe a clean Gaussian beam with a fixed center but an

increasing size. The second step is to install and align the backward beam’s

aspheric lens on the 3-axis translation stage. Using the forward beam, optimal

alignment is achieved when the beam entering and exiting the two-aspheric-

lens system have the same size and the beam position stays stationary upon

translation of the lens along the optical axis. Likewise, the backward beam

can be also be aligned similarly with the other mirror pair to pass through

the two aspheric lenses so that the beam size of the backward beam stays the

same before and after entering the two-aspheric-lens system.

The final step to align the dual-beam tweezer requires insertion of a

micro-sized pinhole between the two aspheric lenses to ensure that the focii

are coincident. After installing the pinhole in the translation stage mount, its

position is adjusted to maximize throughput of the forward beam. We then

fix position of the pinhole and translate the backward beam’s aspheric lens

to maximize the throughput of the backward beam. This process needs to

be done iteratively until reaching the maximum throughput of both beams.

Practically, it is easier to start with a larger pinhole with a diameter of 20 µm

and then proceed to a smaller one with a diameter of 5 µm after achieving

coarse alignment.
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3.2 Launching microspheres

In order to trap a microsphere in the optical tweezer, we use a method

that release a bunch of microspheres near the center of the trap. As the mi-

crospheres fall due to the gravity, one of them will be trapped by the optical

tweezer after a couple of attempts.

The microspheres used in the experiment are made of silica (Bangs

Laboratories SSD5001) and have an average diameter of 3.17 µm. The Stöber

process is used to manufacture these types of microspheres [45]. The micro-

spheres are very spherical with a low dispersion of radius. The details about

the silica microspheres are covered in Chapter 4 when describing our results

of accurately weighing them. The silica microspheres are initially supplied as

a dry powder and are adhered to a glass slide via the van der Waals force

by painting them onto the slide. There are also van der Waals forces present

between each microsphere. The minimum required force to liberate a micro-

sphere from a flat surface is [46,47]

Fsphere−flat = 4πRΓ , (3.1)

where R is the radius of the microsphere and Γ is the effective solid surface

energy. The minimum required force to separate two identical microspheres is

Fsphere−sphere = 2πRΓ . (3.2)

It is useful to note that the force required to separate two identical micro-

spheres is half of the force needed to remove a single microsphere from a flat
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surface. This means that once we develop a method to effectively remove mi-

crospheres from a flat surface, there is no need to worry about microspheres

still sticking to each other. It has been shown experimentally that it requires

88 nN to separate microspheres of 1 µm in diameter [47]. It follows that it

requires approximately 176 nN to launch a microsphere off from a flat silica

surface according to Eq. (3.1) and Eq. (3.2). In our experiment we designed

a system to sufficiently accelerate the glass slide to release and launch the mi-

crospheres [48]. The required acceleration to launch a microsphere with mass

m from a flat glass surface can be calculated based on Eq. (3.1) as

a =
Fsphere−flat

m
=

3Γ

ρsphereR2
. (3.3)

For a micro-sized silica microsphere, the required force to separate from the

slide is on the order of 107 to 108m/s2.

We rebuilt the same setup used in our lab previously to launch the

silica microspheres [48], which is essentially a glass slide attached to an ultra-

sonic transducer depicted schematically in Fig. 3.3. The transducer consists

of a piezoelectric ring (APC International 70-2221) and a glass slide with a

thickness of 1mm clamped between two copper plates. Both surfaces of the

piezoelectric rings can be viewed as electrodes. The surface that directly con-

tacts the copper plate is electronically grounded. The other surface which has

the glass slide serves as an insulator and is connected to the driving circuit.

The silica microspheres are applied to the edge of a cover slip which is epoxied

to the end of the glass slide.

The driving circuit we use to vibrate the slide attached to the trans-
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Figure 3.3: The schematic of the driving circuit (left side) to drive the ultra-
sonic transducer (right side). Image courtesy of Logan Hillberry.

ducer is the same one developed in our lab for previous tweezer experiments

in air [48]. Essentially the circuit shown in Figure 3.3 represents a high-power

pulsed generator. The two capacitors (8mF, Digikey 338-1236-ND) are used

to store energy from a connected external voltage supply (TDK Lambda 300-

5). A high-power MOSFET (Vishay IRFPS40N50L) driven by a high-current,

high-speed MOSFET gate driver (Microchip TC4422) serves as a switch to

release pulsed current. The piezo ring manufacturer claims that the resonant

frequency of the device is approximately 344 kHz. In practice, the gate driver

is driven by a square wave with frequencies ranging from 342 kHz to 348 kHz.

These waveforms are generated by a Stanford Research Systems DS345 func-

tion generator.

The glass slide with silica microspheres is positioned above but very

close to the center of the trap. When the piezoelectric ring is activated, the
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Figure 3.4: A silica microsphere trapped in a dual-beam optical tweezer. The
silica microspheres are pre-applied on a cover slip that is brought very close
to the center of the trap. Upon ultrasonic vibration, some microspheres are
released and descend into the trap. The small red glowing dot observed in the
image is from a trapped microsphere scattering the imaging laser.

microspheres begin to detach from the slide and descend before one of them

gets trapped in the dual-beam optical tweezer. This process can be monitored

visually through an eyepiece as shown in Figure 3.4.

3.3 Detecton system

As mentioned above, the forward beam will be collected after passing

through the dual-beam trap to measure the Brownian motion. We use split-

beam detection to measure the short-time Brownian motion of the trapped

microsphere, which is shown in bottom right of Figure 3.1. The forward beam
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of s-polarization is reflected by a PBS and enters the detection system. A

D-shaped cut mirror (Thorlabs BBD05-E03) is used to divide the beam into

two halves. Each beam is focused into one of the two ports of a balanced

photodetector (Thorlabs PDB120C) separately. The balanced photodetector

has a bandwidth of 75MHz and a transimpedance gain of 180 × 103V/A for

wavelengths from 800 nm to 1700 nm. The balanced photodetecor has three

signal ports. Two of them output voltage signals that are proportional to the

corresponding power each port receives, denoted as Va and Vb. The third port

produces a voltage signal that is proportional to the power difference received

between the two photodetector inputs V− = Va − Vb. As the microsphere

wiggles in the trap, it will deviate the forward beam and cause an imbalance

between the two halves of the laser beam. Therefore, we measure a voltage

signal from the balanced photodetector that is proportional to position of the

trapped microsphere along the direction that is perpendicular to the edge of

the cut mirror. In practice, the voltage signal V− is normalized to V−/(Va+Vb)

to account for the small variations in the detected power when changing the

power of the trapping laser.

The temperature of the system is measured by placing a platinum re-

sistance thermometer (Omega RTD-3-F3102-36-T) very close to the center of

the dual-beam trap. The temperature data can be read with a temperature

monitor (Lakeshore 211) and later be collected with the National Instruments

6259 data acquisition DAQ device with a maximum sampling frequency of

2MHz, which is also used to collect the data from the photodiodes in order to
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monitor the power of the forward and backward beams.

We digitize the analog voltage data from the balanced detector with

a high bandwidth (200 MHz) data acquisition (DAQ) card (Gage 1622) that

has a vertical resolution of 16 bits. Using this combination of the split-beam

detection and the fast digitizer, our group has pioneered measuring the short-

time Brownian motion of optically trapped microspheres in both air [8] and

liquids [9].
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Chapter 4

Weighing an Optically Trapped Microsphere

using Short-time Brownian Motion

In this chapter we report the results of a novel weighing metrology ex-

periment utilizing the short-time Brownian motion of a trapped microsphere,

which has been published in [49] under the title Weighing an optically trapped

microsphere in thermal equilibrium with air. The pictures shown in this Chap-

ter are reproduced from this published paper where the author was one of the

main contributors. In our experiment a silica microsphere with a radius of

1.5 µm is optically trapped in air at room temperature and atmosphere, which

also remains in thermal equilibrium throughout the experiment. The dual-

beam configuration of the optical tweezer that is described in Chapter 3 is

used. We developed two methods to accurately weigh the microspheres: the

spectral method and equipartition method.

In the spectral method we fit the average voltage signal PSD produced

via the split-beam detection and extract relevant fitting parameters. By fixing

some experimental parameters that can be measured with high accuracy, such

as the air temperature T , the air viscosity η and the radius of the silica micro-

sphere R, we can combine them with the fitting parameters to extract other

experimental parameters that are difficult to measure accurately, such as the
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harmonic trap strength κ, the microsphere mass density ρ and the calibration

factor β. Specifically, the microsphere mass can be calculated by combining

the radius and the density.

As it will be shown below, the spectral method can provide a very ac-

curate measurement of the microsphere mass, but it requires a large amount of

data to generate a smooth PSD necessary for fitting. Therefore, we developed

the equipartition method to alleviate the data burden by an order of magni-

tude while achieving a similar mass uncertainty. The second method utilizes

our system’s ability to observe the short-time Brownian motion of the micro-

sphere [8], so we only need to calculate the variance of the voltage signal and

its derivative. However, the equipartition method demands knowledge of the

harmonic trap strength κ or the calibration factor β, so the spectral method

must be performed once prior to using the equipartition method. This faster

method can be used to monitor the microsphere’s mass after calibration has

been performed with the spectral method.

In the following of this chapter, we first cover the method to extract

parameters by fitting to the PSD in Section 4.1. In Section 4.2 we explain how

to use the fitting parameters to calculate the microsphere mass in both the

spectral and the equipartition methods. Finally, in Section 4.3 we discuss how

noise affects our estimation of the microsphere’s mass and provide a summary

of all the experimental parameters.
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4.1 Power spectral density parameter estimation

As discussed in Chapter 3, the split-beam detection system used in

our experiment generates a voltage signal V (t)1 that is proportional to the

position x(t) of the trapped microsphere along one the axis as x(t) = V (t)/β

where β is the calibration factor mentioned above. According to Eq. (2.62),

the theoretical PSD (one-sided) of the voltage signal is

SV V (ω) = β2 4kBTγ

m2(ω2 − ω2
0)

2 + γ2ω2
. (4.1)

In order to smooth the experimental voltage PSD, ten trials of voltage signal

of 0.3 s long each are collected at a sampling rate of 50MHz during the exper-

iment. We bin-average the signal with non-overlapping blocks of 256 samples

to improve the spatial resolution, resulting a new effective sampling rate of

195 kHz. The Bartlett method [50] is performed to significantly reduce the

noise in the overall PSD of the signal, at the cost of decreasing the resolution

in the frequency domain. The method involves dividing the time domain sig-

nal into smaller segments and averaging the PSD of each segment. In practice,

we perform 4 averages per trial and a total of 40 averages to the signal. The

estimated experimental voltage PSD can be written as ŜV V,k = ŜV V (fk), where

the index k represents the discrete frequencies where the PSD is known.

After obtaining a smooth PSD from the steps above, we can fit to the

PSD to extract fitting parameters. First, we temporarily ignore the experi-

mental parameters and only focus on fitting; therefore, it is more convenient

1The normalization of the voltage signal is described in Chapter 3
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to express Eq. (4.1) as

SV V (f ;θ) =
1

a+ bf 2 + cf 4
, (4.2)

where θ ≡ (a, b, c)⊤ and a, b, c are the fitting parameters. In the following we

describe how we apply the maximum likelihood estimation method [51–53] to

fit our gamma-distributed PSD data.

Each data point of an n-trial-averaged PSD is subject to a gamma-

distributed noise [52], which can be written as

P(ŜV V,k) =
1

SV V,k

nn

Γ(n)

(
ŜV V,k

SV V,k

)n−1

exp

(
−n

ŜV V,k

SV V,k

)
, (4.3)

where Γ(n) = (n − 1)! is the gamma function and SV V,k is the mean value of

the distribution. In our case, we have n = 40 as the averaged number. The

likelihood of measuring the entire data set, denoted as ŜV V , given a model,

denoted as SV V,k = SV V (fk;θ), is the joint probability distribution of the data

given the model, and can be expressed as

P(ŜV V |θ) =
∏

k

P(ŜV V,k) . (4.4)

The goal of maximizing the likelihood can be achieved by minimizing the

negative log likelihood of the model, which is

L(θ, ŜV V ) = n
∑

k

(
log [SV V (fk;θ)] +

ŜV V (fk)

SV V (fk;θ)

)
+ C , (4.5)

where C =
∑

k

[
log Γ(n)− n log n− (n− 1) log ŜV V (k)

]
is a constant and does

not affect the result of the minimization. Initial values for the minimization
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process can be determined through analytical calculations and numerical im-

plementations [52], which can help to improve the efficiency of finding the

best-fit parameters θ̂ = (â, b̂, ĉ)⊤ to maximize the likelihood of the data given

the model. Figure 4.1(a) displays experimental power spectral densities and

the corresponding best-fit curves for two different trapping laser powers.

In order to accurately assess the uncertainty and correlation of the

fitted parameters, we use a method inspired by the profile likelihood method

[51, 53] to scan a volume of parameter space around the estimated parame-

ters θ̂. This allows us to construct a three-variate probability distribution (as

shown in Figure 4.1(b) and Figure 4.1(c)) that we then fit to a three-variate

Gaussian distribution

PG(θ; θ̂,Σθ) = exp

[
−1

2

(
θ − θ̂

)⊤
Σ−1

θ

(
θ − θ̂

)]
. (4.6)

The absolute residuals between the actual probability distribution and the

fitted Gaussian distribution are consistently less than 1%. The 95th percentile

of these residuals is even lower, at less than 0.1%, see Figure 4.2. The variance-

covariance matrix of the fitted parameters calculated from the fit is

Σθ =




σ2
a σ2

ab σ2
ac

σ2
ab σ2

a σ2
bc

σ2
ac σ2

bc σ2
c


 . (4.7)

The square root of the diagonal terms in Σθ is the uncertainty of the corre-

sponding parameters denoted as σi. The correlation between the fitting param-

eters can be calculated through the off-diagonal terms as rij = [Σθ]ij/(σiσj),

where i, j = a, b, c.
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(f)Figure 4.1: (a) Voltage PSD of a trapping laser at two different power levels:
6.5 mW (blue) and 234.0 mW (red). The data points, represented by open
circles, are the result of averaging 40 independent measurements and further
binned on a logarithmic scale for clarity. The solid lines represent the best fit
of the data according to a maximum-likelihood method. The vertical dashed
lines indicate the range of the data used in the fit, with the lower bound cor-
responding to the color of the fitting line and the upper bound represented by
a black dashed line. The black solid line represents the noise spectrum, which
was measured under the same detection conditions as the other two curves,
but without a microsphere present. (b) The isosurface of P = exp(−L) as a
function of the fitting parameters when the trapping power is 6.5 mW. The
isosurfaces represent different levels of Gaussian width, with 3-sigma repre-
sented by purple, 2-sigma represented by blue, and a range from the peak to
1-sigma represented by red to green. (c) As in (b) but the trapping power is
234 mW.
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gamma distribution for 40 averaged PSD measurements marked by the solid
black line.
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After we obtain the best-fit parameters of the PSD, the next step

is to deduce the experimental parameters from the fitting parameters. As

mentioned at the beginning of the chapter, we will fix the experimental pa-

rameters that can be measured relatively accurately as constant, including the

air temperature T , air viscosity η and the radius of the silica microsphere R,

and then calculate the other experimental parameters, which are the harmonic

trap strength κ, the microsphere mass density ρ and the calibration factor β.

In the following we describe our methods to accurately measure T , η and R.

As mentioned in Chapter 3, a temperature sensor is placed very close to

the center of the dual-beam optical trap (see Figure 3.4) to constantly monitor

the temperature of the environment. The total fluctuation of the air tempera-

ture is found to be less than 0.05% during the experiment as shown in Figure

4.3(c). According to Sutherland’s model [54] the viscosity of air changes only

slightly as a function of temperature, see Figure 4.3(d).

As mentioned above, the silica microspheres are manufactured through

the Stöber process [45], resulting in very spherical shapes with a low dispersion

of the radius. According to a statistical analysis of approximately 200 micro-

spheres observed using a scanning electron microscope (SEM) with the ImageJ

program, the radius of the microspheres is approximately 1.51 µm with a un-

certainty that is defined as the standard deviation divided by the radius of up

to 3.0%, as shown in Figure 4.3(a) and Figure 4.3(b). The analysis of the un-

certainty of the radius of the microsphere ensemble confirms a low dispersion of

the radius. Additionally, the degree of sphericity of these microspheres, which
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Figure 4.3: (a) Example of one SEM image of the 3 µm microspheres. (b) The
distribution of the radius of the microsphere ensemble. (c) Observed temper-
atures (circles) and the corresponding viscosity (crosses) evaluated with the
Sutherland model at different trapping powers. (d) Temperature-dependent
viscosity according to the Sutherland model, with the inset showing the linear
relationship between viscosity and temperature in the experimentally relevant
range.
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can be quantified by the aspect ratio a/b, can also be quantified through anal-

ysis of the SEM images using ImageJ. The deviation from a perfectly spherical

shape can be represented by the parameter ϵ = a/b− 1, and in this case, the

value of ϵ is determined to be 0.027. The high degree of sphericity of the silica

microspheres, with a small deviation from a perfectly spherical shape, suggests

that the aspherical geometry of these microspheres will result in a relatively

minor correction to the Stokes friction coefficient γ = 6πηR [55]. In particular,

the correction due to aspherical geometry is expected to be less than 1%. As

a result, this minor correction can be safely ignored in the following analysis

of the uncertainties of the other experimental parameters.

After obtaining the values and uncertainties of the fitting parameters θ

and the experimental parameters R, η, and T that can be measured accurately,

the parameters of interest Θ = (κ, ρ, β)⊤ can be expressed as a function of

these parameters Φ = (θ, R, η, T )⊤. If we define

d1 ≡ b+
√
ac , (4.8)

d2 ≡ b+ 2
√
ac , (4.9)

then we have

k(Φ) = 12π2ηR

√
a

d2
, (4.10)

ρ(Φ) =
9η

4πR2

√
c

d2
, (4.11)

β(Φ) =

√
6π3ηR

kBTd2
. (4.12)
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The variance-covariance matrix of Θ can be calculated through the error prop-

agation equation [56]

ΣΘ = JΘΣΦJ
⊤
Θ (4.13)

where JΘ is the Jacobian matirx with elements (JΘ)i,j = [∂Θi/∂Φj]θ=θ̂. Here,

ΣΦ is the variance-covariance matrix of the fitting parameters Φ, which in-

cludes both the fitting parameters and the measured experimental parame-

ters. Under the assumption of zero correlation between the fitting parame-

ters and the measured experimental parameters, we can approximate ΣΦ as

ΣΦ ≈ diag(Σθ, σ
2
R, 0, 0), where σ2

R is the variance of the radius R. The un-

certainties of the parameters T and η are ignored in this simplification due to

their much smaller values compared to the uncertainties of the radius R and

the fitting parameters according to the discussion above. The uncertainty of

the parameters of interest Θ can be obtained by taking the square root of the

diagonal elements of the variance-covariance matrix ΣΘ. If we define

u1 ≡
3

16π2R3
, (4.14)

u2 ≡
1

2
√
6πηRkBT

, (4.15)

then the Jacobian matrix can be explicitly written as

JΘ =
6π2ηR√

ad32
×




d1 −a −
√

a3/c 2ad2/R 2ad2/η 0

−u1c −u1

√
ac u1d1

√
a/c −4u1d2

√
ac/R 2u1d2

√
ac/η 0

−u2

√
c −u2

√
a −u2a/

√
c u2d2

√
a/R u2d2

√
a/η −u2d2

√
a/T


 .

(4.16)
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Figure 4.4: The results of the power scan experiment extracted from fitting to
the PSD at different trapping powers: trap strength (a), density of the silica
microsphere (b) and calibration factor (c). The solid black line represents the
linear fitting of the trap strength vs the trapping power in (a) but represents
the average of the values (density of the microsphere or the calibration factor)
over all the trapping powers in (b) and (c).

Up to this point, we have discussed the necessary analytical tools for

extracting the parameters κ, ρ, and β. In our experimental setup, the trap-

ping power of the optical tweezer can be adjusted, allowing us to perform the

experiment at various trapping powers and extract the parameters of interest

under different conditions. It is worth noting that the same microsphere is

used throughout the power-scan experiment. In Figure 4.4, we present the

results of the power scan experiment where the trapping power of the opti-

cal tweezer varies from 6.5mW to 257.2mW. As shown in Figure 4.4(a), the

trapping strength κ exhibits a positive linear relationship with the trapping

power. By fitting a straight line to the data, we can determine the slope of

the graph to be 0.16 fNnm−1/mW.

Before discussing the results of the power-scan experiment on the den-

sity of the microsphere ρ, it is important to make distinct what are systematic
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and statistical uncertainties when discussing the measured results at different

laser powers. In the following discussion, the systematic uncertainty is derived

from error propagation of the fitting parameters and the measured experimen-

tal parameters at each power. The statistical uncertainty, however, refers to

the fluctuation (the standard deviation) of a value that, in principle, should

remain constant for different trapping powers.

From Figure 4.4(b), it can be observed that the density of the micro-

sphere ρ, remains relatively constant across different trapping powers with a

systematic uncertainty of 5.9% and a statistical uncertainty of 0.9%. However,

Figure 4.4(c) shows a relatively larger and non-monotonic fluctuation of the

calibration factor β is observed at different trapping powers. According to

Eq. (4.1), the magnitude of the voltage PSD is proportional to the product

of the square of the calibration factor and the temperature. However, the

non-monotonic dependence of the calibration factor on the trapping power,

as well as the strong coupling of the microsphere to the environment in our

experiment, suggests that the observed behavior is not a result of laser heating

of the microsphere. This conclusion is further supported by the fact that our

experiment was conducted under different conditions than the experiments

in vacuum [57]. Furthermore, the trend of the calibration factor on different

powers is reproducible with different microspheres. It suggests that this trend

is probably due to the fact that we need to rotate the HWP in front of the

PBS to control the laser power that goes into the split-beam detection system

because the power limit of this Thorlabs balanced photodetector is only 40 µW
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per port.

Once we have obtained the relevant experimental parameters, which are

κ, ρ and R, we can use them to calculate the mass of the silica microsphere

accurately. This will be discussed in the following section.

4.2 Mass measurement technique

Using the parameters determined in the previous section, we can easily

calculate the mass of the microsphere by using the density and radius, which

is

m1 =
4

3
πR3ρ. (4.17)

As mentioned at the beginning of the chapter, we can also use the equiparti-

tion therorem, which is kBT = m
〈
ẋ2
〉
= κ

〈
x2
〉
, to calculate the mass of the

microsphere. Based on the parameters determined from the section above, the

mass can also be written as

m2 =
kBT〈
V̇ 2
〉β2 , (4.18)

m3 =

〈
V 2
〉

〈
V̇ 2
〉k . (4.19)

More specifically, if we define Φ′ = (θ,
〈
V̇ 2
〉
,
〈
V 2
〉
, R, η)⊤2, then the three

equations of calculating the mass of the microsphere can be re-expressed as

m1(Φ
′) = 3ηR

√
c

d2
, (4.20)

2The mass measurements are independent of temperature T
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m2(Φ
′) =

6π3ηR

d2

1〈
V̇ 2
〉 , (4.21)

m3(Φ
′) = 12π2ηR

√
a

d2

〈
V 2
〉

〈
V̇ 2
〉 . (4.22)

As seen in the above expressions, once the fitting parameters have been deter-

mined, the mass of the microsphere can be calculated using only the variances

of the voltage and the derivative of the voltage, both of which require much

less data compared to the spectral method. To obtain the variance of the po-

sition and velocity signals in practice, we collect a single trial of data lasting

0.3 s and plot the normalized histograms of the position and velocity. These

histograms can then be fit with a Gaussian distribution with the variance as

the only adjustable parameter. This allows us to extract the variance of the

position and velocity signals as shown in Figure 4.5. The uncertainty of the

variance is estimated statistically by taking the standard deviation of 10 trails

of data at each trapping power.

Similar to the analysis to extract the uncertainties of the parameters

of interest from the fitting parameters and the measured experimental param-

eters through the variance-covariance matrix, the variance-covariance matrix

of vector m = (m1,m2,m3)
⊤, denoted as Σm, can be calculated from

Σm = JmΣΦ′J⊤
m, (4.23)

where ΣΦ′ = diag(Σθ, σ
2
⟨V̇ 2⟩, σ

2
⟨V 2⟩σ

2
R, σ

2
η) and Jm is the Jacobian matirx with

elements (JΘ)i,j = [∂mi/∂Φ
′
j]θ=θ̂. If we define

v1 ≡
1

4π2
, v2 ≡

π〈
V̇ 2
〉 , v3 ≡

〈
V 2
〉

〈
V̇ 2
〉 , (4.24)
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234.0 mW (red) with Gaussian fits (dashed lines) and a histogram of the signal
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then the Jacobian matrix can be written as

Jm =
6π2ηR√

ad32
×




−v1c −v1
√
ac v1d1

√
a/c 0 0 2v1d2

√
ac/R 2v1d2

√
ac/η

−v2
√
c/d2 −v2

√
a/d2 −v2a/

√
cd2 −v2

√
ad2/

〈
V̇ 2
〉

0 v2
√
ad2/R v2

√
ad2/η

v3d1 −v3a −v3
√
a3/c −2v3ad2/

〈
V̇ 2
〉

2v3ad2/
〈
V 2
〉

2v3ad2/R 2v3ad2/η


 .

(4.25)

The systematic uncertainties of the mass measurements are calculated by tak-

ing the square root of the variance-covariance matrix Σm.

In order to accurately calculate the variances of the position and ve-

locity signals, it is important to carefully consider the length of the data used

in the calculation. The uncertainty in the estimate of the variance decreases

as the length of the uncorrelated data increases, following the scaling of τ−1/2,

where τ is the length of the uncorrelated voltage trace. However, in our case,
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Figure 4.6: The relative Allan deviation normalized to the value of variance
corresponding to the minimum Allan deviation. The dashed purple line rep-
resents the τ−1/2 trend of the uncorrelated data.

the data is correlated when the time scale is shorter than the momentum re-

laxation time τp = m/γ , but slow drifts may contaminate the signal at longer

time scales. Therefore, Allan-deviation stability analysis [58–61] is used to

determine the optimal time to estimate the variance. Figure 4.6 shows the

result of the Allan-deviation experiment with 22.8mW of trapping power cal-

culated from a 14-minute voltage trace. We can see that the Allan-deviation

decreases with increasing averaging time up to 30 s before slow drifts start to

affect the result after that point. Based on this, it is estimated that roughly

100 independent mass measurements can be performed using a single trial of

data that is 0.3 s in length.

Using the techniques mentioned above, the mass of the same silica

microsphere was estimated at 14 different trapping powers. The results are
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summarized in Figure 4.7. The average mass was calculated for each method,

yielding m̄1 = 24.8 pg, m̄2 = 25.1 pg, and m̄3 = 27.4 pg. Here we denote

the systematic uncertainty of the mass measurement as σsys
mi

and statistical

uncertainty as σstat
mi

, where i = 1, 2, 3. The spectral method (m1) provides

the most accurate measurement result with smallest systematic and statistical

uncertainties (σsys
m1

/m̄1 = 3.0% and σstat
m1

/m̄1 = 0.9%). For the equiparti-

tion method, m2, which uses the variance of the voltage derivative, yields a

similar result (around 1% shift) to m1 with slightly higher systematic and

statistical uncertainties (σsys
m2

/m̄2 = 4.1% and σstat
m2

/m̄2 = 1.6%). The other

method based on the equipartition theorem, m3, using the variance of the volt-

age produces results with the largest systematic and statistical uncertainties

(σsys
m3

/m̄3 = 6.7% and σstat
m3

/m̄3 = 3.0%). Important to note also is that, the

results of m3 have a roughly 10% shift of the value of the mass of the micro-

sphere for at almost all trapping powers compared to m1 and m2. A possible

explanation for this shift will be provided in the next section.

4.3 Discussion and summary

In this section, we will first discuss the reason why m3 provides a result

of the mass measurement with a large shift compared to m1 and m2. Then we

will summarize all the measured quantities in the experiment and the order of

using the spectral and the equipartition method in application.

From Figure 4.1(a) we can see that there are many low-frequency noise

contaminants in our system that persist even when the trapped bead is not
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Figure 4.7: Summary of the three mass measurement methods at different
trapping powers

present, including but not limited to laser pointing noise, acoustic noise due to

close proximity to a chilled water pipe line and so on. The most prominent of

these noise sources is centered around 120Hz and extends from 70Hz to 170Hz.

When using spectral analysis to fit the voltage PSD, we can adjust the fitting

range to exclude these low-frequency noise peaks and improve the accuracy of

the results. But when we directly calculate the variance of the voltage signal,

the results are affected by these low frequency noise components based on

Eq. (2.32). To estimate the effect of the noise on the variance of the voltage

signal, the voltage PSD can be viewed as a summation of the PSD due to

the Brownian motion of the microsphere and the noise PSD. According to Eq.
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(2.32), we can approximate

〈
V 2
〉
≈
〈
V 2
〉
Brownian

+

∫ 170Hz

70Hz

Snoise
V V (f) df , (4.26)

where
〈
V 2
〉
is the variance of the measured voltage signal and

〈
V 2
〉
Brownian

=

kBTβ
2/k is calculated by using the parameters from the spectral method. It

is worth noting that we only consider the dominant noise peak in the equa-

tion above. Figure 4.8(a) shows the result of the excess variance defined as

∆
〈
V 2
〉
≈ |
〈
V 2
〉
−
〈
V 2
〉
Brownian

| and the value of the second integration in Eq.

(4.26) at different trapping powers. The 10% discrepancy between m3 to m1

and m2 could be explained by the low-frequency noise on average.

Similar to Eq. (2.27), the relation between the voltage PSD and the

voltage derivative PSD can be stated as

SV̇ V̇ (f) = (2πf)2SV V (f), (4.27)

which implies that the high-frequency components contribute more to the volt-

age derivative PSD. This also explains the smaller drift m2 experiences in

comparison to m3 since there is more low-frequency noise in our system than

high-frequency noise. As shown in Figure 4.8(b), we can apply a similar anal-

ysis to estimate the excess variance of the voltage derivative, ∆
〈
V̇ 2
〉
. We find

that the excess variance of the voltage derivative is approximately 2% of the

voltage derivative variance calculated by using the parameters from the spec-

tral method, which is consistent with the expected contribution from noise

with frequencies above 80 kHz when integrated using the noise PSD.

To summarize the results of this chapter, Table 4.1 presents a summary
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Figure 4.8: The excess variance of the voltage signal (a) and the voltage deriva-
tive signal (b), denoted by purple circles. The black squares represent the value
of the integration of the noise term in both cases. The error bars are the stan-
dard deviation of 10 trials of data at each trapping laser power.

of the experimental parameter values and their uncertainties. The spectral

method can measure the optically trapped silica microsphere’s mass with 3.0%

uncertainty with a 3 s trail of data. This measurement provides a calibration

of our system that we can proceed to in combination with the equipartition

theorem to rapidly measure the mass of the microsphere in 0.3 s with un-

certainties of 4.1 %. Our experiment is performed in a strong environmental

coupling scenario, which suggests application for air-based sensing. This fast

measurement method allows us to study a system of changing mass with high

accuracy.
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Table 4.1: Table of values and uncertainties. Reported values are the average
over the power scan experiment, except for κ and

〈
V 2
〉
for which we report the

range since these quantities scale linearly with trapping power. The relative
systematic uncertainties averaged over the power scan experiment and the
statistical uncertainties are included, where applicable.

Quantity Value
Uncertainty (%)

Unit
Systematic Statistical

R 1.51 2.9 - µm
η 18.295 0.04 - µPa s
T 295.50 0.05 - K〈

V̇ 2
〉
× 103 36.4 2.4 - µs−1〈

V 2
〉
× 103 (0.03, 1.53) 8.9 - Arb.
k (0.66, 49.1) 3.1 - fN nm−1

ρ 1.72 5.9 0.9 g cm−3

β 0.47 1.6 5.0 µm−1

m1 24.8 3.0 0.9 pg
m2 25.1 4.1 1.6 pg
m3 27.4 6.7 3.0 pg
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Chapter 5

Theory for the Brownian Motion of

Suspended Diaphragms

In this chapter we are going to extend the theory of the Brownian

motion from a single particle to a suspended diaphragm. Unlike the micro-

spheres that require an optical tweezer for trapping, suspended diaphragms

are naturally “trapped”. For all the discussion in this dissertation, we will

focus on the out-of-plane motion of the suspended diaphragm, which can be

viewed as a summation of an infinite number of resonant modes. The trap-

ping strengths and the resulting resonant frequencies are determined by the

mechanical properties of the diaphragm. Section 5.1 details the model that

describes the out-of-plane motion of circular suspended diaphragms. Specifi-

cally, we analyze the “intermediate” regime where both the bending rigidity

and the surface tension play comparable roles. We present a numerical method

that uses the first resonant frequency as well as some parameters related to the

mechanical properties of the diaphragm to solve the resonant mode shapes of

the diaphragm in the intermediate regime. After solving for the fundamental

resonant modes of the suspended diaphragm, we decompose its out-of-plane

motion as well as the thermal force to a summation of the fundamental res-

onant modes and apply the techniques covered in Chapter 2 to derive the
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corresponding statistical tools to analyze its Brownian motion.

5.1 Out-of-plane motion of suspended diaphragms

In this section we will talk about the out-of-plane motion of a suspended

diaphragm and solve for the fundamental resonant modes assuming the edges

of the diaphragm are clamped. This will provide the tools necessary to analyze

the Brownian motion of the diaphragm described in Section 5.2.

Consider a thin circular diaphragm of with a radius of a in air. The

diaphragm is suspended in the xy−plane. If we assume it is a thin solid plate

of uniform isotropic material with a constant thickness and its tension is also

uniformly distributed, then the motion of the diaphragm in the z direction

can be described by the following equation [62–64]

D∇4z − Σh∇2z + µż + ρhz̈ = Fth(x, y, t) , (5.1)

where z(x, y, t) describes the transverse displacement of an element ρ dx dy

on the surface of the membrane in the xy−plane along the z direction. The

density and the thickness of the diaphragm are designated as ρ and h, respec-

tively. The two-dimensional gradient operator is defined as ∇ = ∂2

∂x2 + ∂2

∂y2
.

The bending stiffness of the diaphragm can be described by its Young’s mod-

ulus and Poisson’s ratio, E and ν, respectively as D = Eh3/12(1 − ν2). The

in-plane tension of the diaphragm is represented as Σ while µ corresponds to

the damping coefficient of forced vibration. Finally, the diaphragm’s random

collisions with air molecules are captured by the stochastic process Fth(x, y, t).
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In order to analyze the Brownian motion of the diaphragm, the nor-

mal mode method will be employed [18, 64]. The transverse motion of the

diaphragm will be decomposed into the fundamental resonant modes which

depend on the boundary condition. Initially, we will omit the damping term

µż and the stochastic force Fth(x, y, t). This simplification of Eq. (5.1) de-

scribes the free undamped transverse motion of a diaphragm as

D∇4z − Σh∇2z + ρhz̈ = 0 . (5.2)

In the equation above, the first and second terms capture the effects of the

diaphragm’s bending rigidity and tension, respectively. The contribution that

each term has on the transverse motion of the diaphragm depends on many

parameters including in-plane tension, size and thickness of the diaphragm

and so on. In order to compare the roles of these two terms and also provide

guidance on which term can be safely ignored in some circumstances, we will

talk below about the resonant frequencies in the two cases when D = 0 and

Σ = 0 separately. When D = 0, we have [18,22]

fmn|D=0 =
1

2π

√
Σ

ρ

γmn

a
, (5.3)

where γmn is a constant and it varies for different resonant modes. Some

values of γmn are γ01 = 2.405, γ11 = 3.832, γ21 = 5.135, γ02 = 5.520, etc.

When Σ = 0, the resonant frequencies of each mode are [22]

fmn|Σ=0 =
1

2π

√
D

ρh

β2
mn

a2
. (5.4)
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Table 5.1: The ratio of higher resonant frequencies to the first resonant fre-
quency f01 when D = 0 and Σ = 0.

Ratio
Uncertainty
D = 0 Σ = 0

f11/f01 1.593 2.082
f21/f01 2.135 3.415
f02/f01 2.295 3.893

where βmn is a constant and it varies for different modes. Some values of βmn

are β01 = 3.196, β11 = 4.611, β21 = 5.906, β02 = 6.306, etc. Table 5.1 shows

the ratio of the frequencies corresponding to higher resonant modes to the first

resonant frequency. It can be seen that the ratio is larger for the case when

Σ = 0 compared to when D = 0. As it is shown below, the ratio when both

terms are included should fall between the corresponding two values when only

one of the terms is present.

The ratios between the fundamental resonant frequencies when only

taking one term into account can provide insight about the role each term has

on dynamics of the diaphragm. Consider a circular graphene diaphragm with

density ρ = 2.267 g/cm3, radius a, thickness h, Young’s modulus E = 0.9TPa,

Poisson’ ration ν = 0.165, and in-plane tension Σ ≈ 1MPa [65], we can plot

the ratio of the first resonant frequency when D = 0 to when Σ = 0, which

is f01|D=0/f01|Σ=0, as a function of the radius of the diaphragm for different

thicknesses of 1 nm, 2 nm and 3 nm, as shown in Figure 5.1. We can see from

the figure below that when the radius of the diaphragm is on the order of a

micron, the bending rigidity and the in-plane tension are comparable to each

other. For example, in the case of a graphene diaphragm with a thickness of
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Figure 5.1: The ratio of the first resonant frequency when D = 0 to when
Σ = 0 (f01|D=0/f01|Σ=0) as a function of the radius of the diaphragm for
different thicknesses of 1 nm, 2 nm and 3 nm. The intersection between the
solid line and the dashed red line indicates when the two frequencies equal to
each other.

2 nm, the two resonant frequencies are nearly equal to each other when the ra-

dius of the diaphragm is around 2.5 µm. This point of equivalence will shift to

larger radii for thicker graphene diaphragms. In these scenarios, it is difficult

to ignore either of the terms; therefore, we will detail the procedures to acquire

the fundamental resonant modes and frequencies with both terms present.

Here, the procedure to solve the fundamental resonant modes for bounded

circular thin diaphragms when Σ = 0 provided in Reference [22] is adapted to

solve Eq. (5.2) when both Σ andD are present. The radius and thickness of the

graphene diaphragm are chosen to be experimentally relevant values of 3.25 µm

71



and 2.1 nm, respectively. All other parameters are the same as what was listed

above save for the surface tension Σ which is unknown. First, we use sepa-

ration of variables in cylindrical coordinates, which is z(r, θ, t) = Z(r, θ)T (t),

and plug into Eq. (5.2) to obtain two independent equations

d2T

dt2
+ ω2T = 0 , (5.5)

∇4Z − κ2∇2Z + λ4Z = 0 , (5.6)

where

κ2 ≡ Σh

D
(5.7)

and

λ4 ≡ ρhω2

D
. (5.8)

If we then define

α2
± ≡

√
κ4 + 4λ4 ± κ2

2
, (5.9)

then Eq. (5.6) can be written as two separate equations:

∂2Z

∂r2
+

1

r

∂Z

∂r
+

1

r2
∂2Z

∂θ2
+ α2

−Z = 0 , (5.10)

∂2Z

∂r2
+

1

r

∂Z

∂r
+

1

r2
∂2Z

∂θ2
− α2

+Z = 0 . (5.11)

Using separation of variables once more Z(r, θ) = R(r)Θ(θ) with the fact that

Z(r, θ) = Z(r, θ + 2π), we know Θ(θ) will have the form

Θ(θ) = A cosmθ +B sinmθ, (5.12)

where m is an integer and m = 0, 1, 2, 3, ..., then

d2R

dr2
+

1

r

dR

dr
+

(
α2
− − m2

r2

)
R = 0 , (5.13)
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d2R

dr2
+

1

r

dR

dr
−
(
α2
+ +

m2

r2

)
R = 0 . (5.14)

The first, Eq. (5.13), is a Bessel differential equation of order m, while Eq.

(5.14) is a modified Bessel differential equation of order m. Given that the

solution of R(r) should be finite for all the points inside the diaphragm, it

follows that terms of the Bessel functions of the second kind should be removed

because they diverge to infinity at r = 0. The general solution of Eq. (5.6)

can then be written as

Z(r, θ) = [CmJm(α−r) + C ′
mIm(α+r)]× (Am cosmθ +Bm sinmθ) , (5.15)

where Jm is the Bessel function of the first kind of order m and Im is the

modified Bessel function of the first kind of orderm. For a clamped diaphragm,

the boundary conditions of Z(r, θ) can be written as

Z(a, θ) = 0 , (5.16)

∂Z

∂r
|r=a = 0 . (5.17)

Using the general solution in Eq. (5.16), we obtain

C ′
m = −Jm(α−a)

Im(α+a)
Cm , (5.18)

so Z(r, θ) can be re-written as

Z(r, θ) =

[
Jm(α−r)−

Jm(α−a)

Im(α+a)
Im(α+r)

]
×(Am cosmθ +Bm sinmθ) . (5.19)

We can re-express the second boundary condition with this new solution as

[
d

dr
Jm(α−r)−

Jm(α−a)

Im(α+a)

d

dr
Im(α+r)

]

r=a

= 0 . (5.20)
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From the properties of the Bessel and modified Bessel functions

d

dr
Jm(α−r) = α−Jm−1(α−r)−

m

r
Jm(α−r) , (5.21)

d

dr
Im(α+r) = α+Im−1(α+r)−

m

r
Im(α+r) , (5.22)

we derive the equation that determines the fundamental resonant frequencies

as

x−Im(x+)Jm−1(x−)− x+Jm(x−)Im−1(x+) = 0 (5.23)

where x± ≡ α±a. It is difficult to find an analytic solution for the equation

above. Furthermore, the in-plane tension usually isn’t even known at this

stage. However, as long as we can measure the first resonant frequency of

the diaphragm experimentally, then x± can be solved numerically and the in-

plane tension can subsequently be extracted. Plugging these parameters back

into Eq. (5.23), frequencies of higher resonant modes can then be also solved

numerically. Below, we will use the parameters of a thin circular graphene

diaphragm mentioned earlier and assume that the first resonant frequency is

measured to be at 5.5MHz to demonstrate this idea.

Based on the definitions of α± and x±, we can express the relation

between x± with λ and κ as

x+x− = λ2a2 , (5.24)

x2
+ − x2

− = κ2a2 . (5.25)

Inserting Eq. (5.24) into Eq. (5.23) we can write

λ2a2

x+

Im(x+)Jm−1

(
λ2a2

x+

)
− x+Jm

(
λ2a2

x+

)
Im−1(x+) = 0 . (5.26)
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Referring to the definition of λ in Eq. (5.8) we can calculate λ01 for the first

resonant frequency f01 = 5.5MHz as

λ01 a = a

(
2πf01

√
ρh

D

)1/2

≈ 5.419 . (5.27)

Plugging λ01 into Eq. (5.26), we can try to solve for x+01. Although Eq. (5.26)

has an infinite number of solutions, we can tell from the definition of α± and

x± that x+ ≥ x−. Using the relation between x± and Eq. (5.24) we notice

that x+ ≥ λa. Finding the root of Eq. (5.26) with this condition, we can

get x+01 ≈ 11.133 and x−01 ≈ 2.638. Using the relation between κ and x±

we can calculate κ = 3.387 × 106m−1 and therefore the in-plane tension Σ =

3.9 × 106MPa. With these parameters, we can numerically solve Eq. (5.23)

for the resonant frequencies of higher modes, e.g. λ11a ≈ 7.008, λ21a ≈ 8.225,

λ02 a ≈ 8.642 and so on. The corresponding resonant frequencies are f11 ≈

9.1MHz, f21 ≈ 12.7MHz, f02 ≈ 13.8MHz, etc. The ratio between the higher

resonant frequencies to the first resonant frequency is then f11/f01 ≈ 1.65,

f21/f01 ≈ 2.30, f02/f01 ≈ 2.51, etc.

For the convenience of the following discussion, it is usually common

to normalize Z(r, θ) so that the maximum value of |Z(r, θ)| is unity. This

is to ensure that the time term can represent the transverse motion of the

diaphragm. As an example, the spatial term when m = 0 can be written as

Z01(r, θ) = A01

[
J0

(x−01r

a

)
− J0(x−01)

I0(x+01)
I0

(x+01r

a

)]
. (5.28)

The maximum value of 1.00001 occurs when r = 0, which can be viewed as

unity thus yielding a normalization of A01 ≈ 1m−1.
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The effective mass is another very useful concept that is utilized to

analyze the transverse motion of the diaphragm. For a circular diaphragm, it

can be defined as

Mmn

M
=

1

πa2

∫ 2π

0

dθ

∫ a

0

r|Zmn(r, θ)|2dr , (5.29)

where M = ρπa2h represents the total mass of the diaphragm and Mmn is the

effective mass of mode mn. Let us again focus on the fundamental resonant

mode that corresponds to the first resonant frequency f01 for the two cases of

no bending rigidity and no tension. When D = 0, the spatial mode can be

written as [18]

Z01|D=0(r, θ) = A01|D=0J0

(γ01r
a

)
, (5.30)

where A01|D=0 = 1. The corresponding ratio of the effective mass to the total

mass is (M01/M)|D=0 ≈ 0.2695 [18]. Similarly, when Σ = 0 the spatial mode

of the fundamental resonant mode is [22]

Z01|Σ=0(r, θ) = A01|Σ=0

[
J0

(
β01r

a

)
− J0(β01)

I0β01)
I0

(
β01r

a

)]
, (5.31)

where A01|Σ=0 ≈ 1.056. The corresponding ratio of the effective mass to the to-

tal mass is (M01/M)|Σ=0 ≈ 0.1829. When both terms are necessary we should

expect the ratio to again lie between the previous two special cases similar to

the previous discussion on the resonant frequencies earlier in this section. In

the case that the first resonant frequency is found to be f01 = 5.5MHz, we can

numerically calculate M01/M ≈ 0.226 using Z01(r, θ) from Eq. (5.28). The

mode shape of a system can provide insight about its effective mass, as demon-

strated in Figure 5.2. The figure shows the mode shape of the fundamental
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Figure 5.2: The mode shape of the fundamental resonant mode Z01(r) as a
function of the normalized radius r/a.

resonant mode, Z01, as a function of the normalized radius r/a. Integration

of the mode shape from 0 to r/a reflects the value the effective mass. As the

figure illustrates, when D = 0 the integration is at its maximum, resulting

in the largest effective mass. Conversely, when Σ = 0 the integration is at

its minimum, resulting in the smallest effective mass. When both terms are

considered, the mode shape falls in between, resulting in an effective mass that

is also in between the two extremes. As it will be shown in the Chapter 6, we

can directly measure the effective mass experimentally by fitting to the PSD

of the corresponding specific resonant mode. Therefore, the ratio between the

effective mass and the total mass is required in order to calculate the total

mass of the diaphragm.

It is worth noting that the method described above requires the knowl-

edge of the physical and mechanical properties of the diaphragm in Eq. (5.27).
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As a result, the method only works in cases of very ”clean” samples. How-

ever, reality is not so kind, and the sample may be contaminated with water,

oil, hydrocarbons, etc. The method to calculate the mode shape and effective

mass in these situations will be discussed in Chapter 6.

5.2 Brownian motion of suspended diaphragms

Given the fundamental resonant modes of the diaphragm that were

solved in the previous section, the out-of-plane motion of the diaphragm can

be decomposed into a summation of the fundamental resonant modes

z(r, θ, t) =
∑

m,n

zmn(t)Zmn(r, θ) . (5.32)

Please note that we will keep using cylindrical coordinates for the discussion

below to suit our experiment needs, but the result applies to other coordinates

as well. Here Zmn has been normalized so that the maximum value is unity as

mentioned in the previous section. The fundamental modes can be shown to

be orthogonal, which means

x
Zmn(r, θ)Zjk(r, θ)dS = ϵmn,jkδmn,jk , (5.33)

where the integral is evaluated over the surface of diaphragm and ϵmn,jk is a

constant related to the normalization and δmn,jk is defined as

δmn,jk =

{
1, mn = jk

0, mn ̸= jk
. (5.34)

78



The thermal force term of Eq. (5.1) can also be decomposed into the funda-

mental resonant modes as

Fth(r, θ, t) =
∑

m,n

qmn(t)Zmn(r, θ) . (5.35)

Multiplying the equation above by Zjk and integrating over the diaphragm,

we can write

qmn(t) = χ−2
mn

x
Fth(r, θ, t)Zmn(r, θ)dS , (5.36)

where χ2
mn =

s
Z2

mn(r, θ)dS. Plugging Eq. (5.32) and Eq. (5.35) into Eq.

(5.1), we have

∑

mn

[
z̈mn(t) +

µ

ρh
żmn(t) + ω2

mnzmn(t)−
qmn(t)

ρh

]
Zmn(r, θ) = 0 . (5.37)

Since the equation above holds for any point on the diaphragm, then it follows

that the expression in the bracket must be zero and we have

z̈mn(t) +
µ

ρh
żmn(t) + ω2

mnzmn(t) =
qmn(t)

ρh
. (5.38)

Using the definition of the effective mass Mmn ≡ ρh
s

Z2
mn dS and linking the

damping term to the Quality factor of the oscillation, then the equation above

can be written as

z̈mn(t) +
ωmn

Qmn

żmn(t) + ω2
mnzmn(t) =

Fth,mn(t)

Mmn

, (5.39)

where Fth,mn(t) =
s

Fth(r, θ, t)Zmn(r, θ) dS. In order to apply the method

we developed in Chapter 2 when studying the Brownian motion of a single

particle to the Brownian motion of a suspended diaphragm, we just need to
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prove that Fth,mn(t) still describes a random stationary process.

If Fth(x, t) describes a random stationary process with a zero-mean
〈
Fth(x, t)

〉
= 0 and a δ-correlated property Cth(x, t,x

′, t′) = δ(t−t′)C ′
th(x,x

′),

then it can be seen that

〈
Fth,mn(x, t)

〉
=

x 〈
Fth(x, t)

〉
Zmn dS = 0 (5.40)

and

CFth,mn(x,t)Fth,mn(x′,t′) =

∫∫∫∫ 〈
Fth(x, t)Fth(x

′, t′)
〉
Zmn(x)Zmn(x

′) dS

=

∫∫∫∫
Cth(x, t,x

′, t′)Zmn(x)Zmn(x
′) dS

= δ(t− t′)

∫∫∫∫
C ′

th(x,x
′)Zmn(x)Zmn(x

′) dS ,

(5.41)

which shows that Fth,mn(t) still describes a random stationary process and the

techniques developed in Chapter 2 can still be applied here. If we perform a

Fourier transform to Eq. (5.39) we can write

z̃mn(ω) = h̃mn(ω)F̃th,mn(ω) , (5.42)

where h̃mn(ω) is defined as

h̃mn(ω) =
1

Mmn (ω2
mn − ω2 + iωmnω/Qmn)

. (5.43)

Using Eq.(2.26) we can also obtain

Szz,mn(ω) = |h̃mn(ω)|2Sth,mn(ω) (5.44)

=
1

M2
mn [(ω

2 − ω2
mn)

2 + ω2
mnω

2/Q2
mn]

Sth,mn(ω) . (5.45)
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Since the auto-correlation function Fth,mn(t) is a δ-function with a strength

ϵ2mn, the corresponding PSD is simply

Sth,mn(ω) = ϵ2mn . (5.46)

Therefore, the PSD of the zmn(t) after substitution is

Szz,mn(ω) =
ϵ2mn

M2
mn [(ω

2 − ω2
mn)

2 + ω2
mnω

2/Q2
mn]

. (5.47)

We can use Eq. (2.32) which provides a way to calculate the variance of a

signal from the PSD to express the variance of the position signal as

σ2
z,mn =

1

2π

∫ ∞

−∞
Szz,mn(ω) dω =

ϵ2mn

2M2
mnω

2
mn/Qmn

. (5.48)

Using the equipartition theorem that states [18]

1

2
Mmnω

2
mnσ

2
z,mn =

1

2
kBT , (5.49)

we can get the relation ϵ2mn = 2kBTωmnMmn/Qmn and then express the one-

sided position PSD as

Szz,mn(ω) =
4kBTωmn

MmnQmn [(ω2 − ω2
mn)

2 + ω2
mnω

2/Q2
mn]

. (5.50)

If we write u(t) = ż(t) and use Eq. (2.27), then the one-sided velocity PSD

Suu,mn(ω) can also be obtained as

Suu,mn(ω) =
4kBTωmn ω

2

MmnQmn [(ω2 − ω2
mn)

2 + ω2
mnω

2/Q2
mn]

. (5.51)

Furthermore, it is more convenient to express the position PSD in terms of

the natural frequency as

Szz,mn(f) =
kBTfmn

2π3MmnQmn [(f 2 − f 2
mn)

2 + f 2
mnf

2/Q2
mn]

(5.52)
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and the velocity PSD as

Suu,mn(f) =
2kBTfmnf

2

πMmnQmn [(f 2 − f 2
mn)

2 + f 2
mnf

2/Q2
mn]

. (5.53)

Using the Wiener-Khinchin theorem, we can get the auto-correlation function

by performing a reverse Fourier transform of the PSD to obtain

Czz,mn =
kBT

κ

(
cosω1mnt+

sinω1mnt

2ω1mnτp,mn

)
e−t/2τp,mn , (5.54)

Cuu,mn =
kBT

m

(
cosω1mnt−

sinω1mnt

2ω1mnτp,mn

)
e−t/2τp,mn , (5.55)

where ω1mn = ωmn

√
1− (2Qmn)

−2 and τp,mn = Qmn/ωmn. The corresponding

MSD of mode mn is

MSDmn(t) =
2kBT

κ

[
1− e−t/2τp,mn

(
cosω1mnt+

sinω1mnt

2ω1mnτp,mn

)]
. (5.56)

The theory to study the Brownian motion of diaphragms was established in

this Chapter. In next chapter we will transition to the experiment setup and

results of measuring the Brownian motion of the diaphragm.
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Chapter 6

Measuring the Brownian Motion of Graphene

Diaphragms

In this chapter we will discuss both the experiment and results from

measuring the Brownian motion of suspended graphene diaphragms. In Sec-

tion 6.1 we will cover the experimental details, including the choice of the

diaphragms to study and the experimental tools used to measure the Brow-

nian motion of the diaphragms, as well as the setup and procedure of the

experiment. The results and analysis are subsequently presented in Section

6.2. We will use the spectral method in Section 6.2.1 to measure the effec-

tive mass of the diaphragm that corresponds to the first fundamental resonant

mode. Afterward, we introduce a new methodology in Section 6.2.2 to deter-

mine the mode shape that uses the first resonant frequencies. By combining

the effective mass and the corresponding mode shape, the total mass of the

suspended graphene diaphragm can be calculated.

6.1 Experiment

6.1.1 Suspended graphene diaphragm

The sample chosen for this experiment is 6-8 layers of graphene on

Ultra-fine 2000 Mesh Copper TEM Grids (Ted Pella 21970-5). The thickness
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Figure 6.1: (left) Top view of the suspended graphene sample. Optical image
taken with the CCD camera from a laser Doppler vibrometer setup (MSA-600-
U). (right) Schematic of the suspended graphene diaphragm in cross section
view. The graphene diaphragm is represented by the solid grey line, the curva-
ture of which represents the thermal motion of the diaphragm over the through
hole on the copper plate.

of the graphene is between 2.1 - 2.8 nm and the Young’s modulus is 0.9 TPa

according to the manufacturer. The graphene is grown by the chemical vapor

deposition (CVD) on copper substrate. The copper substrate is etched away

and the remaining graphene is transferred to a separate meshed copper grid

by the wet transfer process. Across the copper grid are circular through holes

with a diameter of 6.5 µm and a pitch between the adjacent holes of 12.5 µm,

as shown in Figure 6.1 (left). The graphene sheet covers the entire copper

grid and leaves freestanding graphene over the through holes, as illustrated in

Figure 6.1 (right). The copper grid is supported by a 3 mm circular holder with

a 1 x 2 mm slot in the middle (Ted Pella, 4510 PELCO SynapTek grids) where

the copper and graphene are exposed. These exposed sections of graphene on

both sides of the sample can be sued to design a fiber acoustic detector with

an optical readout, the design of which is covered in Chapter 7.
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Figure 6.2: The schematic of a typical heterodyne design of LDV.

6.1.2 Laser Doppler vibrometry

In order to measure the mass of the suspended diaphragms using their

Brownian motion, the position or displacement of the diaphragm need to be

directly measured. In our experiment, a laser Doppler vibrometer (LDV) is

used for detection of the Brownian motion of the diaphragm. We first in-

troduce and review the operating principle of the LDV before providing the

technical details of the specific LDV machine used in the experiment.

The LDV is a non-contact optical device that uses laser light to pre-

cisely measure the vibration velocity and displacement of a surface. Figure 6.2

shows a simplified schematic of a typical heterodyne design of a LDV. The laser

beam is first split into two parts by a non-polarizing beam-splitter. The upper

beam serves as a reference beam. The lower beam, which we call detection

beam, passes through either a Bragg cell or an AOM that adds a frequency

shift fs, usually in the range of tens of MHz, to the original frequency of the

laser beam. The detection beam with shifted frequency is then directed at the
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vibrating sample. Laser light reflected from the sample is then re-combined

with the reference beam and is collected and detected by a photodiode to pro-

duce a beat note signal..

The phase shift ϕ(t) of the detection laser beam due to the displacement

s(t) of the sample is [66]

ϕ(t) =
4πs(t)

λ
, (6.1)

where λ is the wavelength of the laser. Then the frequency modulation due to

the phase shift can be written as

fD =
ω(t)

2π
=

1

2π

dϕ(t)

dt
=

2v(t)

λ
, (6.2)

where v(t) is the velocity of the sample and fD is the Doppler shift frequency.

The photo-detector will detect a beat note signal between the reference beam

and the reflected detection beam, where the Doppler shift frequency fD is en-

coded. After obtaining the beat note signal, either the analog decoder using

a phase-locked loop circuit or a digital decoder using the arctangent phase

method can be used to extract the phase shift ϕ(t) and therefore the displace-

ment of the sample s(t) [66].

The LDV used in our experiment is a MSA-600-U from Polytec (with

MSA-A-DIF option, non-differential measurement mode). It can measure

the out-of-plane vibrations with frequencies between 6.25 Hz and 600 MHz.

The maximum sampling time is 160 ms. The displacement resolution is

100 fm/
√
Hz for frequencies up to 1 MHz and 15 fm/

√
Hz for frequencies be-

tween 1 MHz and 600 MHz. The optical system for detection consists of a 532
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nm laser with a maximum power of 5 mW and can be focused down to a spot

with diameter as low as 0.8 um with the bright field objective. It also has a

high resolution digital camera installed for a full-field view of the sample.

6.1.3 Experiment setup

In this section, we will detail the experimental setup and the process

for preparing the sample for measurement. First, the graphene sample is se-

cured to the center of the top side of a cylindrical sample holder, which has a

diameter of 0.75 inches and a thickness of 0.345 inches, using a tiny amount of

silver paint applied on the edges of the sample. The sample holder is designed

with a hole, measuring 0.078 inches in diameter and 0.062 inches in depth at

the center of the top side, that allows the suspended graphene to move freely

in the out-of-plane direction. Additionally, a threaded hole for a 1/4-20 screw

is placed at the center of the bottom side of the sample holder, allowing for

secure placement in the chamber. The sample holder also features a side hole

with a diameter of 0.062 inches and a trench with a width of 0.062 inches

and a height of 0.025 inches, both of which are designed to minimize trapped

gas within the sample holder. The design of the sample holder is shown in

Figure 6.3.

After the silver paint used to secure the position of the sample has

dried, the sample, together with the sample holder, is inserted into a clean-

ing chamber that uses radiation heating from a lamp to heat the sample to

temperatures above 300 ◦C as shown in Figure 6.4. The sample is left in the
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Figure 6.3: (left) Graphene sample fixed on the sample holder. (right) The
cross-sectional view of the sample holder.

chamber overnight to thoroughly remove contaminants such as hydrocarbons.

Immediately after removal from the cleaning chamber, the graphene

sample holder is mounted into a custom chamber, specifically designed for our

measurements. The chamber, as shown in Figure 6.5, is comprised of a 2.75-

inch tapped ConFlat (CF) vacuum blank flange that functions as the base.

The blank flange is machined to have a centrally located threaded hole that

secures sample holder in place inside the chamber. Additionally, two pairs

0.25-inch diameter blind holes are drilled on the sides of the flange, which

serve as the connection points for welding two 1/4-inch stainless steel tubes,

used for pumping and controlled gas leaking. Furthermore, two additional

holes with a diameter of 0.25 inches are drilled on interior side of the flange to

form an L-channel that to connects the inside of the chamber to the pumping

tubes. Valves are attached to each of these two tubes (not shown in the Figure)
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Figure 6.4: The graphene diaphragm in the cleaning chamber. The sample is
heated up and cleaned by the radiation heat from the lamp.

to seal the chamber after pumping down vacuum and prevent any vibrations

caused by the pump from interfering with the accuracy of the measurements.

The chamber also includes a 2.75-inch double-sided CF flange to function as

a separating middle layer to create some vertical space for the sample, and a

2.75-inch DUV-graded fused silica viewport (Kurt J. Lesker VPZL-275DUC2)

with anti-reflection coating from 425-760 nm as the top layer. Crucially, the

viewport coating has near zero reflectivity at 532 nm, which is the wavelength

of laser used in the LDV. This minimizes the reflected beam power from the

viewport, which is essential for the experiment. Once the chamber is sealed

and connected to an oil-free pumping system, the pressure inside the chamber
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Figure 6.5: The experimental setup of measuring the Brownian motion of the
graphene diaphragm. The chamber is shown with a cross-sectional view for
clarity. Two valves connected to the two 1/4-inch tubes in the figures are not
shown.
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is pumped down to a lower pressure1, reducing the possibility of further con-

tamination. Subsequently, the valves on the two tubes are closed to isolate the

system. The chamber is then disconnected from the pumping system and is

transferred for measurement to the LDV as shown in Figure 6.5. The detection

beam from the LDV is focused on the sample via a 50X microscope objective

(A-MOB-050X) and the spot diameter at the focus should be 1.4 µm according

to the manufacturer. This concludes the experimental setup for measuring the

Brownian motion of the suspended graphene diaphragm and the results of the

measurement are covered in the next section.

6.2 Results

6.2.1 Effective mass

The laser Doppler vibrometer used in the measurement allows us to

acquire the displacement signal directly instead of extracting the calibration

factor by fitting to the voltage PSD as described in Chapter 4. However, as we

can see from Eq. (5.52), in the frequency regime where f ≪ f01 where f01 is

the first resonant frequency of the diaphragm, the corresponding position PSD

is inversely proportional to f 4
01. As shown below, our choice of graphene sample

results in a first resonant frequency in the MHz region which is beneficial for

building a low-thermal-noise and high-bandwidth acoustic sensor. However,

at this frequency other noises in the system becomes non-negligible and an

1The pressure measured close to the pump is 10−4 mbar; however, the pressure in the
chamber should be larger due to small conductance of the thin tube used to connect the
chamber to the pump.
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additional corresponding term needs to be included in Eq. (5.52) for fitting as

Szz,tot(f) =
kBTfmn

2π3MmnQmn [(f 2 − f 2
mn)

2 + f 2
mnf

2/Q2
mn]

+ Szz,noise , (6.3)

where Szz,noise refers to the constant noise floor in the frequency domain. Dur-

ing the experiment, one trial of data over 160ms is collected at a sampling

rate of 125MHz. Similar to the spectral method described in Chapter 4, the

Bartlett method [50] is used by dividing the signal into smaller segments and

averaging PSD of each segment in order to reduce the noise in the PSD.

In principle, the diaphragm has an infinite number of resonant modes,

but only three or four resonant frequencies can be resolved with the laser beam

focused on the center of the diaphragm in our experiment. The first resonant

peak is dominant and is used for fitting to extract parameters. Similar to the

fitting method in Chapter 4, we temporarily ignore the experimental parame-

ters and only focus on fitting the PSD itself. So it is more convenient to write

Eq. (6.3) as

Szz,tot(f ;θ) =
a

(f 2 − f 2
0 )

2 + b2f 2
+ c , (6.4)

where θ ≡ (a, f0, b, c)
⊤ and a, f0, b, c are the fitting parameters referred to

below. An actual example of an experimental PSD of the first resonant peak

and the best-fit curve are shown in Figure 6.6.

The uncertainty in the fitting parameters can be extracted by taking

the square root of diagonal terms in the the variance-covariance matrix Σθ.

We find the relative uncertainties of the fitting parameters as σa/a = 0.61%,

σf0/f0 = 0.006%, σb/b = 0.38% and σc/c = 0.22% when fitting the first
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Figure 6.6: The position PSD for the first resonant mode of a 6-8 layer
graphene diaphragm at low pressures. The experimental data is depicted as
open black circles and the solid red line is the fitting result. The frequency
range shown in the plot is the same one used for fitting.

resonant peak. The temperature of the environment, found to be 295.75 K, is

also monitored during the experiment by placing a thermometer near the focus

of the laser beam. What differs from the experiment weighing the optically

trapped microsphere is that a power scan measurement is not needed, thus the

experiment can be completed in much less time. As a result, the uncertainty

of the temperature measurement is chosen to be the systematic uncertainty

of the thermometer, which is 0.5K, resulting in a relative uncertainty of the

temperature as σT/T = 0.17%.

Comparing Eq. (6.3) and Eq. (6.4) we can get the relation between

the fitting parameters and the parameters to extract as

Mmn =
kBTb

2π3a
, (6.5)
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fmn = f0 , Qmn = f0/b , Szz,noise = c . (6.6)

The uncertainties of fmn and Szz,noise are just the uncertainties of the fitting

parameters f0 and c, respectively. We find the first resonant frequency to

be f01 = 3.257MHz with a relative uncertainty of 0.005 % while the noise

floor is determined to be Szz,shot = 0.02 pm2/Hz. The uncertainties of the

effective mass Mmn and quality factor Qmn can both be calculated through

the propagation of uncertainty as

σMmn

Mmn

=

√(σa

a

)2
+
(σb

b

)2
+
(σT

T

)2
, (6.7)

σQmn

Qmn

=

√
(σb

b

)2
+

(
σf0

f0

)2

. (6.8)

Based on the fitting parameters extracted by fitting to the PSD of the first

resonant peak and the temperature, we calculate that the effective mass of the

first resonant mode is M01 = 284.8 fg with a relative uncertainty of 0.74 % and

the corresponding quality factor is 21.1 with a relative uncertainty of 0.38 %.

Fitting to PSD is essentially analogous to the spectral method de-

scribed in Chapter 4. Is there a corresponding equipartition method? The

situation turns out to be a little bit different here. According to Eq. (2.32),

the variance of the position data equals the integral of the position PSD inside

the bandwidth. Unfortunately, the shot noise overpowers the Brownian motion

signal outside of the frequency window centered around the resonant peak. A

bandpass filter is applied to increase the signal-to-noise ratio (SNR), as shown

in Figure 6.7. However, this bandpass filter also removes some Brownian mo-

tion signal at the same time. A trade-off has to be made between maximizing
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Figure 6.7: The position power spectral density of the original and band-
pass filtered signal. The solid green and red lines represent the unfiltered and
filtered signal, respectively. The dashed orange lines represent the boundaries
of the bandpass filter. The noise is numerically generated from the fitting
parameter c and is then bandpass filtered with the same boundaries. The
solid black line represents the theoretical position PSD without noise.

the SNR while preserving as much Brownian motion signal as possible. A

window spanning from 2.7 MHz to 3.8 MHz is chosen and the normalized dis-

tribution of the position signal is shown in Figure 6.8. The SNR is 2.42 and

54.5 % of the energy of the position due to short-time Brownian motion is

resolved. Similarly, the normalized distribution of the velocity signal with the

same bandpass filtering is shown in Figure 6.9. The SNR of the velocity signal

is 2.34 and 54.1 % of the energy due to instantaneous velocity is resolved.

The equipartition method could be used to measure the effective mass in the

case when the signal due to the Brownian motion is larger than the shot noise
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Figure 6.8: The normalized position distribution of the bandpass filtered signal
(red) and noise (blue). The solid black line is the theoretical result using the
effective mass and resonant frequency extracted by the spectral method.

floor in the low frequency region. This can possibly be achieved by using a

suspended graphene diaphragm with a larger diameter and a lower first res-

onant frequency which leads to a higher Brownian motion signal in the low

frequency region according to Eq (5.52). Recently, there has been progress to

make large suspended monolayer and bilayer graphene diaphragms with diam-

eters up to 750 µm [65]. It is worth testing the weighing method based on the

equipartition theorem on those samples in the future experiments.

6.2.2 Mode shape and total mass

It is worth noting that what we measure by fitting to the PSD is the

effective mass of the corresponding resonant mode, not the total mass of the

suspended graphene diaphragm. According to Eq. (5.29), the total mass is

equal to the effective mass corresponding to the first resonant mode divided
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Figure 6.9: The normalized velocity distribution of the bandpass filtered signal
(red) and noise (blue). The solid black line is the theoretical result using the
effective mass extracted by the spectral method.

by a ratio ranging from 0.1829 to 0.2695 depending on the mode shape. This

means the total mass of the suspended graphene diaphragm can range from

1056.8 fg to 1557.1 fg, which is much larger than the expected mass calculated

from the manufacturer’s data. This discrepancy implies there is contamination

on the sample2. The method covered in Chapter 5 requires the knowledge of

the thickness, density and mechanical properties of the graphene. However,

when contamination is present on the sample, these parameters from the man-

ufacturer are no longer accurate.

Here we propose a method that uses the frequencies of the higher res-

onant modes to extract the ratio of the effective mass to the total mass. The

only other required knowledge of the sample is the radius of the suspended

2The contamination effect is larger for graphene in an ambient environment, which will
be shown in Chapter 7.
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graphene diaphragm which can be measured very accurately in our case.

Continuing from Eq. (5.23) in Chapter 5, if we define

k ≡ κa = a

√
Σh

D
, g ≡ 2πa

√
ρh

D
, (6.9)

then we have

x±mn =

√√
k4 + 4f 2

mna
2g2 ± k2

2
(6.10)

as the solutions of Eq. (5.23). Since higher resonant frequencies can be ob-

served in the experiment, we can combine one of them with the first resonant

mode and numerically solve Eq. (5.23) with the two corresponding resonant

frequencies to extract k and g. After parameters k and g are calculated, they

can be plugged back into Eq. (6.10) with the first resonant frequency to cal-

culate x±01. Then the spatial mode of the fundamental mode Eq. (5.28) can

be written in terms of x±01 allowing the ratio of the effective mass and the

total mass M01/M to be calculated. In practice, the first and second resonant

frequencies are used. Not only because they are the strongest features present

in our data but also it is more straight forward to find the corresponding mode

numbers. Below, we will use our data set to illustrate the idea.

As mentioned above, the first measured resonant peak has a frequency

of 3.257 MHz which is extracted by fitting to the PSD. The same method can

again be used to extract the second resonant frequency, which was found to

be 5.972 MHz with a 0.05 % relative uncertainty3. A careful scan has been

3The other fitting parameters a and b have a much larger fitting uncertainties, which
are 9.49 % and 5.58 %, respectively. This is due to the small signal strength at higher
frequencies.
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made to ensure there are no other resonant peaks between these two strong

peaks. From Table 5.1 we can see that the ratio between the second resonant

frequency, which is f11, to the first resonant mode should be 1.593 if only sur-

face tension is considered and 2.082 if only bending rigidity is considered. The

ratio between the measured second and first resonant peak in our experiment

is 1.834 and falls between these two extreme cases, as shown in Figure 6.10.

This implies that we are still in the intermediate regime where both terms need

to be considered. Therefore, there is no analytic ratio between the effective

mass to the total mass that can be used to get the total mass of the sample

with effective mass calculated from the fitting parameters. However, we can

solve the problem numerically with the method mentioned above.

Since we have measured the first and second resonant frequencies,

which are f01 and f11, respectively, we can plug them into Eq. (6.10) and

express the following four parameters as

x±01(k, g) =

√√
k4 + 4f 2

01a
2g2 ± k2

2
, (6.11)

x±11(k, g) =

√√
k4 + 4f 2

11a
2g2 ± k2

2
. (6.12)

Plugging them into Eq. (5.23), we can write two equations with two unknown

variables k and g as

x01I0(x+01)J−1(x−01)− x+01J0(x−01)I−1(x+01) = 0, (6.13)

x11I1(x+11)J0(x−11)− x+11J1(x−11)I0(x+11) = 0. (6.14)
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Figure 6.10: The position PSD for the graphene diaphragm. The experimental
data is depicted as the solid black line and the solid red lines highlight the
first two resonant frequencies extracted by fitting to the PSD at different
regions. The dashed orange line is calculated by multiplying the measured first
resonant frequency with the theoretical ratio f11/f01 when only surface tension
is included, which is 1.593 from Table 5.1. The dashed blue line is calculated
by multiplying the measured first resonant frequency with the theoretical ratio
when only bending rigidity is included, which is 2.082 from Table. 5.1.
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Numerically solving these two equations together we find that k = 4.036 and

g = 1.386. So x±01 can be calculated as x−01 = 2.938 and x+01 = 4.992. The

fundamental spatial mode can then be written according to Eq. (5.28)

Z01(r, θ) = A01

[
J0

(
2.938r

a

)
− J0(2.938)

I0(4.992)
I0

(
4.992r

a

)]
, (6.15)

where the normalization factor A01 ≈ 0.9913. According to the definition of

effective mass in Eq. (5.29), we find that M01/M ≈ 0.196. So the total mass

of the suspended graphene is determined to be 1453.1 fg. We see that by using

the first two resonant frequencies, we are able determine the mode shape and

calculate the total mass of the diaphragm rather than just bounding it’s value.

It is worth noting that this measured mass corresponds to a mass den-

sity ρh of 4.4×10−5 kgm−2. The theoretical mass density of 6-8 layer graphene

is from 4.8×10−6 kgm−2 to 6.3×10−6 kgm−2. The deviation that indicates the

ratio between the measured and the theoretical mass density is from 7.0 to 9.2.

It has also been shown by other experiment performed with CVD graphene in

high vacuum (1× 10−6mbar) a deviation from 2.9 to 29 [67–69].

Further information can be extracted from solving for k and g other

than just the mode shape. Based on the definition of k and g, Eq. (6.9), we

have

k

g
=

1

2π

√
Σ

ρ
, (6.16)

1

g
=

1

2πa

√
D

ρh
. (6.17)
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Figure 6.11: The ratio between the effective mass to the total mass M01/M vs.
the ratio of the first two resonant frequencies f11/f01 for a suspended circular
diaphragm with a radius of a, the measured first resonant frequency f01 and
f01 a = 9m/s.

Comparing with Eq. (5.3) and Eq. (5.4), we find that

fmn|D=0 =
k

g

γmn

a
, (6.18)

fmn|Σ=0 =
1

g

β2
mn

a
. (6.19)

Therefore, we can estimate the contribution of the bending rigidity and

surface tension to the final resonant frequency with k and g, for example

f01|D=0 ≈ 2.2MHz and f01|Σ=0 ≈ 2.3MHz, which are comparable to each

other.

In the above we use our experimental data to illustrate the procedure

of using the first two measured resonant frequencies to extract the mode shape

of the suspended diaphragm, but the method is not limited to the specific pa-

rameters seen in our experiment. Figure 6.11 presents the numerical results of
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the ratio between the effective mass to the total mass M01/M vs. the ratio of

the first two resonant frequencies f11/f01 for a suspended circular diaphragm

with a radius of a, the measured first resonant frequency f01 and f01 a = 9m/s.

It is also worth noting that the set of Eq. (6.13) and Eq. (6.14) have solutions

only when the f11/f01 is in between the two boundary values 1.593 and 2.082,

which correspond to the case when only the surface tension or the bending

rigidity is considered.

To summarize, the experimental setup and results of measuring the

Brownian motion of a suspended graphene diaphragm have been covered in

this chapter. Using laser Doppler vibrometry, the displacement of the graphene

diaphragm can be directly read out so that the thermomechanical calibration is

turned into a method to directly measure the effective mass of the diaphragm.

Moreover, we have demonstrated a methodology that uses the first two res-

onant frequencies of the diaphragm to numerically solve the resonant mode

shape allowing determination of the total mass. This method has the benefit

that it doesn’t require knowledge of the physical and mechanical properties of

the diaphragm except for the radius which can be measured very accurately

and it is not susceptible to contamination, making it possible to analyze the

Brownian motion of the diaphragm in an ambient environment.
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Chapter 7

Towards a Quantum-Limited Acoustic

Detector

In this Chapter we outline the ongoing efforts to develop a quantum-

limited acoustic detector in our group. After calibrating our system using the

method described in Chapter 4, we can use the optically trapped microsphere

as a high-bandwidth acoustic detector as detailed in Reference [10]. However,

the bandwidth of the acoustic detector is limited by the shot noise at high

frequencies. In Section 7.1 we discuss the design of a high-power balanced

photodetector which can be utilized in future experiments to improve the

bandwidth of the optically trapped microsphere as an acoustic detector. In

order to develop a quantum-limited acoustic detector, it is crucial to study the

properties of the suspended graphene diaphragm when exposed to an ambient

environment, which is covered in Section 7.2. Finally, Section 7.3 provides

a summary of the dissertation and presents a design for a portable, high-

bandwidth acoustic detector based on a heterodyne fiber interferometer with

a suspended graphene diaphragm.
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7.1 High-power balanced photodetector

At high frequencies laser shot noise is a significant factor limiting the

sensitivity of detection. Shot noise is a fundamental noise source that arises

from the random nature of the photon emission process in a laser. The noise is

characterized by a distribution of photon counts around the mean count with

the standard deviation of the distribution being proportional to the square

root of the mean count. Since the signal is proportional to the mean photon

count, the SNR is proportional to the square root of the laser power. So an

increase in laser power leads to an increase in the mean photon count and a

corresponding improvement in SNR. Therefore, a home-made detector with a

much higher damage threshold than commercially available is constructed to

reach a higher SNR based on Reference [70], the schematic of which is shown

in Figure 7.1. It is inspired by a circuit design used by LIGO [71–73]. Be-

sides the low-frequency noise in the system caused by vibrations, harmonics of

60 Hz AC power lines, laser pointing noise and acoustic noise around 237 Hz,

etc, create a large imbalance in the photocurrent which leads to saturation of

the photodetector. Thus, a high-pass filter with a 3-dB drop around 1 kHz is

placed at the first amplification stage to overcome this problem.

One of the primary obstacles limiting the maximum power output of a

photodetector is the vulnerability of the photodiodes to thermal damage. To

overcome this challenge, using photodiodes with larger surface areas can help

raise the thermal damage threshold and thus improve the maximum operat-

ing power of the photodetector. We use large area, low capacitance InGaAs
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Figure 7.1: Schematic of the circuit of the high power balanced photodetector.

PIN photodiodes (Excelitas C30641GH) that are reversed biased at 5V. Their

relatively low capacitance of 22 pF allows the detector to maintain a high

bandwidth. Prior to assembling the photodetector circuit shown in Figure

7.1, we characterized its AC behavior in TINA, a circuit simulation software,

to ensure reasonable cut-off frequencies. The result of the simulation is shown

in Figure 7.2.

Although the photodiodes on the detector have a relatively large

surface area with a 1.0 mm useful diameter, they are still quite small when

compared to the size of the laser beam used in the experiment. This size dis-

crepancy necessitates the use of focusing lenses to direct the laser beams onto
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Figure 7.2: The simulated frequency response of the high power balanced
photodetector in TINA

the photodiodes. We use a 16 mm Thorlabs cage rod system in conjunction

with two XY translation mounts (Thorlabs SCP05) to allow for easy adjust-

ments to be made to the distance between the lenses and photodiodes, as well

as their relative transverse positions. This enables fine-tuning of focusing the

laser beam onto the photodiodes to achieve optimal performance. Shown in

Figure 7.3 is the cage rod system and the assembled circuit board contained

within the housing.

It is worth noting that the results presented in Figure 7.2 are based

on simulations and may not accurately reflect the actual frequency response of

the detector once it has been constructed due to things such as parasitic capac-

itances that are inevitable on circuit boards. To properly evaluate the impact

of the high-pass filter, the cut-off frequency should be determined through ex-

perimental measurement. We achieved this by directing a 1064 nm laser beam

from our Mephisto laser, modulated by an AOM, to one of the ports of the
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Figure 7.3: Photos of the high-power balanced photodetector. Left is the front
of the detector with the adjustable lenses. Right is the circuit.

high-power balanced photodetector and measured the amplitude of the signal

as the modulation frequency was varied. The cut-off frequency (-3 dB) was

found to be around 975 Hz. To further characterize the bandwidth of the de-

tector, especially the frequency response for high-frequency signals, a 1064 nm

pulsed laser (Continuum Minilite) with a pulse duration of 5-7 ns was filtered

and directed to one of the ports in the balanced detector. An averaged rise

time τr between points 10% and 90% up the rising edge of the output signal

is measured to be around 9 ns, which corresponds to a -3 dB cut-off frequency

around 38 MHz, according to f3dB = 0.35/τr.

7.2 Brownian motion of graphene diaphragms in ambient
air

Suspended graphene over a through hole is an excellent candidate for

use as a diaphragm in an acoustic detector with an optical readout. Acoustic

waves can be detected as they pass through one side of the device, while
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Figure 7.4: The position PSD for the first resonant mode of the 6-8 layer
graphene diaphragm measured in ambient air.

a detection laser beam can access the graphene diaphragm from the other

exposed side. As the graphene will be immersed in ambient air during the

detection process, it is essential to conduct experiments to study its properties

in this environment. In this section we report the results of the experiment

conducted with the diaphragm in ambient air.

The experimental setup is very similar to that described in Chapter 6.

The only difference is that the sample is now exposed to the ambient air. The

position PSD of the first resonant mode is shown in Figure 7.4 and the position

PSD of the first two resonant modes including the fitted resonant frequencies

is shown in Figure 7.5. Based on the technique described in Chapter 6, the

effective mass of the first resonant mode is found to be 558.0 fg with a relative

uncertainty of 1.12 %. The first and second resonant frequencies are measured

to be 5.26 MHz and 10.65 MHz, respectively, so the total mass is calculated to
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Figure 7.5: The position PSD for a 6-8 layer suspended graphene diaphragm
in ambient air. The first two resonant peaks are shown. The color code is the
same as Figure 6.10.
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Figure 7.6: The position PSD for the first resonant mode of the bilayer
graphene diaphragm measured in ambient air.
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Figure 7.7: The position PSD for a bilayer suspended graphene diaphragm in
ambient air. The first two resonant peaks are shown. The color code is the
same as Figure 6.10.

be 3019.5 fg. A similar experiment was also performed with a bilayer graphene

sample (Ted Pella 21920-5) with an identical radius. The results are displayed

in Figures 7.6 and 7.7. The effective mass of the first resonant mode is found to

be 566.7 fg with a relative uncertainty of 1.92 %. The first and second resonant

frequencies are measured to be 3.86 MHz and 7.07 MHz, respectively. As a

result, the total mass is calculated to be 2891.3 fg. It is worth noting that the

mass of pure suspended graphene is 52.7 fg for bilayer graphene and 158.0-210.6

fg for 6-8 layer graphene. The large mass discrepancy between pure graphene

and the total mass of the sample shows that contamination dominants the

mass of the graphene sample in an ambient environment. Furthermore, when

compared to the mass of the graphene diaphragm (1453.1 fg) that was put into

a low-pressure chamber after being heated up, we can see that the cleaning
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process can remove the half of the total contamination.

7.3 Summary and Future

7.3.1 Summary of work

The work presented in this dissertation includes two experiments that

measure the mass of optically trapped microspheres and suspended diaphragms,

respectively at thermal equilibrium using their Brownian motion.

Two methods have been explored to measure the mass of the optically

trapped microspheres: the spectral method and the equipartition method. In

the spectral method, the trap strength, density of the microsphere and the cal-

ibration factor can be accurately extracted. It serves as a calibration step and

at the same time yields a mass measurement with 3.0% relative uncertainty

with 3 seconds of data. After completing the calibration step, the equiparti-

tion method can be used to take rapid measurements of the mass and achieve

a relative uncertainty of 4.1% with 0.3 seconds of data.

Based on the technique of laser Doppler vibrometry (LDV), the out-

of-plane displacement of the suspended graphene diaphragm due to Brownian

motion can be directly measured. The spectral method can be used to ex-

tract the effective mass of the fundamental resonant mode of the diaphragm.

In order to extract the total mass of the suspended diaphragm, knowledge of

the mode shape is required. A new method was developed to use the first

two resonant frequencies to numerically solve for the resonant mode shape.

This method has the benefit that it does not require knowledge of the phys-
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ical and mechanical properties of the diaphragm except for the dimensions

of the suspended diaphragm in the plane which can be measured very accu-

rately. Furthermore, the method is robust and less affected by contaminants

on the diaphragm thus allowing suspended diaphragms to be used in ambient

environments.

7.3.2 Future directions

Ultimately, our goal is to develop a quantum-limited acoustic detector

with potential applications for proton therapy [11–13] and dark matter de-

tection [14–16]. By integrating the higher power balanced photodetector in a

future setup of the optically trapped microsphere experiment, the shot-noise

limited bandwidth in the high frequency range can be extended. This will

make the optically trapped microsphere system a more powerful tool to detect

high-energy, high-frequency acoustic signals.

One future application for the suspended graphene diaphragm we en-

vision is to create a portable version of our experiment setup. Figure 7.8 shows

the design of a heterodyne fiber interferometer with a suspended graphene di-

aphragm. The incoming laser beam is split into two branches with a 2x2 fiber

coupler. The coupling ratio is chosen to be 90:10 so that the majority of the

laser power is directed to the graphene diaphragm and the reflected powers

from the two branches are comparable to each other. The frequency of the

laser beam in the other branch is shifted by a fiber AOM and reflected back

by a fiber retroreflector. Finally, the reflected beams from the graphene di-
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Figure 7.8: The design of a heterodyne fiber interferometer with suspended
graphene. The red arrows represent the incoming laser beam and the blue
arrows represent the reflected beam.

aphragm and the fiber retroreflector are combined to form a beat note signal

encoding the displacement of the graphene diaphragm. The main benefit of

using a heterodyne, rather than homodyne, design for a fiber interferometer

is that the distance between the two arms doesn’t need to be carefully cho-

sen or locked in order to achieve the maximum sensitivity. Moreover, it can

circumvent the saturation of the detection signal from low frequency noise

by applying a high-pass filter prior to extracting the phase information from

the beat note signal. This makes it suitable for detecting the high-frequency

acoustic signals expected in detecting the Bragg peak in proton therapy and

the acoustic waves in bubble chambers used for dark matter searches.
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